专题-力学三大观点的综合应用

合集下载

力学三大观点的综合应用(解析版)--2025高考物理

力学三大观点的综合应用(解析版)--2025高考物理

力学三大观点的综合应用目录题型一应用力学三大观点解决多过程问题 1题型二应用力学三大观点解决板-块模型及传送带模型问题 16题型一应用力学三大观点解决多过程问题力学三大观点对比力学三大观点对应规律表达式选用原则动力学观点牛顿第二定律F 合=ma物体做匀变速直线运动,涉及到运动细节.匀变速直线运动规律v =v 0+atx =v 0t +12at 2v 2-v 20=2ax 等能量观点动能定理W 合=ΔE k涉及到做功与能量转换机械能守恒定律E k 1+E p 1=E k 2+E p 2功能关系W G =-ΔE p 等能量守恒定律E 1=E 2动量观点动量定理I 合=p ′-p 只涉及初末速度、力、时间而不涉及位移、功动量守恒定律p 1+p 2=p 1′+p 2′只涉及初末速度而不涉及力、时间1.(2024·湖北·模拟预测)如图甲所示,小球A 以初速度v 0=2gR 竖直向上冲入半径为R 的14粗糙圆弧管道,然后从管道另一端沿水平方向以速度v 02=gR 冲出,在光滑水平面上与左端连有轻质弹簧的静止小球B 发生相互作用,距离B 右侧s 处有一个固定的弹性挡板,B 与挡板的碰撞没有能量损失。

已知A 、B 的质量分别为3m 、2m ,整个过程弹簧的弹力随时间变化的图像如图乙所示(从A 球接触弹簧开始计时,t 0已知)。

弹簧的弹性势能为E p =12kx 2,x 为形变量,重力加速度为g 。

求:(1)小球在管道内运动的过程中阻力做的功;(2)弹簧两次弹力最大值之比F 2:F 1;(3)小球B 的初始位置到挡板的距离s 。

【答案】(1)-32mgR ;(2)7:5;(3)35t 0gR 【详解】(1)设小球在管道内运动的过程阻力做功为W f ,根据动能定理可得-3mgR +W f =12⋅3m v 02 2-12⋅3mv 20解得W f =-32mgR(2)当A 、B 第一次共速时,弹簧压缩量最大,弹簧弹力最大,设压缩量为x 1,A 、B 共同速度为v 共1,从A 刚接触弹簧到A 、B 共速,根据动量守恒定律和机械能守恒定律可得3mv 02=(3m +2m )v 共112kx 21=12⋅3m v 02 2-12⋅(3m +2m )v 2共1此时弹簧弹力为F 1,有F 1=kx 1由图乙可知,弹簧刚好恢复原长时,B 与挡板相撞,设此时A 、B 速度分别为v 1、v 2,从A 刚接触弹簧到弹簧恢复原长,根据动量守恒定律和机械能守恒定律可得3mv 02=3mv 1+2mv 212⋅3m v 02 2=12⋅3mv 21+12⋅2mv 22解得v 1=15gR ,v 2=65gR此时B 原速率反弹,当A 、B 第二次共速时,弹簧压缩量再一次达到最大,设压缩量为x 2,A 、B 共同速度为v 共2,从B 刚反弹到弹簧第二次压缩最大,根据动量守恒定律和机械能守恒定律可得3mv 1-2mv 2=(3m +2m )v 共212kx 22=12⋅3mv 21+12⋅2mv 22-12(3m +2m )v 2共2此时弹簧弹力为F 2,有F 2=kx 2联立解得F 2:F 1=7:5(3)设A 、B 一起向右运动的过程中,任意时刻A 、B 速度分别为v A 、v B ,根据动量守恒可得3mv 02=3mv A +2mv B 在任意一极短时间∆t 内,有3mv 02Δt =3mv A Δt +2mv B Δt 所以3mv 02Δt =3m Δx A +2m Δx B 等式两边求和得3mv 02t 0=3ms A +2ms B 由图乙可知,t 0时B 与挡板发生碰撞,此时弹簧恰好恢复原长,故从t =0到t =t 0时,A 、B 位移相同,即s A =s B =s联立解得s =35t 0gR 2.(2024·河北·三模)滑雪是人们在冬季喜爱的户外运动。

2025高考物理总复习力学三大观点的综合应用

2025高考物理总复习力学三大观点的综合应用

台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。

专题六 力学中三大观点的综合应用

专题六 力学中三大观点的综合应用

(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水

专题4 力学三大观点的综合应用

专题4 力学三大观点的综合应用

第六章
命题点一 命题点二
专题4 力学三大观点的综合应用
必备知识 关键能力
-12-
答案: (1)4 m/s (2)0.6 m (3)30 N 解析: (1)A 球从水平位置摆到最低点,则
mAgL=2mA������0 2 解得:v0=4 m/s (2)A 与 B 发生弹性碰撞,则 mAv0=mAvA+mBvB
1 2 2 1 ( m +m +m ) v = m B C D������2 2 2
+ 2(m+mB+mC)v″2
1
解得 v2=2 m/s,v″=0 根据牛顿第二定律有
������2 2 F'-mDg=mD ������
解得F'=120 N 根据牛顿第三定律,物体D再一次回到最低点时对C的压力F=120 N。
第六章
知识梳理 考点自诊
专题4 力学三大观点的综合应用
必备知识 关键能力
-5-
1.(2018· 全国卷,1)一质量为m的烟花弹获得动能E后,从地面竖直升 空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量 相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。 爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量,求 (1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度。
当烟花弹上升速度为零时爆炸,可将此运动看成竖直上升运动。 竖直上升运动公式有 v=gt,v2=2gh0 联立可解得 t=
2������������ ������ , h = 0 ������������ ������������
第六章
知识梳理 考点自诊

