流体力学第三章
第三章流体力学
第三章:流体的流动一、学习要求1、理解理想流体、稳定流动、流线、流管、速度梯度、粘滞系数等基本概念。
2、掌握流体连续性方程和伯努利方程的意义和应用。
3、掌握泊肃叶公式的内涵和适用条件。
4、理解雷诺数及斯托克司定律在医学中的应用。
5、了解层流和湍流的概念及判断标准。
6、了解心脏做功、体内的血流速度及血压分布。
二、推荐学习方法1.体会物理模型的创建方法,重点体会在不同场合选择不同物理模型的依据和理由。
例如,理想流体(绝对不可压缩,完全没有粘滞性的流体),这一概念建立的依据是液体和气体的流动时,很多时候体积变化和摩擦耗能都很少,可以忽略不计,用理想模型使分析简洁,带来的误差又很小。
在应用此模型的时候,一定要注意实际现象中存在的体积变化和摩擦是否可以忽略。
如液体在粗管内流动,比如开口很大的容器底部开一小孔,求小孔处流速,由于水的可压缩性小,体积变化可忽略,容器大,流动时速度梯度小,内摩擦力可忽略,可应用伯努利方程;但如果在开孔处联结一较长细管,水在细管中流动时,粘滞性不可忽略,则要考虑伯肃叶定律;即使管道较粗,如管道较长,比如远距离输油、输水管道,求流量时也要考虑粘滞性。
2.严格遵循各物理规律的应用条件。
连续性原理是同一流管的不同截面处流速的关系,不可比较不同的流管;柏努利方程要在同一流线上使用,比较流体中两点的流速并应用柏努利方程时,一定要用一条流线将二者联系起来;在应用伯肃叶定理时一定要强调水平圆管中的层流。
三、解题指导2-1 有人认为从连续性方程来看管子愈粗流速愈小,而从泊肃叶定律来看管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?提示:两者所针对的对象是否一样?答:不矛盾,连续性原理指的是同一流管不同截面处的流速关系,截面大处流速小,而泊肃叶定律指出管子愈粗流速愈大是针对不同的流管。
两者没有可比性。
思考:连续性原理和泊肃叶定律的适用条件分别是什么?2-2为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)提示:高空和低空空气的流动状态有无区别?答:由于高处空气的流动速度快,根据柏努利定律,烟囱顶端的气压低,底端气压高,从而推动空气挟带烟尘向烟囱顶部运动,促进通风。
流体力学-第三章
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
第三章 流体力学
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax
P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0
gh
p0
1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮
1 2
V
v
2 1
gh2V
gh1V
即:
p1
1 2
v
2 1
gh1
流体力学课件 第3章流体运动的基本原理
u u (x, y,z, t )
17
二、流场描述
1、迹线:某一质点在某一时段内的运动轨迹曲线。
例: 烟火、火箭、流星、子弹等轨迹线。。。。。
(1)拉格朗日法迹线方程
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
消去参数t并给定(a,b,c)即得相应质点的迹线方 程。
说明:
*(a,b,c)=const, t为变数,可得某个指定质点在任意时刻
所处的位臵,上式即迹线方程; *(a,b,c)为变数,对应时刻 t可以得出某一瞬间不同质点 在空间的分布情况。
3、拉格朗日法的速度与加速度方程
( 1) 流速方 程
x ux ; t y uy ; t z uz t 均为(a,b,c,t)的函数。
第三章 流体运动的基本原理
静止只是流体的一种特殊的存在形态,运动 或流动是流体更为普遍的存在形态,也更能反映 流体的本质特征。 本章主要讨论流体的运动特征(速度、加速 度等)和流体运动的描述方法,流体连续性方程、 动量守恒及能量守恒方程是研究流体运动的基础。
1
