周期信号的傅立叶变换

合集下载

第三章――傅里叶变换周期信号的傅里叶级数分析

第三章――傅里叶变换周期信号的傅里叶级数分析

第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。

(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。

(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。

(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。

周期信号的傅里叶变换

周期信号的傅里叶变换

周期信号的傅里叶变换
周期信号的傅里叶变换与傅里叶级数有很大的关系,它与非周期信号的傅里叶不是一回事,非周期傅叶变换对不对用在周期信号上。

先做个铺垫:
虚指函数是一个周期函数,他的傅里叶变换可以从下面的开始考虑
由傅里叶级数可知,一个周期信号可以用
表示,即用一串虚指函数的加权表示。

那么由上式可知:虚指函数的傅里叶变换是02()πδωω-。

一个周期信号x (t )的傅里叶变换是一个脉冲串,可用表示。


中表示的是,发生在第K 次谐波关系的的冲激函数的面积是加权的系数
的2pi 倍。

现在关键在于加权的系数的计算。

这里的就是傅里叶级数中的。

下面是傅里叶级数的表达式:
到此为止,可以计算周期信号的傅里叶变换了!
计算的时候注意,可以尽量先直接化成虚指函数,再根据虚指函数与脉冲这间的关系直接计算求得,如果不行,可以通过计算,再代入.
满足狄里赫利条件的周期信号都可以用傅里叶级数的形式表示,即虚指函数的加权;虚指函数的频谱为脉冲02()πδωω-,那么所有可以用傅里叶级数表示的周期信号的频谱都是脉冲串。

如正弦函数的频谱是在+wo 和-wo 处的脉冲。

周期信号的傅里叶变换

周期信号的傅里叶变换
信号与系统
第17讲 周期信号的傅里叶变换
周期信号进行傅里叶变换的目的
将周期信号用傅里叶级数展开得到周期信号的离散 频谱,令周期信号的周期趋近无穷大引出非周期信 号,从傅里叶级数在周期趋于无穷大的极限导出傅 里叶变换,由周期信号的离散谱过渡到连续谱,引 出频谱密度函数的概念
周期信号进行傅里叶变换的目的
f ( t )
F n . e j n 1t
n
根据傅里叶变换的线性和频移特性
F T [ f (t)] 2 Fn ( n1 )
n
3.一般的周期信号的傅立叶变换
F ( j) 2 Fn( n1)
n
周期信号的频谱是离散的,而傅里叶变换反映 的是频谱密度的概念,因此周期信号的傅里叶 变换不同于其傅里叶系数,它不是有限值,而 是冲激函数,这表明在谐波频率点处,即无穷小 的频带范围内取得了无穷大的频谱值。
1.复指数信号的傅里叶变换
因为
1 2 ()
对于复指数
f (t) e j0t
由频移特性,可知
e j0t 2 ( 0)
2. 余弦和正弦信号信号的傅里叶变换
对于正弦和余弦信号,根据欧拉公式,并利用
e j0t 2 ( 0)
得到其频谱函数分别为
cos0t [ ( 0 ) ( 0 )]
sin0t j[ ( 0 ) ( 0 )]
3.一般的周期信号的傅立叶变换
F( j) 2 Fn ( n1)
n
周期信号的傅里叶变换是由无穷多个频域上的 冲激函数组成,这些冲激函数位于信号的各谐
波频率 n1处,其强度为相应傅里叶级数系数
Fn 的 2 倍。
4、周期单位冲激序列的傅里叶变换
T (t)
n
(t nT1)

周期信号的傅立叶变换

周期信号的傅立叶变换

1×e− jω0 t ↔ 2πδ (ω +ω0 )
所以可得
cosω0t ↔π[δ (ω + ω0 ) + δ (ω − ω0 )]
sin ω0t ↔ jπ[δ (ω + ω0 ) − δ (ω − ω0 )]
一、虚指数信号和正余弦信号的傅立叶变换
频谱图: 频谱图:
e
jω0t
F (ω )
频率为ω0 ,频谱 为ω0 处的冲激
1 T 1 2π 2 & Fn = ∫ T δT (t) e− jnΩt dt = , Ω = T −2 T T
L L
− 2T − T
L L
0T 2T
t
2π ∞ ∴ δT (t) ⇔ ∑δ (ω − nΩ) T n=−∞ = Ω ∑δ (ω − nΩ)
n=−∞ ∞
δΩ (ω)
L L
−2Ω − Ω
L L
所以有
fT (t )
1
f 0 (t )
1
τ
F0 (ω )
−T −τ
0 τ
2
T
t
2

τ
2
0
τ 2
t
−4π
−2π
τ
τ
0

4π 6π
τ
τ
τ
ω
τ
T
Fn
τω0
F (ω )
−4π
τ
−2π
τ
0

τ
4π 6π τ τ
ω
−4π
τ
−2π
τ
0

τ
4π 6π τ τ
ω
频谱图
cosω0t
F (ω )