专题力学三大观点的综合应用

专题力学三大观点的综合应用

力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题 1动量和能量观点在力学中的应用例1(2014 ·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 1.0 m ,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1)2.5 m/s(2)6次(3)5 s12.75 m解析(1) 设两者间相对静止时速度为v,由动量守恒定律得m v0= 2m vv=2.5 m/s.(2)解得物块与凹槽间的滑动摩擦力F =μF=μmgf N设两者相对静止前相对运动的路程为s1,由功能关系得1212- F f·s1=(m+m)v- m v022解得 s1= 12.5 m已知 L= 1 m,可推知物块与右侧槽壁共发生 6 次碰撞.(3)设凹槽与物块碰前的速度分别为 v1、 v2,碰后的速度分别为 v 1′、 v2′.有m v1+ m v2=m v1′+ m v2′121m v22121m v2′2m v1+=m v1′+2222得 v 1′= v2, v2′= v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为 13 段,凹槽、物块的v —t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v= v 0+ata =- μg解得 t = 5 s凹槽的 v —t 图象所包围的阴影部分面积即为凹槽的位移大小 s 2.(等腰三角形面积共分13 份,第一份面积为 0.5 L ,其余每两份面积和均为 L.)1 v 0)t + 6.5L ,解得 s 2= 12.75 m.s 2=(221.如图 2 所示,倾角 45°高 h 的固定斜面.右边有一高3h的平台,平台顶部左边水平,上面有一质量为1圆弧.质量为2m 的小球 A 从斜面底端以某一初速度沿斜面上滑,M 的静止小球 B ,右边有一半径为 h 的 4从斜面最高点飞出后恰好沿水平方向滑上平台,与 B 发生弹性碰撞, 碰后 B 从圆弧上的某点离开圆弧. 所有接触面均光滑, A 、 B 均可视为质点,重力加速度为 g.图 2(1) 求斜面与平台间的水平距离s 和 A 的初速度 v 0;(2) 若 M = 2m ,求碰后 B 的速度;(3) 若 B 的质量 M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为 α.求 cos α的取值范围.答案(1) h 2gh (2) 2gh(3)2≤ cos α≤ 133解析(1) 设小球 A 飞上平台的速度为 v 1,小球由斜面顶端飞上平台,可看成以速度v 1 反向平抛运动,由平抛运动规律得:1h = 1gt 2, s =v 1t , tan 45 =°gt2 2v 1解得: v 1= gh , s = h由机械能守恒定律得:1m v 0 2= 3mgh + 1m v 1 222 2解得: v 0= 2 gh.(2) 设碰后 A 、 B 的速度分别为 v A 、 v B ,由动量、能量守恒得m v 1= m v A + M v B1 2 1 21 2m v 1 =m v A + M v B2222m2v B = m + M v 1= 3gh.(3) 由 (2) 可知,当 M ? m 时 v B ≈ 2 gh > gh 从顶端飞离则 cos α= 1 当 M ? m 时, v B = 0,设 B 球与圆弧面在 C 处分离,则:1 2 Mgh (1- cos α)=2M v Cv C 2 , cos α= 2,故 2≤ cos α≤ 1Mg cos α= M h331.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题 2应用动力学、能量、动量解决综合问题例 2如图3所示,在光滑的水平面上有一质量为m= 1 kg 的足够长的木板C,在 C 上放置有A、 B 两物体, A 的质量 m A= 1 kg,B 的质量为 m B= 2 kg.A、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能 E p= 3 J,现突然给A、B 一瞬时冲量作用,使A、B同时获得v 0=2 m/s的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与 A、B 分离.已知 A 和的摩擦因数为μ= 0.2,B、 C 之间的动摩擦因数为μ= 0.1,且滑动摩擦力略小于最大静摩擦力.求:1 2C 之间图3(1)弹簧与 A、 B 分离的瞬间, A、 B 的速度分别是多大?(2) 已知在 C 第一次碰到右边的固定挡板之前,A、B 和 C 已经达到了共同速度,求在到达共同速度之前B、 C 的加速度分别是多大及该过程中产生的内能为多少?(3) 已知 C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前 A 在 C 上滑行的距离?审题突破(1) 根据动量守恒和能量守恒列方程组求A、B 分离时的速度; (2) 由牛顿第二定律求三者的加速A、度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解.答案(1)0 3 m/s(2)4.5 J 1.5 m/s (3)0.75 m解析(1) 在弹簧弹开两物体的过程中,由于作用时间极短,对A、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A+m B)v0= m A v A+ m B v B121212E p+ (m A+ m B)v0=m A v A+ m B v B222联立解得: v A=0, v B=3 m/s.2(2) 对物体 B 有: a =μg= 1 m/s ,方向水平向左B2对 A、 C 有:μ+ m)a2m B g=(m A又因为: m A a<μ1m A g故物体 A、 C 的共同加速度为a= 1 m/s 2,方向水平向右对 A、 B、 C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B= ( m A+ m B+ m)v 121(m A+ m B+ m)v2Q= m B v B-22解得: Q= 4.5 J,v= 1.5 m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0 后向右匀加速运动,分析可知,在向右加速过程中先和 A 达到共同速度v1,之后 A、C 再以共同的加速度向右匀加速, B 一直向右匀减速,最后三者达共同速度 v 2后做匀速运动.在此过程中由于摩擦力做负功,故 C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A=μ1g= 2 m/s2, a B=μ2g= 1 m/s2μ,解得: a = 4 m/s 21m A g + μ2m B g = ma C C v 1= v - a A t =- v + a C t解得: v 1= 0.5 m/st = 0.5 s- v + v 1 x A1=v + v 12 t = 0.5 m , x C1= 2 t =- 0.25 m故 A 、 C 间的相对运动距离为x AC = x A1+ |x C1|= 0.75 m.2. (2014 广·东 ·35)如图 4 所示,的水平轨道中, AC 段的中点 B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1 沿光滑轨道向右以速度v 1 与静止在 A 点的物体 P 2 碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在 t 1= 2 s 至 t 2= 4 s 内工作.已知 P 1、 P 2 的质量都为 m = 1 kg , P 与 AC 间的动摩擦因数2为 μ= 0.1, AB 段长 L = 4 m , g 取 10 m/s , P 1、 P 2 和 P 均视为质点, P 与挡板的碰撞为弹性碰撞.图 4(1) 若 v 1= 6 m/s ,求 P 1、 P 2 碰后瞬间的速度大小 v 和碰撞损失的动能E ;(2) 若 P 与挡板碰后, 能在探测器的工作时间内通过 B 点,求 v 1 的取值范围和 P 向左经过 A 点时的最大动能 E .答案 (1)3 m/s 9 J (2)10 m/s ≤ v 1≤ 14 m/s 17 J解析(1) 设 P 1 和 P 2 发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1= 2m v 2①解得: v 2=v 1= 3 m/s2E = 1m v 11× 2m v 2碰撞过程中损失的动能为:2- 2②2 2解得E =9 J.(2) P 滑动过程中,由牛顿第二定律知2ma =- 2μ mg③可以把 P 从 A 点运动到 C 点再返回 B 点的全过程看作匀减速直线运动,根据运动学公式有1 2 3L = v 2t + at2④26L - at由 ①③④ 式得 v 1=t① 若 2 s 时通过 B 点,解得: v 1= 14 m/s ② 若 4 s 时通过 B 点,解得: v 1= 10 m/s 故 v 1 的取值范围为: 10 m/s ≤ v 1≤ 14 m/s设向左经过 A 点的速度为 v A ,由动能定理知1× 2m v A 2- 1× 2m v 2 2=- μ·2mg ·4L22 当 v = 1v 1 = 7 m/s 时,复合体向左通过 A 点时的动能最大, E =17 J.22根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练训练 6题组 1动量和能量的观点在力学中的应用1.如图 1 所示,在倾角为 30°的光滑斜面上放置一质量为 m 的物块 B , B 的下端连接一轻质弹簧,弹簧下端与挡板相连接, B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块 A ,距物块 B 为 3x 0,现让 A 从静止开始沿斜面下滑, A 与 B 相碰后立即一起沿斜面向下运动,并恰好回到 O 点(A 、 B 均视为质点 ).试求:图 1(1) A 、 B 相碰后瞬间的共同速度的大小;(2) A 、 B 相碰前弹簧具有的弹性势能;(3) 若在斜面顶端再连接一光滑的半径 R = x 0 的半圆轨道 PQ ,圆轨道与斜面相切于最高点 P ,现让物块 A以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上的速度,试问:v 为多大时物块 A 恰能通过圆弧轨道的最高点?答案 (1) 1 3gx 0 120+ 4 3 gx 02(2) mgx 0 (3)4解析(1) 设 A 与 B 相碰前 A 的速度为 v 1, A 与 B 相碰后共同速度为 v 2由机械能守恒定律得 3mgx 0 sin 30 1 2=°m v 12由动量守恒定律得m v 1= 2m v 21解以上二式得 v 2= 2 3gx 0.(2) 设 A 、B 相碰前弹簧所具有的弹性势能为 E p ,从 A 、 B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p + 1·2m v 2 2= 2mgx 0 sin 30 °2解得 E p = 1mgx 0.4(3) 设物块 A 与 B 相碰前的速度为 v 3,碰后 A 、 B 的共同速度为 v 41 21 2m v + 3mgx 0 sin 30 =°m v 322m v 3= 2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则1·2m v 4 2+ E p = 1·2m v 5 2+ 2mgx 0sin 30 °2 211此后 A 继续上滑到半圆轨道最高点时速度为v 6,则2 2+ 2mgx 0 sin 30 +°mgR(1+ sin 60 ) °2m v 5= m v 62在最高点有 mg =m v 6 R 2联立以上各式解得v =20+ 4 3 gx 0.2.如图 2 所示,质量为 m 1 的滑块 (可视为质点 )自光滑圆弧形槽的顶端 A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点, A 、 B 的高度差为 h 1= 1.25 m .传导轮半径很小,两个轮之间的距离为 L = 4.00 m .滑块与传送带间的动摩擦因数 μ= 0.20.右端的轮子上沿距离地面高度h 2= 1.80 m ,g取 10 m/s 2.(1) 若槽的底端没有滑块图m 2,传送带静止不运转,求滑块2m 1 滑过C 点时的速度大小v ; (结果保留两位有效数字)(2)在m 1 下滑前将质量为 m 2 的滑块(可视为质点)停放在槽的底端.m 1 下滑后与 m 2 发生弹性碰撞,且碰撞后 m 1 速度方向不变,则m 1、 m 2 应该满足什么条件?(3) 满足 (2) 的条件前提下, 传送带顺时针运转, 速度为 v = 5.0 m/s.求出滑块 m 1、m 2 落地点间的最大距离 (结果可带根号 ).答案(1)3.0 m/s (2)m 1> m 2 (3)(621 - 3) m5 解析(1) 滑块 m 11 2滑到 B 点有 m 1gh 1= m 1v 02解得 v 0= 5 m/s滑块 m 由 B 滑到 C 点有- μm1 2-1211gL = m 1 vm 1v 022解得 v = 3.0 m/s.(2) 滑块 m 2 停放在槽的底端, m 1 下滑并与滑块 m 2 弹性碰撞,则有m 1v 0=m 1v 1+ m 2v 211 v 0 2= 11v 1 2 + 1 2v 2 22m2m2mm 1 速度方向不变即v 1= m 1- m 2+ m v 0> 0m 12 则 m 1> m 2.(3) 滑块经过传送带作用后做平抛运动12h 2=2gt当两滑块速度相差最大时,它们的水平射程相差最大,当 m 1? m 2 时,滑块 m 1、 m 2 碰撞后的速度相差最大,经过传送带后速度相差也最大m 2m 1- m 2 1- m 1 v 0≈ v 0= 5.0 m/s v 1= + m v 0=2m 1+m 1v 2= 2m 1v 0= 2v 0≈ 2v 0= 10.0 m/s+ m 2m2m1+m 1滑块 m 1 与传送带同速度,没有摩擦,落地点射程为x 1= v 1t = 3.0 m滑块 m 2 与传送带发生摩擦,有 - μm1′ 2- 122gL =2m 2v 2 2m 2v 2解得 v 2′= 2 21 m/s落地点射程为 x 2= v 2′ t =621 m5m 2、m 1 的水平射程相差最大值为x = (6 21- 3) m.5题组 2应用动力学观点、能量观点、动量观点解决综合问题3.如图 3 所示,质量 M = 4 kg 的平板小车停在光滑水平面上,车上表面高 h 1= 1.6 m .水平面右边的台阶高 h 2= 0.8 m ,台阶宽l = 0.7 m ,台阶右端B 恰好与半径r = 5 m的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ= 53°,在平板小车的A 处有质量m 1= 2 kg 的甲物体和质量m 2= 1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上 A 点左侧表面光滑,右侧粗糙且动摩擦因数为 μ= 0.2.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取 10 m/s 2,sin 53=°0.8, cos 53 =°0.6).求:图 3(1) 炸药爆炸使两物体增加的机械能E ;(2) 物体在圆弧轨道最低点 C 处对轨道的压力 F ;(3) 平板车上表面的长度 L 和平板车运动位移 s 的大小.答案 (1)75 J (2)46 N ,方向竖直向下(3)1 m解析(1) 甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2= 01 2 1 m 2v 22=75 J.E = m 1v 1 +22(2) 设甲物体平抛到 B 点时,水平方向速度为 v x ,竖直分速度为 v yv y = 2g h 1- h 2 = 4 m/s v x =v y= 3 m/stan θ合速度为: v B = 5 m/s物体从 B 到 C 过程中:m 1gr(1- cos θ)= 1m 1v C 2- 1m 1v B222v C 2F N - m 1 g = m 1 rF N =46 N由牛顿第三定律可知:F = F N = 46 N ,方向竖直向下.v y(3) 甲物体平抛运动时间: t = g = 0.4 s 平抛水平位移: x = v x t = 1.2 m > 0.7 m甲物体在车上运动时的加速度为: a 1= μg = 2 m/s2甲物体在车上运动时间为:t 1= v 0- v x = 1 sa 1甲物体的对地位移: x =1+ v = 4 m12 (v 0 x )t 1a 2= μm 1g = 1 m/s 2甲物体在车上运动时,车的加速度为:1M甲离开车时,车对地的位移:2= 0.5 mx 2= a 2t 12车长为: L = 2(x 1- x 2)= 7 m车的位移为: s = x 2+ (x - l)= 1 m.4.如图 4 所示,光滑的水平面 AB(足够长 )与半径为 R = 0.8 m 的光滑竖直半圆轨道 BCD 在 B 点相切, D点为半圆轨道最高点.A 点的右侧等高地放置着一个长为 L = 20 m 、逆时针转动且速度为v = 10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1= 3 kg ,乙的质量为 m 2= 1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过 D 点,且过 D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为 0.6,重力加速度 g 取 10 m/s 2,甲、乙两物体可看做质点.图 4(1) 求甲球离开弹簧时的速度.(2) 若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3) 甲、乙均不固定,烧断细线以后,求甲和乙能否再次在 AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案(1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为23 m/s ,方向水平向右,乙的速度为 6 3m/s ,方向水平向左解析(1) 甲离开弹簧时的速度大小为v 0,运动至 D 点的过程中机械能守恒:12 1 2m 1 v 0 = m 1g ·2R +m 1v D ,22 在最高点 D ,由牛顿第二定律,v D 2 有 2m 1g = m 1 R联立解得: v 0= 4 3 m/s.(2) 甲固定,烧断细线后乙的速度大小为 v 乙 ,由能量守恒:E p =1m 1v 0 2=1m 2v 乙 2,2 2得 v 乙 = 12 m/s之后乙滑上传送带做匀减速运动:μm 2g = m 2a得 a = 6 m/s 2乙的速度为零时,在传送带滑行的距离最远,最远距离为:2v 乙s=2a= 12 m < 20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为 v1、 v 2,甲、乙分离瞬间动量守恒: m1v1= m2v2甲、乙弹簧组成的系统能量守恒:121212E p= m1v0= m1v1+m2v2222解得: v1=2 3 m/s,v2= 6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h,12则2m1v1=m1gh得 h= 0.6 m< 0.8 m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s< 12 m/s,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回 AB 面上时速度大小仍然为v2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为 2 3 m/s,方向水平向右,乙的速度为 6 3 m/s,方向水平向左.。

2024届高考复习 专题17 力学三大观点的综合应用(原卷版)

2024届高考复习 专题17   力学三大观点的综合应用(原卷版)

专题17 力学三大观点的综合应用目录题型一应用力学三大观点解决多过程问题 (1)题型二应用力学三大观点解决板—块模型及传送带模型问题 (6)题型一应用力学三大观点解决多过程问题力学三大观点对比力学三大观点对应规律表达式选用原则动力学观点牛顿第二定律F合=ma物体做匀变速直线运动,涉及到运动细节.匀变速直线运动规律v=v0+atx=v0t+12at2v2-v02=2ax等能量观点动能定理W合=ΔE k涉及到做功与能量转换机械能守恒定律E k1+E p1=E k2+E p2功能关系W G=-ΔE p等能量守恒定律E1=E2动量观点动量定理I合=p′-p只涉及初末速度、力、时间而不涉及位移、功动量守恒定律p1+p2=p1′+p2′只涉及初末速度而不涉及力、时间【例1】如图所示,水平桌面左端有一顶端高为h的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP,其形状为半径R=0.8 m的圆环剪去了左上角135°后剩余的部分,MN为其竖直直径,P点到桌面的竖直距离也为R.一质量m=0.4 kg的物块A自圆弧形轨道的顶端释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m的物块B发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B的位移随时间变化的关系式为s=6t-2t2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P点沿切线落入圆轨道.(重力加速度g取10 m/s2)求:(1)BP间的水平距离s BP;(2)判断物块B能否沿圆轨道到达M点;(3)物块A由静止释放的高度h.【例2】(2021·云南省高三二模)如图所示,光滑弧形槽静置于光滑水平面上,底端与光滑水平面相切,弧形槽高度h=2.7 m、质量m0=2 kg.BCD是半径R=0.4 m的固定竖直圆形光滑轨道,D是轨道的最高点,粗糙水平面AB与光滑圆轨道在B点相切,已知A、B两点相距2 m.现将质量m=1 kg的物块从弧形槽顶端由静止释放,物块进入粗糙水平面AB前已经与光滑弧形槽分离,并恰能通过光滑圆轨道最高点D,重力加速度g=10 m/s2.求:(1)物块从弧形槽滑下的最大速度大小;(2)物块在圆形轨道B点时受到的轨道的支持力大小;(3)物块与粗糙水平面AB间的动摩擦因数.【例3】(2022·湖南怀化市一模)如图所示,光滑轨道abc固定在竖直平面内,ab 倾斜、bc水平,与半径R=0.4 m竖直固定的粗糙半圆形轨道cd在c点平滑连接。

