等差数列等比数列知识点梳理
等差数列、等比数列知识点梳理
等差数列、等比数列知识点梳理等差数列和等比数列知识点梳理一、等差数列的公式和相关性质1.等差数列的定义:如果一个数列的后一项减去前一项的差为一个定值,那么这个数列就是等差数列。
记为:an-an-1=d(d为公差)(n≥2,n∈N*)。
2.等差数列通项公式:an=a1+(n-1)d,其中a1为首项,d为公差。
推广公式:an=am+(n-m)d。
变形推广:d=(an-am)/(n-m)。
3.等差中项:(1)如果a、b、A成等差数列,那么A就是a与b的等差中项,即b成等差数列,A=(a+b)/2;(2)等差中项:数列{an}是等差数列,当且仅当2an=an-1+an+1(n≥2),或2an+1=an+an+2.4.等差数列的前n项和公式:Sn=n(a1+an)/2=n^2+(a1-d)n/2=An^2+Bn(其中A、B是常数,当d≠0时,Sn是关于n的二次式且常数项为0)。
特别地,当项数为奇数2n+1时,an+1是项数为2n+1的等差数列的中间项,Sn=(2n+1)(a1+an)/2= (2n+1)an+1/2.5.等差数列的判定方法:(1)定义法:若an-an-1=d或an+1-an=d(常数n∈N*),则{an}是等差数列;(2)等差中项:数列{an}是等差数列,当且仅当2an=an-1+an+1(n≥2),或2an+1=an+an+2;(3)数列{an}是等差数列,当且仅当an=kn+b(其中k、b是常数);(4)数列{an}是等差数列,当且仅当Sn=An^2+Bn(其中A、B是常数)。
6.等差数列的证明方法:定义法:若an-an-1=d或an+1-an=d(常数n∈N*),则{an}是等差数列。
7.等差数列相关技巧:(1)等差数列的通项公式及前n项和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)设项技巧:一般可设通项an=a1+(n-1)d。
数列的等差与等比性质知识点总结
数列的等差与等比性质知识点总结数列是由一系列数字按照一定规律排列组成的序列,而等差与等比性质是数列中常见的两种规律。
在数学中,掌握数列的等差与等比性质对于解题和推导数学公式都具有重要意义。
本文将对数列的等差与等比性质进行详细总结。
一、等差数列1. 定义:若数列中相邻两项之差保持不变,则称该数列为等差数列。
2. 通项公式:设等差数列的首项为a1,公差为d,则第n项的通项公式为an = a1 + (n-1)d。
3. 性质:a) 任意一项与它的前一项的差等于公差,即an - an-1 = d。
b) 等差数列的前n项和为Sn = (a1 + an) * n / 2。
c) 等差数列的任意一项可以表示为前一项与公差之和,即an = an-1 + d。
d) 若等差数列的前两项之和等于第三项,即a1 + a2 = a3,则该等差数列为等差数列。
二、等比数列1. 定义:若数列中相邻两项之比保持不变,则称该数列为等比数列。
2. 通项公式:设等比数列的首项为a1,公比为r,则第n项的通项公式为an = a1 * (r^(n-1))。
3. 性质:a) 任意一项与它的前一项的比等于公比,即an / an-1 = r。
b) 等比数列的前n项和为Sn = (a1 * (1 - r^n)) / (1 - r)。
c) 等比数列的任意一项可以表示为前一项与公比之积,即an = an-1 * r。
d) 若等比数列的前两项之积等于第三项,即a1 * a2 = a3,则该等比数列为等比数列。
三、等差与等比的联系与区别1. 联系:等差与等比数列都是按照一定规律排列的数列,且都有其通项公式和前n项和的公式。
2. 区别:a) 等差数列的相邻项之差相等,等比数列的相邻项之比相等。
b) 等差数列的公差为常数d,等比数列的公比为常数r。
c) 等差数列的通项公式为an = a1 + (n-1)d,等比数列的通项公式为an = a1 * (r^(n-1))。
(完整版)等差等比数列知识点总结
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等差数列与等比数列的知识点总结
等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。
以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。
2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。
4. 等差中项:任意两项的算术平均值等于第三项。
5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。
等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。
2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。