常用信号的傅里叶变换

常用信号的傅里叶变换

常用信号的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学工具。

对于任意一个周期信号,傅里叶变换可以将其表示成一系列正弦波的叠加形式,从而更好地理解和处理信号。

在实际应用中,有很多信号都需要进行傅里叶变换。

下面介绍一些常用信号的傅里叶变换。

1. 正弦信号正弦信号是一种最基本的周期信号,其函数形式为y=sin(wt),其中w为角频率。

通过傅里叶变换,可以将正弦信号表示为一组频率为w的正弦波的叠加形式,即:y(t) = A1*sin(wt) + A2*sin(2wt) + A3*sin(3wt) + …其中,An为振幅,表示第n个正弦波的幅度。

2. 方波信号方波信号是一种由周期为T的矩形波形组成的信号,其函数形式为:y(t) = sgn(sin(wt))其中,sgn表示符号函数,即当sin(wt)>0时,sgn(sin(wt))=1,否则sgn(sin(wt))=-1。

通过傅里叶变换,可以将方波信号表示为一组频率为w的正弦波的叠加形式,即:y(t) = (4/pi)*[sin(wt) + (1/3)*sin(3wt) + (1/5)*sin(5wt) + …]3. 带限信号带限信号是指信号的频率范围有限,通常是指截止频率为一定值的信号。

通过傅里叶变换,可以将带限信号表示为一组频率在一定范围内的正弦波的叠加形式,即:y(t) = (1/2*pi)*Int[-w0,w0]{F(w)*e^(jwt)dw}其中,F(w)为信号的频谱,w0为信号的截止频率,Int表示积分运算。

以上三种信号只是常用信号中的一部分,实际应用中还有很多其他类型的信号需要进行傅里叶变换。

傅里叶变换不仅可以分析信号的频域特性,还可以用于信号的滤波、压缩、编码等方面,具有广泛的应用价值。

傅里叶变换常用公式

傅里叶变换常用公式

傅里叶变换常用公式1. 简介傅里叶变换是一种重要的数学工具,用于将一个信号从时域转换到频域。

它常被应用于信号处理、图像处理、通信等领域。

本文将介绍傅里叶变换的基本概念和常用公式。

2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它用于将周期信号表示为一系列正弦和余弦函数的和。

傅里叶级数的公式如下:傅里叶级数公式傅里叶级数公式在上述公式中,f(t)表示周期为T的函数,a0是直流成分,ak和bk是傅里叶系数。

3. 傅里叶变换傅里叶变换是将非周期信号表示为一组连续的频谱的过程。

傅里叶变换的公式如下:傅里叶变换公式傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号,j是虚数单位。

4. 反傅里叶变换反傅里叶变换是将频域信号恢复为时域信号的过程。

反傅里叶变换的公式如下:反傅里叶变换公式反傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号。

5. 常见傅里叶变换公式下面列举了一些常见的傅里叶变换公式:5.1 正弦函数的傅里叶变换正弦函数的傅里叶变换的公式如下:正弦函数的傅里叶变换公式正弦函数的傅里叶变换公式在上述公式中,f(t)是正弦函数,F(w)是其频域信号。

5.2 余弦函数的傅里叶变换余弦函数的傅里叶变换的公式如下:余弦函数的傅里叶变换公式余弦函数的傅里叶变换公式在上述公式中,f(t)是余弦函数,F(w)是其频域信号。

5.3 矩形脉冲的傅里叶变换矩形脉冲的傅里叶变换的公式如下:矩形脉冲的傅里叶变换公式矩形脉冲的傅里叶变换公式在上述公式中,f(t)是矩形脉冲,F(w)是其频域信号。

5.4 高斯函数的傅里叶变换高斯函数的傅里叶变换的公式如下:高斯函数的傅里叶变换公式高斯函数的傅里叶变换公式在上述公式中,f(t)是高斯函数,F(w)是其频域信号。

6. 结论傅里叶变换是一种非常强大的数学工具,用于将信号从时域转换到频域。

本文介绍了傅里叶级数、傅里叶变换和反傅里叶变换的基本公式,并列举了一些常见的傅里叶变换公式。

周期信号的傅里叶变换

周期信号的傅里叶变换
(1)

tm o tm
t
p( t)

E



s
1

o
F s

o
Ts
t fS( t)




o

o tm T s
t

24 页
§3.11 抽样定理

理想抽样(周期单位冲激抽样)
f (t)
25 页
f (t ) F ( )
o
p( t)
(1)
t
E

p(t ) T (t )
谐波频率
强度 : 2π F n1 与F (n1 )成正比, 离散谱
2 谱线的幅度不是有限值 , 因为F 表示的是频谱密度。 周期信号的F 只存在于 n1处,
频率范围无限小, 幅度为。
三.如何求 F n1
1.方法一 2.方法 二
第 8 页
1 T 直接利用公式求:F n1 2T fT t e jn1t d t T 2 1 利用F0 来求 F n1 T F0 n 1 1