专题(19)力学三大观点的综合应用(解析版)

专题(19)力学三大观点的综合应用(解析版)

2021年高考物理二轮重点专题整合突破专题(19)力学三大观点的综合应用(解析版)高考题型1应用力学三大观点处理多过程问题1.力学三大观点对比2.选用原则(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向为匀变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题.(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应优先选用能量守恒定律.(3)不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别是对于打击类问题,因时间短且冲力随时间变化,应用动量定理求解.第1页共15页第 2 页 共 15 页(4)对于碰撞、爆炸、反冲、地面光滑的板—块问题,若只涉及初末速度而不涉及力、时间,应用动量守恒定律求解.【例1】(2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图1所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.图1(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?【答案】(1)4.0 m/s 1.0 m/s (2)物块B 先停止 0.50 m (3)0.91 m【解析】(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律和题给条件有0=m A v A -m B v B Ⅲ E k =12m A v A 2+12m B v B 2Ⅲ联立ⅢⅢ式并代入题给数据得 v A =4.0 m/s ,v B =1.0 m/sⅢ(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g Ⅲ s B =v B t -12at 2Ⅲ第 3 页 共 15 页v B -at =0Ⅲ在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为 s A =v A t -12at 2Ⅲ联立ⅢⅢⅢⅢⅢ式并代入题给数据得 s A =1.75 m ,s B =0.25 mⅢ这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为 s =0.25 m +0.25 m =0.50 mⅢ(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v A 2=-μm A g ()2l +s B Ⅲ 联立ⅢⅢⅢ式并代入题给数据得 v A ′=7 m/sⅢ故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有 m A (-v A ′)=m A v A ″+m B v B ″Ⅲ 12m A v A ′2=12m A v A ″2+12m B v B ″2Ⅲ 联立ⅢⅢⅢ式并代入题给数据得 v A ″=375 m/s ,v B ″=-275m/sⅢ这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式 2as A ′=v A ″2,2as B ′=v B ″2Ⅲ 由ⅢⅢⅢ式及题给数据得第 4 页 共 15 页s A ′=0.63 m ,s B ′=0.28 mⅢs A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离 s ′=s A ′+s B ′=0.91 m 【变式训练】1.如图2所示,半径为R 的光滑的34圆弧轨道AP 放在竖直平面内,与足够长的粗糙水平轨道BD 通过光滑水平轨道AB 相连.在光滑水平轨道上,有a 、b 两物块和一段轻质弹簧.将弹簧压缩后用细线(未画出)将它们拴在一起,物块与弹簧不拴接.将细线烧断后,物块a 通过圆弧轨道的最高点C 时,对轨道的压力大小等于自身重力.已知物块a 的质量为m ,b 的质量为2m ,物块b 与BD 面间的动摩擦因数为μ,物块a 到达A 点或物块b 到达B 点前已和弹簧分离,重力加速度为g .求:图2(1)物块b 沿轨道BD 运动的距离x ; (2)烧断细线前弹簧的弹性势能E p . 【答案】(1)3R 4μ (2)92mgR【解析】(1)以水平向左为正方向,弹簧弹开a 、b 过程, 由动量守恒定律得0=mv 1-2mv 2物块a 从A 运动到C 的过程中,由机械能守恒定律得 12mv 12=mg ·2R +12mv C 2 在最高点重力与支持力的合力提供物块a 所需向心力 则有mg +F N =m v C 2R,又F N =mg ,第 5 页 共 15 页联立可解得v 1=6gR ,v 2=6gR2物块b 减速到停下过程中,由动能定理得-μ·2mgx =0-12·2mv 22可解得x =3R4μ(2)弹簧弹开物块a 、b 的过程,弹性势能转化为动能,可得 E p =12mv 12+12·2mv 22解得弹性势能E p =92mgR .2.(2020·四川泸州市质量检测)如图3所示,足够长的固定粗糙水平木板左端的D 点平滑连接半径为R =2 m 、竖直放置的四分之一光滑圆弧轨道,C 、D 分别是圆弧轨道的最高点和最低点,两轨道均固定在地面上.可视为质点的物块A 从C 点开始,以初速度v 0=3 m/s 沿圆弧轨道滑动.水平木板上离D 点距离为3.25 m 的P 点静置另一个可视为质点的物块B .已知物块A 、B 与水平木板间的动摩擦因数均为μ=0.2,物块A 的质量m 1=1 kg ,取g =10 m/s 2.图3(1)求物块A 从C 点滑到D 点时,对圆弧轨道的压力;(2)若物块B 的质量为m 2=1 kg ,物块A 与B 碰撞后粘在一起,求它们最终停止的位置距D 点多远; (3)若B 的质量为m 2′= 5 kg ,物块A 与B 的碰撞为弹性碰撞(且碰撞时间极短),求物块A 与B 均停止后它们相距多远.【答案】(1)34.5 N ,方向竖直向下 (2)5.5 m (3)3.5 m【解析】(1)设物块A 在D 点的速度为v 1,则物块A 从C 点运动到D 点的过程,由动能定理可得: m 1gR =12m 1v 12-12m1v 02第 6 页 共 15 页得v 1=7 m/s设物块A 在D 点受到圆弧轨道向上的支持力大小为F N ,则有F N -m 1g =m 1v 12R得F N =34.5 N由牛顿第三定律可得:物块A 在D 点对圆弧轨道的压力大小为F N ′=34.5 N ,方向竖直向下.(2)设物块A 在P 点与物块B 碰撞前瞬间的速度为v 2,加速度大小为a 1,则从D 点到P 点的过程中,由牛顿第二定律得:μm 1g =m 1a 1 -2a 1L =v 22-v 12 得v 2=6 m/s物块A 与物块B 碰撞的过程中,系统动量守恒,则有 m 1v 2=(m 1+m 2)v 3 解得v 3=3 m/sA 、B 碰撞后粘在一起做减速运动的过程中,设加速度大小为a 2,由牛顿第二定律可得:μ(m 1+m 2)g =(m 1+m 2)a 2 0-v 32=-2a 2x 得x =94m =2.25 m此时距D 的距离为L +x =5.5 m(3)物块A 运动到P 点的速度仍为v 2=6 m/s ,碰撞过后瞬间A 与B 的速度分别为v 4、v 5 ,A 与B 的碰撞为弹性碰撞,则碰撞过程系统动量和动能均守恒,可得m 1v 2=m 1v 4+m 2′v 5 12m 1v 22=12m 1v 42+12m 2′v 52 得v 4=-4 m/s ,v 5=2 m/s由于12m 1v 42<m 1gR +μm 1gL ,故A 反弹后不能达到C 点;设物块A 与B 碰撞过后,直至停止的整个运动过程中,在水平地面上运动的路程为s ,由动能定理可得:第 7 页 共 15 页-μm 1gs =0-12m 1v 42得s =4 m故物块A 向左运动3.25 m 后滑上圆弧返回后又向右运动了x 1=s -L =0.75 m 物块B 向右减速至零,则有0-v 52=-2a 3x 2,μm 2′g =m 2′a 3 解得x 2=1 m故A 、B 相距s ′=L +x 2-x 1=3.5 m .3.如图4,一质量M =6 kg 的木板B 静止于光滑水平面上,物块A 质量m =6 kg ,停在木板B 的左端.质量为m 0=1 kg 的小球用长为L =0.8 m 的轻绳悬挂在固定点O 上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与物块A 发生碰撞后反弹,反弹所能达到的距最低点的最大高度为h =0.2 m ,物块A 与小球可视为质点,不计空气阻力.已知物块A 、木板B 间的动摩擦因数μ=0.1,(取g =10 m/s 2)求:图4(1)小球运动到最低点与物块A 碰撞前瞬间,小球的速度大小; (2)小球与物块A 碰撞后瞬间,物块A 的速度大小;(3)为使物块A 、木板B 达到共同速度前物块A 不滑离木板,木板B 至少多长. 【答案】(1)4 m/s (2)1 m/s (3)0.25 m【解析】(1)对小球下摆过程,由机械能守恒定律得: m 0gL =12m 0v 02,解得v 0=4 m/s(2)对小球反弹后上升到最高点的过程,由机械能守恒定律得 m 0gh =12m 0v 12解得:v 1=2 m/s第 8 页 共 15 页小球与物块A 碰撞过程系统动量守恒,以小球碰前速度的方向为正方向 由动量守恒定律得:m 0v 0=-m 0v 1+mv A 解得v A =1 m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以物块A 的速度方向为正方向 由动量守恒定律得:mv A =(m +M )v , 解得v =0.5 m/s由能量守恒定律得:μmgx =12mv A 2-12(m +M )v 2,解得x =0.25 m.4.(2018·全国卷Ⅲ·24)一质量为m 的烟花弹获得动能E 后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度. 【答案】(1)1g2E m (2)2E mg【解析】(1)设烟花弹上升的初速度为v 0,由题给条件有 E =12mv 02Ⅲ设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有 0-v 0=-gt Ⅲ 联立ⅢⅢ式得 t =1g2E mⅢ (2)设爆炸时烟花弹距地面的高度为h 1,由机械能守恒定律有第 9 页 共 15 页E =mgh 1Ⅲ火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设爆炸后瞬间其速度分别为v 1和v 2.由题给条件和动量守恒定律有 14mv 12+14mv 22=E Ⅲ 12mv 1+12mv 2=0Ⅲ 由Ⅲ式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹上部分继续上升的高度为h 2,由机械能守恒定律有 14mv 12=12mgh 2Ⅲ 联立ⅢⅢⅢⅢ式得,烟花弹向上运动部分距地面的最大高度为 h =h 1+h 2=2Emg高考题型2 应用力学三大观点解决板—块模型问题1.滑块和木板组成的系统所受的合外力为零时,优先选用动量守恒定律解题;若地面不光滑或受其他外力时,需选用动力学观点解题.2.滑块与木板达到相同速度时应注意摩擦力的大小和方向是否发生变化.3.应注意区分滑块、木板各自的对地位移和它们的相对位移.用运动学公式或动能定理列式时位移指对地位移;求系统摩擦生热时用相对位移(或相对路程).【例2】(2019·江苏卷·15)如图5所示,质量相等的物块A 和B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ.先敲击A ,A 立即获得水平向右的初速度,在B 上滑动距离L 后停下.接着敲击B ,B 立即获得水平向右的初速度,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g .求:图5(1)A 被敲击后获得的初速度大小v A ;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′;(3)B被敲击后获得的初速度大小v B.【答案】(1)2μgL(2)3μgμg(3)22μgL【解析】(1)由牛顿第二定律知,A加速度的大小a A=μg由匀变速直线运动规律得2a A L=v A2解得v A=2μgL;(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿第二定律F=ma B,得a B=3μg对齐后,A、B所受合外力大小F′=2μmg由牛顿第二定律F′=2ma B′,得a B′=μg;(3)设经过时间t,A、B达到共同速度v,位移分别为x A、x B,A加速度的大小为a A 则v=a A t,v=v B-a B tx A=12a A t2,x B=v B t-12a B t2且x B-x A=L解得v B=22μgL.【变式训练】5.(多选)(2019·江西上饶市重点中学六校第一次联考)如图6所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g.现对物块施加一水平向右的拉力F,则木板加速度a大小可能是()第10页共15页第 11 页 共 15 页图6A .0 B.2μg 3 C.μg 2D.F 2m -μg 4【答案】ACD【解析】若F 较小时,木板和物块均静止,则木板的加速度为零,选项A 正确;若物块和木板之间不发生相对滑动,物块和木板一起运动,对木板和物块组成的整体,根据牛顿第二定律可得:F -μ4·2mg =2ma ,解得:a =F 2m -14μg ,选项D 正确;若物块和木板之间发生相对滑动,对木板,水平方向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -μ4·2mg =ma ,解得:a =μg 2,选项C 正确. 6.(2020·云南昆明市高三“三诊一模”测试)如图7甲所示,质量为m =0.3 kg 的小物块B (可视为质点)放在质量为M =0.1 kg 、长度L =0.6 m 的木板A 的最左端,A 和B 一起以v 0=1 m/s 的速度在光滑水平面上向右运动,一段时间后A 与右侧一竖直固定挡板P 发生弹性碰撞.以碰撞瞬间为计时起点,取水平向右为正方向,碰后0.5 s 内B 的速度v 随时间t 变化的图象如图乙所示.取重力加速度g =10 m/s 2,求:图7(1)A 与B 间的动摩擦因数μ;(2)A 与P 第1次碰撞到第2次碰撞的时间间隔;(3)A 与P 碰撞几次,B 与A 分离.【答案】(1)0.1 (2)0.75 s (3)2次【解析】(1)碰后A 向左减速,B 向右减速,由题图乙得:a B =Δv Δt=-1 m/s 2 由牛顿第二定律有μmg =ma B第 12 页 共 15 页解得μ=0.1(2)碰后B 向右减速,A 向左减速到0后,向右加速,最后与B 共速,以水平向右为正方向,对A 、B 由动量守恒定律可得:mv 0-Mv 0=(M +m )v 1解得:v 1=0.5 m/s此过程,对B 由动量定理得:mv 1-mv 0=-μmgt 1解得:t 1=0.5 s对A 由动能定理有:-μmgx A =12Mv 12-12Mv 02 解得:x A =0.125 m此后A 、B 一起向右匀速运动的时间为:t 2=x A v 1=0.25 s 所以一共用的时间:t =t 1+t 2=0.75 s ,即A 与P 第1次碰撞到第2次碰撞的时间间隔为0.75 s(3)A 第1次与挡板P 碰撞后到共速的过程中,对整个系统,由能量守恒有:12mv 02+12Mv 02=12(M +m )v 12+μmgx 相对1 解得x 相对1=0.5 m假设第3次碰撞前,A 与B 不分离,A 第2次与挡板P 相碰后到共速的过程中,以水平向右为正方向,由动量守恒有:mv 1-Mv 1=(M +m )v 2由能量守恒有:12mv 12+12Mv 12=12(M +m )v 22+μmgx 相对2 解得:x 相对2=0.125 m第 13 页 共 15 页由于x 相对=x 相对1+x 相对2>L ,所以A 与P 碰撞2次,B 与A 分离.7.(2020·河南郑州市线上测试)如图8所示,长木板B 的质量为m 2=1.0 kg ,静止放在粗糙的水平地面上,质量为m 3=1.0 kg 的物块C (可视为质点)放在长木板的最右端.一个质量为m 1=0.5 kg 的物块A 从距离长木板B 左侧l =9.5 m 处,以初速度v 0=10 m/s 向着长木板运动.一段时间后物块A 与长木板B 发生弹性正碰(时间极短),之后三者发生相对运动,整个过程物块C 始终在长木板上.已知物块A 及长木板与地面间的动摩擦因数均为μ1=0.1,物块C 与长木板间的动摩擦因数为μ2=0.2,物块C 与长木板间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,求:图8(1)A 、B 碰后瞬间物块A 和长木板B 的速度;(2)长木板B 的最小长度;(3)物块A 离长木板左侧的最终距离.【答案】(1)3 m/s ,方向向左 6 m/s ,方向向右 (2)3 m (3)10.5 m【解析】(1)设物块A 与木板B 碰前瞬间的速度为v ,由动能定理得-μ1m 1gl =12m 1v 2-12m 1v 02 解得v =v 02-2μ1gl =9 m/sA 与B 发生弹性碰撞,假设碰撞后的瞬间速度分别为v 1、v 2,由动量守恒定律得m 1v =m 1v 1+m 2v 2由机械能守恒定律得12m 1v 2=12m 1v 12+12m 2v 22 联立解得v 1=m 1-m 2m 1+m 2v =-3 m/s , v 2=2m 1m 1+m 2v =6 m/s 碰后瞬间物块A 的速度大小为3 m/s 、方向向左,长木板B 的速度大小为6 m/s 、方向向右;(2)碰撞后B 做减速运动,C 做加速运动,B 、C 达到共同速度之前,由牛顿运动定律,对木板B 有 -μ1(m 2+m 3)g -μ2m 3g =-m 2a 1第 14 页 共 15 页对物块C 有μ2m 3g =m 3a 2设从碰撞后到两者达到共同速度经历的时间为t ,则 v 2-a 1t =a 2t木板B 的最小长度d =v 2t -12a 1t 2-12a 2t 2=3 m (3)B 、C 达到共同速度之后,因μ1(m 2+m 3)g =μ2m 3g ,故二者一起减速至停下,设加速度大小为a 3,由牛顿运动定律得μ1(m 2+m 3)g =(m 2+m 2)a 3整个过程B 运动的位移为x B =v 2t -12a 1t 2+0-a 2t 2-2a 3=6 mA 与B 碰撞后,A 做减速运动的加速度大小也为a 4=μm 1g m 1=1 m/s 2,位移为x A =0-v 12-2a 4=4.5 m 物块A 离长木板B 左侧的最终距离为x A +x B =10.5 m .8.如图9甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现使小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:图9(1)小物块与传送带间的动摩擦因数为多大;(2)0~8 s 内小物块与传送带之间的划痕为多长.【答案】(1)78(2)18 m第 15 页 共 15 页【解析】(1)根据v -t 图象的斜率表示加速度可得a =Δv Δt =22m/s 2=1 m/s 2 由牛顿第二定律得μmg cos 37°-mg sin 37°=ma解得μ=78 (2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动, 0~6 s 内传送带匀速运动的距离为:x 带=4×6 m =24 m ,由题图乙可知:0~2 s 内物块位移大小为:x 1=12×2×2 m =2 m ,方向沿斜面向下, 2~6 s 内物块位移大小为:x 2=12×4×4 m =8 m ,方向沿斜面向上 所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m.。

