实验三+信号的频率与相位差的测量及分析

合集下载

实验三 典型环节的频率特性测量

实验三  典型环节的频率特性测量

姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号实验三典型环节(系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据所测得频率特性,作出伯德图。

二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成比例环节、积分环节、惯性环节及二阶系统的频率特性曲线测试。

三.实验步骤1.熟悉实验设备上的信号源,掌握改变正弦波信号幅值和频率的方法。

2.利用实验设备完成比例环节、积分环节、惯性环节和二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线(或数据)求取各自的传递函数。

4.分析实验结果,完成实验报告。

四.实验线路及原理(一)实验原理对于稳定的线性定常系统或环节,当输入端加入一正弦信号时,它的稳态输出时一与输入信号同频率的正弦信号,但其幅值和相位将随输入信号频率的改变而改变,即:即相频特性即幅频特性,)()()(,)()()(sin )(])(sin[)()(ωωωωωφωωωωωωωj G t j G t j G Aj G A A tA t r j G t j G A t c ∠=-∠+====∠+=只要改变输入信号的频率,就可以测出输出信号与输入信号的幅值比)(ωj G 和它的相位差)(ωφ,不断改变输入信号的频率,就可测得被测环节的幅频特性和相频特性。

(二)实验线路1.比例(P)环节的模拟电路 比例环节的传递函数为:K s U s U i O =)()(,取ωj s =代入,得G(jw)=k, A(w)=k, Φ(w)=0°其模拟电路和阶跃响应,分别如图1.1.2,实验参数取R 0=100k ,R 1=200k ,R=10k 。

2.积分(I)环节的模拟电路 积分环节的传递函数为:Tss U s U i O 1)()(=其模拟电路,如图1.2.2所示,实验参数取R 0=100k ,C =1uF ,R=10k 。

双相时钟脉冲电路实验报告

双相时钟脉冲电路实验报告

双相时钟脉冲电路实验报告一、引言双相时钟脉冲电路是一种常用的电子电路,用于同步和控制数字系统中的各个模块。

在本实验中,我们将通过搭建双相时钟脉冲电路并进行实验,探究其工作原理和性能指标。

二、实验目的1.理解双相时钟脉冲电路的基本原理;2.掌握搭建双相时钟脉冲电路的方法和步骤;3.测量和分析双相时钟脉冲电路的性能指标。

三、实验器材和元件1.函数发生器;2.集成电路(如74LS74);3.电阻、电容等元件;4.示波器;5.逻辑分析仪。

四、实验原理双相时钟脉冲电路是由两个相位相差90度的时钟信号控制的电路。

其中,一个时钟信号称为CLK,另一个时钟信号称为CLKB。

两个时钟信号的频率相同,相位差为90度。

在双相时钟脉冲电路中,常用的集成电路是74LS74型D触发器。

该触发器具有两个时钟输入端CLK和CLKB,以及数据输入端D和输出端Q。

当CLK上升沿到来时,如果D为高电平,则Q输出为高电平;如果D为低电平,则Q输出为低电平。

当CLKB上升沿到来时,触发器的状态不变。

五、实验步骤1.搭建双相时钟脉冲电路,将函数发生器的输出接到CLK和CLKB输入端;2.将逻辑分析仪的输入端分别接到CLK和CLKB输出端,测量两个时钟信号的频率和相位差;3.将示波器的探头分别接到CLK和CLKB输出端,观察两个时钟信号的波形;4.将逻辑分析仪的输入端接到D触发器的数据输入端D,测量输出端Q的波形;5.调节函数发生器的频率和幅值,观察输出端Q的变化。

六、实验结果与分析1. 时钟信号的频率和相位差测量结果通过逻辑分析仪测量得到,CLK和CLKB的频率均为1kHz,相位差为90度。

2. 时钟信号的波形观察结果通过示波器观察得到,CLK信号和CLKB信号均为方波信号,频率为1kHz,且相位差为90度。

3. 输出端Q的波形观察结果通过逻辑分析仪测量得到,当D为高电平时,输出端Q为高电平;当D为低电平时,输出端Q为低电平。

4. 函数发生器频率和幅值对输出端Q的影响通过调节函数发生器的频率和幅值,观察得到,当函数发生器的频率增大时,输出端Q的频率也随之增大;当函数发生器的幅值增大时,输出端Q的幅值也随之增大。

三相正弦交流电路参数的测量与分析实验报告

三相正弦交流电路参数的测量与分析实验报告

三相正弦交流电路参数的测量与分析实验报告
一、实验目的
1、了解三相正弦交流电路的结构及其它参数特性;
2、彻底了解正弦波与其变换后的波形及其参数;
3、对电路的三相比幅及其相位,以及各相电流电压比和参数进行测量;
4、通过测量与分析实验,加深对电力电子电路的理解,扩大电路理
论知识。