27 页
的范围,则信号 f t 可用等间隔的抽样值来 惟一地表示。 1 1 m 2π f m , 其抽样间隔必须不大于 ,即Ts 2 fm 2 fm 或者说最低抽样率为 2 f m。
f(t) 1
F
o
t
fS(t) o T S t s
o m m 1 F s
1



T t
1 1 1 1 1
2T1 T1 o T1 2T1
t
1 所以 T t 的傅氏级数谱系数 F n 1 T 1

傅里叶变换公式

傅里叶变换公式

连续时间周期信号傅里叶级数:⎰=T dt t x Ta )(1⎰⎰--==T tTjkT tjk k dt et x Tdt et x Ta πω2)(1)(1离散时间周期信号傅里叶级数:[][]()∑∑=-=-==Nn nN jk Nn njkwk e n x Ne n x Na /2110π连续时间非周期信号的傅里叶变换:()⎰∞∞--=dt e t x jw Xjwt )(连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ⎰∞∞-=π21)(连续时间周期信号傅里叶变换:∑+∞-∞=⎪⎪⎭⎫⎝⎛-=k k kw a jw X T 22)(πδπ连续时间周期信号傅里叶反变换:()dw e w w t x jwt ⎰∞∞--=0221)(πδπ离散时间非周期信号傅里叶变换:∑∞-∞=-=nnj e n x eX ωωj ][)(离散时间非周期信号傅里叶反变换:⎰=π2d e )(e π21][ωωωn j j X n x离散时间周期信号傅里叶变换:∑+∞-∞=-=kk k a X )(π2)e (0j ωωδω离散时间周期信号傅里叶反变换:[]ωωωδωd e n n j ⎰--=π20πl)2(π2π21][x拉普拉斯变换:()dt e t s Xst -∞∞-⎰=)(x拉普拉斯反变换:()()s j21t x j j d e s X st ⎰∞+∞-=σσπZ 变换:∑∞-∞=-=nnz n x X ][)z (Z 反变换: ⎰⎰-==z z z X r z X n x n nd )(πj21d )e ()(π21][1j π2ωω。

周期信号傅里叶变换和采样

周期信号傅里叶变换和采样

抽样 频率 应满 足w0

100, 即T

1 50
(3)H
(
jw)


2 w0
,
0,
w wc ,50 wc w0 50 w wc
应满足采样频率w0

2wm,或者说抽样周期T

wm

二 利用内插从样本重建信号
线性内插 显然,简单的将相邻样本点用直线连接起来不能完全精确的重 建原始信号

fs (t) f (nT )(t nT )
n
f (t)
Fs
(
jw
)

1 T

F[
n
j(w

n)]
F ( jw)
频域离散性
分析比较两种思路的结论:

fT (t) 2 Fn (w nw0 )
n

fT (t) w0 F ( jnw0 ) (w nw0 )
n
2 Fn w0 F( jnw0 )
Fn-周期信号fT(t)的傅里叶级数; F(jw)- fT(t)主周期f(t)的傅里叶变换。
周期信号的傅里叶变换

fT (t) 2 Fn (w nw0 )
n
周期信号的傅里叶变换是一系列强度为2Fn,延迟为nw0的冲 激串的线性组合,仍是离散谱。
w-连续变量,但只在w= nw0的离散频率上取值。

周期信号的傅里叶变换 fT (t) 2 Fn (w nw0 )
Sa

nw0
2

(w

nw0 )


T
n
Sa

第4章_6周期信号的傅立叶变换

第4章_6周期信号的傅立叶变换
4.34
4.13bc 4.207
4.14e
4.23
4.41 4.45 4.48
上式表明,周期信号的傅里叶变换(或频谱密度函
数)由无穷多个冲激函数组成,这些冲激函数位于信
号的各谐波角频率 n(n 0,1,2, )处,其强度
为各虚指数分量相应幅度 Fn 的 2 倍。
例4.6-1 求周期性矩形脉冲信号 PT (t) 的频谱函数。
pT t
1


解:
Fn
Sa( n
2
)
(

n)

n
2 s in(n
2 n
)
(
n)
ℱ[pT(t)]
-Ω 0 Ω
图 4.6-2 周期矩形脉冲的傅立叶变换 T 4
例4.6-2 求周期性单位冲激函数序列 T (t)的频谱。