第一节、流体运动的描述方法
一、拉格朗日法(lj)
18
(2)欧拉法迹线方程 若质点P在时间dt内从A点运
Z
A
B
动到B点,则质点移动速度为:
u dr dt
O
Y
得迹线方程:
dx dy dz dt ux uy uz
2、流线
表示某一瞬时流体各点流动 趋势的曲线,其上任一点的切线 方向与该点流速方向重合。即同 一时刻不同质点的速度方向线。
根据行列式的性质,有:
22
流线微分方程
dx dy dz u x u y uz
流体力学_第三章_伯努利方程及动量方程
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2
4
第三节 恒定总流的伯努利方程
Z1 p1
Z2
p2
均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1
4
d
2 1
4
d
2 1
2 gh d1 d 1 2
流体力学第三章(相似原理与量纲分析)
它们所反映的是没有量纲(单位)的数,称为无量纲数
l Sr 斯特劳哈尔数 tu
欧拉数
雷诺数
Vl
Re
p Eu 2 V
V2 Fr 弗劳德数 gl
25
2w 2w 2w w w w w p u v w 2 2 2 g t y z z z x x y
2伯努利方程5简单情况下的ns方程的准确解3第一节流体力学的模型实验和相似概念第二节相似判据第三节无量纲方程第四节特征无量纲数第五节量纲分析和定理主要内容第三章相似原理与量纲分析4实验数据的简化处理设计实验的基本要求理论流体力学第一二章实验流体力学普通实验数值实验5第一节流体力学的模型实验和相似概念流体力学实验
13
通常可以采用两种方法来确定动力相似判据: (一)方程分析法:描述流体的运动方程应该是一致的。 从而得到必须满足的关系式,即相似判据;
(二)量纲分析方法:以量纲分析为基础的一种方法。
14
方程分析法
动力相似判据
前提条件:假定原型流场和模型流场是满足几何相似、 时间相似和运动相似的,考虑不可压缩粘性流体的简单 情况。 首先,给出有关相似常数的定义:
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
10
几何相似 时间相似 有比较清晰的关系表达式 运动相似 (可直接观测) 判断什么条件下两流场才满足动力相似??
u = U u’
流体力学第三章课后习题答案
流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。
在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。
本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。
1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。
解答:比重定义为物体的密度与水的密度之比。
水的密度为1000 kg/m³,所以比重为1。
因此,该液体的比重也为1。
2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。
解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。
浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。
物体的重力等于物体的质量乘以重力加速度。
根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。
浸没深度可以通过浸没体积与物体的底面积之比来计算。
3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。
解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。
容器的高度为10 cm,所以液体的深度为10 cm。
重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。