二、实验原理
正弦波是一种波形最接近于理想的正弦波,它可以用于交流电路的分析。

三相正弦交流电路是指三相交流电路,其中各个相位的电压和电流均
为正弦波形,或者说各相之间在相位上相位差为120度,电压和电流同正
弦波的幅值比值及相位差来确定。

正弦波参数包括波型,有效幅值,频率,相位特性,电压电流比等。

有效幅值是指最高点到平均值的变化幅度,它表示正弦波的高低。

频率指
一秒的周期数,单位为赫兹,每一个定义的周期中正弦波形的变化重复一次。

相位是指正弦波形与时间的起点之间的时间关系,以弧度为单位,当
正弦波进行一个周期时,相位变化为2Π,电压电流比是指正弦波电压与
电流的比率。

它可用于检测电路中的损耗,从而帮助确定负载的调节点。

三、实验过程
(1)实验仪器准备:多用表、电子表或数字万用表,正弦波发生器等。

(2)安装示波器:安装正弦波发生器。

实验 三 示波器的双踪显示 李萨如图测频率和相位

实验 三 示波器的双踪显示 李萨如图测频率和相位
实验3:示波器的双踪显示,李萨如图法频率、 相位的测量
一、实验目的 1. 熟悉示波器双踪显示的原理。 2. 熟悉用李沙育法测量频率和相位
二、实验设备 双踪示波器 YB4320G F05A型数字合成函数信号发生器2台
三、实验原理
示波器的双踪显示:
交替方式
断续方式
需要解决的问题:双通道如何触发,才能观测到 稳定的信号?
其中,x为椭圆于x轴交点到原点的距离, x0为最大的水平距离。
几种常用的李萨如图形


fy 1 fx
fy 2 fx 1 fy 3 fx 1
fy 3 fx 2
45 °
90 °
13 5°
18 0°
四、实验任务
1、在双踪显示中,分别观察交替和断续工作状态下对 信号的显示。
2、在双踪显示中,两通道显示不同信号时(频率,幅 度,波形)实现稳定的波形显示。总结方法,分析无法 稳定显示的原因。 (做实验报告时回答)
李萨如(Lissajous)图形:示波器两个偏转 板上都加正弦信号电压时显示的图形。
U y
UyБайду номын сангаас
0,4
1
0 12 34 t
0,2 ,4
3 0 1 23 4 t
1
3
0
U
1
X
2
3 4
t
(a)
2
0
1
Ux
2
3 4
t
(b)
在测量频率和相位时常会用到,此时示波器变 为一个X—Y图示仪。
李萨如图形法测相位是利用示波器X和Y通道
分别输入被测信号fx和一个已知信号fy,调节已 知信号的频率使屏幕上出现稳定的图形,根据

电子测量技术实验三 波形测试及信号相位差测量

电子测量技术实验三  波形测试及信号相位差测量

电子测量技术实验三 波形测试及信号相位差测量一. 实验目的1.巩固通用示波器的使用方法2.掌握双踪示波器的使用方法3.学会测量矩形波上升时间和下降时间的方法4.了解示波器的X —Y 法应用5.掌握测量相位差的二种方法6.了解示波器的校正方法二. 实验仪器和器材1.双踪示波器2.函数信号发生器3. 50V-104、50V-103电容器;1K Ω、 10K Ω电阻各一只三. 实验内容及步骤1.用示波器测量脉冲信号的上升时间和下降时间。

1)用函数信号发生器产生频率为20KHz 的矩形波脉冲信号。

2)按图5-1 连接电阻和电容,组成一个低通网络。

图1 低通滤波电路3)调节示波器X 轴的偏转因素选择开关,尽量使屏幕上突出显示脉冲的上升沿部分或下降沿部分。

并配合使用X 轴位移旋钮,使对应上升沿10% (或下降沿90%)高度处的测量点对齐X 轴的某个刻度线,然后读出对应上升沿90% (或下降沿10%)高度处另一测量点到上一测量点的相对时间值。

该相对时间值便是所测脉冲的上升时间(或下降时间)。

读数等于刻度个数乘上X 轴偏转因数。

2.用双踪法测量两个信号的相位差1)先用信号发生器产生一个频率为20KHz 的幅度为1V的正弦信号。

2)再按图5-2连接电阻和电容,组成一个阻容延迟网络。

信号发生器输出信号一路直接作为信号1送入示波器CH1通道,另一路通过阻容延迟网络后作为信号2 送入示波器CH2通道。

由于信号2 通过延迟网络,所以信号2比信号1在时间上要延迟,两个信号之间存在着相位差。

图2 阻容延迟网络3)用示波器测量频率相同的两个信号之间的相位差示波器置交替工作状态,调节X轴偏转因数选择开关(也称X 轴扫描速度选择开关),对20KHz的信号频率,可置于10µS/Div档,调节触发电平(Trigger)旋钮,使显示的两个波形稳定。

分别调节CH1和CH2两个Y轴位移旋钮,使两个波形的扫描时基线重合,在屏幕上可看到一前一后两个正弦波。

用示波器测量相位差实验报告

用示波器测量相位差实验报告

竭诚为您提供优质文档/双击可除用示波器测量相位差实验报告篇一:示波器的使用及测量相位差示波器的使用及测量相位差摘要:示波器一般由示波管、扫描信号发生器、信号输入和放大系统、同步系统以及电源五部分组成。

用示波器可以观察电信号波形以及测量电压、频率和相位差等。

本文就是主要介绍如何利用示波器测量两个正弦电压的相位差,主要采用李萨如图形法和双踪法。

关键词:示波器测量相位差李萨如图法双踪法实验目的:1.了解示波器的结构和原理。

2.掌握示波器各旋钮、按钮、按键的作用和使用方法。

3.学会用示波器采用李萨如图法和示踪法测量相位差。

4.能对实验结果进行分析,比较各种测量方法的优缺点,对实验数据进行不确定度处理,写出合格的实验报告。

实验原理:示波器的工作原理:示波器一般由示波管、扫描信号发生器、信号输入和放大系统、同步系统以及电源五部分组成。

示波器内有电子枪,电子枪发射电子束经Y轴偏转板或x轴偏转板会发生偏转,从而打在荧屏上。

人们可以根据显示在荧屏上波的形状、幅度来判断信号源的电压、频率等的大小。

用示波器测量相位差的原理:(1)用李萨如图法测量。

使示波器工作在x-Y方式,分别把两个信号输入到x偏转板和Y偏转板,然后移相,则得到如图所示的李萨如图(1).从示波器屏幕上读出A和b的值(格数),则信号的相位差为(2)双踪法。