力学三大基本观点的综合应用研究

力学三大基本观点的综合应用研究

力学三大基本观点的综合应用研究力学三大基本观点,即牛顿运动定律(特别是牛顿第二定律)、动量守恒定律和能量守恒定律,是物理学中解决力学问题的基石。

这些观点不仅各自独立且深刻,而且在实际应用中往往相互关联、相互补充,共同构成了解决复杂力学问题的完整框架。

以下是对力学三大基本观点综合应用的研究。

1. 牛顿运动定律的应用牛顿第二定律(F=ma)是连接力和运动的桥梁,它描述了物体加速度与所受合外力及物体质量之间的关系。

在解决力学问题时,首先需要根据物体的受力情况(包括重力、弹力、摩擦力等)确定合外力,然后利用牛顿第二定律求出物体的加速度,进而通过运动学公式求解物体的速度、位移等运动学量。

2. 动量守恒定律的应用动量守恒定律(在没有外力作用或外力作用远小于内力作用时,系统总动量保持不变)是处理碰撞、爆炸等涉及多个物体相互作用问题的重要工具。

在应用动量守恒定律时,需要明确系统的边界(即哪些物体构成系统),判断系统是否满足动量守恒的条件,然后建立动量守恒的等式进行求解。

动量守恒定律不仅简化了问题的求解过程,还揭示了物体间相互作用的本质。

3. 能量守恒定律的应用能量守恒定律(能量既不会被消灭,也不会创生,能量只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变)是自然界普遍遵循的基本定律之一。