4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。
解答:根据质量守恒定律,水流速度越大,压强越小。
根据伯努利定律,水流速度越大,压强越小。
因此,水龙头出水口附近的压强较小。
5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。
容器的半径为10 cm,液体的高度为20 cm。
求液体对容器底部的压力。
解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。
流体力学第3章(第二版)知识点总结经典例题讲解
dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be
流体力学 传递过程原理第三章
ux
u y x
uy
u y y
uz
u y z
u y
Y
1 p
三、平均流速与流动压降
压降:
Δp f p Δp 3μub 2 L x L y0
范宁摩擦因子(推导过程?):
τs 12 μ 12 f 2 ρub / 2 y0 ρub Re
(2 y0 ) ρub Re = μ
第三章 动量传递变化方程的解
3.1 两平壁间的稳态层流
3.2 圆管与套管环隙间的稳态层流
1 p 2 2 ux ( y y0 ) 2 μ x
抛物线形
当 y 0 时速度最大 1 p 2 umax y0 2 μ x
y 2 ux umax [1 ( ) ] y0
三、平均流速与流动压降
在流动方向上,取单位宽度的流通截面 A 2 y0 1, 则通过该截面的体积流率为 y0
二、套管环隙中的轴向稳态层流
套管环隙中层流的变化方程与圆管相同,即
1 d duz r r dr dr 1 dpd 常数 μ dz
B.C. 为 (I)
r r1 , uz 0
du z , 0 dr
(II) r r2 , uz 0
(III) r rmax , u z umax
一、圆管中的轴向稳态层流
二、套管环隙中的轴向稳态层流
三、旋转黏度计的测量原理
一、圆管中的轴向稳态层流
流体在圆管中的流动问题许多工程科学中遇到。 设:不可压缩流体在 水平圆管中作稳态层流 流动,所考察的部位远 离管道进、出口,流动 为沿轴向的一维流动。 r
流体力学 第三章 流体动力学
vx vx vx dv x vx vx vy vz 解: (1)a x t x y z dt
(4 y 6 x) (4 y 6 x)t (6t ) (6 y 9 x)t (4t )
将t=2,x=2,y=4代入得
ax 4m / s 2
同理 ay 6m / s 2 m / s2 a 4i 6 j
满足连续性方程,此流动可能出现
例:已知不可压缩流场ux=2x2+y,uy=2y2+z,且在z=0处
uz=0,求uz。 解:由
得 积分
u x u y u z 0 x y z u z 4 x 4 y z
uz 4( x y) z c
得 c=0
由z=0,uz=0
a.流体质点的加速度
dv a dt
dv x vx vx dx vx dy vx dz ax dt t x dt y dt z dt
同理
vx vx vx vx vx vy vz t x y z
ay
v y t
vx
是均匀流
3.流线与迹线 (1)流线——某瞬时在流场中所作的一条空间曲线,曲
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转 流线微分方程:
流线上任一点的切线方向 (dr ) 与该点速度矢量 (v ) 一致
dr v dx dy dz 0 vx vy vz
dy (a, b, c, t ) vy dt
dvy (a, b, c, t ) dt
dz (a, b, c, t ) vz dt
dv z (a, b, c, t ) az dt
流体力学——流体动力学
pB
b
2
a
3.6 10 0 3.6 a 0.24
a=6.16m
v2 2g
2
3.15 如图, 水从敞口水池沿一截面有变化的管路排出, 若质量流量 qm=15kg/s, d1=100mm, d2=75mm,不计损失,试求所需的水头 H 以及第二管段中央 M 点的相对压强。 (参考分数: 12 分)
