线性代数2.2.行列式的性质

合集下载

线性代数自考知识点汇总

线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

行列式的认识

行列式的认识

行列式的认识在线性代数中,行列式是一种非常重要的概念,它是一个方阵的一个标量量度。

它在许多领域中都有着广泛的应用,包括物理,工程学,统计学和计算机图形学等。

1. 行列式的定义行列式通常表示为$det(A)$或$|A|$。

它是一个方阵的数字值,如果它是正的,则表示该矩阵是“正定”的,否则表示它是“负定”的。

一个矩阵的行列式的计算方式如下:$$ det(A)=\sum_{\sigma\in S_{n}}(-1)^{\tau(\sigma)}\prod_{i=1}^{n}a_{i,\sigma_i},$$其中,$n$是矩阵的阶数,$a_{i,j}$是矩阵$A$中第$i$行第$j$列的元素,$S_n$是$n$个元素的置换群,$\sigma$是$S_n$中一个置换。

$\tau(\sigma)$表示置换$\sigma$的逆序数,即该置换可以通过多少次交换相邻的元素变为单位置换。

$(-1)^{\tau(\sigma)}$表示符号,当逆序数是偶数时取值为正,当逆序数是奇数时取值为负。

因此,行列式的值可以通过先列出所有可能的$n!$种置换,然后计算每个置换的贡献来得到。

2. 行列式的性质行列式有许多令人惊讶的性质。

以下是一些重要性质的概述:2.1 行列式的性质1:任意交换矩阵的两行或两列,行列式的值会发生反转。

根据上述公式,当交换两行时,置换的符号改变了,因为逆序数的奇偶性改变了。

当交换两列时,置换的奇偶性也改变了,因此结果符号仍然改变。

例如,对于一个3x3的矩阵A,如果我们交换第1行和第2行,那么行列式的值将由$det(A)$变为$-det(A)$。

2.2 行列式的性质2:如果矩阵的两行或两列成比例,那么该行列式的值为零。

如果两行成比例,那么矩阵的行列式为零,因为对于任何置换$\sigma$,这两行的元素始终被映射到了同一列。

结果是,对于每个乘积$a_{i,\sigma_i}$,该乘积乘以一个相同的因子$a_{j,\sigma_j}=ka_{i,\sigma_j}$,其中$k$是一个常数。

线性代数性质公式整理

线性代数性质公式整理

线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里 是1,2,·n的一个排列。

当 是偶排列时,该项的前面带正号;当 是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。

式(1.1)称为n阶行列式的完全展开式。

2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。

一个排列的逆序总是称为这个排列的逆序数。

用 表示排列 的逆序数。

3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。

4.2阶与3阶行列式的展开—— ,5.余子式与代数余子式——在n阶行列式中划去 所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为 的余子式,记为 ;称为 的代数余子式,记为 ,即 。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作 。

二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。

2.两行互换位置,行列式的值变号。

特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。

4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若 ,则,且特征值相同。

线性代数行列式的性质与计算

线性代数行列式的性质与计算
思考:这三种变换的结果分别是什么?
下页
2 1 3 1
例1. 计算行列式 D = 3 1 0 7 1 2 4 2 1 0 1 5
解:
1 0 1 5 r2 3r1 1 0 1 5
r3 +r1
r1r4 3 1 0 7 0 1 r4 2r1 3 8
D =
=
1 2 4 2
02 3 3
2 1 3 1
0 1 1 11
令Aij=(1)i+jMij, Aij称为元素aij的代数余子式.
例如,求4阶行列式中a32的代数余子式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
M32=
A32= (1)3+2M32 = M32
a11 a13 a14 a21 a23 a24 a41 a43 a44
下页
范得蒙(Vandermonde)行列式
1
a1 a12 Dn = a1n3 a1n2 a1n1
下页
1
1
0
Dn
=
0
0
0
a2 a1 a22 a1a2
a2n2 a1a2n3
a2n1 a1a2n2
1
a3 a1 a32 a1a3
a3n2 a1a3n3 a3n1 a1a3n2
1
an a1
an2 a1an
ann2 a1ann3
ann1 a1ann2
a2 a1 a22 a1a2
按第二列展开
D=a12A12 +a22A22 +a32A32
=0 (1)1+2 1 3 +1 (1)2+2 1 2 +3 (1)3+2 1 2