在力学中,它表现为机械能守恒(在只有重力或弹力做功的情况下,物体的动能和势能之和保持不变)或更一般的能量转化与守恒。

通过分析物体的受力情况和运动过程,确定能量的转化与守恒关系,可以建立能量等式进行求解。

这种方法在处理复杂力学问题时尤为有效。

4. 三大观点的综合应用在实际问题中,力学三大基本观点往往不是孤立地应用,而是需要综合运用。

例如,在处理碰撞问题时,可以首先利用动量守恒定律确定碰撞前后物体的速度关系,然后利用牛顿第二定律分析碰撞过程中的受力情况,最后通过能量守恒定律验证结果的正确性。

三大力学观点的综合应用

三大力学观点的综合应用

(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s

力学三大观点的综合应用

力学三大观点的综合应用

力学三大观点得综合应用1.动量定理得公式Ft=p′-p除表明两边大小、方向得关系外,还说明了两边得因果关系,即合外力得冲量就是动量变化得原因.动量定理说明得就是合外力得冲量与动量变化得关系,反映了力对时间得累积效果,与物体得初、末动量无必然联系.动量变化得方向与合外力得冲量方向相同,而物体在某一时刻得动量方向跟合外力得冲量方向无必然联系.动量定理公式中得F就是研究对象所受得包括重力在内得所有外力得合力,它可以就是恒力,也可以就是变力,当F为变力时,F应就是合外力对作用时间得平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之与为零,这个系统得总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量得增量为零);或Δp1=-Δp2(相互作用得两个物体组成得系统,两物体动量得增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力得合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题得三个基本观点(1)力得观点:主要就是牛顿运动定律与运动学公式相结合,常涉及物体得受力、加速度或匀变速运动得问题.(2)动量得观点:主要应用动量定理或动量守恒定律求解,常涉及物体得受力与时间问题,以及相互作用物体得问题.(3)能量得观点:在涉及单个物体得受力与位移问题时,常用动能定理分析;在涉及系统内能量得转化问题时,常用能量守恒定律.1.力学规律得选用原则(1)单个物体:宜选用动量定理、动能定理与牛顿运动定律.若其中涉及时间得问题,应选用动量定理;若涉及位移得问题,应选用动能定理;若涉及加速度得问题,只能选用牛顿第二定律.(2)多个物体组成得系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就就是根据众多得已知要素、事实,按照一定得联系方式,将其各部分连接成整体得方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂得运动.(2)对多个研究对象进行整体思维,即把两个或两个以上得独立物体合为一个整体进行考虑,如应用动量守恒定律时,就就是把多个物体瞧成一个整体(或系统)、考向1动量与能量得观点在力学中得应用例1(2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B、物块与左右两边槽壁得距离如图1所示,L为1、0 m,凹槽与物块得质量均为m,两者之间得动摩擦因数μ为0、05、开始时物块静止,凹槽以v0=5 m/s得初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2、求:图1(1)物块与凹槽相对静止时得共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞得次数;(3)从凹槽开始运动到两者刚相对静止所经历得时间及该时间内凹槽运动得位移大小.解析(1)设两者间相对静止时速度为v,由动量守恒定律得m v0=2m vv=2、5 m/s,方向向右.(2)设物块与凹槽间得滑动摩擦力F f=μF N=μmg设两者相对静止前相对运动得路程为s1,由动能定理得-F f·s1=12-12m v202(m+m)v解得s 1=12、5 m已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前得速度分别为v 1、v 2,碰后得速度分别为v 1′、v 2′、有m v 1+m v 2=m v 1′+m v 2′12m v 21+12m v 22=12m v 1′2+12m v 2′2 得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者得速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块得v —t 图象在两条连续得匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则 v =v 0+at a =-μg 解得t =5 s凹槽得v —t 图象所包围得阴影部分面积即为凹槽得位移大小s 2、(等腰三角形面积共分13份,第一份面积为0、5L ,其余每份面积均为L )s 2=12(v 02)t +6、5L解得s 2=12、75 m答案 (1)2、5 m/s ,方向向右 (2)6次 (3)5 s 12、75 m如图2,半径R =0、8 m 得四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 得水平面相切于D 点,质量M =1、0 kg 得小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0、5 kg 得静止物块B 相碰,碰后A 得速度变为v A =2、0 m /s ,仍向右运动.已知两物块与水平面间得动摩擦因数均为μ=0、1,若B 与E 处得竖直挡板相碰,没有机械能损失,取g =10 m/s 2、求:图2(1)滑块A 刚到达圆弧得最低点D 时对圆弧得压力;(2)滑块B 被碰后瞬间得速度;(3)讨论两滑块就是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点得速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v 2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧得压力为30 N ,方向竖直向下. (2)设B 滑块被碰后得速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后得速度v B =4 m/s(3)讨论:由于B 物块得速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大得路程,则对于A 物块 -μMgs A =0-12M v 2A解得s A =2 m对于B 物块,由于B 与竖直挡板得碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题例2 如图3所示,在光滑得水平面上有一质量为m =1 kg 得足够长得木板C ,在C 上放置有A 、B 两物体,A 得质量m A =1 kg ,B 得质量为m B =2 kg 、A 、B 之间锁定一被压缩了得轻弹簧,弹簧储存得弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 得初速度,且同时弹簧由于受到扰动而解除锁定,并在极短得时间内恢复原长,之后与A 、B 分离.已知A 与C 之间得动摩擦因数为μ1=0、2,B 、C 之间得动摩擦因数为μ2=0、1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离得瞬间,A 、B 得速度分别就是多大?(2)已知在C 第一次碰到右边得固定挡板之前,A 、B 与C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 得加速度分别就是多大及该过程中产生得内能为多少? 答案 见解析解析 (1)在弹簧弹开两物体得过程中,由于作用时间极短,对A 、B 、弹簧组成得系统由动量守恒定律与能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B 联立解得:v A =0,v B =3 m/s 、 (2)对物体B 有:a B =μ2g =1 m/s 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 得共同加速度为a =1 m/s 2、对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律与能量守恒定律可得: m B v B =(m A +m B +m )vQ =12m B v 2B -12(m A +m B +m )v 2 解得:Q =4、5 J ,v =1、5 m/s(2014·广东·35)如图4所示得水平轨道中,AC 段得中点B 得正上方有一探测器,C处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点得物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2得质量都为m =1 kg ,P 与AC 间得动摩擦因数为μ=0、1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2与P 均视为质点,P 与挡板得碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间得速度大小v 与碰撞损失得动能ΔE ;(2)若P 与挡板碰后,能在探测器得工作时间内通过B 点,求v 1得取值范围与P 向左经过A 点时得最大动能E 、答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1与P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失得动能为:ΔE k =12m v 21-12×2m v 22②解得ΔE k =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点得全过程瞧作匀减速直线运动,根据运动学公式有3L=v 2t +12at 2④由①③④式得v 1=6L -at 2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1得取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点得速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时得动能最大,E k A max =17 J 、(限时:45分钟)1.如图1所示,质量为M =4 kg 得木板静置于足够大得水平地面上,木板与地面间得动摩擦因数μ=0、01,板上最左端停放着质量为m =1 kg 可视为质点得电动小车,车与木板右端得固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车得电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2、)图1(1)试通过计算说明:车与挡板相碰前,木板相对地面就是静止还就是运动得? (2)求出小车与挡板碰撞前,车得速率v 1与板得速率v 2; (3)求出碰后木板在水平地面上滑动得距离s 、答案 (1)向左运动 (2)v 1=4、2 m /s ,v 2=0、8 m/s (3)0、2 m 解析 (1)假设木板不动,电动车在板上运动得加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2、5 m/s 2此时木板使车向右运动得摩擦力:F f =ma 0=2、5 N 木板受车向左得反作用力:F f ′=F f =2、5 N木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0、5 N 由于F f ′>F f0,所以木板不可能静止,将向左运动.(2)设车与挡板碰前,车与木板得加速度分别为a 1与a 2,相互作用力为F ,由牛顿第二定律与运动学公式:对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者得位移得关系:v 12t +v 22t =L联立并代入数据解得:v 1=4、2 m /s ,v 2=0、8 m/s(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v对碰后滑行s 得过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0、2 m2.如图2所示,在倾角为30°得光滑斜面上放置一质量为m 得物块B ,B 得下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧得压缩量为x 0,O 点为弹簧得原长位置.在斜面顶端另有一质量也为m 得物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图2(1)A 、B 相碰后瞬间得共同速度得大小; (2)A 、B 相碰前弹簧具有得弹性势能;(3)若在斜面顶端再连接一光滑得半径R =x 0得半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上得速度,试问:v 为多大时物块A 恰能通过圆弧轨道得最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前得速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有得弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前得速度为v 3,碰后A 、B 得共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0、3.如图3所示,光滑得水平面AB (足够长)与半径为R =0、8 m 得光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点得右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 得传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲得质量为m 1=3 kg ,乙得质量为m 2=1 kg ,甲、乙均静止在光滑得水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道得压力恰好等于甲得重力.传送带与乙物体间得动摩擦因数为0、6,重力加速度g 取10 m/s 2,甲、乙两物体可瞧作质点.图3(1)求甲球离开弹簧时得速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行得最远距离;(3)甲、乙均不固定,烧断细线以后,求甲与乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙得速度;若不会再次碰撞,请说明原因.答案 (1)4 3 m/s (2)12 m (3)见解析解析 (1)设甲离开弹簧时得速度大小为v 0,运动至D 点得过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙得速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为: s =v 2乙2a=12 m<20 m 即乙在传送带上滑行得最远距离为12 m 、(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成得系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0、6 m<0、8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然就是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲得速度为2 3 m/s ,方向向右,乙得速度为6 3 m/s ,方向向左4.如图4所示,一倾斜得传送带倾角θ=37°,始终以v =12 m /s 得恒定速度顺时针转动,传送带两端点P 、Q 间得距离L =2 m ,紧靠Q 点右侧有一水平面长x =2 m ,水平面右端与一光滑得半径R =1、6 m 得竖直半圆轨道相切于M 点,MN 为竖直得直径.现有一质量M =2、5 kg得物块A 以v 0=10 m/s 得速度自P 点沿传送带下滑,A 与传送带间得动摩擦因数μ1=0、75,到Q 点后滑上水平面(不计拐弯处得能量损失),并与静止在水平面最左端得质量m =0、5 kg 得B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面得动摩擦因数相同均为μ2,忽略物块得大小.已知sin 37°=0、6,cos 37°=0、8,求:图4(1)A 滑上传送带时得加速度a 与到达Q 点时得速度; (2)若A 、B 恰能通过半圆轨道得最高点N ,求μ2;(3)要使A 、B 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?答案 (1)12 m /s 2 12 m/s (2)0、5 (3)0、09≤μ2≤0、5解析 (1)对A 刚上传送带时进行受力分析,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma 解得:a =12 m/s 2设A 能达到传送带得速度,由v 2-v 20=2ax 0得运动得位移x 0=116 m<L则到达Q 点前A 已与传送带共速 由于Mg sin θ=μ1Mg cos θ,所以A 先加速后匀速,到Q 点得速度为v =12 m/s 、 (2)设A 、B 碰后得共同速度为v 1, 由动量守恒定律得:M v =(M +m )v 1 解得:v 1=10 m/sA 、B 在最高点时速度为v 3有:(M +m )v 23R =(M +m )g设A 、B 在M 点速度为v 2,由机械能守恒得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ×2R 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx 解得:μ2=0、5(3)①若以v 3由N 点抛出,则有:2R =12gt 2 x 1=v 3t =3、2 m>x则要使AB 能沿半圆轨道运动到N 点,并能落在传送带上,则μ2≤0、5②若AB 恰能落在P 点,则有:2R -L sin θ=12gt ′2 x +L cos θ=v 3′t ′由12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ×2R 与12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx 联立可得:μ2=0、09综上所述,μ2应满足:0、09≤μ2≤0、5。

高考物理总复习 专题6 力学三大观点的综合应用课件

高考物理总复习 专题6 力学三大观点的综合应用课件

mv0+Mv2=(m+M)v1

由v-t图象知子弹入射前、后的速度和滑块的初速度分别
为:v0=400 m/s,
v1=4 m/s,v2=-2 m/s

②代入①式解得:M=3.3 kg.

(2)设滑块(包括子弹)向左运动过程中加速度大小为a,由
牛顿第二定律,有
f=μ(M+m)g=(M+m)a

解得:a=2 m/s2
• 【典例剖析】 • 例2 (2015·湛江模拟)如图3所示,A是一个质量M=1 kg,
半径R=3 m的四分之一圆弧槽,锁定在水平面上,A的右侧 B是圆心角为60°的固定在水平面上的圆弧槽,A和B的表面 均光滑且末端点切线水平,水平面PQ段粗糙,其余部分光 滑且足够大,将一个质量为m=1 kg的滑块C从A的顶端由 静止释放,已知C与PQ间的动摩擦因数u=0.2,PQ段的长 度l=3 m,取g=10 m/s2.
解析 (1)设C到达B的低端的速度为v1,此时C的支持力为 N,
根据动能定理可得:mgR-μmgl=
1 2
mv
2 1
,解得:mv
2 1

48,
在B的最低点由:N-mg=mvr21, 解得:N=mg+mvr21=26 N
根据牛顿第三定律得C对圆弧B的压力为26 N.
(2)设B的半径为r1时,C刚好可以从B顶端飞出, 由动能定理得:mgR-μmgl-mgr1(1-cos 60°)=0 代入数据解得:r1=4.8 m, 若:1 m<r<4.8 m,C从B的右端飞出,则在水平面上运 行的距离为:l=3 m, 若4.8 m≤r<5 m,C滑到B的最右端再原路返回,设C滑 上A前瞬间的速度为v2,滑离A的瞬间速度为v3,此时A的速度 为v, 对C有动能定理得:-μmgl=12mv22-12mv21 解得:v2=6 m/s

高中物理专题【力学“三大观点”的综合应用】

高中物理专题【力学“三大观点”的综合应用】
栏目导航
14
(1)若木板长 L=1 m,在铁块上加一个水平向右的恒力 F=8 N,经过多长时间铁块运 动到木板的右端?
(2)若在木板(足够长)的右端施加一个大小从零开始连续增加的水平向左的力 F,请在 图乙中画出铁块受到的摩擦力 f 随力 F 大小变化的图象.
解析:(1)以铁块为研究对象 F-μ2mg=ma1 对木板有 μ2mg-μ1(mg+Mg)=Ma2 L=12a1t2-12a2t2 解得 t=1 s.
栏目导航
16
③当 F>10 N 时,铁块相对木板滑动,此时摩擦力 f=μ2mg=4 N 故铁块受到的摩擦力 f 随力 F 大小变化的图象如图所示.
答案:(1)1 s (2)见解析图
栏目导航
17
C 考点二
用动力学和能量观点解决多过程问题
[考点分析] 1.命题特点:动力学观点和能量观点是解答力学问题的两种重要方法,等级考题中 常把这两种方法综合起来考查,题型多为计算题,难度较大. 2.思想方法:守恒思想、全程法和分段法、模型法等.
栏目导航
32
A.物体的加速度大小为 2 m/s2 B.弹簧的伸长量为 3 cm C.弹簧的弹力做功为 30 J D.物体的重力势能增加 36 J
栏目导航
33
解析:B 根据 v-t 图象的斜率可知,物体的加速度大小为 a=ΔΔvt =1 m/s2,选项 A 错 误;对物体受力分析,受到竖直向下的重力 mg、斜面的支持力和轻弹簧的弹力 F,由牛 顿第二定律,F-mgsin 30°=ma,解得 F=6 N.由胡克定律 F=kx 可得弹簧的伸长量 x =3 cm,选项 B 正确;在 t=1 s 到 t=3 s 这段时间内,物体动能增加 ΔEk=12mv22-12mv21= 6 J,根据 v-t 图象与时间轴所围面积等于位移,可知物体沿斜面向上运动的位移 x=6 m, 物体重力势能增加 ΔEp=mgxsin 30°=30 J,根据功能关系可知,弹簧弹力做功 W=ΔEk+ ΔEp=36 J,选项 C、D 错误.