故
pm=3.94kPa
3.16 如图,由水池通过等直径虹吸管输水,A 点为虹吸管进口处,HA=0;B 点为虹吸管中 与水池液面齐高的部位,HB=6m;C 点为虹吸管中的最高点,HC=7m;D 点为虹吸管的出 口处,HD=4m。若不计流动中的能量损失,求虹吸管的断面平均流速和 A、B、C 各断面上 的绝对压强。 (参考分数:12 分)
Δh
uA A
d
2 uA p p A 2g
解:由能量方程
2 uA p p A ,得到 2g
由毕托管原理
p pA
12.6h
解得
u A 3.85m / s , v 0.84u A 3.24m / s , Q vA 0.102m 3 / s
3.10 如图,用抽水量 Q=24m3/h 的离心水泵由水池抽水,水泵的安装高程 hs=6m,吸水管 的直径为 d=100mm,如水流通过进口底阀、吸水管路、90º弯头至泵叶轮进口的总水头损 失为 hw=0.4mH2O,求该泵叶轮进口处的真空度 pv。 (参考分数:12 分)
B
C
解:取 1-1 断面在 C 处,2-2 断面在 B 处,自由液面为 0-0 断面,选基准面在 C 处。列 0、1 断面的能量方程,有
3.6 0 0 0 0
吴望一《流体力学》第三章习题参考答案
吴望一《流体力学》第三章习题参考答案1.解:CV CS d V s dt tτϕϕδτδτϕδ∂=+⋅∂⎰⎰⎰ 由于t 时刻该物质系统为流管,因而侧面上ϕ的通量=0,于是(1)定常流动0t ϕ∂=∂,222111dV d V d dt τϕδτϕσϕσ=-⎰,设流速正方向从1端指向2端。
(2)非定常流动222111CV d V d V d dt t τϕϕδτδτϕσϕσ∂=+-∂⎰⎰2.解:取一流体微团,设其运动方程为(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t =⎧⎪=⎨⎪=⎩,由质量守恒得,在0t =和t 时刻()(),,,0,,,a b c dadbdc a b c t dxdydz ρρ=利用积分变换可知()(),,,,x y z dxdydzJ dadbdc a b c ∂==∂(雅可比行列式),于是 ()(),,(,,,0)(,,,),,x y z a b c dadbdc a b c t dadbdc a b c ρρ∂=∂()()()(),,,,,0,,,,,x y z a b c a b c t a b c ρρ∂=∂3.(控制体内流体质量的增加率)=-(其表面上的质量通量)(2)球坐标系下选取空间体元(控制体)2sin r r δτθδδθδϕ=。
单位时间内该空间内流体质量的增量为2sin r r t tρρδτθδδθδϕ∂∂=∂∂ 该控制体表面上的质量通量:以r e 和-r e 为法向的两个面元上的质量通量为()2sin |sin |sin r r r r r r v r v r r v r r r rδρρδθθδϕρδθθδϕδδθδϕθ+∂-+=∂以e θ和-e θ为法向的两个面元上的质量通量为()sin sin |sin |v v rr v rr r r θθθθθδθρθρδθδϕρδθδϕδδθδϕθ+∂-+=∂以e ϕ和-e ϕ为法向的两个面元上的质量通量为()||v v r r v r r r r ϕϕϕϕϕδϕρρδθδρδθδδδθδϕϕ+∂-+=∂ 所以()()()22sin sin sin 0r v r v vr r r t rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂即()()()22sin 110sin sin r v r v v t r r r rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ (3)柱坐标系下选取空间体元(控制体)r r z δτδθδδ= 单位时间内该空间内流体质量的增量为 ()r r z r r z t tρδδθδρδδθδ∂∂=∂∂该控制体表面上的质量通量为()()()r