线性代数行列式的性质与计算

线性代数行列式的性质与计算

线性代数行列式的性质与计算线性代数中的行列式是一种非常重要的数学工具,它在各个领域的数学和物理问题中都具有广泛的应用和重要性。

行列式是一个数,它与矩阵的元素有关,在许多情况下可以通过一些算法进行计算。

一、行列式的性质1.行列式有可加性:若A为n阶方阵,有两列完全相同,则行列式的值为0;若A为n阶方阵,交换两列,行列式的值变号。

2.行列式有因子约束:若A的其中一行或其中一列的元素是两个数之和,则A的行列式等于这两个数的和的行列式之和。

3.行列式有数乘的性质:若将A的其中一行或其中一列的元素都乘以k,则A的行列式等于k乘以这个行列式。

4.行列式对其中一行与另一行的代换变号,对其中一列与另一列的代换变号,换行、换列对行列式无影响。

5.方阵A与其转置矩阵A'行列式相等,即,A,=,A'。

6.若A为可逆的方阵,则,A,≠0;若A的其中一行全为0,则,A,=0。

二、行列式的计算1.二阶行列式的计算:设A为二阶方阵。

2.三阶行列式的计算:设A为三阶方阵a11a12a1A=,a21a22a23a31a32a33.高阶行列式的计算:a)拉普拉斯展开法:以行或列为基准进行展开,逐步减小行列式的阶数,直至计算到二阶行列式。

b)三角形矩阵法:若A为上(下)三角矩阵,则A的行列式等于对角元素的乘积。

c)伴随矩阵法:设A为n阶方阵,A的伴随矩阵的转置矩阵为A*,则,A,=,A*,=A*A^-1d)特征值法:设A的特征值为λ1,λ2,…,λn,则,A,=λ1λ2…λn.e)克拉默法则:若Ax=b为线性方程组,其中A为n阶方阵,且,A,≠0,则方程组有唯一解x=A^-1b.总之,行列式作为一种数学工具,在线性代数中具有重要的地位和作用。

它不仅可以帮助我们判断矩阵的可逆性,还可以求解线性方程组、计算矩阵的秩、判断矩阵的相似性等。

行列式的性质和计算方法可以帮助我们更好地理解和应用线性代数的相关知识。

行列式的性质及求解方法

行列式的性质及求解方法

行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。

在本文中,我们将探讨行列式的性质及其求解方法。

一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。

1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。

- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。

- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。

- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。

- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。

2-2.1(行列式的性质1—性质3)--线性代数PPT

2-2.1(行列式的性质1—性质3)--线性代数PPT


bi1 ci1 bi 2 ci 2 bin cin


an1
an2

ann
a11 a12 a1n
a11 a12 a1n
bi1 bi2 bin ci1 ci2 cin
an1 an2 ann an1 an2 ann
§2.2 行列式的性质与计算

左 按 第 i行 展 开 (bi1 ci1 ) Ai1 (bin cin ) Ain
(bi1 Ai1 bin Ain ) (ci1 Ai1 cin Ain )
a11 a12
a1n a11 a12
a1n
bi1 bi 2
det A ak1 Ak1 ak 2 Ak 2 akn Akn , (k i, j)
Mkl(l=1,…,n): n-1阶行列式, 有两行元对应相等
Akl 0 (k 1, ..., n) det A 0
§2.2 行列式的性质与计算
性质3
a11
a12

a1n
推论 detA的某一行全为零 det A 0
性质2 detA 的第i行元素与第j行元素对应相等
即 aik = ajk , i≠j, k=1,…, n det A 0
证 对行列式的阶n用数学归纳法 1o: n=2, 显然. 2o: 设结论对n-1阶行列式成立, 对n阶行列式, 按第k(i, j)行展开:

0
ann
a1,n1
a2,n1
0
a11
a a nn n1,n1
an1,n1
a12
a1,n2
a22
a2,n2

行列式解方程

行列式解方程

行列式解方程1. 介绍行列式是线性代数中的重要概念,它在解方程组、计算特征值和特征向量等方面起着关键的作用。

本文将介绍如何使用行列式来解方程,并且给出一些实际的例子。

2. 行列式基础知识2.1 行列式的定义行列式是一个方阵(即行数和列数相等)所具有的一个标量值。

以二阶行列式为例,对于一个二阶方阵 A = [[a, b], [c, d]]它的行列式记作 |A| 或 det(A),计算公式为: |A| = ad - bc2.2 行列式的性质行列式具有一些重要的性质,这些性质在解方程时非常有用。

以下是一些常用的性质:•交换行:当交换方阵的两行时,行列式的值改变符号。

•交换列:当交换方阵的两列时,行列式的值改变符号。

•行(列)倍乘:将方阵的某一行(列)乘以一个常数k,那么行列式的值也将乘以k。

•行(列)相加:将方阵的某一行(列)的k倍加到另一行(列)上,行列式的值保持不变。

3. 使用行列式解方程组在解线性方程组时,可以使用行列式的方法,通过求解方阵的行列式来获得方程组的解。

3.1 二元一次方程组的解法考虑一个包含两个变量x和y的线性方程组:a11 * x + a12 * y = b1a21 * x + a22 * y = b2其中,a11, a12, a21, a22, b1和b2是已知常数。

通过构造系数矩阵A和常数向量b,我们可以将上述方程组写成矩阵形式:A * X = b其中,A是一个2x2的矩阵,X是包含变量x和y的列向量,b是包含常数b1和b2的列向量。

解方程组的关键是求解矩阵A的逆矩阵A^-1。

逆矩阵满足以下条件:A * A^-1 = I,其中I是单位矩阵。

计算逆矩阵的方法之一是使用伴随矩阵。

伴随矩阵的定义为:adj(A) = [[a22, -a12],[-a21, a11]]通过伴随矩阵,可以计算A的逆矩阵:A^-1 = (1 / det(A)) * adj(A)其中,det(A)是A的行列式。

线性代数 矩阵 第2节 行列式

线性代数 矩阵 第2节 行列式

第二章 矩阵与行列式
§2.2 行列式
注: 二阶行列式和三阶行列式的对角线法则: a11 a12 a21 a22 = a11a22 a12a21
a11 a12 a13 a21 a22 a23 a31 a32 a33
= a11 a22 a33 + a12 a23 a31 + a13 a21 a32 a11 a23 a32 a12 a21 a33 a13 a22 a31 .
例4. 设D =
am1 … amm 0 … 0 , c11 … c1m b11 … b1n cn1 … cnm bn1 … bnn …
am1 … amm
, ,

D2 =


bn1 … bnn

证明: D = D1D2.
证明: 对D1施行ci+kcj 这类运算, 把D1化为下三 角形行列式:
D1 =
a11 … a1m

.b 0 .. . . . a b . . d =a c +(1)2n+1b . . .. .. c d 0 … 0 d 0
a.
第二章 矩阵与行列式
§2.2 行列式
.b 0 .. . . . a b . . d =a c +(1)2n+1b . . .. .. c d 0 … 0 d 0
§2.2 行列式
补充. 数学归纳法(Principle of mathematical induction) 1. 第一数学归纳法原理: 设P是一个关于自然数n的命题, 若 ① P对于n = n0成立. ② 当nn0时, 由“n = k时P成立”可推出 “n = k+1时P成立”, 则P对于任意的自然数nn0成立.

