差动保护整定计算
微机差动保护整定计算要注意的问题
微机差动保护整定计算要注意的问题微机差动保护整定计算的注意事项微机差动保护是电力系统中常用的保护装置之一,用于实时监测电力系统中的电流差别,确保系统的安全运行。
微机差动保护的整定计算是保证其工作可靠性和准确性的重要环节。
本文将就微机差动保护整定计算中需要注意的问题进行探讨。
1. 测量装置的准确性:在进行微机差动保护整定计算之前,需要确保测量装置的准确性。
测量装置的误差会影响差动保护的判断结果,因此要注意定期校准测量装置,保证其准确性。
2. 可靠的CT和PT:差动保护中使用的互感器(CT和PT)也需要保持良好的工作状态。
CT和PT的变比和精度决定了差动保护的整定参数,因此在进行差动保护整定计算之前,要对CT和PT进行检查和校准,确保其工作可靠性和精度。
3. 选择合适的整定方法:微机差动保护的整定方法多种多样,常见的有整定比率法、整定阻抗法、整定时间法等。
在选择整定方法时,要考虑电力系统的特点和差动保护的要求,并根据实际情况选择合适的方法进行整定。
4. 系统参数的准确性:微机差动保护整定计算需要准确的系统参数,包括电流互感器比值、变压器参数、线路参数等。
在进行整定计算之前,要确保这些参数的准确性,避免由于参数误差导致的整定计算错误。
5. 整定方案的合理性:差动保护整定计算得到的参数可能存在多种选择,要选择合理的整定方案。
合理的整定方案应该能够在保证系统稳定性和灵敏性的同时,降低误动率和误动时间。
6. 测试和验证:进行整定计算后,要进行测试和验证,以确保差动保护的准确性和可靠性。
测试过程中要模拟各种故障情况,并检查差动保护的动作是否正确。
如果测试结果不符合要求,需要进行调整和再整定。
7. 保持整定参数的合理性:电力系统会受到各种外界因素的影响,如系统结构变化、负荷变化等,因此差动保护整定参数需要定期检查和调整。
保持整定参数的合理性可以使差动保护一直处于最佳工作状态。
总之,微机差动保护整定计算是确保电力系统安全运行的重要环节。
变压器差动保护整定计算
变压器差动保护整定计算一、差动保护原理差动保护是利用变压器的输入和输出电流之间的差值进行保护的一种方式。
在正常情况下,变压器的输入电流和输出电流相等,而在发生故障时,输入电流和输出电流之间产生差值。
差动保护通过检测输入电流和输出电流之间的差值来判断是否存在故障,并通过动作切断故障电流,以保护变压器。
二、差动保护整定计算步骤1.确定保护范围首先需要确定差动保护的保护范围,即需要保护的主变和辅助设备。
通常,主变的正常工作情况下输入电流和输出电流是相等的,所以主变是差动保护的主体。
而辅助设备,如电压互感器和电流互感器,用于测量输入和输出电流,提供差动保护的输入信号。
2.确定定值差动保护的定值包括整定电流和判别电流。
整定电流是在正常工作状态下主变的输入电流和输出电流之间的差值。
判别电流是设置的比整定电流更高的一个阈值,用于判断是否存在故障。
3.确定相位和极性相位是差动保护中的重要参数,需要确保主辅助设备的相位匹配。
极性是用于检测输入和输出电流方向是否相同,相同则为正极性,不同则为负极性。
4.计算误动作概率误动作概率是差动保护的重要指标之一,衡量了保护的准确性和可靠性。
误动作概率越低,说明差动保护越准确和可靠。
计算误动作概率需要考虑到不完美互感器和其它影响因素。
5.调整整定值根据误动作概率和实际工作情况,可以对整定值进行调整。
通常,较低的误动作概率需要更高的整定电流和判别电流,但也会增加保护的动作时间,所以需要权衡。
三、差动保护整定计算相关公式1.整定电流计算公式整定电流一般使用主变额定电流的一个百分比来表示,通常为主变额定电流的10-30%。
整定电流计算公式如下:I整定=K*I主变其中,I整定为整定电流,K为整定系数,I主变为主变额定电流。
2.判别电流计算公式判别电流一般取整定电流的2-3倍。
判别电流计算公式如下:I判别=n*I整定其中,I判别为判别电流,n为判别系数,I整定为整定电流。
3.误动作概率计算公式误动作概率计算公式较为复杂,可以根据具体情况选择不同的公式。
发电机差动保护整定计算
发电机差动保护整定计算1、发电机差动保护整定计算(1)最小动作电流的选取I op.0=(0.1~0.3)I gn /n a 式中:I gn ——发电机额定电流 n a ——电流互感器变比取I op.0=(0.1~0.3) I gn /n a =5 /1200010190*2.0=0.85A本保护选择I dz.j =1A (2)制动特性拐点的选择当定子电流等于或小于额定电流时,差动保护不必具有制动特性,因此,拐点1电流选择大于发电机额定电流,本保护选拐点1为5A 。
拐点2电流选择CT 开始饱和时的电流,本保护选拐点2值为40A 。
(3)制动系数的选取按照外部短路电流下,差动保护不误动来整定。
K res.max =K rel *K ap *K cc *K er式中: K rel ——可靠系数,取1.3~1.5 K ap ——非周期分量系数,取1.5~2 K cc ——互感器同型系数,取0.5 K er ——互感器变比误差系数,取0.1 取各系数最大值,则K res.max =1.5*2*0.5*0.1=0.15考虑到电流互感器的饱和或其暂态特性畸变的影响,为安全起见,宜适当提高制动系数值,取K 1=30%,根据厂家说明书K 2推荐值为80%-100%,本保护取K 2=80%。
原保护为单斜率,定值为K1=30%。
保护动作于全停,启动快切,启动断路器失灵。
2、主变差动及速断保护整定计算(1)最小动作电流的选取按躲过变压器额定负载时的不平衡电流来整定。