3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。
4. 等比中项:任意两项的几何平均值等于第三项。
5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。
以上是关于等差数列和等比数列的主要知识点总结。
在学习这些内容时,可以通过做练习题来加深理解和巩固知识。
等差 等比知识点总结
等差等比知识点总结一、等差数列1. 定义等差数列又叫等差数列,是一种特殊的数列,它的相邻两项之间的差都是相同的,这个差值称为公差。
比如一个等差数列通常的形式是a,a+d,a+2d,a+3d,…其中a是首项,d 是公差。
2. 通项公式设等差数列的首项为a,公差为d,那么它的通项公式为:an = a + (n - 1)d,其中n为数列的项数。
3. 性质① 等差数列的任意一项可以表示成它的首项和公差的线性组合;② 等差数列的前n项和为Sn = n(a + l)/2,其中l为数列的最后一项;③ 若等差数列的前n项和为Sn,则Sn+k = Sn + kn(k为常数);④ 若Tn为等差数列的前n项和,那么Sn = Tn - (n-1)d;⑤ 若Tn为等差数列的前n项和,那么T1、T2、…、Tn为等差数列;⑥ 等差数列的和与项数成正比例。
4. 应用等差数列的应用非常广泛,它可以用在数学、物理、工程学等各个领域。
在数学中,利用等差数列可以解决关于求和、求通项公式、求公差、求项数等各种问题。
在物理中,等差数列可以用来描述各种运动的位移、速度、加速度等之间的关系。
在工程学中,等差数列也可以用来描述一些周期性变化的规律。
二、等比数列1. 定义等比数列又叫等比数列,是一种特殊的数列,它的相邻两项之间的比值都是相同的,这个比值称为公比。
比如一个等比数列通常的形式是a,ar,ar²,ar³,…其中a是首项,r是公比。
2. 通项公式设等比数列的首项为a,公比为r,那么它的通项公式为:an = a * r⁽ⁿ⁻¹⁾,其中n为数列的项数。
3. 性质① 等比数列的任意一项可以表示成它的首项和公比的乘积;② 对于等比数列,前n项和的公式为Sn = a(1-rⁿ)/(1-r);③ 若Tn为等比数列的前n项和,那么Sn = Tn - a;④ 若Tn为等比数列的前n项和,那么T1、T2、…、Tn为等比数列;⑤ 等比数列的和与项数成正比例。
数列的等差数列与等比数列知识点总结
数列的等差数列与等比数列知识点总结数列是数学中经常出现的概念,它是按照一定规律排列的一组数的集合。
其中,等差数列和等比数列是两种常见的数列类型。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行总结。
一、等差数列等差数列是指数列中相邻两项之差均相等的数列。
用通项公式表示为:an = a1 + (n-1)d,其中an表示第n项,a1为首项,d为公差。
1. 等差数列的基本概念等差数列中,每一项与它的前一项的差值都相等,这个差值称为公差。
等差数列可以是正差、零差或负差的数列。
2. 等差数列的性质(1)首项和末项之和等于中间项之和的两倍:a1 + an = 2Sn,其中Sn表示前n项和。
(2)任意一项与首项之和等于任意一项与末项之和:ai + aj = a1 + an。
(3)等差数列的前n项和Sn等于首项与末项之和乘以项数的一半:Sn = (a1 + an) × n / 2。
3. 求等差数列的和求解等差数列的和可以利用求和公式Sn = (a1 + an) × n / 2,其中n 为项数。
4. 等差数列的应用等差数列在实际问题中有广泛的应用,如金融投资、房贷分期还款等均可以利用等差数列的性质进行计算。
二、等比数列等比数列是指数列中相邻两项之比均相等的数列。
用通项公式表示为:an = a1 × r^(n-1),其中an表示第n项,a1为首项,r为公比。
1. 等比数列的基本概念等比数列中,每一项与它的前一项的比值都相等,这个比值称为公比。
等比数列可以是正比、零比或负比的数列。
2. 等比数列的性质(1)相邻两项之商等于任意一项与首项之商等于任意一项与末项之商:ai/aj = a1/ai = ai/an。
(2)等比数列的前n项和Sn等于首项与末项之差除以公比减1:Sn = (a1 - an × r^n) / (1 - r)。
3. 求等比数列的和求解等比数列的和可以利用求和公式Sn = (a1 - an × r^n) / (1 - r),其中r不等于1。
关于数列的知识点总结归纳
关于数列的知识点总结归纳【关于数列的知识点总结归纳】一、数列的定义和基本概念数列是由一系列按照一定顺序排列的数所组成的序列。
其中,每个数字称为数列的项,项的位置称为项数。
二、数列的分类1.等差数列等差数列是指数列中各项之间的差值相等的数列。
其中,差值称为公差。
常用符号表示为an=a1+(n-1)d。
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
2.等比数列等比数列是指数列中各项之间的比值相等的数列。
其中,比值称为公比。