使示波器工作在扫描工作方式,选择交替显示,调节两条扫描线重合。

把两待测信号通过示波器的两个输入通道输入,得到如上图(2)图所示,读出一个信号周期T所占的格数n(T)及?t的对应格数n(?t),则相位差??2?n(?t)n(T)实验内容与步骤:(一)测量正弦电压的电压和频率、周期(1)首先将示波器的各个旋钮的功能和用法弄清楚。

(2)第二,将示波器的各个旋钮调到实验所需的正常状态,然后使之处于工作状态。

(3)第三,用信号发生器作为信号源,调节输出电压峰峰值为2V,频率为10khZ,其输出信号接在ch1信号输入端上。

实验三信号的频率与相位差的测量及分析

实验三信号的频率与相位差的测量及分析

器F
Hz Hz Hz Hz Hz Hz kHz kHz kHz kHz
示波器测 得周期T
绝对误差
相对误差
2024/1/15
3
4.1.2 信号周期的测量(用示波器测高频信号发生器的信 号周期)(Vp-p=0.2v)将函数信号发生器的频率调至下表所示, 再行测试:
高频信号 140 260 500 1M 2M 4M 5M 10M 15M 20M 发生器F kHz kHz Hz Hz Hz Hz Hz Hz Hz Hz
示波器测 得周期T
绝对误差
相对误差
2024/1/15
4
4.2 信号频率的测量
4.2.1 将带有外测频率功能的信号源作为频率计,对另一台函数信 号发生器的信号频率进行测试(Vp-p=0.2v)
函数发生 5 10 50 100 500 1k 5 10 50 100
器F
Hz Hz Hz Hz Hz Hz kHz kHz kHz kHz
通道,观察其相位变化,并求出其相位差。
B A
y
x
arcsin
Bபைடு நூலகம்A
A表示李沙育图形的X轴向宽度,B表示X轴上 两个焦点的宽度。
2024/1/15
8
五、实验报告要求
一、掌握实验目的,实验原理及使用实验仪器。 二、根据实验内容和步骤,记录测量数据。并画
出误差曲线。 三、进行误差分析。
2024/1/15
9
二、实验原理
2.1 周期、频率(角频率)、相位差 2.2 李沙育图形显示的原理 2.3 李沙育图形法测量未知信号的频率
扫描速度旋钮置“X-Y”位置,被测信号加到 Y(CH2)通道,用信号发生器输出一个正弦信 号加到X通道(CH1),CH1、CH2的偏转灵敏 度置相同位置,由小到大逐渐增加信号发生器 输出信号频率,当屏幕上显示一个稳定的椭圆 时,信号发生器指示的频率即为被测未知信号 的频率。 2.4 双迹法和李沙育图形法测量信号相位差