专题十二 力学三大观点的综合应用

专题十二 力学三大观点的综合应用

第七章 动量守恒定律专题十二 力学三大观点的综合应用核心考点五年考情命题分析预测动量与能量观点的综合应用2022:广东T13,湖北T16;2021:湖北T15;2020:山东T18力学三大观点的综合应用往往以高考压轴题的形式考查,综合性强,难度大,常与曲线运动、带电粒子在电磁场中的运动或导体棒切割磁感线等知识点相结合进行考查.预计2025年高考可能会出现三大观点应用的计算题.三大观点的综合应用2023:山东T18,广东T15,辽宁T15,浙江6月T18,浙江1月T18;2022:浙江6月T20;2021:北京T17,湖南T14题型1 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律. 2.三种技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显出它们的优越性.1.[2024江西九校联考]如图所示,质量M =4kg 的滑块套在光滑的水平轨道上,质量m =2kg 的小球通过长L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕轴O自由转动.开始时轻杆处于水平状态,现给小球一个竖直向上的初速度v 0=4m/s ,以初始时刻轴O 的位置为坐标原点,在竖直平面内建立固定的直角坐标系xOy ,取g =10m/s 2.(1)若锁定滑块,求小球通过最高点时轻杆对小球的作用力大小;(2)若解除对滑块的锁定,求小球运动到最高点时的动能E k ;(3)若解除对滑块的锁定,在平面直角坐标系xOy 中,求出小球从出发至运动到最高点的过程的轨迹方程.答案 (1)4N (2)4J (3)(32x -14)2+y 2=14解析 (1)若锁定滑块,则小球从开始运动到上升至最高点的过程,机械能守恒,有12m v 02=12m v 12+mgL小球在最高点时,设轻杆对小球的作用力大小为F ,则有mg +F =mv 12L联立解得F =4N(2)若解除对滑块的锁定,由于小球与滑块组成的系统在水平方向上不受力,因此小球与滑块组成的系统在水平方向上动量守恒.设小球通过最高点时的速度大小为v 2,此时滑块的速度大小为v ,以水平向右为正方向,则有0=mv 2-Mv运动过程中,系统的机械能守恒,则有12m v 02=12m v 22+12Mv 2+mgL又E k =12m v 22联立解得E k =4J(3)若解除对滑块的锁定,在小球上升的过程中,滑块向左运动,小球在水平方向上向右运动,设小球的位置坐标为(x ,y )时,滑块向左运动的位移大小为Δx ,则由人船模型有m (L -x )=M Δx由几何关系可知(x -Δx )2+y 2=L 2联立可得小球运动的轨迹方程为(32x -14)2+y 2=14.题型2 三大观点的综合应用1.三大基本观点动力学观点 运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题能量观点 用动能定理和能量守恒观点解题,可处理非匀变速运动问题动量观点用动量定理和动量守恒观点解题,可处理非匀变速运动问题2.三大观点的选用原则力学中首先考虑使用两个守恒定律.从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x 、时间t )问题,不能解决力(F )的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动问题特别方便.2.[三大观点的综合应用/2021湖北]如图所示,一圆心为O 、半径为R 的光滑半圆弧轨道固定在竖直平面内,其下端与光滑水平面在Q 点相切.在水平面上,质量为m 的小物块A 以某一速度向质量也为m 的静止小物块B 运动.A 、B 发生正碰后,B 到达半圆弧轨道最高点时对轨道压力恰好为零,A 沿半圆弧轨道运动到与O 点等高的C 点时速度为零.已知重力加速度大小为g ,忽略空气阻力.(1)求B 从半圆弧轨道飞出后落到水平面的位置到Q 点的距离;(2)当A 由C 点沿半圆弧轨道下滑到D 点时,OD 与OQ 夹角为θ,求此时A 所受力对A 做功的功率;(3)求碰撞过程中A 和B 损失的总动能.答案 (1)2R (2)mg sin θ√2gRcosθ (3)√10mgR解析 (1)设B 到半圆弧轨道最高点时速度为v 2',由于B 对轨道最高点的压力为零,则由牛顿第二定律得mg =mv 22'RB 离开最高点后做平抛运动,则在竖直方向上有2R =12gt 2在水平方向上有x =v 2't联立解得x =2R(2)对A 由C 到D 的过程,由机械能守恒定律得mgR cos θ=12m v D2由于对A 做功的力只有重力,则A 所受力对A 做功的功率为P =mgv D sin θ解得P =mg sin θ√2gRcosθ(3)设A 、B 碰后瞬间的速度分别为v 1、v 2,对B 由Q 到最高点的过程,由机械能守恒定律得12m v 22=12m v 22'+mg ·2R解得v 2=√5gR对A 由Q 到C 的过程,由机械能守恒定律得12m v 12=mgR解得v 1=√2gR设碰前瞬间A 的速度为v 0,对A 、B 碰撞的过程,由动量守恒定律得mv 0=mv 1+mv 2解得v 0=√2gR +√5gR碰撞过程中A 和B 损失的总动能为ΔE =12m v 02-12m v 12-12m v 22解得ΔE =√10mgR .3.[三大观点的综合应用/2023浙江6月]为了探究物体间的碰撞特性,设计了如图所示的实验装置.水平直轨道AB 、CD 和水平传送带平滑无缝连接,两半径均为R =0.4m 的四分之一圆周组成的竖直细圆弧管道DEF 与轨道CD 和足够长的水平直轨道FG 平滑相切连接.质量为3m 的滑块b 与质量为2m 的滑块c 用劲度系数k =100N/m 的轻质弹簧连接,静置于轨道FG 上.现有质量m =0.12kg 的滑块a 以初速度v 0=2√21m/s 从D 处进入,经DEF 管道后,与FG 上的滑块b 碰撞(时间极短).已知传送带长L =0.8m ,以v =2m/s 的速率顺时针转动,滑块a 与传送带间的动摩擦因数μ=0.5,其他摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能E p =12kx 2(x 为形变量).(1)求滑块a 到达圆弧管道DEF 最低点F 时速度大小v F 和所受支持力大小F N ;(2)若滑块a 碰后返回到B 点时速度v B =1m/s ,求滑块a 、b 碰撞过程中损失的机械能ΔE ;(3)若滑块a 碰到滑块b 立即被粘住,求碰撞后弹簧最大长度与最小长度之差Δx .答案 (1)v F =10m/s F N =31.2N (2)ΔE =0 (3)Δx =0.2m解析 (1)滑块a 以初速度v 0从D 处进入竖直圆弧管道DEF 运动,由动能定理有mg ·2R=12m v F 2-12m v 02解得v F=10m/s在最低点F ,由牛顿第二定律有F N -mg =m v F2R解得F N =31.2N(2)碰撞后滑块a 返回到B 点的过程,由动能定理有-mg ·2R -μmgL =12m v B 2-12m v a2解得v a =5m/s滑块a 、b 碰撞过程,由动量守恒定律有mv F =-mv a +3mv b解得v b =5m/s碰撞过程中损失的机械能为ΔE =12m v F 2-12m v a 2-12·3m v b 2=0(3)滑块a 碰撞b 后立即被粘住,由动量守恒定律有mv F =(m +3m )v ab解得v ab =2.5m/s滑块ab 一起向右运动,压缩弹簧,ab 减速运动,c 加速运动,当abc 三者速度相等时,弹簧长度最小,由动量守恒定律有(m +3m )v ab =(m +3m +2m )v abc解得v abc =53m/s由机械能守恒定律有E p1=12×4m v ab 2-12×6m v abc2解得E p1=0.5J由E p1=12k x 12解得最大压缩量x 1=0.1m滑块ab 一起继续向右运动,弹簧弹力使c 继续加速,使ab 继续减速,当弹簧弹力减小到零时,c 速度最大,ab 速度最小;滑块ab 一起再继续向右运动,弹簧弹力使c 减速,使ab 加速,当abc 三者速度相等时,弹簧长度最大,其对应的弹性势能与弹簧长度最小时的弹性势能相等,由弹簧的弹性势能公式可知最大伸长量x 2=0.1m所以碰撞后弹簧最大长度与最小长度之差Δx =x 1+x 2=0.2m.方法点拨深化观念、建构模型,解决力学综合难题1.[2023浙江1月]一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角θ=37°的直轨道AB 、螺旋圆形轨道BCDE 、倾角θ=37°的直轨道EF 、水平直轨道FG 组成,除FG 段外各段轨道均光滑,且各处平滑连接.螺旋圆形轨道与轨道AB 、EF 相切于B (E )处.凹槽GHIJ 底面HI 水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁GH 处,摆渡车上表面与直轨道FG 、平台JK 位于同一水平面.已知螺旋圆形轨道半径R =0.5m ,B 点高度为1.2R ,FG 长度L FG =2.5m ,HI 长度L 0=9m ,摆渡车长度L =3m 、质量m =1kg.将一质量也为m 的滑块从倾斜轨道AB 上高度h =2.3m 处静止释放,滑块在FG 段运动时的阻力为其重力的0.2倍.(摆渡车碰到竖直侧壁IJ 立即静止,滑块视为质点,不计空气阻力,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2)(1)求滑块过C 点的速度大小v C和轨道对滑块的作用力大小F C;(2)摆渡车碰到IJ 前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数μ;(3)在(2)的条件下,求滑块从G 到J 所用的时间t .答案 (1)4m/s 22N (2)0.3 (3)2.5s解析 (1)C 点离地高度为1.2R +R cos θ+R =3R滑块从静止释放到C 点过程,根据动能定理可得 mg (h -3R )=12m v C2-0 解得v C=4m/s在最高点C 时,根据牛顿第二定律可得 F C+mg =m v C2R解得F C=22N(2)从静止释放到G 点,由动能定理可得 mgh -0.2mgL FG=12m v G2由题可知,滑块到达摆渡车右端时刚好与摆渡车共速,速度大小设为v根据动量守恒定律可得2mv =mv G由功能关系可得μmgL =12m v G 2-12×2mv 2综合解得μ=0.3(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为a =μg设滑块从滑上摆渡车到共速的时间为t 1,有t 1=v G -v μg=1s共速后继续向右匀速运动的时间t 2=L 0-L -12vt 1v=1.5st =t 1+t 2=2.5s .2.[2022广东]某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A 处以初速度v 0为10m/s 向上滑动时,受到滑杆的摩擦力f 为1N.滑块滑到B 处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m =0.2kg ,滑杆的质量M =0.6kg ,A 、B 间的距离l =1.2m ,重力加速度g 取10m/s 2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N 1和N 2;(2)滑块碰撞前瞬间的速度大小v ;(3)滑杆向上运动的最大高度h .答案 (1)8N 5N (2)8m/s (3)0.2m解析 (1)滑块静止时,滑块和滑杆均处于静止状态,以滑块和滑杆整体为研究对象,由平衡条件可知N 1=(m +M )g =8N滑块向上滑动时,滑杆受重力、滑块对其向上的摩擦力以及桌面的支持力,则有N 2=Mg -f',f'=f代入数据得N 2=5N(2)解法1 碰前,滑块向上做匀减速直线运动,由牛顿第二定律得mg +f =ma 1解得a 1=15m/s 2,方向向下由运动学公式得v 2-v 02=-2a 1l代入数据得v =8m/s解法2 由动能定理得-(mg +f )l =12mv 2-12m v 02代入数据解得v =8m/s(3)滑块和滑杆发生的碰撞为完全非弹性碰撞,根据动量守恒定律有mv =(M +m )v 共代入数据得v 共=2m/s此后滑块与滑杆一起竖直向上运动,根据动能定理有-(M +m )gh =0-12(M +m )v 共2代入数据得h =0.2m.3.[2021湖南]如图,竖直平面内一足够长的光滑倾斜轨道与一长为L 的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ .质量为m 的小物块A 与水平轨道间的动摩擦因数为μ.以水平轨道末端O 点为坐标原点建立平面直角坐标系xOy ,x 轴的正方向水平向右,y 轴的正方向竖直向下,弧形轨道P 端坐标为(2μL ,μL ),Q 端在y 轴上.重力加速度为g .(1)若A 从倾斜轨道上距x 轴高度为2μL 的位置由静止开始下滑,求A 经过O 点时的速度大小;(2)若A 从倾斜轨道上不同位置由静止开始下滑,经过O 点落在弧形轨道PQ 上的动能均相同,求PQ 的曲线方程;(3)将质量为λm (λ为常数且λ≥5)的小物块B 置于O 点,A 沿倾斜轨道由静止开始下滑,与B 发生弹性碰撞(碰撞时间极短),要使A 和B 均能落在弧形轨道上,且A 落在B 落点的右侧,求A 下滑的初始位置距x 轴高度的取值范围.答案 (1)√2μgL (2)x 22y +2y =4μL (0≤x ≤2μL ) (3)3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)2解析 (1)设A 滑到O 点时速度为v 0,A 从倾斜轨道上滑到O 点过程中,由动能定理有mg ·2μL -μmgL =12m v 02解得v 0=√2μgL(2)若A 以(1)中的位置从倾斜轨道上下滑,A 从O 点抛出,假设能运动到弧形轨道上的P 点,水平方向有2μL =v 0t 1竖直方向有y P =12g t 12解得y P =μL ,假设成立所以A 落在弧形轨道时的动能E k 满足mg ·2μL -μmgL +mg ·μL =E k -0A 从O 点抛出,做平抛运动,水平方向有x =v 1t竖直方向有y =12gt 2又y =v y22g ,E k =12m (v 12+v y 2)联立解得PQ 的曲线方程为x 22y+2y =4μL (0≤x ≤2μL )(3)设A 初始位置到x 轴的高度为h ,A 滑到O 点的速度为v A 0,碰撞后的速度为v A 1,反弹后再次返回O 点时速度为v A ,A 、B 碰撞后B 的速度为v B ,A 、B 碰撞过程有mv A 0=mv A 1+λmv B12m v A02=12m v A12+12λm v B2解得v A 1=1-λ1+λv A 0,v B =21+λv A 0A 从倾斜轨道上滑到O 点的过程有mgh -μmgL =12m v A02碰后又运动到O 点过程有-μmg ·2L =12m v A 2-12m v A12又A 、B 均能落在弧形轨道上且A 落在B 点右侧应满足v B <v A ≤v 0联立求解得3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)24.[高考新题型/2023湖南]如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直.质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上.