常用符号表示为an=a1*r^(n-1)。
等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
3.斐波那契数列斐波那契数列是指数列中每一项都是前两项的和的数列。
其中,首项和次项为1,即F1=F2=1,第n项的值为Fn=Fn-1+Fn-2。
4.等差减数列等差减数列是指数列中各项之间的差值递减的数列。
例如,1,2,4,7,11就是一个等差减数列。
5.等差倍数数列等差倍数数列是指数列中各项之间的差值递增的数列,并且差值是递增的倍数关系。
例如,1,2,6,15,31就是一个等差倍数数列。
三、数列的性质和定理1.递推公式递推公式是指通过前面几个项计算后面项的公式。
根据不同数列的特点,可以得到相应的递推公式。
2.通项公式通项公式是指通过项数n直接计算出第n项的公式。
根据不同数列的特点,可以得到相应的通项公式。
3.前n项和公式前n项和公式是指数列前n项的和的公式。
通过该公式,可以快速计算数列前n项的和。
例如等差数列的前n项和公式为Sn=(a1+an)*n/2。
4.数列的求和法则根据数列的性质,可以得到各类数列的求和法则。
例如,等差数列的前n项和公式为Sn=(a1+an)*n/2,等比数列的前n项和公式为Sn=a1*(1-r^n)/(1-r)。
5.数列的性质和规律数列中的项之间存在着一定的性质和规律,比如等差数列的项与项之差相等,等比数列的项与项之比相等等。
等差数列等比数列知识点归纳总结
等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。
一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。
这个相等的差值被称为等差数列的公差,通常用字母d表示。
1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。
2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。
(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。
(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。
3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。
(2)物理问题中的匀速直线运动、连续等差分布等。
(3)经济学中的利润、销售额等。
二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。
这个相等的比值被称为等比数列的公比,通常用字母r表示。
1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。
2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。
(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。
(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。
3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。
(2)物理问题中的连续等比分布、指数增长等。
高三高考数学复习等差数列、等比数列(共29张PPT)
即会“脱去”数学文化的背景,提取关键信息;二是构造模型,
即由题意构建等差数列或等比数列或递推关系式的模型;三是
“解模”,即把文字语言转化为求数列的相关信息,如求指定项、
公比(或公差)、项数、通项公式或前 n 项和等. 精编优质课PPT江苏省2020届高三高考数学复习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
从而 a3×a5=25×27=212,所以 log2(a3a5)=log2212=12.
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
变式1-3(2018·全国Ⅰ卷改编)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1= 2,则a5=__-1__0____. 解:法一 设等差数列{an}的公差为 d,
解:设数列{an}首项为a1,公比为q(q≠1),
精编优质课PPT江苏省2020届高三高考数学复习 等差数列、等比数列(共29张PPT)(获奖课件推荐下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
法二 同法一得a5=3.
等差数列的等差中项
∴又da=2a5a+5-3a8a=2=d0⇒2,3anana21+=mamaa82=-0d⇒=2-a25+. 2a5=0a⇒n aa2=m -(n3. m)d
等比数列与等差数列知识点
=
.