I op.min=K rel(K er+△U+△m)I n/n a 式中:I n——变压器额定电流n a——电流互感器变比K rel——可靠系数,取1.3~1.5K er——电流互感器的变比误差,10P型取0.03*2,5P型和TP 型取0.01*2△U——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值)△m——由于电流互感器变比未完全匹配产生的误差,初设时取0.05在工程实用整定计算中可选取I op.min=(0.2~0.5)I n/n a,一般工程宜采用不小于0.3 I n/n a。
继电保护整定计算公式汇总
继电保护整定计算公式汇总继电保护整定计算是电力系统保护的重要组成部分。
在电力系统运行中,应该根据系统的特点和要求,合理地进行继电保护整定计算,保证电网的稳定运行和安全性。
本文将分享一些常见的继电保护整定计算公式,希望对读者有所帮助。
一、距离保护整定计算公式距离保护是电力系统中最常见的保护之一,其主要功能是保护输电线路和变电站设备的安全运行。
距离保护的整定计算公式如下:•相对距离保护的整定计算公式:1.相对距离保护动作时间设置公式:T = K * L / (V - F * L)其中,T为距离保护的动作时间(单位:s),K为校正系数,取值应在0.8~1.2之间;L为距离(单位:km);V为系统电压(单位:kV),F为负载阻抗因数,取值应为0.8~1.2之间。
2.相对距离保护动作值设置公式:Z = L * (K1 + K2 * e^(K3 * L) / V)其中,Z为距离保护的动作值(单位:Ω);K1、K2、K3为校正系数,应根据具体的系统参数进行确定;e为自然对数的底数。
•绝对距离保护的整定计算公式:1.绝对距离保护动作时间设置公式:T = K * L / V其中,T为距离保护的动作时间(单位:s),K为校正系数,取值应在0.8~1.2之间;L为距离(单位:km);V为系统电压(单位:kV)。
2.绝对距离保护动作值设置公式:Z = L * (K1 + K2 * e^(K3 * L) / V)其中,Z为距离保护的动作值(单位:Ω);K1、K2、K3为校正系数,应根据具体的系统参数进行确定;e为自然对数的底数。
二、过电流保护整定计算公式过电流保护的主要功能是保护电力系统中各种设备,在出现电气故障时,对其进行及时的故障切除。
过电流保护的整定计算公式如下:•相间过电流保护的整定计算公式:1.相间过电流保护动作时间设置公式:T = 0.14 * K * Z / I其中,T为保护的动作时间(单位:s),K为校正系数,通常取1.0;Z为当前相间电路的阻抗(单位:Ω);I为保护设备的额定电流(单位:A)。
差动整定计算说明(详细)
差动保护(DCAP3040、DCAP3041)定值整定说明说明:三圈变的整定计算原理与二圈变的整定计算原理相同,现以三圈变为例来说明差动保护的整定计算。
1、计算变压器各侧额定一次电流n n n U S i 3/=式中 S n —变压器额定容量(kV A )(注意:与各侧功率分配无关)U n —该侧额定电压(kV )2、计算变压器各侧额定二次电流ln /n i K I n jx n ⋅='式中 K jx —该侧CT 接线系数(二次三角形接线K jx =3,星形接线K jx =1)n ln —该侧CT 变比3、计算平衡系数设变压器三侧的平衡系数分别为Kh 、Km 和Kl ,则:(a )降压变压器:选取高压侧(主电源侧)为基本侧,平衡系数为''=''==nlnh nm nh m h I I K I I K K //11(b )升压变压器:选取低压侧(主电源侧)为基本侧,平衡系数为1//1=''=''=K I I K I I K nm nl m nhnl h4、保护内部计算用变压器各侧额定二次电流经平衡折算后,保护内部计算用变压器各侧二次电流分别为'='='=ll m m m h h I K I I K I Ih K I 1保护内部计算用各侧额定二次电流分别为:对降压变压器: '='='='='='=nhnl l nl nh nm m nm nhnh h nh I I K I I I K I I I K I对升压变压器: '='='='='='=nlnl l nl nl nm m nm nlnh h nh I I K I I I K I I I K I可见经平衡折算后I nh =I nm =I nl ,即保护内部计算用变压器各侧额定二次电流完全相等,都等于所选的基本侧的额定二次电流。
电动机差动保护整定计算实例
电动机差动保护整定计算实例已知参数:电动机型号YK3200-3/1430,Pn=3200 KW,Un=10KV,COSφ=0.9,二侧CT变比nl=300/5,起动电流倍数为3。
根据上述条件,按规程规定应配电动机差动保护,按本公司型号,差动保护为:MMPR-22C 、MMPR-20H。
一、整定计算按本公司微机保护设置的功能有:差动速断、比率制动的差动保护,因此需整定的参数有:差动速断电流、比率制动动作的差动电流及比率制动系数。
①差动速断电流此定值是本公司保护为躲过启动时的不平衡电流而设置的,为躲过启动最大不平衡电流,推荐整定值按下式计算:,:可靠系数,取1.5则:②②比率差动电流现行的关于差动整定计算的原则有以下两种:a) =1.3~1.5 ,考虑躲CT断线b) =0.2~0.5 ,考虑差动灵敏度及匝间短路以上两种计算原则都是国家出版物中给出的,我们建议用户根据自己的具体情况选择。
③比率制动系数:一般整定为0.5。
二、关于微机型差动保护的详细资料参见本公司《产品汇编之二》,保护定值计算完毕后按相应型号的《使用说明书》将定值输入装置即可。
对超过2000KW的电动机,除配差动保护外,尚需配电流保护(即本公司MMPR-12C、MMPR-10H等综合保护)。
关于综合保护的算例参见“电动机保护整定计算实例”。