示波器的应用实验报告

示波器的应用实验报告

示波器的应用实验报告示波器的应用实验报告引言:示波器是一种广泛应用于电子领域的仪器,它能够将电信号转换为可见的波形图形,从而帮助工程师分析和诊断电路中的问题。

本实验旨在通过实际操作示波器,掌握其基本原理和应用技巧。

实验一:信号的观测与测量在本实验中,我们使用示波器观测并测量了不同频率和幅值的信号。

首先,我们连接示波器的探头到信号源上,并调整示波器的时间和电压刻度,使得波形图形在屏幕上能够完整显示。

然后,我们通过改变信号源的频率和幅值,观察并记录示波器上显示的波形变化。

实验结果表明,信号的频率和幅值对波形图形有着明显的影响。

当频率较低时,波形呈现出较为平缓的曲线;而当频率较高时,波形则呈现出较为陡峭的曲线。

此外,随着信号幅值的增大,波形的振幅也相应增大。

实验二:频率测量与相位测量在本实验中,我们利用示波器测量了信号的频率和相位。

首先,我们将信号源连接到示波器的输入端,并选择合适的触发方式。

然后,我们调整示波器的时间基准和触发电平,使得信号的周期和相位能够准确地显示在示波器屏幕上。

通过实验,我们发现示波器能够准确测量信号的频率和相位。

我们可以通过读取示波器上的刻度值,计算出信号的周期和频率。

此外,示波器还能够通过观察波形图形的位置关系,测量信号之间的相位差。

实验三:波形的观测与分析在本实验中,我们使用示波器观测和分析了不同类型的波形。

我们通过信号源产生了正弦波、方波和脉冲波,并将其连接到示波器上进行观测。

通过实验,我们发现示波器能够准确地显示不同类型的波形。

正弦波呈现出连续而平滑的曲线,方波则呈现出快速的上升和下降边缘,脉冲波则呈现出短暂的高幅值信号。

通过观察波形图形,我们可以进一步分析信号的特征和性质。

实验四:故障诊断与修复在本实验中,我们使用示波器进行了电路的故障诊断和修复。

我们模拟了一个故障电路,通过观察示波器上的波形变化,找出并修复了电路中的故障点。

通过实验,我们发现示波器是一种强大的工具,能够帮助我们快速定位和解决电路中的故障。

频率测量实验方法与注意事项

频率测量实验方法与注意事项

频率测量实验方法与注意事项引言在科学研究和工程实践中,频率测量是一项十分重要的实验任务。

无论是在电子工程、通信技术还是物理学等领域,频率测量都扮演着关键的角色。

本文旨在探讨频率测量的实验方法和一些注意事项,以帮助读者更好地进行频率测量实验。

一、频率测量的基本原理频率测量是指测量信号周期性变化的频率,通常以赫兹(Hz)为单位。

频率测量的基本原理是通过对信号的周期性特征进行测量来计算频率。

下面介绍一些常用的频率测量方法。

二、波形测量法波形测量法是最常见的频率测量方法之一。

它基于信号的周期性特征,通过测量信号的周期或周期的倒数来计算频率。

可以使用示波器等仪器来捕捉信号的波形,并使用触发功能来获得稳定的波形。

然后,通过计算所测得的周期来确定频率。

三、计数测量法计数测量法是一种高精度的频率测量方法。

它基于计数器进行周期性脉冲的计数,然后根据计数结果计算频率。

在计数测量中,要注意选择适当的计数时间,以确保测量结果的精度。

此外,还需要注意计数器的稳定性和分辨率,以确保测量的准确性。

四、相位比较法相位比较法是一种精确测量高频率的方法。

它通过将被测频率信号与参考频率信号进行比较,然后测量它们之间的相位差来计算频率。

相位比较法的实现通常需要使用锁相环等特殊的电路,因此在进行实验时需要注意选择适当的设备和方法。

五、注意事项在进行频率测量实验时,需要注意以下几点:1. 测试环境的稳定性:频率测量对实验环境的稳定性要求较高,尽量避免在有干扰或变动的环境中进行实验,以保证测量结果的准确性。

2. 选择合适的测量方法:不同的频率范围和精度要求需要选择适当的测量方法。

根据实际需求选择合适的仪器和技术,以获得准确的测量结果。

3. 测试信号的条件设置:在进行频率测量实验时,需要注意测试信号的条件设置。

例如,选择适当的波形、频率范围和幅度等,以确保信号能够被准确捕捉和测量。

4. 仪器的校准和调试:在进行频率测量实验之前,需要对仪器进行校准和调试。

实验三一阶网络频响特性测量,信号与系统,南京理工大学紫金学院实验报告

实验三一阶网络频响特性测量,信号与系统,南京理工大学紫金学院实验报告

信号与系统实验报告实验名称:一阶网络频响特性测量姓名:学号:班级:通信时间:2013.6南京理工大学紫金学院电光系一、 实验目的1、 掌握一阶网络的构成方法;2、 掌握一阶网络的系统响应特性;3、 了解一阶网络频响特性图的测量方法;二、实验基本原理系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response )简称频响特性。

一阶系统是构成复杂系统的基本单元。

学习一阶系统的特点有助于对一般系统特性的了解。

一阶系统的系统函数为H(s),表达式可以写成:γ+⋅=s k s H 1)( k 为一常数 (3-1) 激励信号x(t)为:(3-2)按照系统频响特性的定义可求得该一阶系统的稳态响应为:(3-3)其中⎣⎦00)()(|)(00ϕj j s ej H j H s H Ω=Ω=Ω=,⎣⎦)(00Ω=j H H 。

可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。

因果系统是稳定的要求:0>γ,不失一般性可设τγ1==k 。

该系统的频响特性为:11)(+Ω=Ωτj j H (3-4)从其频响函数中可以看出系统响应呈低通方式,其3dB 带宽点τ1。

系统的频响特性图如下图:0()sin()m x t E t =Ω000()sin()ss m y t E H t ϕ=Ω+θ图1 一阶网络频响特性图一阶低通系统的单位冲击响应与单位阶跃响应如下图:图2 一阶网络单位冲击响应与单位阶跃响应图三、实验内容及结果一阶系统的幅度谱一阶系统相位谱3、用矢量作图法作出该一阶系统的幅度谱和相位谱。

一阶系统的幅度谱一阶系统的相位谱4、作出一阶网络的单位阶跃响应波形,标注在阶跃响应最大值的(1-e-1)倍处的时间t的值,与理论值R1C1是否相符。

四、实验分析1、实验所得一阶网络的频响特性图和用矢量作图法所得的频响特性图有何异同?说明原因。

三相电路实验报告数据

三相电路实验报告数据

三相电路实验报告数据引言三相电路是一种广泛应用于电力系统的电路类型。

本实验旨在通过搭建三相电路实验装置,获取实验数据并进行分析。

本报告将详细探讨三相电路的原理、实验装置的搭建、实验数据的测量与分析,并对实验结果进行总结和讨论。

一、实验目的1.了解三相电路的基本原理;2.掌握三相电路的实验装置搭建方法;3.学会使用测试仪器测量三相电路的相关参数;4.分析实验数据,验证三相电路的理论知识。