z rv v v r z r z r r z r zθρρρδδθδδδθδδδθδθ∂∂∂++∂∂∂ 所以()()()0r z rv v v r r t r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 即()()()0r z v r v v t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ (4)极坐标系下选取面元(控制体)s r r δδθδ=,可认为该面元对应以该面元为底面的单位高度的柱体。
流体力学 第三章
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
4流体力学第三章流动阻力与能量损失
二、能量损失的计算公式—长期工程经验总结
液体:沿程水头损失(达西公式):
L v hf d 2g
均流速
2
(3-1)
λ—沿程阻力系数;L—管道长度;d—管道直径;v—平
v2 局部水头损失: hj 2g
气体:沿程压强损失: 局部压强损失: 核心问题: 和 的计算。
(3-2)
L v pf d 2
第一节 流动阻力与能量损失的两种 形式
一、流动阻力和能量损失的分类 根据流动的边界条件,能量损失分:沿程能量损失 和局部能量损失 ㈠沿程阻力及沿程能量损失 ◆沿程阻力—当束缚流体流动的固体边壁沿程不变, 流动为均匀流时,流层与流层之间或质点之间只存 在沿程不变的切应力,称为沿程阻力。 ◆沿程能量损失—沿程阻力作功引起的能量损失称 之这沿程能量损失。特点:沿管路长度均匀分布, 即沿程水头损失hf ∝ l。
层流区 不稳定区
紊流区
二、沿程水头损失与流态的关系
层流区:
紊流区:
hf v
hf v
1.75: 2.0
不稳定区:关系不稳定。
三、流动型态的判断标准
●雷诺数: 雷诺等人进一步实验表明:流态不仅和流速v有关, 还和管径d、流体的动力粘度μ和密度ρ有关。 以上四个参数组合成一个无因次数,叫雷诺数,用 Re表示。
㈡时均化
紊流运动要素围绕它上下波动的平均值称为时均值。 时均速度的定义:
u x AT u x Adt
0
T
1 T u x u x dt T 0
瞬时速度
(3-20)
' x
ux ux u
二、紊流阻力
由两部分组成: ①流体各层因时均流速不同而存在相对运动,故 流层间产生因粘滞性所引起的摩擦阻力。 粘性切应力τ1按牛顿内摩擦定律计算。 ②由于脉动现象,流层间质点的动量交换形成的 紊流附加切应力τ2。 其大小由普朗特的混合长度理论计算。见式 (3-21)。 Re较小时,τ1为主要; Re足够大时,τ2为主要。
《流体力学》第三章一元流体动力学基础
02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。
流体力学讲义 第三章 流体动力学基础
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
3工程流体力学 第三章流体运动学基础
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2
工程流体力学第三章
则总压力P 则总压力P为: 其中 代入上式,则: 代入上式,
(1)
对于本例即
它表明作用在平面 A 的液体总压力,等于浸水面积 A 与形心点 的液体总压力, 的静压力 γhc的乘积。 的乘积。 可理解为一假想体积的液重,即以浸水面积 A 为底,面积 A 的 为底, 可理解为一假想体积的液重, 形心淹没深度h 为高的这样一个体积包围的液体重量。 形心淹没深度hc为高的这样一个体积包围的液体重量。
一点的质量力必然垂直于通过该点的等压面。 一点的质量力必然垂直于通过该点的等压面。 等压面概念对解决许多流体平衡问题很有用处, 等压面概念对解决许多流体平衡问题很有用处,它是液柱式压力计测压原理的重 要基础。 要基础。 根据等压面性质,我们可以在已知质量力的方向,去确定等压面的形状, 根据等压面性质,我们可以在已知质量力的方向,去确定等压面的形状,或已知 等压面的形状去确定质量力的方向。 等压面的形状去确定质量力的方向。