T (t) (t mT ) ( m为整数) n T(t )
周期冲激序列的傅立叶变换
可见:时域中周期为 T 的单位冲激序列,在频域中是
周期为 ,强度为

的冲激序列。其中


2
T
方法二
设周期信号 fT (t),从该信号中截取一个周期信号,
令其为 f0 (t) 。
fT (t) f0(t)T (t)
fT (t ) F0 ( j ) ( )
2
T

F0( jn) (
n
n)
Fn

1 T
F0 (
j ) n
可见,周期信号的傅里叶系数等于F0 ( j ) 在n处
的值乘上 1 。 T
傅里叶变换的许多性质也可适用于傅里叶级数,这提 供了求周期信号傅里叶系数的另一种方法。

周期信号的傅里叶变换

周期信号的傅里叶变换

n
F (n1)
Fn
1 T1
t0 T1 t0
f (t )e jn1t dt
其中n为所有的整数
函数f(t)的对称性与FS系数关系
(1)
f
(t )为偶函数
:
f
(t )
a0 2
an
n1
cos n1t
an
4 T1
T1 2
0
f (t) cos n1tdt
(2) f (t)为奇函数 : f (t) bn sin( n1t) n 1
2
一般周期信号的FT
FT[ f (t)] Fn FT[e jn1t ] n
2 Fn ( n1) n
Fn
1 T1
T1
2 T1
f (t)e jn1t dt
2
周期信号的FS与其单周期信号的FT之间的关系
Fn
1 T1
F0 ( )
n1
时域抽样信号的FT
Fs ( ) Pn F ( ns ) n
|a| a
时移 : f (t t0 ) F ( )e jt0 频移 : f (t)e j0t F ( 0 )
时域微分 : f (n) (t) ( j)n F () 频域微分 : ( jt)n f (t) F (n) ()
时域积分 : t f ( )d F () F (0) ()
j
是其本身,这意味着f (t)所有频率分量都
在低通滤波器的通带内.
f (t)是周期信号,其高次谐波可表示为
12n.因此有 | | 100 |12n | 100
| n | 8
即对于 | n | 8的n值, an将恒为0.
例题4 :已知f (t)为周期信号(如图),求F().

§3-6 周期信号的的傅里叶变换

§3-6 周期信号的的傅里叶变换

∞ 2π ∞ X T ( jΩ ) = ∑ X ( jΩ)δ(Ω − kΩ1 ) = Ω1 k∑ X ( jΩ)δ(Ω − kΩ1 ) T k = −∞ = −∞
二、周期性单位冲激序列的傅里叶变换 周期性单位冲激序列可表示为:

δT (t )
(1)
δ T (t ) =
n = −∞
∑ δ(t − nT )
大连海事大学信息科学技术学院
《信号与系统》 信号与系统》
第三章
连续时间信号与系统的傅里叶分析
̇ = 1 Ak T
所以
T 2
−T 2
δ (t ) e − jk Ω1t dt = ∫

1 T
(Ω1 )
{δT (t )}
1 δ T (t ) = T
k = −∞
∑e

jkΩ1t
− 2Ω1
− Ω1
0
Ω1
以上傅里叶变换的图形如下:
《Signals & systems》 systems》 大连海事大学信息科学技术学院

《信号与系统》 信号与系统》
第三章
连续时间信号与系统的傅里叶分析
̇ Ak
τ T
XT ( jΩ)
(τΩ 1 )
− Ω1
Ω1

− Ω1
Ω1
2Ω1

τ τ τ k πτ ̇ A k = Sa ( k Ω 1 ) = Sa ( ) T 2 T T
2Ω1

根据傅里叶变换的移频特性,其傅里叶变换
1 {δT (t )} = T
1 jkΩ1t ∑ {e } = T k = −∞

k = −∞
∑ 2 πδ (Ω − kΩ )

周期信号的傅立叶变换

周期信号的傅立叶变换

又F 1[s
()]
1
s
n
(t
nTs )
fs (t)
f
(t) * 1
s
(t
n
nTs )
1
s
n
f
(t) *
(t
nTs )
1
s n f (t nTs )
由上式可知,假如有限时间信号f (t)的频谱函数
F ( j)在频域中被间隔为s的冲激序列采样,则被取样 后频谱Fs ( j)所对应的时域信号fs (t)以Ts为周期的序列.
举例4.6.2 已知周期为T的单位冲激函数序列T (t)
T (t)= (t mT ) m
式中m为整数。求其傅里叶变换?
解:根据前面的结论
F[ fT (t)] 2 Fn ( n) n
Fn ?
1
Fn T
T
2 T
fT (t)e jnt dt,n 0,1, 2,....
2
Fn
1 T
无失真传输频率特性
设输入信号为f (t),那么经过无失真传输后,输出信号 y(t) Kf (t td )
Y ( j) Ke jtd F ( j)
系统的频率响应
H ( j) Ke jtd
其幅频特性和相频特性分别为
H ( j) | K () td
结论
为使信号无失真传输,对频率响应函数提出的要 求,即在全部频带内,系统地幅频特性应为一常 数,而相频特性应为通过原点的直线。
(
1
j 1)
Y ( j)
1
1 1
( j 2)( j 1) ( j 1) j 2
取傅立叶反变换
y(t) (et e2t ) (t)
例4.7 1某LTI系统的幅频响应|H(j)|和相频特性如图,

傅里叶变换(周期和非周期信号)

傅里叶变换(周期和非周期信号)