第 7页(共 13页)
2.等比数列前 n 项和的性质 公比不为﹣1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n﹣Sn,S3n﹣S2n 仍成等比数列,
其公比为 qn. 8.数列的求和 【知识点的知识】 就是求出这个数列所有项的和,一般来说要求的数列为等差数列、等比数列、等差等比数列 等等,常用的方法包括: (1)公式法: ①等差数列前 n 项和公式:Sn=na1+ n(n﹣1)d 或 Sn= ②等比数列前 n 项和公式:
③几个常用数列的求和公式:
(2)错位相减法:
适用于求数列{an×bn}的前 n 项和,其中{an}{bn}分别是等差数列和等比数列. (3)裂项相消法:
,
∴=
,
=1, =
,=
,
∵数列{ }也为等差数列,
∴
=+,
∴
=1+
,
解得 d=2.
∴Sn+10=(n+10)2,
=(2n﹣1)2,
∴
=
=
,
由于
为单调递减数列,
∴
≤ =112=121,
故选:D. 2.等差数列的性质 【等差数列】
第 2页(共 13页)
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差
∴an=
,
把 n=1 代入 2n﹣1 可得 1≠2, ∴{an}不是等差数列
考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是 等差数列,题中 an 的求法是数列当中常用到的方式,大家可以熟记一下. eg2:已知等差数列{an}的前三项分别为 a﹣1,2a+1,a+7 则这个数列的通项公式为 解:∵等差数列{an}的前三项分别为 a﹣1,2a+1,a+7, ∴2(2a+1)=a﹣1+a+7, 解得 a=2. ∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9, ∴数列 an 是以 1 为首项,4 为公差的等差数列, ∴an=1+(n﹣1)×4=4n﹣3.
数列的等差数列与等比数列知识点总结
数列的等差数列与等比数列知识点总结在数学的广袤领域中,数列是一个重要的概念,而等差数列和等比数列则是其中最为基础且关键的两种类型。
理解和掌握它们的知识点,对于解决各种数学问题以及培养逻辑思维能力都具有至关重要的意义。
一、等差数列(一)定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,常用字母\(d\)表示。
例如:数列\(2, 4, 6, 8, 10\cdots\)就是一个公差为\(2\)的等差数列。
(二)通项公式等差数列的通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。
比如,在等差数列\(3, 5, 7, 9, 11\cdots\)中,首项\(a_1 = 3\),公差\(d = 2\),那么第\(5\)项\(a_5 = 3 +(5 1)×2 = 11\)。
(三)等差中项若\(a\),\(b\),\(c\)成等差数列,则\(b\)为\(a\),\(c\)的等差中项,且\(b =\frac{a + c}{2}\)。
例如:\(4\)是\(2\)和\(6\)的等差中项,因为\(\frac{2 +6}{2} = 4\)。
(四)前\(n\)项和公式等差数列的前\(n\)项和公式有两个:\(S_n =\frac{n(a_1 + a_n)}{2}\)\(S_n = na_1 +\frac{n(n 1)d}{2}\)假如有一个等差数列\(1, 3, 5, 7, 9\cdots\),要求前\(5\)项的和。
首项\(a_1 = 1\),第\(5\)项\(a_5 = 9\),项数\(n = 5\),那么\(S_5 =\frac{5×(1 + 9)}{2} = 25\)或者,利用另一个公式,公差\(d = 2\),\(S_5 = 5×1 +\frac{5×(5 1)×2}{2} = 25\)(五)性质1、若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。
等差等比数列知识点 归纳总结
等差等比数列知识点归纳总结数学中的数列是一系列按照一定规律排列的数的集合。
在数列中,等差数列和等比数列是两种常见的形式。
它们具有一些特定的性质和规律,对于理解数学的推理和应用领域都具有重要意义。
本文将对等差数列和等比数列的知识点进行归纳总结,以帮助读者更好地理解和运用这些概念。
一、等差数列的概念和性质等差数列是指数列中的相邻两项之差保持恒定的数列。