根据等压面的特性可以更普遍地证明:两种不同流体处于平衡状态时,其 根据等压面的特性可以更普遍地证明:两种不同流体处于平衡状态时, 相互接触的(但互不相混)分界面必然是等压面。 相互接触的(但互不相混)分界面必然是等压面。
( 4 )正压流场 流体的密度只是压力的函数的流场称之为正压流场,即在正压流场中 流体的密度只是压力的函数的流场称之为正压流场,
§3 . 3 某些流体静力学基本问题
在工程技术中,许多的工业过程与流体静力学相关,研究这些问 在工程技术中,许多的工业过程与流体静力学相关, 题就需要流体静力学的知识。 题就需要流体静力学的知识。 一、压力分布与受力分析 对于流体静力学基本方程: 对于流体静力学基本方程:
∂P = ρ fx; ∂x ∂P = ρ fy; ∂y
第三章流体力学
因为时间∆ 极短,所以a 因为时间∆t极短,所以a1b1和a2b2 是两段极短的位移, 是两段极短的位移,在每段极短的位移 压强p 截面积S和流速v 中,压强p、截面积S和流速v都可看作 不变。 不变。设p1、S1、v1和p2、S2、v2分别是 a b 1 1 处流体的压强、 a1b1与a2b2处流体的压强、截面积和流 p v 2 则后面流体的作用力是p S1, 速,则后面流体的作用力是p1S1,位移S2 1 所作的正功是p 是v1 ∆t,所作的正功是p1S1v1 ∆t ,而 h1 前面流体作用力作的负功是前面流体作用力作的负功是-p2S2v2 ∆t , 由此, 由此,外力的总功是
A
3、流线 、
A
vB
B
在流体内做一微小的闭合曲线, 在流体内做一微小的闭合曲线,通 过其上各点的流线围成的管状区域称为流管。 过其上各点的流线围成的管状区域称为流管。 因为流线不可相交, 因为流线不可相交,则 在任意时刻, 在任意时刻,流体质点 只能在流管内部或流管 表面流动, 表面流动,而不能穿越 流管。 流管。
vS
v1
S2
§3.2 伯努利方程
伯努利方程是流体动力学的基本定律, 伯努利方程是流体动力学的基本定律,它说明了 理想流体在管道中作稳定流动时, 理想流体在管道中作稳定流动时,流体中某点的压 流速v和高度h 强p、流速v和高度h三个量之间的关系为 ρv2 p + + ρ gh = 常量
2
式中ρ是流体的密度,g是重力加速度。试用功能 式中ρ是流体的密度, 是重力加速度。 a1 b1 原理导出伯努利方程。 原理导出伯努利方程。 我们研究管道中一段流体的p2 S2 v 1 运动。设在某一时刻, 运动。设在某一时刻,这段 a2 流体在a 位置, 流体在a1a2位置,经过极短 b2 h1 时间∆ 时间∆t后,这段流体达到 v h2 p S 2 b1b2位置 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vx =(a+1)et-1=x+t
vy =(b+1)et-1=y+t
可进一步求得欧拉变数下的加速度为:
ax =vtx +vxvxx +vyvyx +vzvzx =x+t+1
ay =vty +vxvxy +vyvyy +vzvzy =y+t+1
(4)有效断面、流量和平局流速等
流管
流管———在流场中作一条不与流线重合的任意封闭曲线,则通过此曲线上任一点的所有流线将 — 5—
如上图,一条迹线表示一个流体质点在一段时间内描述的路径。 特点:迹线上各点的切线方向表示的是同一流体质点在不同时刻的速度方向。 (2)流线 流线:流线是用来描述流场中各点流动方向的曲线,即矢量场的矢量线。在某一时刻该曲线上任 意处质点的速度矢量与此曲线相切。 注:矢量线———线上任一点的切线方向与该点的矢量方向重合,称为矢量线。
— 3—
2)二元流动:流体的运动参数只有两个坐标的函数。平面流动是二元流动。实际流体由于具有 黏性,故其流动至少是二元的,例如实际流体在圆管内的流动。由于水的黏性影响,靠近管壁的流速 低于中部的流速,即管道中的流速随管道的半径和流动方向的位移而变化,所以是二元流动。
3)三元流动:流体在空间流动一般说都是三元流动,运动参数是空间三坐标的函数。 考点四 流体运动学的基本概念和相关计算 (1)迹线 迹线:流体质点在不同时刻的运动轨迹。