变压器差动保护的整定与计算以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH、UM、UL(KV),各侧二次电流分别为IH、IM、IL(A),各侧电流互感器变比分别为nH、nM、nL。
一、各侧二次额定电流的计算式中为接线系数,当CT按Y形接线时,;按△形接线时,。
二、差动速断电流整定按躲过励磁涌流及区外故障时的不平衡电流整定,一般按6~12倍额定电流整定。
对于大型变压器可取较小值,对于小型变压器取较大值。
三、差动电流整定按躲过正常运行时的不平衡电流整定。
母线差动保护的整定计算
母线差动保护的整定计算计算母差保护的主要工作量在于以下几个值的计算,计算方法如下:1 比率差动元件的比率差动门坎按包括检修方式的各种运行方式下,母线发生各种类型短路的最小总短路电流(相电流)有足够灵敏度计算,灵敏度≥4,并尽可能躲过母线出线最大负荷电流。
比率差动门坎要整定得躲过母线出线最大负荷电流是为了防止CT断线时母线差动保护误动。
2低电压闭锁元件以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。
复合电压闭锁包括母线线电压(相间电压),母线三倍零序电压,和母线负序电压。
其动作表达式为:以上三个判据中的任何一个被满足,则该段母线的电压闭锁元件动作。
U set按母线对称故障有足够灵敏度整定,灵敏度≥1.5。
且应在母线最低运行电压下不动作,而在故障切除后能可靠返回。
一般取65%至70%U e。
U0set按母线不对称故障有足够灵敏度整定,灵敏度≥4。
且应躲过母线正常运行时最大不平衡电压的零序分量。
一般取6至10V。
U2set按母线不对称故障有足够灵敏度整定,灵敏度≥4。
且应躲过母线正常运行时最大不平衡电压的负序分量。
一般取4至8V。
1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为0.2In,定值范围为0.1In~0.5In。
2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In~0.5In。
3. 失灵保护零序定值:按躲过最大零序不平衡电流整定, 定值范围为0.1~20A。
4. 低功率因素角定值:整定值范围为45~ 90 ,整定步长为1度。
5. 低功率因素过流定值:表示线路有流,定值范围为0.1~20A 。
6. 负序过流定值:按躲过最大不平衡负序电流整定,定值范围为0.1~20A 。
7. 失灵跳本开关时间:失灵保护动作时,将以该时间定值跳开本开关。
定值范围为0.01~20S,整定步长为0.01S。
8. 失灵动作时间:失灵保护动作时,将以该时间定值跳开相邻开关。
变压器差动保护整定计算
变压器差动保护整定计算一、差动保护原理变压器差动保护是通过测量变压器两侧电流的差值来实现。
差动电流是指变压器两侧电流的差值,当变压器正常运行时,两侧电流大小是相等的,差动电流为零。
但当变压器发生内部故障时,两侧电流会不同,产生差动电流,差动保护即通过检测差动电流实现对变压器内部故障的保护。
二、整定计算方法1、动作电流的整定(1)按变压器额定电流进行整定动作电流整定值为变压器额定电流的5%~15%。
(2)按变压器额定容量进行整定动作电流整定值为变压器额定容量的3%~10%。
(3)按计算值进行整定由于变压器容量的变化和负荷的波动,按照变压器的额定电流或额定容量进行整定会产生误判。
因此,一般采用计算法进行动作电流的整定。
计算公式为:式中,Is为动作电流,S为变压器容量,k为重合闸系数,一般取0.8~0.9。
2、校对系数的整定差动保护装置精度有一定的误差,为了提高差动保护的精度,需要进行校对系数的整定。
校对系数的整定方法一般有以下两种:(1)按精度等级进行整定按照差动保护装置的精度等级进行整定,一般取0.8~0.9。
(2)按变压器灵敏系数进行整定根据变压器的灵敏系数进行整定,灵敏系数一般取0.1~0.3。
3、时间延迟的整定为了避免因瞬时故障而误动,差动保护需要进行时间延迟的整定,延迟时间一般为0.15~0.3s。
三、差动保护整定计算示例假设一个变压器的容量为1000kVA,额定电流为100A,差动保护装置的精度等级为0.5级,重合闸系数为0.9,灵敏系数为0.2,时间延迟为0.2s。
则进行差动保护的整定计算如下:(1)动作电流的整定按计算值进行动作电流的整定,Is=0.2某1000某0.9/100=1.8A(2)校对系数的整定根据设备的精度等级进行整定,校对系数为0.9。
(3)时间延迟的整定时间延迟为0.2s。
以上就是变压器差动保护整定计算的详细介绍,差动保护整定是保障变压器安全运行的重要环节,需要进行合理的整定计算,以提高差动保护装置的精度和可靠性。
GE L30光纤差动保护整定计算说明
GE L30光纤差动保护整定计算说明1. 整定计算1)差动保护动作门槛:躲线路合闸时的最大充电电流,并可靠躲过区外故障时的最大不平衡电流,同时保证线路发生内部故障时有足够灵敏度,灵敏系数大于2。
通常按电容电流乘以一定的系数整定(投入电容电流补偿时,取较低系数;不投时取较高系数),一般不小于0.1~0.2In。
线路两侧差动保护动作门槛应整定为相同值。
2)制动系数:国内分相电流差动保护制动系数内部固定,取值范围在0.5~0.8之间。
L30的制动系数K1一般整定为0.1~0.2,各侧cT特性不同时,整定为0.3,从而满足重负荷内部经高阻接地短路时灵敏度要求;一般整定为0.3~0.4,各侧cT变比不同时,整定为0.5,保证大电流导致cT饱和时外部故障不发生误动。
3)拐点:L30拐点由用户整定,一般按躲线路最大事故负荷整定,可靠系数取1.5~2.0。
4)CT变比补偿系数:为解决线路两侧CT变比不一致的问题,引入cT变比补偿系数。