每一项与它的前一项之差称为等差d。
等差数列通常表示为{a,a + d,a + 2d,...},其中a是首项,d是公差。
等差数列具有以下性质:1. 公差:等差数列的公差是相邻两项之差,常用字母d表示。
2. 通项公式:等差数列的通项公式可以通过首项和公差来表示。
通项公式为an = a + (n - 1)d,其中an表示第n项,a表示首项,d表示公差。
3. 首项和末项:等差数列的首项为a,末项为an。
4. 求和公式:等差数列的前n项和可以使用求和公式来表示。
求和公式为Sn = (n/2)(a + an),其中Sn表示前n项和。
5. 通项之和:对于相等间隔的等差数列,任意两项之和都等于首项和末项的和。
二、等比数列的概念和性质等比数列是指数列中的相邻两项之商保持恒定的数列。
每一项与它的前一项之比称为公比r。
等比数列通常表示为{a,ar,ar^2,...},其中a是首项,r是公比。
等比数列具有以下性质:1. 公比:等比数列的公比是相邻两项之比,常用字母r表示。
2. 通项公式:等比数列的通项公式可以通过首项和公比来表示。
通项公式为an = a * r^(n-1),其中an表示第n项,a表示首项,r表示公比。
3. 首项和末项:等比数列的首项为a,末项为an。
4. 求和公式:等比数列的前n项和可以使用求和公式来表示。
求和公式为Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项和。
5. 通项之积:对于相等间隔的等比数列,任意两项之积都等于首项和公比的幂次方之积。
等差数列与等比数列知识点复习总结
等差数列与等比数列知识点复习总结的公比计算方法:①后一项除以前一项:q = an+1an②前两项之比:q = a2a1③前一项与后一项的平方根之比:q = √(an+1an3、等比数列an的通项式:①ana1q^(n-1)②anamq^(n-m)③anb*q^n (b为常数)4、等比数列an的性质:①两项性质:若m+n=p+q,则 a manapaq②等比中项性质:若x,A,y成等比数列,则 2A = x+y③下标成等比数列的项仍成等比数列。
若数列an是等比数列,公比为q,则数列akak+mak+2mak+3m仍构成等比数列,公比为q^m。
5、等比数列an的前n项和:Sna1q^n-1)/(q-1)等比数列前n项和性质:①首项为a1,公比为q的等比数列的前n项和为Sn=a1(1-q^n)/(1-q)②首项为a1,公比为q的等比数列的前n项和为Sn=a1(q^n-1)/(q-1)③特别地,首项为1,公比为q的等比数列的前n项和为Sn=(1-q^n)/(1-q)6、等比数列前n项和性质:①首项为a1,公比为q的等比数列的前n项和为Sn=a1(1-q^n)/(1-q)②首项为a1,公比为q的等比数列的前n项和为Sn=a1(q^n-1)/(q-1)③特别地,首项为1,公比为q的等比数列的前n项和为Sn=(1-q^n)/(1-q)等差数列前n项和性质:①片段和性质:等差数列{an}的前n项和为Sn,公差为d,则Sn,S2n-Sn,S3n-S2n。
即a1+a2+。
+am,am+1+am+2+。
+a2m,a2m+1+a2m+2+。
+a3m也成等差数列,公差为md。
②若两个等差数列{an},{bn}的前n项和分别是An,Bn,则a1+b1,a2+b2.an+bn也成等差数列,公差为d1+d2.其它性质:(任何数列都适用)①Sn与Sn-1之间的关系:an=Sn-Sn-1(n=1),a1=S1②S2n-1与S2n之间的关系:an=1/2(S2n-S2n-1)(n≥2)③通项公式:an=S(n)-S(n-1)④题型:已知Sn与n的关系,求数列的通项公式an;已知Sn与an的关系,求数列的通项公式an。
等差数列与等比数列类比总结(对比学习,全面知识点)精编材料,适合收藏pdf版
(5){an}
,{bn}
都是等比数列,则{kan}
,{|
an
|}
,{an2}
,{ 1 an
}
,{anbn
},{
an bn
}
也是等比数列.
5.判断一个数列是等差数列的方法
5.判断一个数列是等比数列的方法
(1)定义法: an1 an d (常数). (2)等差中项法: 2an+1=an +an+2 或 2an =an-1+an+1 .★ (3)通项公式法: an =kn b(公差为 k). (4)前 n 项和公式法: Sn An2 Bn (不含常数项的二次函数).★
2
若三个数 a,G,b 成等比数列,则 G 叫作 a 与 b 的等比中项.
此时 G2 ab , G ab .