T
(t)
n
F e jn1t n
n
1 e jn1t T
1
e jn1t
T n
1
2 T
傅里叶变换的几个重要性质
1. 线性性质
若 f1(t) F 1()f,2(t) F 2() 则 a 1f(t)a 2f(t) a 1F 1()a 2F 2()
式中,a1 、a2为任意常数。
例:求符号函数sgn(t)的频谱函数F(W)。
以下 图 2 为 或 例 f1
信号的持续时间愈长,其有效频带愈窄; 信号脉冲愈窄,其有效频带愈宽。
6
4
2
Fn
A
F0 T
图 中 T14
1 2 1
2
4
6
n1
信号的周期、持续时间与频谱的关系
1. τ不变,T增大,则频谱的幅度将减小,同时谱线变密。 但包络过零点坐标并不改变。
2. T不变,τ减小,则频谱的幅度也将减小,谱线密度 保持不变,但包络过零点的间隔将增大。
bn an2 bn2
sin0t
a0 cn(cosn cosn0t sinn sinn0t)
n1
c0 cn cos(n0t n)
n1
f(t)c 0 cncon s0t(n) n1
式中,
c0
a0
1 T
T
2 -T
2
f (t)dt
cn an2bn2,narctaban nn
周期信号的傅里叶变换——傅里叶级数
(1)包络线形状:Sa(x)曲线,频谱只取曲线上离散的点; (2)频谱包络线过零点的横坐标是:
n1 2k (k1,2,3...)
每条谱线只出现在 n1 处
图 中 T14

傅里叶变换(周期和非周期信号)

傅里叶变换(周期和非周期信号)

f (t) Fne jn0t n
n1
e e jn0t jn0t
e e jn0t jn0t
a0 (an
n1
2
bn
2j
)
a0
n1
( an
- jbn 2
e
jn0t
an
2
jbn
e
jn0t
)
*
F0 Fne jn0t F en jn0t
n1
n1
*
F0 a0 是实数,Fn与 F n 是一对共轭复数
n1
c0 a0
cn an2 bn2
a0
1 T
T
2 -T
f (t) dt
2
an
2 T
T
2 T
2
f (t) cosn0t dt
bn
2 T
T
2 T
2
f (t)sin n0t dt
周期信号的傅里叶变换——傅里叶级数
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:

f (t) c0 cn cos(n0t n ) n1
谐波形式
ω0是基谐波角频率,简称基波频率。
例1 已知周期信号f(t)如下, 画出其频谱图。
f (t) 1
2
c
os0t
c
os(20t
5
4
)
2
s in 0t
1 2
sin
30t
解 : 将f(t)整理为标准形式
f
(t)
1 2 cos(0t
4
f (t) a0 (an cos0t bn sin0t)
n1
a0

周期信号的傅立叶变换

周期信号的傅立叶变换

− 2ω 1 − ω 1 o
ω 1 2ω 1
ω
− 2ω1 − ω1
o
ω1 2ω1
ω
δT (t ) 的频谱密度函数仍是冲激序列,强度和间隔都是 1。 ω
X
§3.6 连续时间系统的频域分析
一、频域的系统函数及频域分析
(对于LTI系统除了可以用第二章讲过的时域分析法外还可以用频域 分析法进行分析。它的基本原理是:将信号分解为无穷多项不同频 率的虚指数信号之和通过系统,最后进行响应的合成得到待求的响 应。时域分析与频域分析的关系如图)
1 、理想低通滤波器的系统函数 具有如图所示幅频、 具有如图所示幅频、相 频特性的系统称为理想 低通滤波器。 称为截 低通滤波器。ωc称为截 止角频率。 止角频率。
−ωc
1 H (ω )
0
ϕ (ω ) ωc
ωc
ω
−ωc
0
ω
H ( jω) = H (ω)e
e − jωt0 = 0
jϕ (ω )
§3.5周期信号的傅立叶变换
引言
周期信号: 周期信号:
f ( t ) ↔傅里叶级数F n

离散谱
非周期信号: 非周期信号:
f ( t ) ↔ 傅里叶变换F ( jω ) 连续谱
周期信号的傅里叶变换如何求? 周期信号的傅里叶变换如何求? 与傅里叶级数的关系? 与傅里叶级数的关系?
X
一.一般周期信号的傅里叶变换 2π 设信号周期:T = ω1 由傅里叶级数的指数形式出发: 由傅里叶级数的指数形式出发: 其傅氏变换(用定义 其傅氏变换 用定义) 用定义

f (t) ↔ F( jω)
− jωt0
无失真传输时,Y ( jω) = KF( jω)e

傅里叶变换基础知识

傅里叶变换基础知识

傅里叶变换基础知识1•傅里叶级数展幵最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。

1.1周期信号的傅里叶级数在有限区间上,任何周期信号双/)只要满足狄利克雷(dmclilet)条件,都可以展开成傅里叶级数。

1・1・1狄利克雷(duichlet)条件狄利克雷(duichlet)条件为:(1)信号双/)在一个周期内只有有限个第一类间断点(当t从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2 )信号/ (t)在一周期内只有有限个极人值和极小值;(3 )信号在一个周期内是绝对可积分的,即应为有限值。