L30的CT变比系数整定为对侧和本侧CT变比的比值,根据这个比值和本侧cT 调整差动电流起动值和拐点电流值。
例如:本侧cT变比为l 000/5,对侧变比为2 000/5,则本侧cT变比系数整定为2,对侧整定为0.5。
假设对侧差动起动电流二次值为0.2,则本侧起动值相应调整为0.4;本侧拐点电流二次值为5,则对侧拐点电流二次值为2.5。
2.L30差动保护制动特性该中文资料为L30相关英文资料的译本,更加详细和精确的资料请参见随附的英文资料。
L30采用适应性制动原理,就是采用测量参数的数据统计以提高装置的运行性能,尤其是保护装置系统能够动态地调节制动边界以躲过测量误差。
定义:Iop2=动作元件Irest2=制动元件I_L=近端电流相量I_R=远端电流相量S1=斜率1S2=斜率2P =启动值BP=两个斜率之间的拐点σloc=由协方差矩阵所计算出来的就地相量动态修正系数σrem=由协方差矩阵所计算出来的远方相量动态修正系数动作条件:(Iop2 / Irest2) ﹥1;制动条件:(Iop2 / Irest2)≦ 1当I_L﹤BP 且I_R﹤BP 时,Irest2=2×S12×I_L2+2×S12×I_R2+2×P2+σloc+σrem当I_L﹥BP 且I_R﹤BP 时,Irest2=2×S22×(I_L2-BP2)+2×S12×BP2+2×S12×I_R2+2×P2+σloc+σrem当I_L﹤BP 且I_R﹥BP 时,Irest2=2×S12×I_L2+2×S22×(I_R2-BP2)+2×S12×BP2+2×P2+σloc+σrem当I_L﹥BP 且I_R﹥BP 时,Irest2=2×S22×(I_L2-BP2)+2×S22×(I_R2-BP2)+4×S12×BP2+2×P2+σloc+σremL30差动保护的建议整定原则差动元件的主要包括以下4项内容:CURRENT DIFF PICKUP(电流差动启动值)、CURRENTDIFF RESTRAINT 1(电流差动制动1)、CURRENT DIFF RESTRAINT 2 (电流差动制动2)和CURRENT DIFF BREAK PT (电流差动拐点)。
变压器差动保护整定计算
变压器差动保护整定计算1.比率差动1.1装置中的平衡系数的计算1).计算变压器各侧一次额定电流:式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。
2).计算变压器各侧二次额定电流:式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。
3).计算变压器各侧平衡系数:b n n PH K I I K 2min 2,其中)4,min(min 2max 2n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2n I 为变压器各侧二次额定电流值中最小值,max 2n I 为变压器各侧二次额定电流值中最大值。
平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。
若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。
装置为了保证精度,所能接受的最小系数ph K 为0.25,因此差动保护各侧电流平衡系数调整范围最大可达16倍。
1.2差动各侧电流相位差的补偿变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。
电流互感器各侧的极性都以母线侧为极性端。
变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。
对于Yo/Δ-11的接线,其校正方法如下:Yo 侧:Δ侧:式中:a I 、b I 、c I 为Δ侧TA 二次电流,a I '、b I '、c I '为Δ侧校正后的各相电流;A I 、B I 、C I 为Yo 侧TA 二次电流,aI '、b I '、c I '为Yo 侧校正后的各相电流。
其它接线方式可以类推。
装置中可通过变压器接线方式整定控制字(参见装置系统参数定值)选择接线方式。
变压器差动保护整定计算
变压器差动保护整定计算1. 比率差动1.1 装置中的平衡系数的计算1).计算变压器各侧一次额定电流:n nn U S I 113=式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。
2).计算变压器各侧二次额定电流:LHn n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。
3).计算变压器各侧平衡系数:b n n PH K I I K ⨯=-2min 2,其中)4,min(min2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。
平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。
若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。
装置为了保证精度,所能接受的最小系数ph K 为0.25,因此差动保护各侧电流平衡系数调整范围最大可达16倍。
1.2 差动各侧电流相位差的补偿变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。
电流互感器各侧的极性都以母线侧为极性端。
变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。