3.等差数列的通项公式
3.等比数列的通项公式
等差数列{an} 的首项为 a1 ,公差为 d,则 an a1 (n 1) d . 4.等差数列的性质
等比数列{an} 的首项为 a1 ,公比为 q,则 an a1qn1 .
Sn
d 2
n2
(a1
d 2
)n
简写为
Sn
An2
Bn
(nN* )
,可以把
(n, Sn )
看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如
对称和求最值.
Sn 最值条件 通项法
二次函数法
最大值
a1 0 , d 0
an 0 且 an1 0
在 n 处 Sn 取最大值
Sn
S1=a1>0
[数列]
等差数列与等比数列对比知识点总结
等差数列与等比数列知识点及题型归纳总结
等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。
等差等比数列基础知识点
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
等差数列与等比数列的知识点总结
等差数列与等比数列的知识点总结等差数列与等比数列是数学中常见的两种数列,它们在数学和实际生活中都有着重要的应用。
下面将从定义、性质、求和公式和应用等几个方面对等差数列和等比数列进行全面总结。
**一、等差数列的基本概念**等差数列是指一个数列中,从第二项起,每一项与它的前一项的差等于同一个常数的数列。
一般来说,等差数列的通项公式为:a_n=a_1+(n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。
**二、等差数列的性质**1. 等差数列的通项公式:a_n=a_1+(n-1)d2. 等差数列的前n项和公式:S_n=\frac{n}{2}(2a_1+(n-1)d)3. 等差数列的性质:任意三项成等差数列,等差中项相等。
4. 等差数列的性质:首项与末项的关系。
**三、等差数列的应用**等差数列在实际生活中有着广泛的应用,比如在金融领域中的等额还款、在物理学中的匀速运动等等。
**四、等比数列的基本概念**等比数列是指一个数列中,从第二项起,每一项与它的前一项的比等于同一个常数的数列。
一般来说,等比数列的通项公式为:a_n=a_1 \cdot q^{n-1},其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,q表示公比。
**五、等比数列的性质**1. 等比数列的通项公式:a_n=a_1 \cdot q^{n-1}2. 等比数列的前n项和公式:S_n=\frac{a_1(1-q^n)}{1-q},当|q|<1时成立3. 等比数列的性质:首项、末项、项数的关系。
4. 等比数列的性质:任意三项成等比数列,等比中项与等比积。
**六、等比数列的应用**等比数列同样在实际中有着广泛的应用,比如在利息计算中的等比增长、在生物学中的细胞分裂等等。
**结语**等差数列与等比数列是数学中基础而重要的概念,它们不仅在数学理论中有着重要的意义,而且在实际生活中也有着广泛的应用。
数列知识点归纳总结
数列知识点归纳总结第一篇一、概念数列是数学中的一类有规律的数的集合,通常用数学符号表示。
数列可以根据其对应的公式或规律进行分类,如等差数列、等比数列、斐波那契数列等。
二、常见数列类型1. 等差数列定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数d,那么这个数列就是等差数列。
公式:an=a1+(n-1)d特征:公差d不变,每一项与前一项的差值相等。
例子:{2,5,8,11...}2. 等比数列定义:如果一个数列从第二项起,每一项都是它前一项的r倍(r≠0),则这个数列称为等比数列。
公式:an=a1×r^(n-1)特征:公比r不变,每一项与前一项的比值相等。
例子:{1,2,4,8...}3. 斐波那契数列定义:一个数列中,从第三项开始,每一项都等于前两项之和。
即a(n) = a(n-1) + a(n-2),其中n>2。
这个数列就是斐波那契数列。
斐波那契数列可以用于描述动植物种群的增长、黄金分割问题等。
例子:{1,1,2,3,5,8,13...}4. 等差-等比混合数列定义:有些数列既具有等差数列的特点,又具有等比数列的特点,那么这个数列就是等差-等比混合数列。
公式:an=a1+r^(n-1)m特征:首项a1+公差r乘上一个常数m后再乘上公比r的n-1次方。
例子:{1,3,9,27,81...}三、性质1. 推导通项公式:使用等差/等比公式或递推公式。
2. 求和公式:等差数列的和:S_n=(a1+an)n/2等比数列的和:S_n=(a1(1-r^n))/(1-r)四、求解题目步骤1. 确定数列类型(等差/等比/混合)2. 确定已知条件3. 构造数学模型4. 解方程组5. 检验答案五、应用举例1. 有一条长1000米的路需要铺设新的路面。