二、实验原理2.1 三相电路的基本原理三相电路是由三根交流电源通过引线连接的电路,电源之间存在120度的相位差。

三相电路的优势在于功率稳定,能够满足大功率负载的需求。

三相电路的基本参数有:相电压、线电压、相电流、线电流、相功率和线功率等。

在三相平衡电路中,相电流大小相同,相位差相同,相电压之间的大小和相位差由供电系统的特性决定。

2.2 三相电路实验装置实验装置主要包括电源、负载、测量仪器等。

1.电源:实验中使用交流电源作为电源供给实验装置,应注意电源频率和相位差的设置。

2.负载:负载是指电路中连接的消耗电能的设备,可以使用电阻、电容、电感或者综合负载等。

3.测量仪器:实验中需要使用电压表、电流表等测量仪器来测量相关参数。

2.3 实验数据分析方法实验数据主要包括电流和电压的测量值。

在进行数据分析时,可以使用以下方法:1. 计算平均值:将多次测量的数据进行平均,减小测量误差。

2. 绘制波形图:将电流和电压的变化情况绘制成图表,便于观察波形特点。

3. 计算功率因数:根据所测得的电流和电压数据,计算功率因数以评估电路的负载情况。

三、实验装置搭建与操作步骤1.按照实验要求搭建三相电路实验装置。

2.使用万用表等测量仪器对电路参数进行测量。

3.分别记录不同负载下的电压和电流数值。

4.将所得数据整理并记录。

四、实验数据记录与分析4.1 实验数据记录以下是实验中记录的数据:实验条件电压(V)电流(A)条件1 220 3.5条件2 220 3.8条件3 220 4.14.2 实验数据分析通过对实验数据的分析,可以得出以下结论: 1. 随着负载电流的增大,电压保持稳定。

三相电路实验报告

三相电路实验报告

三相电路实验报告一、实验目的1. 了解三相电路的基本组成和原理。

2. 学习三相电压、电流的测量方法。

3. 掌握三相功率的测量和计算。

4. 分析三相电路的不对称性及其影响。

二、实验原理三相电路是由三根相位差为120度的单相电路组成的。

在三相电路中,电压和电流都有幅值、频率和相位的变化。

通过对三相电压、电流的测量,可以研究三相电路的基本特性和对称性。

三、实验步骤1. 搭建三相电路:使用电源、电阻器、电容器等搭建一个简单的三相电路。

确保每根导线都连接正确,避免短路或断路。

2. 测量三相电压:使用电压表测量三根火线之间的电压,记录测量值。

注意观察电压的幅值和相位差。

3. 测量三相电流:将电流表串入每根相线中,测量电流值。

观察电流的幅值和相位差。

4. 计算三相功率:根据测量的电压和电流值,计算三相功率。

注意分析功率是否平衡。

5. 分析不对称性:如果三相电压或电流不对称,分析产生不对称的原因及其对电路的影响。

四、实验结果与分析请在此插入表格,展示实验测量的电压、电流值以及计算的三相功率。

分析实验结果,讨论三相电路的不对称性及其影响。

五、结论通过本次实验,我们了解了三相电路的基本组成和原理,学习了三相电压、电流的测量方法以及三相功率的计算方法。

实验结果显示,当三相电路对称时,各相电压、电流的幅值相等,相位差为120度。

此时,三相功率平衡。

当三相电路不对称时,各相电压、电流的幅值和相位差发生变化,导致三相功率不平衡。

不对称性可能由电源电压不平衡、线路阻抗不对称或负载不对称等原因引起。

在实际应用中,应采取措施减小不对称性对三相电路的影响,以保证设备的正常运行和电力系统的稳定性。

频率特性的测量实验报告

频率特性的测量实验报告

课程名称: 控制理论乙 指导成绩:实验名称: 频率特性的测量 实验类型:同组学生__ 一、实验目的和要求〔必填〕二、实验内容和原理〔必填〕 三、主要仪器设备〔必填〕四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析〔必填〕 七、讨论、心得 一、实验目的和要求1.掌握用李沙育图形法,测量各典型环节的频率特性;2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数. 二、实验内容和原理1.实验内容〔1〕R-C 网络的频率特性.图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性. 〔2〕闭环频率特性的测试被测的二阶系统如图5-3所示,图5-4为它的模拟电路图. 取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K =2.实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m X t X t ω=,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变.输出信号为其中()mmY G j X ω=,()arg ()G j ϕωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差()ϕω.不断改变()x t 的频率,就可测得被测环节〔系统〕的幅频特性和相频特性. 本实验采用李沙育图形法,图5-1为测试的方框图在表〔1〕中列出了超前于滞后时相位的计算公式和光点的转向.表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和()Y t 的幅值.三、主要仪器设备1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台;3. 任意函数信号发生器一台; 4.万用表一只. 四、操作方法和实验步骤 1.实验一〔1〕根据连接图,将导线连接好〔2〕由于示波器的CH1已经与函数发生器的正极相连,所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地.〔3〕调整适当的扫描时间,将函数发生器的幅值定为5V 不变,然后摁下扫描时间框中的menu,点击从Y-t变为X-Y显示.〔4〕改变函数发生器的频率,记录数据与波形.2.实验二:基本与实验一的实验步骤相同.五、实验数据记录和处理1.实验结果分析〔1〕实验一根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:实验一幅频特性曲线〔实验〕实验一相频特性曲线〔实验〕通过运用公式理论计算得到的曲线如下图所示:实验一幅频特性曲线〔计算〕实验一相频特性曲线〔计算〕通过matlab仿真所得实验一中的幅频相频特性曲线如下图所示:由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相近,并且与通过matlab仿真得到的波特图之间的差距很小,但仍然存在一定误差.(2)实验二根据测得的实验结果,在matlab上绘制幅频特性曲线图如下图所示:实验二幅频特性曲线〔实验〕实验二相频特性曲线〔实验〕根据计算结果,在matlab上绘制幅频曲线如下图所示实验二幅频特性曲线〔计算〕实验二相频特性曲线〔计算〕通过matlab程序仿真得到的幅频与相频曲线如下图所示:由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近.但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab 仿真得到的相频曲线有着非常大的差别.这一点的主要原因为:...2.实验误差分析本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x 轴的交点接近于零的时候,示波器的光标测量读数就非常困难了.(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几.只能用display里面的连续记录显示功能来记录波形.这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的.(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差.(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的.(5)电阻和电容等非理想元件造成的误差3.思考题(1)在实验中如何选择输入的正弦信号的幅值?解:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真.(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?便于读取数据,使测量结果更加准确.(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前.七、讨论、心得1.在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大.所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小.2.在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察.3.在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差.4.在计算过程中,注意认真仔细.计算量繁杂,容易导致计算错误,可以多设几个变量来解决.5.在绘制曲线过程中,如果直接用角速度w的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观.当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力.6.通过本次实验,我了解到了频率特性测量的方法以与怎样求幅频特性|G<w>|和相频特性φ<w>的值,并且通过将自己实验所得曲线、实际计算曲线与matlab仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识.这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义.。