构成一个管状曲面,这个管状曲面称为流管。
流束———充满在流管内部的流体。微小流束:断面无穷小的流束。 总流———管道内流动的流体的集合。 流管特点: ①流管表面不可能有流体穿过;②稳定流动时流管的形状和位置都不随时间变化,就像固体管道 的管壁;非稳定流动时,流管的形状及位置有可能随时间变化;③流管不可能在流场内部中断。 有效断面 有效断面———流束或总流上垂直于流线的断面。(有效断面可能是平面,也可能是曲面)
(4)空间运动的连续性方程(推导)
流体最普遍的运动形式是空间运动,即在空间 x,y,z三个坐标方向都有流体运动的分速度。
(ρvx)+(ρvy)+(ρvz)+ρ=0
x
y
z t
或
ρt+div(ρv) =0
①对于稳定流动:
流体的密度不随时间变化,则 (ρvx)+(ρvy)+(ρvz) =0
流量———单位时间内流经有效断面的流体量。
体积流量:单位时间内通过有效截面的流体体积,称为体积流量,符号为 qv。Q=Av。 质量流量:单位时间内通过有效截面的流体质量,称为质量流量,符号为 qm 。 质量流量与体积流量的关系为:Qm =ρQ [经典例题] 用直径 200mm的管输送相对密度为 0.7的汽油,使其流速不超过 1.2m/s。试求
眼于流场中的空间点,即设法描述出空间点处质点的运动参数,如速度和加速度随时间的变化规律,
以及相邻空间点之间这些参数的变化规律。
若不同时刻每一空间点处流体质点的运动状况都已知道,则整个流场的运动状况也就清楚了。
物理量在空间中的分布即为各种物理参数的长,如速度场、压力场:u=u(x,y,z,t),p = p(x,y,z,t)。
a、b为 t=0时流体质点所在位置的坐标。试求:
1)t=2时刻流体质点的分布规律;
2)a=1,b=2时这个质点的运动规律;
3)流体质点的Leabharlann 速度;4)欧拉变数下的速度与加速度。
解 1)ddxt=vx =(a+1)et-1;ddyt=vy =(b+1)et-1 则有 x=(a+1)et-t+C1;y=(b+1)et-t+C2 注意到在 t=0时,x=a、y=b,即有
— 4—
蔡增基《流体力学》考点精讲及复习思路
那时刻过该点的流线的微元段相重合而已。
例题 已知流场的速度分布为
u=x2yi-3yj+2z2k
1)属于几元流动?
2)求(x,y,z)=(3,1,2)点的加速度?
[经典例题] 已知拉格朗日变数下的速度表达式为:
Vx=(a+1)et-1
Vy=(b+1)et -1
蔡增基《流体力学》考点精讲及复习思路
第三章 一元流体动力学基础
1.本章考情分析
本章主要介绍了流场中各个运动参数的变化规律,以及这些运动参数之间的关系等问题。本章 以数学的思想、方法来对流场进行描述,试题中本章节有关概念以名词解释考察,主要以计算题进行 考察,光有思路计算不出结果显然是不行的,所以这一章节显得尤为关键。理想流体连续性方程,动 量方程,能量方程,这三大方程解决流体动力学是研究运动流体之间以及流体与固体边界之间的作用 力,即研究速度、加速度与质量力、压力、粘性力之间的关系。
例题 已知以拉格朗日描述为 x=aet,y=be-t 求:速度与加速度的欧拉描述。
考点三 流动的分类
A.按流体的性质分类: 1)理想流体流动; 2)黏性流体流动 3)不可压缩流体流动:密度 ρ=常数 4)可压缩流体流动:密度 ρ=(x,y,z,t) B.按运动形式分类: 1)层流 /紊流流动; 2)有旋 /无旋流动; 3)亚音素 /超音素流动。 C.按与时间关系分类: 1)定常流动, 2)非定常流动 (1)稳定流动与不稳定流动 稳定流动:如果流场中每一空间点上的部分或所有运动参数均不随时间变化,则称其为稳定流 动,也称作恒定流动或定常流动。 不稳定流动:如果流场中每一空间点上的部分或所有运动参数随时间变化,则称其为不稳定流 动,也称作非恒定流动或非定常流动。 注:运动参数———流体质点的速度、加速度;流体密度、压强、切应力等物理量的总称。 均匀流与非均匀流———流场中,若流线是相互平行的直线,称为均匀流;反之,则叫做非均匀流。 非均匀流包括渐变流和急变流。 渐变流:流线为近似平行的直线,或曲半径很大的 流体流动。 急变 流:流 线 为 不 相 互 平 行 的 直 线,且 夹 角 很 大, 或曲率半径很小的流体流动。 注:恒定与非恒定———相对时间而言, 均匀与非均匀———相对空间而言。 (2)一元、二元和三元流动 几元就是需要几个空间坐标来描述流动。 1)一元流动:流体的运动参数只是一个坐标的函数。如:理想流体在圆管内流动,因它不具有黏 性,沿管半径流速变化比较缓慢。或者实际流体的黏性很小可以忽略,以管横截面上的平均流速来描 写管内流动,即将二元流动化为一元流动求解。