铺设工作将在第一天开展,每天的工作进度是前一天的50%。
问需要多少天才能完成铺设工作?解题:这是一个等比数列,首项为1000,公比为0.5。
等比数列等差数列知识点归纳总结
等比数列等差数列知识点归纳总结等比数列和等差数列是数学中常见且重要的概念之一。
在解决各种数学问题和应用中,它们都有着广泛的应用。
本文将对等比数列和等差数列的知识点进行归纳总结,以帮助读者更好地理解和掌握这两个数列的特点和应用。
一、等差数列等差数列是一种特殊的数列,其中每一项与前一项之差保持恒定。
具体来说,对于一个等差数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ + (n-1)d其中,a₁表示首项,d表示公差,n表示项数。
等差数列的常用术语包括首项、公差、通项公式和项数等。
1. 首项(a₁):等差数列的第一项称为首项。
2. 公差(d):等差数列中相邻两项的差称为公差。
公差可以是正数、负数或零。
3. 通项公式:等差数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等差数列包含的项的个数称为项数。
等差数列的主要特点是任意两项之差相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、平均数问题、等差数列的图像和几何问题等。
二、等比数列等比数列是一种特殊的数列,其中每一项与前一项之比保持恒定。
具体来说,对于一个等比数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ * r^(n-1)其中,a₁表示首项,r表示公比,n表示项数。
等比数列的常用术语包括首项、公比、通项公式和项数等。
1. 首项(a₁):等比数列的第一项称为首项。
2. 公比(r):等比数列中相邻两项的比称为公比。
公比可以是正数、负数或零,但不能为1。
3. 通项公式:等比数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等比数列包含的项的个数称为项数。
等比数列的主要特点是任意两项之比相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、计算几何问题和金融领域的应用等。
高中数学知识点总结等差数列与等比数列
高中数学知识点总结等差数列与等比数列高中数学知识点总结:等差数列与等比数列等差数列和等比数列是高中数学中重要的数列概念。
它们在数学和实际问题中都具有广泛的应用。
本文将对等差数列和等比数列进行详细的总结和学习。
一、等差数列(Arithmetic Progression,简称AP)等差数列是指数列中任意两个相邻的项之间的差都是一个常数。
这个常数称为公差,通常用字母d表示。
等差数列的一般形式可以表示为:an = a1 + (n-1)d,其中an表示数列的第n项。
等差数列常见的性质和公式如下:1. 第n项公式:an = a1 + (n-1)d2. 前n项和公式:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d)3. 公差d的求法:d = (an - a1)/(n-1)4. 通项公式:an = a1 + (n-1)d5. 前n项和公式(求和公式):Sn = (n/2)(a1 + an)等差数列的应用非常广泛,特别是在数学、物理和工程学中。
等差数列可以帮助我们推导出一些重要的关系式,解决许多实际问题。
二、等比数列(Geometric Progression,简称GP)等比数列是指数列中任意两个相邻的项之间的比都是一个常数。
这个常数称为公比,通常用字母r表示。
等比数列的一般形式可以表示为:an = a1 * r^(n-1),其中an表示数列的第n项。
等比数列常见的性质和公式如下:1. 第n项公式:an = a1 * r^(n-1)2. 前n项和公式:Sn = a1 * (1 - r^n) / (1 - r),其中r ≠ 13. 公比r的求法:r = √(an / a1)4. 通项公式:an = a1 * r^(n-1)5. 前n项和公式(求和公式):Sn = a1 * (1 - r^n) / (1 - r),其中r ≠1等比数列的应用同样非常广泛,在数学、物理、经济学等领域都有重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列和等比数列知识点梳理第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一 个定值,则称这个数列为等差数列, 记:a n a n 1 d (d 为公差)( n 2,n N * )2、等差数列通项公式: 推导过程:叠加法a n a 1(n 1)d,a 1 为首项, d 为公差推广公式:a na m(n m)d变形推广:da na mn m3、等差中项( 1)如果 a ,A , b 成等差数列,那么 A 叫做a 与b 的等差中项.即:A a b或 2A a b(2)等差中项:数列 a n 是等差数列 2a na n-1 a n1(n 2)2a n 1 a n a n 24、等差数列的前 n 项和公式:dn 2 (a 1 1d)n An 2 Bn 22前 N 相和的推导 :当m n p q 时,则有a m a n a p a q,特别地,当m n 2p 时,则有a ma n 2a p 。