厦门大学 实验三 示波器的应用-信号的测量实验报告(2400字)

厦门大学 实验三 示波器的应用-信号的测量实验报告(2400字)

厦门大学实验三示波器的应用-信号的测量实验报告(2400字)实验三示波器的使用—信号的测量一实验目的1.了解示波器的基本工作原理和主要技术指标;2.掌握示波器的使用方法;3.应用示波器测量各种信号的波形参数。

二实验仪器;1.双踪示波器 1台2.函数信号发生器1台3.“四位半”数字万用表1台三实验原理;1数字示波器显示波形原理示波器是将输入的周期性信号以图像的形式展现在显示器上,以便对信号进化观察和测量的仪器;示波器显示器是一种电压控制器件,根据电压的有无来控制屏幕的亮灭,并根据电压大小控制光点在屏幕的位置。

2数字存储示波的原理;数字存储示波器只要由信号调理部分,采集存储部分,触发部分,软件处理部分和其他部分。

3 双通道数字存储示波器结构框图4示波器的主要技术特性(1)模拟带宽;由前置放大器的带宽决定;(2)采样频率;由模拟转换电路决定;(3)存储深度;由存储器决定;(4)由触发电路决定。

5 功能键及旋钮的作用说明6示波器的使用方法;(1)打开电源开关30秒后,屏幕上应有光迹,否则检查有关开关及按钮的位置;(2)将示波器的探头接到被测信号,确定触发源选择在所接通道位置;(3)键入相应的通道的开关,启动该通道工作;(4)将垂直和水平灵敏度旋钮调到合适的位置,V-pp/8=选择Y轴灵敏度;T/10=选择X轴灵敏度;(5)屏幕上应有被测信号的波形;(6)若需测信号各点的电平,耦合方式应选DC耦合,若只需观测信号幅度,则选AC耦合;(7)调节Y和X位移旋钮将波形调到便于测量的位置。

四实验内容1.校验示波器的灵敏度:对于首次接触的示波器,必须对其灵敏度进行校验。

方法为:在示波器正常显示状态下,将探头接示波器本身提供的校准方波信号源(demo2端子):采用自动或者手动方法观察校准信号,若测量得到的波形幅度、频率与校准信号(f=1KHZ,Vp-p=2.5V)相同,说明示波器准确,若不同,应记下其误差。

2.调整、测量含有直流电平的信号若要求信号发生器输出方波信号(f=1KHZ、占空比50%,Vp-p=4V、VH=3V、VL=-1V),则调整、测量方法为:1. 令信号发生器输出方波,调整信号频率为1KHZ;2. 调整信号幅度为4V,偏移量为1V,或者通过设置高低电平的方法设置VH=3V,VL=-1V。

电子测量实验4 信号频率与相位分析 实验报告

电子测量实验4 信号频率与相位分析  实验报告

实验四 信号频率与相位分析一、实验目的1 理解李沙育图形显示的原理;2 掌握用李沙育图形测量信号频率的方法;3 掌握用李沙育图形测量信号相位差的方法;4 用示波器研究放大电路的相频特性。

二、实验原理和内容1 李沙育图形扫描速度旋钮置”X-Y ”位置时,Y1通道变成x 通道,在示波器的y 通道(Y2)和x 通道(Y1,与Y2通道对称)分别加上频率为f y 和f x 的正弦信号,则在荧光屏上显示的图形称为李沙育(或李萨如)图形。

李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。

例如,当f y /f x =1,且相位差为0时,屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。

图4-1所示为f y /f x =2且相位差为0时的李沙育图形。

2 李沙育图形法测量未知信号的频率扫描速度旋钮置”X-Y ”位置,被测信号加到Y2通道,用信号发生器输出一个正弦信号加到X 通道(Y1),Y1、Y2的偏转灵敏度置相同位置,由小到大逐渐增加信号发生器输出信号频率,当屏幕上显示一个稳定的椭圆时,信号发生器指示的频率即为被测未知信号的频率。

3 李沙育图形法测量信号相位差 设u x = U xm sin (ωt+θ),u y = U ym sin ωt ,分别加到x 通道(Y1通道)和Y2通道,扫描速度旋钮置”X-Y ”位置,荧光屏上显示的李沙育(或李萨如)图形如图5-2所示。