1.1.2间断点在非连续函数y二f{・x)中某点处心处有中断现彖,那么,兀就称为函数的不连续点。

(1)第一类间断点(有限型间断点):a.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(兀令分母为零时等情况);b.跳跃间断点:函数在该点左极限、右极限存在,但不相等(y = lxl/x°在点x = 0处等情况)。

(2)第二类间断点:除第一类间断点的间断点。

1.13傅里叶级数三角函数表达式傅里叶级数三角函数表达式为X X0=仇+乞(①cos“q/ +加• • •J1-1式中:心为信号的常值分量;色为信号的余弦信号幅值:你为信号的正弦信号幅值。

%、心、》分别表示为:==J :) cosncootdtx{ t )sinncootdt式中:7;为信号的周期;。

为信号的基频,即角频率,$=2龙/7;「=1,2,3...。

合并同频项也可表示为X (t)二% + 艺 A cos (gf + q)H-l式中:信号的幅值人和初相位q分别为人=虫+丐2 =arcnm (・b” /心)1.1.4频谱的相矢概念(1) 信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化矢系,即信号的结构,是(或&・/)和q 厂3 (或2・/)的统称;(2) 信号的幅频谱:周期信号幅值人随e (或/)的变化尖系,用(或A ・/>表示; (3) 信号的相频谱:周期信号相位仇随e (或f )的变化矢系,用0,弋。

傅里叶变换

傅里叶变换

第三章 傅里叶变换一.周期信号的傅里叶级数知 识 要 点1、 周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t (1T 为其周期)可展开为傅里叶级数。

(1)三角函数形式的傅里叶级数 0111()[cos()sin()]nn n f t a an t b n t ωω∞==++∑式中112T πω=,n 为正整数。

直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度010112()cos()t T t a f t n t dt T ω+=⎰正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰ 三角函数形式的傅里叶级数的另一种形式为011()cos()nn n f t c cn t ωϕ∞==++∑频谱:离散性、谐波性、收敛性或011()sin()nn n f t d dn t ωϑ∞==++∑以上几种表示形式中各个量之间的关系为000a c d ==n n c d ==cos sin n n n n n a c d ϕϑ== sin cos n n n n n b c d ϕϑ=-=tan nn n a b ϑ=tan nn na b ϕ=-(1,2,)n =,,n n n a c d 为1n ω的偶函数,,,n n n b ϕϑ为1n ω的奇函数。

(2)指数形式的傅里叶级数11()()jn tn f t F n eωω∞=-∞=∑式中,n 为从-∞到+∞的整数。

复数频谱0110111()()t T jn tn t F F n f t e dt T ωω+-==⎰n F 与其他系数之间的关系为 0000F c d a ===1()2n j n n n n F F c a jb ϕ==-1()2n j n n n n F F c a jb ϕ---==+1122n n n n F F c d -====n n n F F a -+=n n n F F c -+=()n n n b j F F -=-n F 是1n ω的偶函数。

周期信号的傅里叶变换

周期信号的傅里叶变换
x( t )
1 Xn T
n T1 2 T 1 1 2 jn 1 t X e n

x( t )e jn 1t dt
4
单周期信号的傅里叶变换
X d ( ) xd ( t )e j tdt Nhomakorabeadt
1 Xn T1

T1 2 T 1 2
x( t )e jn 1t dt
x(t)
xs(t) x( t ) T xs(t)
0
t
0
T
2T
3T
t
11
调制信号x(t)
抽样
xs(t)
数字信号 量化编码 载波信号
这是由于傅里叶变换反映的是频谱密度概念,周期 信号在各谐振点上,具有有限幅度,说明在这些谐振频 点上其频谐密度趋于无限大,所以变成冲激函数。 这也说明了傅里叶级数可看作傅里叶变换的一种特 例。 三、周期信号与单周期信号频谱间的关系 周期信号x(t)在时域上可以看作是它的单周期信号 xd(t)的周期延拓。已知周期信号的傅里叶级数为:
X ( )
n
0
T1
t
jn1t e
X

n
2 ( n 1 )

n 1 E 1 Sa ( n 1 ) 2 n
9
x0(t) E
E
X0() 2/
0
t E/T1 x(t) E Xn


2/
2.3.4 周期信号的傅里叶变换
前面在推导傅里叶变换时,是将非周期信号看成是 周期信号T 无穷大的周期信号的极限,从而导出了频谱 密度函数的概念。 本节将这概念推广去求周期信号的频谱密度函数 ,即 求周期信号的傅里叶变换,从而得出傅里叶级数是傅里叶 变换的特例的结论。 周期信号是不满足绝对可积条件的,同样它也仅仅在 频谱中引入冲激函数后,傅里叶变换才存在。 因为周期信号可以展成傅里叶级数,即展成一系列不 同频率的复指数分量或正弦、余弦分量的叠加。下面先 求复指数、正弦、余弦分量的傅里叶变换,在此基础上再 求任意周期信号的傅里叶变换。