考点五 连续性方程
(1)系统
系统———就是确定物质的集合。
特点:①系统始终包含着相同的流体质点;
②系统的形状和位置可以随时间变化;
③边界上可以有力的作用和能量的交换,但不能有质量的交换
(2)控制体
控制体———指根据需要所选择的具有确定位置和体积形状的流场空间。控制体的表面称为控
制面。
控制体具有以下特点:
①控制体内的流体质点是不固定的;
②控制体的位置和形状不会随时间变化;
③控制面上不仅可以有力的作用和能量交换,而且还可以有质量的交换。
(3)一元稳定流动的连续性方程 Qm =ρAv=常数 既适用于不可压缩流体,也适用于可压缩流体。
物理意义:沿一元稳定流动的流程质量流量不变。
对于不可压缩流体,密度为常数,则有 Q =Av=常数
欧拉法表示的加速度在直角坐标系中为:
ax
=dvx dt
=vtx +vxvxx +vyvyx +vzvzx
ay
=dvy dt
=vty +vxvxy +vyvyy +vzvzy
az =ddvtz =vtz +vxvxz +vyvyz +vzvzz
其中各项的含义:
1)vz:表示在同一空间点上由于流动的不稳定性引起的加速度,称为当地加速度或时变加速度 t
— 1—
的位置(x,y,z)应该是(a,b,c)和时间 t的函数,即
拉格朗日变量:x=x(a,b,c,t)
y=y(a,b,c,t)
z=z(a,b,c,t)
其速度和加速度为:(x方向)
ux =x(a,bt,c,t)
ax
=ux(a,b,c,t) t
=2x(a,tb2,c,t)
(2)欧拉法(空间点法)
欧拉法是从分析流体所占据的空间中各固定点出的质点运动着手,研究整个流体的流动。它着
每秒最多输送多少 kg?
解 由质量流量公式
Qm =υAρ=υ×π4d2 ×ρ
得
Qm
=1.2×3.14×0.22 ×0.7×103 4
=26.276(kg/s)
平均流速
平均流速———有效断面上速度的平均值。
平均流速的物理意义?
实际流体流动的有效断面上个点处的速度大小都不一样,工程
上位了将问题简化,引入有效断面上速度的平均值。平均流速的物理意义就是假想有效断面上个点
3)质点的加速度为:
ax
=dvx dt
=(a+1)et,ay
=dvy =(b+1)et dt
4)由质点一般运动规律 x=(a+1)et-t-1,y=(b+1)et-t-1
则拉格朗日变数 a与 b的表达式
a=(x+t+1)e-t-1
b=(y+t+1)e-t-1
代入所给的拉格朗日变数下的速度表达式,可求得在欧拉变数下的速度表达式为
流线的微分方程: dx = dy = dz vx(x,y,z,t) vy(x,y,z,t) vz(x,y,z,t)
注:由于流线是对某一时刻而言的,所以在上述方程积分时,变量 t被单作常数处理。 流线特征: ①流线充满整个流场,构成某一时刻流场内的流谱,表示瞬时流动方向。②定常运动,流线的形 状不随时间变化,流体质点沿流线前进,流线与轨迹线重合。③流线不能交叉,亦不可能是折线,流线 只能是光滑曲线。④对于不可压缩流体,流场中流线的疏密程度反映此时刻流场中各点处压强、流速 的变化。流线疏的地方,流速小压强大。 (3)迹线与流线的比较 一是,迹线是表示一段时间同一个流体质点的动态;流线是表示某一瞬间多个流体质点的运动 趋势。 二是,在同一时刻,质点的微元位移总是和它的速度同方向。故在定常流场中,不同时刻的流线 是重合的,流点微元位移与流线重合,流点沿着流线运动。 三是,不同的时刻,非定常流场中的流线是变化的,迹线只能是在某一时刻正通过某点,它只是与