则mx x 01sin-=θ (4-1) 4 放大电路的相频特性研究放大电路的相频特性是指输出信号与输入信号的相位差与信号频率的关系。

采用李沙育图形法可以测量相位差。

保持输入信号幅度不变,改变输入信号频率,逐点测量各频率对应的相位差,采用描点法作出相频特性曲线。

三、实验器材1、信号发生器 1台2、示波器 1台3、实验箱 1台图4-1 f y /f x =2且相位差为0时的李沙育图形 U x t tU y图4-2李沙育图形法测相位差 x 0x m4、单管、多级、负反馈电路实验板 1块四、实验步骤1 观察李沙育图形(1)f x与f y同频同相时的李沙育图形用信号发生器输出一个1kHz、10mV p-p的正弦波,加到一个射极输出器,同时加到示波器的Y1通道。

三相正弦交流电路参数的测量与分析实验报告

三相正弦交流电路参数的测量与分析实验报告

三相正弦交流电路参数的测量与分析实验报告一、实验目的:本实验旨在通过测量和分析三相正弦交流电路的参数,包括电压、电流、功率和功率因数,以加深对三相电路性质的理解和掌握。

二、实验装置与原理:1. 实验装置:- 三相正弦交流电源- 三相负载箱- 电压表- 电流表- 功率表(或功率因数表)- 示波器2. 实验原理:三相正弦交流电路由三个相位差120度的正弦电压或电流组成。

为了测量和分析这一电路的参数,我们将使用以下公式计算:- 电压:三相电压(U)= Vm * √2 * sin(ωt ±θ)其中,Vm是电压最大值,ω是角频率,t是时间,θ是相位偏移。

- 电流:三相电流(I)= Im * √2 * sin(ωt ±θ)其中,Im是电流最大值,ω是角频率,t是时间,θ是相位偏移。

- 有功功率:三相有功功率(P)= √3 * U * I * cos(θ)其中,U是电压,I是电流,θ是电压和电流之间的相位差。

- 功率因数:功率因数(PF)= cos(θ)其中,θ是电压和电流之间的相位差。

三、实验步骤:1. 连接电路:将三相正弦交流电源、负载箱、电压表、电流表、功率表(或功率因数表)和示波器逐一连接,确保电路连接正确稳固。

2. 测量电压:在电路稳定后,使用电压表测量三相电压的幅值和相位差,并记录结果。

3. 测量电流:利用电流表分别测量三相电流的幅值和相位差,并记录结果。

4. 计算功率和功率因数:根据上述公式,计算三相电路的有功功率和功率因数。

5. 分析结果:根据实测的数据和计算结果,分析电路的特性和影响因素,并撰写实验报告。

四、实验结果与讨论:在进行实验测量和计算后,我们得到了三相正弦交流电路的详细参数,包括电压、电流、有功功率和功率因数。

通过分析这些数据,可以了解电路的性质,并进一步探讨电路中的能量转换和传输过程。

五、实验总结:本实验通过测量和分析三相正弦交流电路的参数,加深了对电路性质的理解和掌握。

频率特性的测量实验报告

频率特性的测量实验报告

频率特性的测量实验报告一、实验目的频率特性是系统在正弦输入信号作用下,稳态输出与输入的幅值比和相位差随频率变化的关系。

本次实验的目的是通过测量系统的频率特性,深入理解系统的性能和特性,掌握频率特性的测量方法和数据分析处理技巧。

二、实验原理1、频率特性的定义系统的频率特性可以表示为幅频特性和相频特性。

幅频特性是输出信号与输入信号的幅值比随频率的变化关系,相频特性是输出信号与输入信号的相位差随频率的变化关系。

2、测量方法本次实验采用扫频法测量系统的频率特性。

扫频法是通过改变输入正弦信号的频率,同时测量输出信号的幅值和相位,从而得到系统的频率特性。

三、实验设备1、信号发生器用于产生不同频率的正弦输入信号。

2、示波器用于测量输入和输出信号的幅值和相位。

3、被测系统本次实验中的被测系统为一个无源 RC 网络。

四、实验步骤1、按照实验电路图连接好实验设备,确保连接正确无误。

2、打开信号发生器,设置起始频率、终止频率和频率步长,产生扫频正弦信号。

3、在示波器上同时观察输入和输出信号的波形,调整示波器的参数,使波形清晰稳定。

4、测量不同频率下输出信号的幅值和相位,并记录下来。

5、改变输入信号的频率,重复步骤 4,直到完成整个频率范围内的测量。

五、实验数据及处理以下是本次实验测量得到的数据:|频率(Hz)|幅值比|相位差(度)||||||100|0707|-45||200|05|-634||300|0316|-716||400|0224|-760||500|0177|-787||600|0141|-813||700|0114|-832||800|0093|-848||900|0077|-861||1000|0064|-871|根据实验数据,绘制幅频特性曲线和相频特性曲线:1、幅频特性曲线以频率为横坐标,幅值比为纵坐标,绘制幅频特性曲线。

从曲线中可以看出,随着频率的增加,幅值比逐渐减小,表明系统对高频信号的衰减作用增强。

实验3 示波器和万用电表的使用

实验3  示波器和万用电表的使用

实验3 示波器和万用电表的使用【实验目的】1.了解示波器显示波形的原理(电偏转、扫描、同步、整步);2.了解双踪示波器和万用电表的使用方法;3.学习用示波器测交流信号电压、频率和相位差。