对于Yo/Δ-11的接线,其校正方法如下:Yo 侧:)0('I I I A A •••-=)0('I I I B B •••-= )0('I I I C C •••-=Δ侧:3/)('c a a I I I •••-=3/)('a b b I I I •••-=3/)('b c c I I I •••-= 式中:a I •、b I •、c I •为Δ侧TA 二次电流,a I '•、b I '•、cI '•为Δ侧校正后的各相电流;A I •、B I •、C I •为Yo 侧TA 二次电流,a I '•、b I '•、c I '•为Yo 侧校正后的各相电流。
差动保护的整定计算
比率差动保护的整定计算变压器各侧电流互感器二次均可采用星型接线(也可采用常规接线)其二次电流直接进入装置,从而简化了CT 接线,各侧电流互感器均采用减极性,都以指向母线(或指向变压器 )为同极性端;1、变压器额定电流及平衡系数的计算: 1)计算变压器各侧额定电流ee e U S I 3=式中Se -变压器最大额定容量Ue -计算侧额定电压2)计算各侧二次额定电流及平衡系数HLH He He n I I ..=M LH Me Me n I I ..=LLH Le Le n I I ..=式中:H e I .——高压侧一次额定电流 H LH n .—高压侧CT 变比 He I ——高压侧二次额定电流 M e I .——中压侧额定电流,M LH n .——中压侧CT 变比 , Me I ——高压侧二次额定电流 L e I .———低压侧额定点流 L LH n .——低压侧CT 变比, Le I ——高压侧二次额定电流 3)高、中压侧平衡系数 BPH= Le I /(He I *K) BPZ= Le I /(Me I *K )BPH ——高压侧平衡系数; BPZ ——中压侧平衡系数; K 为接线系数,当高(中)压侧为△接线时,K=1.732, 当高(中)压侧为Y 接线时,K=1; 当高压侧为Y 接线时,由于高低压侧存在30度,此时30度(星角转换)软压板应投入,软件对低压侧电流相位自动前移30度。
2、差动速断电流Icdsd 的整定为了防止出现严重短路时产生较大差动电流,保护能可靠动作,特设立差动速断保护,保护整定原则是保证空投变压器时差动速断保护不动作,一般地Icdsd=(4~7)Ie ; 3、 比例差动电流门槛定值Icd 整定 1)差动电流的计算:Icd 为差动保护最小动作电流值,应按躲过正常额定负载时的最大不平衡电流整定,即 Icd =K K (K tx ·f i I e +ΔU H ·I e +ΔU M I e ) = K K (K tx ·f i +ΔU H +ΔU M ) I e式中:I e -变压器额定电流;K K -可靠系数,取1.3~1.5;K tx -电流互感器同型系数,取1.0;f i -电流互感器的最大相对误差,取0.1;ΔU H 、ΔU M -分别为高、中压侧调压抽头引起的误差,取调压范围的一半。
纵联差动保护原理以及整定计算
纵联差动保护原理以及整定计算
纵联差动保护整定计算
与纵联差动保护有关的变压器参数计算,可按表1所列的公式和步骤进行。
在中作了如下假定:三绕组变压器;额定容量SN;绕组接法为YN,YN,d11;如低压侧电流互感器的二次电流最小,则选低压侧为基本侧;电流互感器二次额定电流为1A。
纵联差动保护原理:
所谓变压器的纵联差动保护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的保护。
纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。
对于变压器线圈的匝间短路等内部故障,通常只作后备保护。
纵联差动保护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。
因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。
在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到保护作用。
变压器纵差保护是按照循环电流原理构成的,变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互
感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差保护不动作。
但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。
差动保护原理及整定计算(020805)
差动保护原理及整定计算朱新华一、差动电流互感器基本接线:差动保护CT 有两种接线方式:1、和电流;2、差电流。
对于双绕组变(两圈变):差流方程为 C İ=H İ-L İ,故属差电流接线,即电流互感器二次绕组反极性与另一组相接,又称180º接线。
对于三绕组变(三圈变):差流方程为 C İ= H İ+ M İ +L İ.,故属和电流接线方式,即电流互感器都以正极性接入机箱,又称Oº接线。
二、变压器一次接线所带来的问题及调整方法(以二圈变为例)为减少三次谐振波的影响,变压器接线一般采用Y/∆-11接线(三圈变为Y/Y/∆-11型接线)。
公式推导:磁势平衡方程: N 1I A =—N 2 Ia ①(N 1,N 2为高低压侧绕组匝数)。
N 1I B =—N 2 IbN 1I c =—N 2 Ic 因为N 1ÌA +N 2 Ìa=N 1Ì。