周期信号的傅里叶变换

周期信号的傅里叶变换

Sa ns
2
Fs ()
E
Ts
n
Sa
ns
2
F (
ns )
上式表明:
信号在时域被抽样后,它的频谱Fs(ω)是连 续信号的频谱F(ω)以抽样频率ωs为间隔周 期地重复而得到的.在重复过程中,幅度被抽 样脉冲p(t)的傅立叶系数所加权,加权系数 取决于抽样脉冲序列的形状.
抽样前 F(ω) 1
抽样后 Fs(ω) E ωs
2
2sin
4 (4 2e j )
f (t) f1(t) T (t) T 2
T (t) ( )
2
T
F()
4sin n 4 [2 (1)n ] ( n )
n
n
例题5 :已知f (t) F (),求下列信号的FT :
(1) d f (at b) dt
(2) f 2 (t) sin 0t
理想抽样
:
Fs ( )
1 Ts
F (
n
ns )
频域抽样信号的FT
f1 (t )
1
1
n
f
(t
nT1)
时域抽样定理
| | m
fs
2 fm或Ts
1 2 fm
频域抽样定理
|t
|
tm
Ts
2tm或f s
1 2tm
例题1:
已知周期信号f1(t)和f2 (t)如图,且
f1(t) a0 [an cos(n1t) bn sin(n1t)] n1
✓若f(t)被等间隔T取样,将等效于F(ω)以 ωs=2/T为周期重复;
✓而F(ω)被等间隔ωs取样,则等效于f(t)以T 为周期重复.
➢因此,在时域中进行抽样的过程,必然导致 频域中的周期函数;在频域中进行抽样的过 程,必然导致时域中的周期函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H ( j) YZS ( j) F( j)
H ( j) 是线性系统的频率传输函数,有时也叫系统频响 函数。它的定义是零状态响应傅氏变换与激励傅氏变换 之比。
X
2、H ( j)与 h(t)的关系
Q yzs (t) f (t)*h(t) 令 f (t) (t) 则yzs (t) h(t)
F [h(t)] Y(j) H(j)F(j) H(j)
抽样原理图:
f (t)
fs (t ) A/D
f (n)
量化编码
周期 信号
p( t )
需解决的问题
:
fs (t) Fs j与F
由fs t能否恢复f
j 的关系
t
X
二.抽样信号的频谱(单位冲激序列抽样)
f(t)
f(t)
连续信号
1
F j
1
F jft
抽样信号
fs t
o
ot
t
p(t) f(tp)(f(t)t)
F n e jn1t
n
FT j F fT t
F
n

F
n
e jn1t
n

F
nF
e jn1t

F n 2π n1 n

2π F n n1 n
X
几点认识

FT j 2π F n n1
1 fTt的频谱由冲激序列组成;
(2)这些冲激函数位于谐波频率处: n1 谐波频率
mommoommoomPPPmmmmjjj
(1p(()(11((11tp)))))(t)EEEE
o
ooo TTTSSS o TffSSSfTS(((ttS))t) fS(ftS)(t)
t
ttt t
相 相相 相乘 乘乘 相 乘乘
o ooooTSTTTTSSSS
ttt tt
卷 卷卷
sss
s s
(3)每个冲激的强度等于周期信号傅里叶级数展开系