线性代数知识点归纳

线性代数知识点归纳

第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1. 行列式的计算:① (定义法)1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ a b -型公式:1[(1)]()n a b b b b a bban b a b b b a b b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ij m n A a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mn m n AA A +=, ()()m n mn A A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵T A =.A 是反对称矩阵T A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ij nnnn A A A A A A AA A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AAA A A E ==,1*n A A -=, 11A A --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1A B B A E A B-==⇒=) 3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:①对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;②对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式(存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法 6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解 ②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解 ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3 推论♣ 线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一 4. 最大无关组相关知识向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B .12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数. (4) 求非齐次线性方程组Ax = b 的通解的步骤 (5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1.②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量.②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ=⑤12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素. ⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O=⇒A 的任何一个特征值必满足()i f λ=0②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法 (1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ.(2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. ①1P AP B -= (P 为可逆矩阵) ②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量.②A B =tr tr ③A B = 从而,A B 同时可逆或不可逆④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1PAP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭. ② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAAE =正交矩阵的性质:① 1TAA -=;② TT AAA A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10. 11.123,,ααα线性无关,单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。

线性代数 第二章 第二节 行列式的主要性质

线性代数 第二章 第二节 行列式的主要性质

D = ∑ ( 1) a p11a p2 2 a pn n .
τ
12:29

D = D′. 证毕
行列式中行与列具有同等的地位,因此行列 说明 行列式中行与列具有同等的地位 因此行列 式的性质凡是对行成立的对列也同样成立. 式的性质凡是对行成立的对列也同样成立 性质2 互换行列式的两行( ),行列式变号 行列式变号, 性质2 互换行列式的两行(列),行列式变号,即
12:29
13
3 课本例题p14 课本例题 例题1 例题 计算行列式 = 5 2
1 1 0
1 4 1 2
1 2 3 4 1 1 3
2 6 1 7 2 1 r2 r3
解:
1 c1 c2 1 0 5 1 3 r3 + 4r2 0 2 3 5 2 1 1 1 1 3 1 3 2 1 1 r4 + 5r1 0 3 2 1
推论1 把行列式的某一行( 推论1 把行列式的某一行(列)的所有元素同乘 以数k 等于用数k乘以这个行列式. 以数k,等于用数k乘以这个行列式.
12:29 8
性质 4 如果行 列式某 行 ( 列 ) 的所有 元素都 是两数 之 则该行列式为两行列式之和, 和,则该行列式为两行列式之和,即
a11 ai1 + bi1 a n1 a12 ai 2 + bi 2 an2 a1n ain + bin = a nn
p1 p2 p n
D=
(1)τ a p11a p2 2 a pn n ∑
p1 p2 p n
又因为行列式D可表示为 又因为行列式 可表示为
b11 b12 b1n 1n b21 b22 b2 n D′ = , bn1 bn 2 bnn
表述之二: 表述之二 行列式与它的转置行列式相等; 行列式与它的转置行列式相等 表述之三: 表述之三 3 行列互换,其值不变 行列互换 其值不变

行列式的性质及应用知识点总结

行列式的性质及应用知识点总结

行列式的性质及应用知识点总结行列式是线性代数中一个重要的概念,对于矩阵运算和求解线性方程组等问题具有重要的应用价值。

本文将对行列式的性质及其在实际问题中的应用进行总结,以帮助读者更好地理解和应用这一概念。

一、行列式的定义和性质1. 行列式的定义行列式是一个与方阵相关的标量,在实际运算中通常用大写字母表示。

对于一个n阶方阵A = (a_ij),其行列式记作det(A)或|A|,其中a_ij代表矩阵A的第i行第j列的元素。

2. 行列式的性质(1)行列互换性:如果交换矩阵的两行(列),行列式的值不变,即|A| = -|A' |,其中A'是A行列互换后的矩阵。

(2)行列式的倍乘性:如果矩阵A的某一行(列)的元素分别乘以同一常数k,那么行列式的值也相应地乘以k,即|kA|=k^n|A|。

(3)行列式的加性:如果有两个矩阵A和B,它们唯一的区别是其中某一行(列)不同,那么这两个行列式的和等于另一个行列式,即|A+B|=|A'|+|B|。

(4)行列式的三角形性质:如果矩阵A是一个上(下)三角矩阵,那么它的行列式等于对角线上各元素的乘积,即|A| = a_11 * a_22 * ... *a_nn。