高低压侧的一次电流:H ÌA = ÌA H ÌB = ÌB HÌc =ÌcA • I A xIcI bIabIaIcHI ALÌA = Ìa –Ìb LÌB = Ìb –Ìc LÌc = Ìc –ÌaH ÌA =-N 2/N 1·Ìa L ÌA =Ìa – ÌbH ÌB =-N 2/N 1·ÌB L ÌB =Ìb – ÌC 式一H ÌC =-N 2/N 1·ÌC L Ìc =Ìc – Ìa 所以说,正常情况下,高、低压侧一次电流的关系如下:L ÌA =-N 1/N 2 (H ÌA – H ÌB ) L ÌA + N 1/N 2 (H ÌA —H ÌB )=0L ÌB = -N 1/N 2(H ÌB – H ÌC ) 即: L ÌB + N 1/N 2 (H ÌB —H ÌC )=0L Ìc =-N 1/N 2(H ÌC – HÌA ) L ÌC+ N 1/N 2 (H ÌC —H Ìa )= 0这样可以看出,在变压器且两侧同相电流之间除了幅值的差异外,还有角度之差,故为了消除这种影响,可将变压器两侧差动CT 按照一定方式的接线来校正,或通过微机进行内部调整来达到差流的平衡。
电动机差动保护及差动速断保护的整定计算
电动机差动保护及差动速断保护的整定计算目前,国内生产及应用的微机型电动机的差动保护,由差动速断元件和具有比率制动特性的差动元件构成。
差动速断元件没有制动特性,实质上是差流越限的高定值元件。
与发电机差动保护一样,差动元件的动作特性为具有二段折线式的比率制动特性。
对电动机差动保护的整定计算,就是要整定计算差动元件的初始动作电流Idz0 、拐点电流Izd0 、比率制动系数及差动速断元件的动作电流。
1、差动元件的初始动作电流Idz0 与发电机差动保护相同,电动机差动元件的初始动作电流,应按照躲过电动机额定工况下的最大不平衡电流来整定。
即:IdzO =Krel x IHe S max= Krel (K1+K2)INIHe S max-最大不平衡电流Krel -可靠系数,取~2IN —电动机的额定电流K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取。
K2—通道调整及传输误差,取。
综上所述,得Idz0 =( ~) IN,实取(TA二次值)。
2、拐点电流Izd0在厂用电压切换的暂态过程中,由于电动机两侧差动TA二次回路中的暂态过程不一致,将在差动回路产生较大的差流。
因此,为防止电动机差动保护误动,应减少拐点电流。
为此拐点电流可取IzdO =(~) IN。
( TA 二次值)3、比率制动系数KZ电动机的启动电流很大,最大启动电流高达电动机额定电流的8 倍以上。
另外电动机电源回路上发生短路故障时,电动机将瞬间供出较大的电流。
为了防止在上述过程中差动保护误动,差动元件的比率制动系数KZ 应按躲过电动机启动及电源回路故障时产生的最大不平衡电流来整定。
KZ=Krel x( IHe 8 max/lmax)Krel -可靠系数,取~IHe 8 max —最大不平衡电流,它等于(K1+K2+K3)lmaxImax —电动机启动或电源回路故障时电动机的最大电流,取8IN。
K1 —两侧TA变比误差,由于电动机的TA通常精度较低,可取。
差动保护整定计算
差动保护整定计算1.理论分析差动保护是最易满足“四性”要求的一种性能优良的继电保护。
它还具备选相能力强, 适应能力强等优点,因而作为主保护广泛地应用于线路、发电机、变压器、母线、电抗器等 电气设备。
根据基尔霍夫电流定律,只要被保护设备无短路电流分支,理论上差动继电器的动作量等于零,具有极高的安全性; 被保护设备发生横向短路纵向差动继电器的动作量大于 零,发生纵向短路横向差动继电器的动作量大于零,具有极高的灵敏性。
设两侧差动继电器I的电流为l m ,J ,它们之间的相对关系为I n* 丄,I m - J ,若TA 无误差,区外故障1 ml n * - -1,事实上,TA 不可能完全真实地传变一次电流。
使得区外故障 I n * = -1。
TA 误差 包括相对误差和绝对误差,大电流和小电流TA 都会产生较大误差,如: 5P20是指20的短路电流最大误差不超过 5%。
实际应用中,TA 的传变误差使差动继电器的动作量产生的不 平衡输出与理想情况存在很大的差异,这种差异主要表现在, 区外短路不平衡的电流随短路电流增加而增加,人们自然想到利用短路电流作制动量。
因此,对差动继电器的研究归根结底是对制动量的研究。
1.1现行差动继电器简评现行的差动继电器有如下几种:|l m I n i K|l m | |l n | |l m l n | Kmax|l m |,|l n | |l m I n | K |l m 」n | |l m l n |2—S res |I m ||I n |COS 「・・ 「・ ・ ・・. |l m l n | "|-| |l n H |l m I n |?相量和差制动与标积制动等价 利用关系式 |l m l n |^l m l 22|I m ||I n |C0S 「=|一 - J f 4|_ |山 |COS '等价是指临界条件等价,将(3)式取等号,两边平方|l m I n UK 2 |l m — In f|l m -l n |2 4|l m ||I n |C0S 「二以|一 "n |2, |l m ^n |2 (1-K 2)「4|l m ||l n |COS 「将(4)式取等号(1)模值和制动 (2)最大值制动 (3)相量和差制动 (4 )标积制动 (5)复式制动2| I m l n| - -S res | I m ||I n | COS :|I m -I n I' 4|l m||l n | COS ―耳|l m IH n |COS「,|l m - I n f 一4 飞瘁丨5|山|COS :得到K与S res的互换关系。
电动机差动保护及差动速断保护的整定计算