【仪器用具】SS7802双踪示波器、YB1610型功率函数信号发生器、MY61万用电表。

【原理概述】电子示波器是用来直接显示、观察和测量电压波形及其参数的电子仪器。

一切可转化为电压的电学量(如电流、电阻等)和非电学量(如温度、压力、磁场、光强等)以及它们的动10Hz;它可观察连续态过程均可由示波器来观察和测量。

现代示波器的频率响应可从直流至9信号,也可捕捉到单个的快速脉冲信号并将它贮存起来,定格在屏幕上供仔细分析研究;它还能在屏幕上测量电压、时间、频率等各种参数。

示波器是用途极为广泛的一种通用现代测量工具。

(一)示波器的结构电子示波器主要由四大部分组成:阴极射线示波器系统;扫描、触发系统;放大系统;电源系统。

下面主要介绍与示波器显示波形原理相关的几个部分。

1.示波管内部结构示波管内部结构如图1所示。

阴极被加热发射出大量电子,聚焦、加速后高速轰击荧光屏,发生荧光。

在靠近阴极处设置控制栅极,调节其电位(相对阴极为负电位)来控制电子束流的强度,使荧光“辉度”改变。

图 1在电子束路径两旁设置两对平行板电极,改变加在其上的电压,可控制电子束的运动。

2. 电偏转在示波管内,有两对平行板电极,垂直方向的一对平行板电极称为水平(或x )偏转板, 简称为横偏板。

水平方向的一对平行板电极称为垂直(或y )偏转板,简称为纵偏板。

在y x 、偏转板上加电压时,其电场致使飞速运动的电子束(及其在屏上的光点)沿水平、垂直方向发生偏移,这种现象称为电偏移。

若幅度为U (V)的电压使电子束沿纵向(或横向)偏转y (cm),则定义y U /为偏转电压灵敏度,简称为灵敏度,记作K ,即y U K /= (V/cm ,读作:伏每厘米) (1) 偏转电压灵敏度(也称‘伏/格’值)表示:使电子束沿纵向(或横向)偏转1cm (即一格)的电压幅度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器测 得周期T
绝对误差
相对误差
2019/9/26
6
4.2 信号频率的测量
4.2.1 将带有外测频率功能的信号源作为频率计,对另一台函数信 号发生器的信号频率进行测试(Vp-p=0.2v)
函数发生 5 10 50 100 500 1k 5 10 50 100
器F
Hz Hz Hz Hz Hz Hz kHz kHz kHz kHz
器F
Hz Hz Hz Hz Hz Hz kHz kHz kHz kHz
示波器测 得周期T
绝对误差
相对误差
2019/9/26
5
4.1.2 信号周期的测量(用示波器测高频信号发生器的信 号周期)(Vp-p=0.2v)将函数信号发生器的频率调至下表所示, 再行测试:
高频信号 140 260 500 1M 2M 4M 5M 10M 15M 20M 发生器F kHz kHz Hz Hz Hz Hz Hz Hz Hz Hz
8
4.3 相位差的测量 4.3.1双迹法测量(测V1与V2的相差)
=(AC/AB)×360°(t/ T=/360°) 将函数发生器的同一频率信号加在示波器的X、Y通 道,观察其相位变化,并求出其相位差。
AC
BD
2019/9/26
9
4.3 相位差的测量 y
x

arcsin
B A
4.3.2李沙育图形法 将函数发生器的同一频率信号加在示波器的X、Y
实验三
信号的频率与相位差 的测量及分析
2019/9/26
1
一、实验目的
1.1 掌握周期、频率、相位差的物理意 义和测量方法
1.2 理解李沙育图形显示的原理; 1.3 掌握用李沙育图形测量信号频率的
方法; 1.4 掌握用双迹法和李沙育图形法测量
信号相位差的方法;
2019/9/26
2
二、实验原理
2.1 周期、频率(角频率)、相位差 2.2 李沙育图形显示的原理 2.3 李沙育图形法测量未知信号的频率
2019/9/26
3
三、实验仪器
3.1 函数信号发生器 3.2高频信号发生器 3.2频率计 3.3示波器
2019/9/26
4
四、实验步骤
4.1.1 信号周期的测量(用示波器测函数信号发生器 的信号周期)(Vp-p=0.2v)将函数信号发生器的频率 调至下表所示,再行测试:
函数发生 5 10 50 100 500 1k 5 10 50 100
频率计F
绝对误差
相对误差
2019/9/26
7
4.2.2 对高频信号发生器的信号频率进行测试(Vp-p=0.2v)
高频信号 140 260 500 1M 2M 4M 5M 10M 15M 20M 发生器F kHz kHz Hz Hz Hz Hz Hz Hz Hz Hz 频率计F
绝对误差 相对误差
2019/9/26
11
通道,观察其相位变化,并求出其相位差。
B A
y
x

arcsin
B A
A表示李沙育图形的X轴向宽度,B表示X轴上 两个焦点的宽度。
பைடு நூலகம்
2019/9/26
10
五、实验报告要求
一、掌握实验目的,实验原理及使用实验仪器。 二、根据实验内容和步骤,记录测量数据。并画
出误差曲线。 三、进行误差分析。
2019/9/26
扫描速度旋钮置“X-Y”位置,被测信号加到 Y(CH2)通道,用信号发生器输出一个正弦信 号加到X通道(CH1),CH1、CH2的偏转灵敏 度置相同位置,由小到大逐渐增加信号发生器 输出信号频率,当屏幕上显示一个稳定的椭圆 时,信号发生器指示的频率即为被测未知信号 的频率。 2.4 双迹法和李沙育图形法测量信号相位差
相关文档
最新文档