二、行列式的应用1. 矩阵的逆行列式在求解矩阵的逆时起到关键作用。

如果一个n阶方阵A存在逆矩阵A^-1,那么有A * A^-1 = I,其中I是单位矩阵。

利用行列式的性质,我们可以通过求解行列式的值来判断矩阵是否可逆,即当|A| ≠ 0时,矩阵A可逆。

2. 线性方程组的求解行列式也可以应用于求解线性方程组。

对于一个有n个未知数和n 个方程的线性方程组,可以使用Cramer法则来求解,其中每个未知数的值等于其对应行列式除以总行列式的值,即x_i = |A_i| / |A|,其中A_i是将方程组中第i个未知数对应的列替换为方程组右侧的常数列得到的矩阵。

3. 矩阵的秩行列式还可以用于求解矩阵的秩。

矩阵的秩是一个衡量矩阵线性无关性的指标,它表示矩阵的行(列)向量组的最大线性无关组的向量个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质2 互换行列式的两行(列),行列式变号.
例如 175 175 6 6 2 3 5 8 , 358 662
17 5 715 6 6 2 6 6 2. 35 8 538
注 如果行列式有两行(列)完全相同,则此 行列式为零.
性质3 行列式的某一行(列)中所有的元素都 乘以同一数k,等于用数k乘此行列式.
,
ak1 akk
bn1 bnn
证明 D D1D2 .
证明(略)
三、小结
行列式的5个性质
(行列式中行与列具有
同等的地位,行列式的性质凡是对行成立的对列
也同样成立).
计算行列式常用方法:
(1)一些特殊行列式的计算
(2)利用性质把行列式化为上(下)三角形行列 式,从而算得行列式的值.
(3)利用定义 (4)按行(列)展开公式
再加到第i行的对应元素上
ci kc j 表示将第j列的每个元素乘以k,
再加到第i列的对应元素上
ri rj 表示将第i行元素与第j行元素对换
ci c j 表示将第i列元素与第j列元素对换
二、应用举例
计算行列式常用方法:利用运算 ri kr(j 性质5) 把行列式化为上(下)三角形行列式,从而算得 行列式的值.
=(-1)n DnT
=(-1)n Dn 又n为奇数,故Dn 0.
a11 a1k


0
例4

D

ak1 c11

akk c1k b11
b1n



cn1 cnk bn1 bnn
a11 a1k
b11 b1n
D1 det(aij )
, D2 det(bij )

an1 ani anj anj
a11 (a1i ka1 j ) a1 j a1n
ci

kc j
a21

(a2i ka2 j )
a2 j
a2 j
an1 (ani kanj ) anj anj
记号: ri krj 表示将第j行的每个元素乘以k,
第 二 节 行列式的性质
一、行列式的性质
a11 a12 a1n D a21 a22 a2n
an1 an2 ann
记 DT

a11 a21 a12 a22


an1 an2
a1n a2n ann
行列式 DT 称为行列式 D的转置行列式
性质1.行列式与它的转置行列式相等。即D DT。
1 1 2 3 1
r3 r2
0 0
2 0
1 1
5 1
3 2
0 0 1 0 2
0 0 2 2 2
1 1 2 3 1
r4 r3 0 2 1 5 0 0 1 1
3
2 2
0 0 0 1 0 0 0 2 2 2
1 1 2 3 1
0 2 1 5 3 r5 2r3 0 0 1 1 2

b b b a 解 将第2,3,…,n 列都加到第一列得
a n 1b b b b a n 1b a b b D a n 1b b a b


a n 1b b b a
1 b b b
1 a b b
a (n 1)b 1 b a b
an1 ani ann an1 an i ann
性质5 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行 (列)对应的元素上去, 行列式不变.
例如
a11 a1i a1 j a1n
a21 a2i k a2 j a2 j