电动机差动保护及差动速断保护的整定计算目前,国内生产及应用的微机型电动机的差动保护,由差动速断元件和具有比率制动特性的差动元件构成; 差动速断元件没有制动特性,实质上是差流越限的高定值元件; 与发电机差动保护一样,差动元件的动作特性为具有二段折线式的比率制动特性; 对电动机差动保护的整定计算,就是要整定计算差动元件的初始动作电流Idz0、拐点电流Izd0、比率制动系数及差动速断元件的动作电流;1、差动元件的初始动作电流Idz0与发电机差动保护相同,电动机差动元件的初始动作电流,应按照躲过电动机额定工况下的最大不平衡电流来整定; 即:Idz0=Krel×IHeδmax=KrelK1+K2INIHeδmax-最大不平衡电流Krel-可靠系数,取~2IN-电动机的额定电流K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取;K2-通道调整及传输误差,取;综上所述,得Idz0=~IN,实取TA二次值;2、拐点电流Izd0在厂用电压切换的暂态过程中,由于电动机两侧差动TA二次回路中的暂态过程不一致,将在差动回路产生较大的差流;因此,为防止电动机差动保护误动,应减少拐点电流;为此拐点电流可取Izd0=~IN;TA二次值3、比率制动系数KZ电动机的启动电流很大,最大启动电流高达电动机额定电流的8倍以上;另外电动机电源回路上发生短路故障时,电动机将瞬间供出较大的电流;为了防止在上述过程中差动保护误动,差动元件的比率制动系数KZ应按躲过电动机启动及电源回路故障时产生的最大不平衡电流来整定;KZ=Krel×IHeδmax/ImaxKrel-可靠系数,取~IHeδmax-最大不平衡电流,它等于K1+K2+K3ImaxImax-电动机启动或电源回路故障时电动机的最大电流,取8IN;K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取;K2-通道调整及传输误差,取;K3-暂态特性系数,可取~;综上所述,KZ=~×++=~实际可取KZ=;要说明的是,在电动机自启动的瞬间,由于两侧差动TA二次回路负载相差很大,可能造成两侧电流之间的相位变化较大,因此,若按此时的差流来整定差动元件,则差动元件的动作灵敏度将大大降低;为此,要求电动机差动元件速度不要太快,可增加80~100ms的延时;4、差动速断元件Uhdz的整定差动速断元件应按躲过电动机启动或出口短路在差动保护区外故障时,产生的最大差流来整定;测量表明:在电动机启动瞬间,由于两侧差动TA二次回路暂态特性不一致,短时使差动两侧电流之间的相位差可达30°左右;此时,最大不平衡差流:IHeδmax=Imax1-cos30°=81-cos30°IN= TA二次值差动速断定值Ihdz=Krel×IHeδmaxIhdz-差动速断保护的动作电流Krel-可靠系数,取2综上所述,可得:Ihdz=2×=,实取TA二次值;。
3~10kV电动机-纵联差动保护(用BCH-2型差动继电器时)整定计算
3~10kV电动机-纵联差动保护(用BCH-2型差动继电器时)整定计算一、计算条件可靠系数:Krel=1.3电流互感器的同型系数:Ktx=0.5电流互感器允许误差:Δf=0.1接线系数:Kjx=1电动机起动电流倍数:Kst=6.5电流互感器变比:nTA=80电动机额定电流:IrM=279(A)同步电动机接线端三相短路时,输出的超瞬态电流:I"k3M=2017.83(A)继电器的动作安匝:AW0=60电动机额定电流:IrM=279(A)最小运行方式下,电动机接线端两相短路时,流过保护安装处的超瞬态电流:I"k2·min=6347.78(A)二、计算公式及结果保护装置的动作电流,按躲过电动机起动电流条件计算为:Iop·K=Krel*Ktx*Δf*Kjx*Kst*IrM/nTA=1.3*0.5*0.1*1*6.5*279/80=1.47347(A)按躲过电流互感器二次回路断线条件计算为:Iop·K=Krel*Kjx*IrM/nTA=1.3*1*279/80=4.53375(A)按躲过外部短路时同步电动机输出的超瞬态电流条件计算为:Iop·K=Krel*Ktx*Δf*Kjx*I"k3M/nTA=1.3*0.5*0.1*1*2017.83/80=1.63949(A)保护装置的动作电流应取上述三个结果中的最大值,故Iop·K=4.53(A)BCH-2型继电器的计算匝数为:Wc=AW0/Iop·K=60/4.53=13.234(匝)第一平衡线圈实用匝数WI·ph·sy为0匝,差动线圈实用匝数Wc·sy为0匝(0+0<13.234),第二平衡线圈实用匝数为0匝,短路线圈抽头选2-2。
保护装置的灵敏系数(按最小运行方式下,电动机接线端两相短路时,流过保护装置的短路电流校验):Ksen=(WI·ph·sy+Wc·sy)/AW0*Kjx*I"k2·min/nTA=(0+0)/60*1*6347.78/80=0<2保护装置的灵敏系数小于2,不符合要求!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳态量差动
中灵敏度定值,平台0.5kA,拐点2kA;15kA。
突变量差动或零序差动或零序差动
低灵敏度定值,平台0.3kA,拐点1.5kA;10kA。
变压器稳态量电流差动的定值
变压器突变量或负序(3I2)电流差动的定值(60ms后投入)
变压器无饱和判别稳态量电流差动的定值
变特性椭圆差动继电器与现行差动继电器之比较
0.7
变压器差动保护
稳态量差动
中灵敏度定值,平台0.4Ie,拐点0.8Ie;3Ie。
突变量差动或零序差动或负序差动
低灵敏度定值,平台0.25Ie,拐点0.5Ie;2Ie。
发电机差动保护
稳态量差动
高灵敏度定值,平台0.3Ie,拐点0.8Ie;3Ie。
突变量差动或负序差动
低灵敏度定值,平台0.2Ie,拐点0.5Ie;2Ie。
差动保护整定计算
1.理论分析