整个过程凹槽不翻转,重力加速度为g .(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;(2)在平面直角坐标系xOy 中,求出小球运动的轨迹方程;(3)若Mm =ba -b,求小球下降h =b2高度时,小球相对于地面的速度大小(结果用a 、b 及g表示).答案 (1)√2m 2gbM (m +M )ma M +m(2)[(M +m )x -ma ]2M 2a 2+y 2b2=1(y ≤0)(3)2b √ga+3b解析 (1)小球从静止到第一次运动到轨道最低点的过程,水平方向上小球和凹槽组成的系统动量守恒,有0=mv 1-Mv 2对小球与凹槽组成的系统,由机械能守恒定律有mgb =12m v 12+12M v 22 联立解得v 2=√2m 2gbM (m +M )根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=maM +m(2)小球向左运动过程中,凹槽向右运动,当小球的坐标为(x ,y )时,小球向左运动的位移x'1=a -x ,则凹槽水平向右运动的位移为x'2=mM (a -x )小球在凹槽所在的椭圆上运动,根据数学知识可知小球的运动轨迹满足(x -x '2)2a 2+y 2b2=1整理得小球运动的轨迹方程为[(M +m )x -ma ]2M 2a 2+y 2b 2=1(y ≤0)(3)若Mm =b a -b,代入(2)问结果化简可得[x -(a -b )]2+y 2=b 2即小球的运动轨迹是半径为b 的圆小球下降h =b 2高度的过程,小球与凹槽组成的系统在水平方向动量守恒,有mv'1x =Mv'2对小球与凹槽组成的系统,由机械能守恒定律有mgh =12mv'12+12Mv'22由几何关系及速度的分解得v'1sin30°=v'1x联立解得v'1=2b √g a+3b.1.[2024四川成都蓉城名校联考/多选]一次台球练习中,某运动员用白球击中彩球,白球与静止的彩球发生正碰,碰撞时间极短,碰后两球在同一直线上运动,且台球运动时所受桌面阻力保持不变,两球质量均为m =0.2kg ,碰撞后两球的位移x 与速度的平方v 2的关系如图所示,重力加速度g 取10m/s2.则下列说法正确的是( BC )A.碰撞前白球的速度为1.64m/sB.碰撞过程中,白球对彩球的冲量大小为0.2kg·m/sC.碰撞过程中,系统有机械能转化为内能D.台球所受桌面阻力为0.5N解析 由题图可知,碰后白球速度v 1=0.8 m/s ,彩球速度v 2=1.0 m/s.设碰撞前白球 速度为v 0,由动量守恒得mv 0=mv 1+mv 2,解得v 0=1.8 m/s ,故A 错误;碰撞过程中,白球对彩球的冲量I =mv 2=0.2×1.0 kg·m/s =0.2 kg·m/s ,B 正确;由于12m v 02>12m v 12+12m v 22,故碰撞过程中,系统有机械能转化为内能,C 正确;由运动学知识可知a =v 122x 1=0.642×1.28 m/s 2=0.25 m/s 2,故阻力为f =ma =0.05 N ,故D 错误.2.[2024北京海淀区期中/多选]如图所示,质量m A =1kg 、长L =9m 的薄板A 放在水平地面上,在大小为4N 、水平向右的外力F 作用下由静止开始运动,薄板与地面间的动摩擦因数μ1=0.2,其速率达到v A =2m/s 时,质量m B =1kg 的物块B 以v B =4m/s 的速率由薄板A 右端向左滑上薄板,A 与B 间的动摩擦因数μ2=0.1,B 可视为质点,重力加速度g 取10m/s 2.下列说法正确的是( AD )A.当A 的速率减为0时,B 的速率为2m/sB.从B 滑上A 到B 掉下的过程中,A 、B 所组成的系统动量守恒C.从B 滑上A 到B 掉下的过程,A 、B 和地面所组成的系统因摩擦而产生的热量为9JD.从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能减少9J解析 B 滑上A 后,B 开始做减速运动,此时对B 由牛顿第二定律有μ2m B g =m B a B ,解得a B =1 m/s 2,对A 由牛顿第二定律有μ1(m A +m B )g +μ2m B g -F =m A a A ,解得a A =1 m/s 2,A 也开始做减速运动,假设A 速率减为0时,B 未从A 上掉下,则A 的速率减为0的时间为t 1=v Aa A=2 s ,此时B 的速度大小为v B 1=v B -a B t 1=2 m /s ,此过程A 、B 的相对位移Δx =v A22a A+v B 2−v B122a B=8 m <L ,故假设成立,A 正确;在B 滑上A 到A 速度减到零的过程中,有μ1(m A +m B )g =F ,即A 、B 所组成的系统受到的合力为零,动量守恒,当A 速度减为零时,由于μ1(m A +m B )g +μ2m B g >F ,则A 此后处于静止状态,且由平衡条件可知A 与地面间的摩擦力f <F ,A 、B 所组成的系统受到的合力不为零,动量不守恒,B 错误;从B 滑上A 到A 速度减为零的过程,A 的位移为x A =v A22a A=2 m ,此过程B 的位移为x B =v B 2−v B122a B=6 m ,结合B 项分析可知,此后A 处于静止状态,B 继续向左做匀减速运动直至掉下,则对从B 滑上A 到B 掉下的整个运动过程,A 、B 和地面所组成的系统因摩擦而产生的热量为Q =μ1(m A +m B )gx A +μ2m B gL =17 J ,C 错误;从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能的减少量为ΔE k =Q -Fx A =9 J ,D 正确.3.[设问创新/2024重庆南开中学校考/多选]如图所示,半径为R 、质量为3m 的14圆弧槽AB 静止放在光滑水平地面上,圆弧槽底端B 点切线水平,距离B 点为R 处有一质量为3m 的小球2,其左侧连有轻弹簧.现将质量为m 的小球1(可视为质点)从左侧圆弧槽上端的A 点由静止释放,重力加速度为g ,不计一切摩擦.则下列说法正确的是( BC )A.系统(三个物体)全程动量守恒B.小球1刚与弹簧接触时,与圆弧槽底端B 点相距53RC.弹簧弹性势能的最大值为916mgRD.小球1最终的速度大小为√6gR 4解析 小球1在圆弧槽上运动时,系统在竖直方向上动量不守恒,故A 错误.小球1从圆弧槽的A 点到B 点的过程中,设小球1滑到B 点时小球1的速度为v 0,圆弧槽的速度为v ,取水平向右为正方向,小球1与圆弧槽在水平方向动量守恒有0=mv 0-3mv ,由能量守恒有mgR =12m v 02+12·3mv 2,解得v 0=3v =√3gR 2.设小球1到B 点时,小球1水平向右移动的距离为x 1,圆弧槽向左运动的距离为x 2,两者的相对位移为R ,因此有mx 1-3mx 2=0,x 1+x 2=R ,联立解得x 1=34R ,x 2=14R . 此时圆弧槽的B 点与弹簧之间的距离L =x 2+R =54R .小球1从B 点向右以v 0匀速运动,圆弧槽向左以v03匀速运动,小球1刚与弹簧接触时,与圆弧槽底端B 点的距离L'=L +v03·Lv 0=43L =53R ,故B 正确.小球1与小球2共速时,弹簧弹性势能有最大值,从小球1刚与弹簧接触到两球共速,由动量守恒有mv 0=(m +3m )v 共,由能量守恒有12m v 02=12(m +3m )v 共2+E p ,联立解得E p =916mgR ,故C 正确.从小球1刚与弹簧接触到两球分开,由动量守恒有mv 0=mv 1+3mv 2,由能量守恒有12m v 02=12m v 12+12·3m v 22,解得v 1=-12v 0,v 2=12v 0.小球1之后向左以12v 0匀速运动,因为圆弧槽此时正向左以v03匀速运动,故会再次和圆弧槽碰撞,以向左为正,碰撞前、后动量守恒有m ·v02+3m ·v03=mv 3+3mv 4,由能量守恒有12m (v02)2+12·3m (v03)2=12m v 32+12·3m v 42,解得v 3=14v 0,v 4=512v 0,最终小球1以14v 0的速度向左运动,圆弧槽以512v 0的速度向左运动,小球2以12v 0的速度向右运动,小球1最终的速度为14v 0=√6gR 8,故D 错误.4.长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 1√5gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律有m 1g =m 1v 2l ①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl ②由动量定理有I =m 1v A③联立①②③式,得I =m 1√5gl ④(2)设两球粘在一起后瞬间的速度大小为v',A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v'=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律有m 2v B -m 1v A =(m 1+m 2)v' ⑥又E k =12m 2v B 2 ⑦联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧.5.[三轨推拉门/2023江苏扬州三模]有一款三轨推拉门(如图甲),门框内部宽为2.4m ,三扇相同的门板的俯视图如图乙,每扇门板宽为d =0.8m ,质量为m =20kg ,与轨道间的动摩擦因数为μ=0.01.在门板边缘凸起部位贴有尼龙扣,两门板碰后可连在一起.现三扇门板静止在最左侧,用力F 水平向右拉3号门板,一段时间后撤去.取重力加速度g =10m/s 2.(1)若3号门板左侧凸起部位恰能与2号门板右侧凸起部位接触,求力F 做的功W .(2)若F =12N ,3号门板恰好到达门框最右侧,大门完整关闭.①求3号门板与2号门板碰撞前瞬间的速度大小v 0.②求拉力F 的作用时间t .答案 (1)1.6J (2)①0.8m/s②2√63s解析 (1)根据动能定理有W -μmgd =0,解得W =1.6J(2)①设3号门板与2号门板碰撞后速度大小为v 1,碰后两门板位移大小均为d =0.8m从3号门板与2号门板碰撞后到大门完整关闭,根据功能关系有-2μmgd =-12·2m v 12碰撞过程,根据动量守恒定律有mv 0=2mv 1,解得v 0=0.8m/s②根据牛顿第二定律有F -μmg =ma根据动能定理有 Fx -μmgd =12m v 02【易错辨析】在关门过程中,拉力F 作用时间与门受到的摩擦力作用时间不同,不推荐应用动量定理列方程解答.根据运动学公式有x =12at 2解得t =2√63s.6.[2024湖南湘潭一中校考]如图是一游戏装置的简易模型,它由光滑的水平轨道和竖直平面内的光滑圆轨道组成,竖直圆轨道的半径R =0.9m ,圆轨道内侧最高点E 点装有一力传感器,且竖直圆轨道的最低点D 、D'点相互靠近且错开.水平轨道左侧放置着两个用细绳连接的物体A 和B ,其间有一压缩的轻弹簧(物体与轻弹簧不粘连),烧断细绳,物体被弹出.轨道右侧M 端与水平传送带MN 等高,并能平滑对接,传送带总长度L =5m ,传送带速度大小和方向均可调.已知A 物体质量m A =1kg ,B 物体质量可变,A 、B 间被压缩的弹簧的弹性势能为30J ,取重力加速度g =10m/s 2.(1)求测得的力传感器能显示的力的最小值;(2)要使物体A 冲上传送带后,均能到达N 点,求传送带与物体A 之间的动摩擦因数的最大值;(3)要使物体A 在圆轨道上运动时不脱离轨道,求物体B 的质量范围.答案 (1)0 (2)0.45 (3)m B ≤37kg 或m B ≥3kg解析 (1)当由重力提供向心力时,对E 点压力为0,所以测得的力传感器能显示的力的最小值F min =0(2)当物体A 恰好通过圆轨道最高点后进入传送带时速度最小,此时若传送带静止或逆时针转动,则物体A 一直在传送带上做匀减速直线运动.当物体A 到达N 点的速度为0时,则动摩擦因数最大,即对物体A 分析有m A g =m A v E2Rm A g ·2R -μm A gL =0-12m A v E2得μ=0.45.(3)物体A 不脱离圆轨道有两种情况:①过最高点的速度v E ≥√gR对物体A 从被弹簧弹出开始到到达最高点,根据动能定理有-m A g ·2R =12m A v E 2-12m A v A2得v A ≥√5gR =3√5m/s②到达圆轨道的圆心等高处时速度恰好为0,对物体A 从被弹簧弹出开始到到达圆心等高处,根据动能定理有-m A gR =0-12m A v A2得v A ≤√2gR =3√2m/s因为物体A 是通过释放弹簧的弹性势能获得速度,且A 与B 反向弹开,由动量守恒有m A v A =m B v B由机械能守恒有E p =12m A v A 2+12m B v B2得m B =v A260-v A2kg代入数据得m B ≤37kg 或m B ≥3kg.7.[2024河北唐山摸底演练]如图所示,一圆弧轨道AB 与倾角为θ的斜面BC 在B 点相接.可视为质点的两个形状相同的小球a 、b ,将小球b 置于圆弧轨道的最低点,使小球a 从圆弧轨道A 点由静止释放,两小球在最低点发生弹性正碰,整个系统固定于竖直平面内.已知圆弧轨道半径R =1m ,圆弧过A 、B 两端点的半径与竖直方向间的夹角均为θ=37°,小球a 的质量m 1=4kg ,小球b 的质量m 2=1kg ,重力加速度g =10m/s 2,不计一切阻力,sin37°=0.6,cos37°=0.8.求:(1)与小球b 碰前瞬间,小球a 的速度大小v 0;(2)碰后瞬间小球b 对轨道的压力大小F ;(3)小球b 从B 点飞出圆弧轨道后,距离斜面BC 的最远距离h ,√6.24取2.5.答案 (1)2m/s (2)20.24N (3)0.36m解析 (1)对小球a 从静止释放到与小球b 碰撞前瞬间的过程,由动能定理有m 1gR (1-cos θ)=12m 1v 02代入数据解得v 0=2m/s(2)小球a 与小球b 发生弹性正碰,则有m 1v 0=m 1v 1+m 2v 212m 1v 02=12m 1v 12+12m 2v 22对碰撞后瞬间小球b ,由牛顿第二定律有F N -m 2g =m 2v 22R联立并代入数据解得F N =20.24N由牛顿第三定律可得小球b 对轨道的压力大小F =F N =20.24N(3)对小球b 从碰撞后到飞出圆弧轨道瞬间的过程,由动能定理有-m 2gR (1-cos θ)=12m 2v 32-12m 2v 22代入数据解得v 3=2.5m/s由几何关系可知,此时小球b 的速度与斜面的夹角为α=74°小球b 在垂直斜面方向做类竖直上抛运动,则有v'0=v 3sin α,a =g cos θ对小球b 从B 点运动到距离斜面最远的过程,由运动学规律有2ah =v '02代入数据解得h =0.36m.8.[板块模型+弹簧模型+新信息/2023辽宁]如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N/m 的轻弹簧,弹簧处于自然状态.质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触.木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力.弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =12kx 2.取重力加速度g =10m/s 2,结果可用根式表示.(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1.(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小.