性质4 若行列式的某一行(列)的元素都是两
数之和,则行列式可按这行(列)分解为两个行
列式之和,即 a11
a12
L
a1n
L
L
L
L
b1 c1 b2 c2 L
L
L
L
bn cn L
an1
an 2
L
ann
a11 a12 L a1n a11 a12 L a1n L LLL L LLL
b1 b2 L bn c1 c2 L cn L LLL L LLL
4 4 10 10 2
1 1 2 3 1 r4 3r1 0 0 1 0 2
0 2 0 4 1 r5 4r1 0 2 1 5 3
0 0 2 2 2
1 1 2 3 1 0 2 1 5 3 r2 r4 0 2 0 4 1 0 0 1 0 2 0 0 2 2 2
证明
记 D det aij 的转置行列式
b11 b12 b1n DT b21 b22 b2n ,

bn1 bn2 bnn
即bij aji i, j 1,2, , n, 按定义
DT
1 b b L b (p1 p2L pn)
an1 an2 L ann an1 an2 L ann
a11 a12 (a1i a1i ) a1n
D a21 a22 (a2i a2 i ) a2n



an1 an2 (ani an i ) ann
a11 a1i a1n a11 a1i a1n D a21 a2i a2n a21 a2i a2n
1 1 2 3 1 2
0 0 1 0 2 r2 3r1 2 0 4 2 1
3 5 7 14 6
4 4 10 10 2
4 1 1 2 3 1 3
0 0 1 0 2
r3 2r1 0 2 0
4 1

3 5 7 14 6

1 b b a
1b b b
ri r1, i 2,3, .n a (n 1)b
0 a b ab
a (n 1)b(a b)n1.
0 ab
例3 证明奇数阶反对称行列式的值为零。
证明 设反对称行列式Dn det aij , n为奇数 因为Dn det aij 是反对称的, 所以Dn det aij =det aji =(-1)n det aji
1 1 2 3 1 3
3 3 7 9 5 例1 D 2 0 4 2 1
3 5 7 14 6 4 4 10 10 2
1 1 2 3 1 3
3 3 7 9 5 解 D 2 0 4 2 1
3 5 7 14 6 4 4 10 10 2 1 1 2 3 1 0 0 1 0 2 r2 3r1 2 0 4 2 1 3 5 7 14 6 4 4 10 10 2
100 k 00
k 0 1 0=0 k 0, k0
×
001 00k
1 0 0 k 0 0
k

0
10 = Nhomakorabea
0
k
0

,
k 0

0 0 1 0 0 k
注 (2) 行列式中如果有两行(列)元素成比 例,则此行列式为零.
证明 a11 a12 a1n
a11 a12 a1n
a11 a12 a1n
kai1 kai2 kain k ai1 ai2 ain


an1 an2 ann
an1 an2 ann
注 (1)行列式的某一行(列)中所有元素的 公因子可以提到行列式符号的外面.
a11 a12 a1n
ai1 ai2 ain
ai1 ai2 ain
k 0.
kai1 kai2 kain
ai1 ai2 ain
an1 an2 ann
an1 an2 ann
0 0 0 1 0 4
0 0 0 4 6

1 1 2 3 1
0 2 1 5 3
r5 4r4 0 0 1 1 2 2 1 6 12.
0 0 0 1 0
0 0 0 0 6
a b b b
b a b b 例2 计算n阶行列式 D b b a b
1 p1 2 p2
npn
1 a a L a . (p1 p2L pn)
p1 1 p2 2
pnn
又因为行列式D可表示为
D
1 a a L a . (p1 p2L pn)
p1 1 p2 2
pnn
故 D DT .
注 行列式中行与列具有同等的地位,因此行列 式的性质凡是对行成立的对列也同样成立.
相关文档
最新文档