差动保护是最易满足“四性”要求的一种性能优良的继电保护。它还具备选相能力强,适应能力强等优点,因而作为主保护广泛地应用于线路、发电机、变压器、母线、电抗器等电气设备。根据基尔霍夫电流定律,只要被保护设备无短路电流分支,理论上差动继电器的动作量等于零,具有极高的安全性;被保护设备发生横向短路纵向差动继电器的动作量大于零,发生纵向短路横向差动继电器的动作量大于零,具有极高的灵敏性。设两侧差动继电器的电流为 ,它们之间的相对关系为 ,若TA无误差,区外故障 ,事实上,TA不可能完全真实地传变一次电流。使得区外故障 。TA误差包括相对误差和绝对误差,大电流和小电流TA都会产生较大误差,如:5P20是指20的短路电流最大误差不超过5%。实际应用中,TA的传变误差使差动继电器的动作量产生的不平衡输出与理想情况存在很大的差异,这种差异主要表现在,区外短路不平衡的电流随短路电流增加而增加,人们自然想到利用短路电流作制动量。因此,对差动继电器的研究归根结底是对制动量的研究。
事实上,改进的标积制动继电器就意识到这一点,在标积制动继电器的基础上作如下补充:如果 成立动作;如果不成立,再判 则判定区外短路, 为被保护设备的额定电流,B为系数,一般取B=1.5;如果 则降低 值。
1.2现行差动继电器特性分析
以相量和差制动继电器为基准,采用 在复平面和动作电流 与制动电流 两维平面的比较方法。取恰当的制动系数所有差动继电器的动作特性,在复平面中,都是对称与负实轴的封闭曲线。假定所有差动继电器的动作特性 都经过负实轴靠近原点的同一点 。给定模值和制动系数K,计算其它制动系数和交于负实轴的两点。除最大值制动外,其它制动都交于负实轴的两点( ),最大值制动交于负实轴的两点( )。
现行差动继电器的 的动作特性基本上是圆或近乎圆,位于Ⅱ、Ⅲ象限,圆外为动作区。其指导思想是,从区外故障不误动入手,牢牢地将-1圈在圆内,又必须将原点圈在圆外,顾此失彼,它顾及原点,圆特性又位于Ⅱ、Ⅲ象限,显然,动作区过大,安全性差。变特性椭圆差动继电器指导思想是,从区内故障灵敏度最高点入手,将1位于动作区中心,动作特性包括原点圈在圆内,利用 来改变椭圆的形状,主要改变虚部。因为实部具有分明的区内外特征,虚部属模糊区。根据 的大小和TA的误差特征,改变椭圆的形状,到达我们期望的结果。
1
-0.667;-1.5; -1.333
-0.538;-1.857;-1.462
-0.429;-2.333;-1.571
-0.333;-3;-1.667
从上面数据可见:制动系数从0.2~0.5改变, 在复平面上的动作区变化不大。拐点与制动系数同等重要,因为直线由斜率和截距决定。
假设变压器差动保护制动系数
三组值
模值和
最大值
相量和差
标积
复式
高灵敏度(三折线中第二折线)
0.2
0
中灵敏度(两折线中第二折线)
0.3
0.5
0.33
0.49
0.43
低灵敏度(三折线中第三折线)
0.4
0.6
0.43
0.91
0.67
建议:最好采用模值和制动。
若制动量除2,则令: 。 ,即将制动系数乘2!!!拐点除2!!!因为区外短路制动电流为2倍的流过变压器的电流。拐点:1.6/2=0,8;6/2=3。计算拐点时采用制动量,制动量除2,定值也除2;计算制动系数时采用动作量/制动量,制动量除2,定值就要乘2。
三组值
较灵敏组
不灵敏组
高灵敏度(三折线中第二折线)
0.2
0.25
中灵敏度(两折线中第二折线)
0.3
0.325
低灵敏度(三折线中第三折线)
0.375
0.4
低灵敏度定值
三组值
较灵敏组
不灵敏组
高灵敏度(三折线中第二折线)
0.3
0.3
中灵敏度(两折线中第二折线)
0.5
0.5
低灵敏度(三折线中第三折线)
0.7
模值和制动与复式制动等价
将(5)式稍加整理便有
同样,模值和制动与复式制动本质一样,只是数学表达式不同。
从上面几种差动继电器可以看出,差动继电器的动作量永远是和电流(差动电流)。所以,对差动判据的研究就是对制动量的研究。制动量是针对外部短路不平衡电流增大而设置,表面上看,期望找到外部短路制动量大,内部短路制动量小甚至无。标积制动是一个典型的例子,提出标积制动的理由是,外部短路制动量为正起制动量作用;内部短路制动量为负起动作作用。然而,从上面相量和差制动与标积制动等价的数学推导结果知,相量和差制动与标积制动本质一样,只是数学表达式不同。再看复式制动,就是将动作量的一部分 分配给制动量,提出复式制动的理由是,外部短路动作量分配给制动量的部分 其值很小对制动量削弱作用也很小;内部短路动作量分配给制动量的部分 极大地削弱了制动作用。然而,数学是突破现象看本质,只要数学上等价,它们的动作特性必然一致,这一点对数字式继电器尤为如此,无论是数字仿真和动模实验都证实了这一点。
1.1现行差动继电器简评
现行的差动继电器有如下几种:
(1)模值和制动
(2)最大值制动
(3)相量和差制动
(4)标积制动
(5)复式制动
相量和差制动与标积制动等价
利用关系式
等价是指临界条件等价,将(3)式取等号,两边平方
,
将(4)式取等号
,
得到K与Sres的互换关系
就是说,相量和差制动与标积制动本质一样,只是数学表达式不同。
以模值和制动为例,
2.一般性原则定值
下面给出模值和或相量和差制动系数(制动量未除2)一般性原则定值。其它制动系数作相应的折算。
高灵敏度定值
三组值
较灵敏组
不灵敏组
高灵敏度(三折线中第二折线)
0.15
0.2
中灵敏度(两折线中第二折线)
0.25
0.275
低灵敏度(三折线中第三折线)
0.325
0.35
中灵敏度定值
。最大值制动系数 。
复式制动与模值和制动的关系 ;
标积制动与相量和差制动的关系 。
K
K,Sres
K
差动继电器参考数据
模值和
0.2
0.3
0.4
0.5
最大值
0.333
0.462
0.571
0.667
相量和差
0.2
0.3
0.4
0.5
标积
0.167
0.396
0.762
1.333
复式
0.25
0.429
0.667
图形比较
500kV线路电流差动的定值