(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0.求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能ΔU (用t 0表示).答案 (1)1m/s 0.125m (2)0.25m√32m/s (3)(4√3t 0-8t 02)J解析 (1)小物块从滑上木板到两者共速的过程,由动量守恒定律有m 2v 0=(m 1+m 2)v 1解得v 1=1m/s两者共速前,对木板,由牛顿第二定律有μm 2g =m 1a解得a =4m/s 2由运动学公式有2ax 1=v 12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量观点在力学中的应用例1(2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为1.0 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小. 答案 (1)2.5 m/s (2)6次 (3)5 s 12.75 m 解析 (1)设两者间相对静止时速度为v , 由动量守恒定律得mv 0=2mvv =2.5 m/s.(2)解得物块与凹槽间的滑动摩擦力F f =μF N =μmg设两者相对静止前相对运动的路程为s 1,由功能关系得 -F f ·s 1=12(m +m )v 2-12mv 20解得s 1=12.5 m 已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞. (3)设凹槽与物块碰前的速度分别为v 1、v 2, 碰后的速度分别为v 1′、v 2′.有mv 1+mv 2=mv 1′+mv 2′12mv 21+12mv 22=12mv 1′2+12mv 2′2得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v —t 图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v =v 0+ata =-μg解得t =5 s凹槽的v —t 图象所包围的阴影部分面积即为凹槽的位移大小s 2.(等腰三角形面积共分13份,第一份面积为0.5 L ,其余每两份面积和均为L .) s 2=12(v 02)t +6.5L ,解得s 2=12.75 m.1.如图2所示,倾角45°高h 的固定斜面.右边有一高3h2的平台,平台顶部左边水平,上面有一质量为M 的静止小球B ,右边有一半径为h 的14圆弧.质量为m 的小球A 从斜面底端以某一初速度沿斜面上滑,从斜面最高点飞出后恰好沿水平方向滑上平台,与B 发生弹性碰撞,碰后B 从圆弧上的某点离开圆弧.所有接触面均光滑,A 、B 均可视为质点,重力加速度为g .图2(1)求斜面与平台间的水平距离s 和A 的初速度v 0; (2)若M =2m ,求碰后B 的速度;(3)若B 的质量M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为α.求cos α的取值范围. 答案 (1) h 2gh (2)23gh (3)23≤cos α≤1解析 (1)设小球A 飞上平台的速度为v 1,小球由斜面顶端飞上平台,可看成以速度v 1反向平抛运动,由平抛运动规律得:12h =12gt 2,s =v 1t ,tan 45°=gtv 1解得:v 1=gh ,s =h由机械能守恒定律得:12mv 20=32mgh +12mv 21 解得:v 0=2gh .(2)设碰后A 、B 的速度分别为v A 、v B ,由动量、能量守恒得mv 1=mv A +Mv B12mv 21=12mv 2A+12Mv 2B v B =2mm +M v 1=23gh .(3)由(2)可知,当M ≪m 时v B ≈2gh >gh 从顶端飞离则cos α=1当M ≫m 时,v B =0,设B 球与圆弧面在C 处分离,则:Mgh (1-cos α)=12Mv 2C Mg cos α=M v 2Ch ,cos α=23,故23≤cos α≤11.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学、能量、动量解决综合问题例2如图3所示,在光滑的水平面上有一质量为m=1 kg的足够长的木板C,在C上放置有A、B两物体,A的质量m A=1 kg,B的质量为m B=2 kg.A、B之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p=3 J,现突然给A、B一瞬时冲量作用,使A、B同时获得v0=2 m/s的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A、B分离.已知A和C之间的摩擦因数为μ1=0.2,B、C之间的动摩擦因数为μ2=0.1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大?(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少?(3)已知C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前A 在C 上滑行的距离? 审题突破 (1)根据动量守恒和能量守恒列方程组求A 、B 分离时的速度;(2)由牛顿第二定律求三者的加速度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解. 答案 (1)0 3 m/s (2)4.5 J 1.5 m/s (3)0.75 m解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B联立解得:v A =0,v B =3 m/s.(2)对物体B 有:a B =μ2g =1 m/s 2,方向水平向左 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 的共同加速度为a =1 m/s 2,方向水平向右对A 、B 、C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B =(m A +m B +m )v Q =12m B v 2B -12(m A +m B +m )v 2 解得:Q =4.5 J ,v =1.5 m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0后向右匀加速运动,分析可知,在向右加速过程中先和A 达到共同速度v 1,之后A 、C 再以共同的加速度向右匀加速,B 一直向右匀减速,最后三者达共同速度v 2后做匀速运动.在此过程中由于摩擦力做负功,故C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A =μ1g =2 m/s 2,a B =μ2g =1 m/s 2μ1m A g+μ2m B g=ma C,解得:a C=4 m/s2 v1=v-a A t=-v+a C t解得:v1=0.5 m/st=0.5 sx A1=v+v12t=0.5 m,x C1=-v+v12t=-0.25 m故A、C间的相对运动距离为x AC=x A1+|x C1|=0.75 m.2.(2014·广东·35)如图4所示,的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿光滑轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作.已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞.图4(1)若v1=6 m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能ΔE;(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A点时的最大动能E.答案(1)3 m/s 9 J (2)10 m/s≤v1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:mv 1=2mv 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12mv 21-12×2mv 22②解得ΔE =9 J.(2)P 滑动过程中,由牛顿第二定律知 2ma =-2μmg③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m/s ≤v 1≤14 m/s 设向左经过A 点的速度为v A ,由动能定理知 12×2mv 2A -12×2mv 22=-μ·2mg ·4L当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点? 答案 (1)123gx 0 (2)14mgx 0 (3)(20+43)gx 0解析 (1)设A 与B 相碰前A 的速度为v 1,A 与B 相碰后共同速度为v 2 由机械能守恒定律得3mgx 0 sin 30°=12mv 21由动量守恒定律得mv 1=2mv 2 解以上二式得v 2=123gx 0.(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12·2mv 22=2mgx 0 sin 30°解得E p =14mgx 0.(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12mv 2+3mgx 0 sin 30°=12mv 23mv 3=2mv 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则12·2mv 24+E p =12·2mv 25+2mgx 0sin 30°此后A 继续上滑到半圆轨道最高点时速度为v 6,则12mv 25=12mv 26+2mgx 0 sin 30°+mgR (1+sin 60°)在最高点有mg =mv 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动 h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有 -μm 2gL =12m 2v 2′2-12m 2v 22解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215m m 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量M =4 kg 的平板小车停在光滑水平面上,车上表面高h 1=1.6 m .水平面右边的台阶高h 2=0.8 m ,台阶宽l =0.7 m ,台阶右端B 恰好与半径r =5 m 的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ=53°,在平板小车的A 处有质量m 1=2 kg 的甲物体和质量m 2=1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上A 点左侧表面光滑,右侧粗糙且动摩擦因数为μ=0.2.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6).求:图3(1)炸药爆炸使两物体增加的机械能E ;(2)物体在圆弧轨道最低点C 处对轨道的压力F ; (3)平板车上表面的长度L 和平板车运动位移s 的大小. 答案 (1)75 J (2)46 N ,方向竖直向下 (3)1 m 解析 (1)甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2=0E =12m 1v 21+12m 2v 22=75 J.(2)设甲物体平抛到B 点时,水平方向速度为v x ,竖直分速度为v yv y =2g (h 1-h 2)=4 m/s v x =v ytan θ=3 m/s 合速度为:v B =5 m/s 物体从B 到C 过程中:m 1gr (1-cos θ)=12m 1v 2C -12m 1v 2B F N -m 1g =m 1v 2CrF N =46 N由牛顿第三定律可知:F =F N =46 N ,方向竖直向下. (3)甲物体平抛运动时间:t =v y g=0.4 s平抛水平位移:x =v x t =1.2 m >0.7 m甲物体在车上运动时的加速度为:a 1=μg =2 m/s 2 甲物体在车上运动时间为:t 1=v 0-v x a 1=1 s甲物体的对地位移:x 1=12(v 0+v x )t 1=4 m甲物体在车上运动时,车的加速度为:a 2=μm 1gM=1 m/s 2甲离开车时,车对地的位移:x 2=12a 2t 21=0.5 m车长为:L =2(x 1-x 2)=7 m 车的位移为:s =x 2+(x -l )=1 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m/s的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看做质点.图4(1)求甲球离开弹簧时的速度.(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离. (3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因. 答案 (1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为2 3 m/s ,方向水平向右,乙的速度为63m/s ,方向水平向左解析 (1)甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D ,在最高点D ,由牛顿第二定律, 有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s.(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒:E p =12m 1v 20=12m 2v 2乙, 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙的速度为零时,在传送带滑行的距离最远, 最远距离为:s =v 2乙2a=12 m <20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后, 设甲、乙速度大小分别为v 1、v 2, 甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2 甲、乙弹簧组成的系统能量守恒: E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=63 m/s之后甲沿轨道上滑,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m <0.8 m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v 2=2 3 m/s乙滑上传送带,因v 2=63 m/s <12 m/s ,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为23 m/s ,方向水平向右,乙的速度为63 m/s ,方向水平向左.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

相关文档
最新文档