数 F n的 2p 倍。
X
二、傅里叶系数与傅里叶变换的关系

即单个脉冲的 F0 j与周期信号fT t 的谱系数 F n 的关系
f0 t
fT t
T o
T
t T
o
T
2
2
设 f0 t F0 j
T
F0 j
2 T
f0 t ejt d t
(1)
F 1
s
j
P
FPjjj
1s
Ts
sTs
s
o TS o ooTtSTTSS t t t
s
omss sso
oo
m
ss
s
X
fs(t ) of(t )Ts(tt)
mom
Fs
j
F
opf(t)t
p(t)
Ts
t
t
(1)
(1)
1E
Ts En
F[
1 2π
j
F
ns
j
]
s
mo(mPnjsn P 源自j "0"
f (t)
LTI
y f (t)
h(t)
F
F 1
F( j) H ( j) Y ( j)
X
频域系统分析的步骤: ①输入信号的FT f(t)→F(jω) ②系统函数 h(t)→H(jω) ③输出信号的FT Y(jω)=F(jω)H(jω) ④输出的零状态响应 yzs(t)=F-1[Y(jω)]
频分复用 时分复用
(FDM) (TDM)
频分复用(frequency division multiply):以频段 分割的方法在一个信道内实现多路通信的传输体制。
§3.10 抽样信号的频谱
一.抽样
从连续时间信号中每隔固定的时间间隔抽取一系列的 离散样值,称为抽样信号。
抽样是从连续信号到离散信号的桥梁,也是对信号 进行数字处理的第一个环节。
一、频域的系统函数及频域分析
(对于LTI系统除了可以用第二章讲过的时域分析法外还可以用频域 分析法进行分析。它的基本原理是:将信号分解为无穷多项不同频 率的虚指数信号之和通过系统,最后进行响应的合成得到待求的响 应。时域分析与频域分析的关系如图)
f (t)
信号分解
F( j)
LTI
h(t)
H( j)
mom mom
P
j1
F1
PFjjj
抽样冲激序列
pt
p(1()t)
E
(1T)s(t
)E
(t
n
nTss )
s s (
n
ns )
o TS o o ot TS t t t
s o s msoommoms
fS(t) p(tf)Sp((t相 乘t))
卷相 积乘
(1) (1) E
卷 积
(t) Cos20t)
F1( j) F [ f1(t)]
1 2
F
(
j)
1
4
F
[
j(
20 )
F
[
j(
20 )]
相应的频谱如图,可见借助低通滤波器,
可恢复出所需信号。
1 F1 ( j)
2
1 4
20
m 0 m
20
X
三.频分复用
信道:信号传输的媒介; 无线通信:信道是广阔天空 有线通信:信道是传输线 复用:是为有效利用信道资源,在一个信道上同时 传输多路信号。
得:
H
(
j
)
Y( F(
j ) j )
1
(
j
j 3 2)( j
1)
则 Y ( j) H ( j)F ( j) 1 1 1 j 3 j 1 j 2
零状态响应: yzs (t) (e3t et e2t ) (t)
X
二、无失真传输
信号通过系统框图如图所示
f (t) h(t) y(t)
(B) f(t) = sin(2t) + sin(4t)
(C) f(t) = sin(2t) sin(4t)
(D) f(t) = cos2(4t)
|H( jω) | π
0
10
(a)
θ (ω) 5
-5 0
ω
-5

(b)
三、理想低通滤波器
1、理想低通滤波器的系统函数
具有如图所示幅频、相 频特性的系统称为理想 低通滤波器。c称为截 止角频率。
H ()
K
0
( )
0 t0
(a)
(b)
在工程上所谓无失真传输,其含义是保证 系统的无失真传输带宽与信号有效带宽相匹配。
理想滤波器
X
例:系统的幅频特性 |H(jω)|和相频特性如图 (a)(b)所示,则下列信 号通过该系统时,不 -10 产生失真的是
(A) f(t) = cos(t) + cos(8t)
无失真传输的条件 H ( j) Ke jt0
即:| H ( j) | H () K () t0,
为实现无失真传输,在全部频带内,系统函数的幅频特性 应为一个常数,而相频特性应为通过原点的直线,即信号 通过线性系统时各谐波的相移必须与其频率成正比
X
| H(j )| H() K () t0, 其幅频特性和相频特性如下图:
H ( j) H ()e j()
e
jt0
0
c
其它
1 H ()
c
0 c
()
c
0 c
X
第九节 调制与解调
一、调制原理 调制:用一个信号去控制另一信号的某一参量的过程。
被控制的信号叫载波,也叫被调信号 控制信号叫调制信号
载波是高频余弦波,余弦波有三个要素:幅值、相位、 频率
控制载波的幅度叫调幅(AM); 控制频率叫调频(FM); 控制相位叫调相 (PM);
§3.5周期信号的傅立叶变换
引言
周期信号:

f t 傅里叶级数 F n 离散谱
非周期信号:
f t 傅里叶变换F j 连续谱
周期信号的傅里叶变换如何求? 与傅里叶级数的关系?
X
一.一般周期信号的傅里叶变换
设信号周期 :T 2π
1 由傅里叶级数的指数形式出发:
其傅氏变换(用定义)

fT t
X
例1:已知系统微分方程: y'' (t) 3y' (t) 2 y(t) f ''(t) 4 f '(t) 5 f (t)
激励 f (t) e3t (t) ,求零状态响应。
法一:解
F ( j) 1 j 3
[( j)2 3 j 2]Y ( j) [( j)2 4 j 5]F( j)
F ( j ) H (j ) y( j )
无失真传输通俗地讲,就是输入什么形状的信号,输
出仍要完全保持原形状,只允许有幅度大小的变化和时
间的延迟。
X
无失真传输 只有幅度大小的变化和时间的 延迟,而无波形变化。即:
y(t) K f (t t0 )
如 f (t) F( j)
无失真传输时,Y ( j) KF( j)e jt0
fs
2
fm (或s
2m ),即其抽样间隔Ts
1 2 fm
m
2πfm
s
F 1s
j
Ts
om s
X
重建原信号的必要条件:s-m m s 2m
s 2π fs 2m 2 2πfm 即 fs 2fm
或s
2π Ts
2m
2 2p
fm
即 Ts
1 2 fm
相关文档
最新文档