(注: a 1a n a 2 a n1 a 3a n 2,)S nn(a 1 a n ) 2na 1 n(n 1)d当然扩充到3项、4项⋯⋯都是可以的,但要保证等号两边项数相同,下标系数之和相等。
5、等差数列的判定方法1)定义法:若a n a n 1 d 或a n 1 a n d(常数n N )a n 是等差数列.2)等差中项:数列a n 是等差数列2a n a n-1 a n 1(n 2)2a n 1 a n a n 23)数列a n 是等差数列a n kn b (其中k, b是常数)。
4)数列a n 是等差数列S n An2 Bn, (其中A、B是常数)6、等差数列的证明方法定义法或者等差中项发a n 是等差数列.7、等差数列相关技巧:(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、a n及S n ,其中a1 、d称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2 个,即知3 求2。
(2)设项技巧:①一般可设通项a n a1 (n 1)d②奇数个数成等差,可设为⋯,a 2d,a d,a,a d,a 2d ⋯(公差为d );③偶数个数成等差,可设为⋯,a 3d,a d,a d,a 3d , ⋯(注意;公差为2d )8、等差数列的性质:(1)当公差d 0时,等差数列的通项公式a n a1 (n 1)d dn a1 d 是关于n 的一次函数,且斜率为公差d;前n和S n na1n(n 1)d d n2(a1d)n是关于n2 2 2 的二次函数且常数项为0。
(2)若公差d 0 ,则为递增等差数列,若公差d 0 ,则为递减等差数列,若公差d 0 ,则为常数列。
(3)当m n p q时,则有a m a n a p a q ,特别地,当m n 2 p时,则有a m a n2a p 。
(注:a1 a n a2 a n 1 a3 a n 2 ,)当然扩充到3 项、4 项⋯⋯都是可以的,但要保证等号两边项数相同,下标系数之和相等。
(4)a n 、b n 为等差数列,则a n b ,1a n 2b n 都为等差数列【新数列可以化为一次函数的形式】(5)若{ a n} 是等差数列,则S n,S2n S n , S3n S2n ,⋯也成等差数列推导过程:(6)数列{a n}为等差数列,每隔k(k N )项取出一项(a m,a m k,a m 2k ,a m3k, )仍为等差数列推导过程:(7)a n 、{b n}的前n和分别为B n,则a b n n B A22n n11A n、(8)等差数列{a n} 中,若S m n ,S n m ,则S m n 若a n m,a m n ,则a m n 0 m n (1)(2)推导:S n An2 Bn 解出A 和B 就可以推导出(1)(2)式直接用推广公式即可(9)求S n 的最值法一:因等差数列前n 项和是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性n N*。
法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和a0 即当a1 0,d 0,由n可得S n达到最大值时的n值.a n 1 0(2)“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和a n 0即当a1 0,d 0,由n可得S n达到最小值时的n值.a n 1 0或求a n 中正负分界项法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,S n取最大值(或最小值)若S p = S q则其对称轴为n pq 2等比数列的相关公式和性质1、等比数列的定义:an q q 0 n 2 , q 为公比 an 12、通项公式:a n a 1q n 1, a 1为首项, q 为公比n ma n q n a m3、等比中项(1)如果a, A,b 成等比数列,那么 A 叫做a 与b 的等差中项.即: A 2ab 或A ab注意:同号的两个数才有等比中项,并且它们的等比中项有两个 (两个等比中项互为相反数)(2)数列 a n 是等比数列a n 2 a n 1 a n 14、等比数列的前 n 项和 S n 公式: (1) 当 q 1 时, S n na 1n(2)当 q 1 时,Sna1 1 qa1 anq1 q 1 qa1a1 q n A A B n A'B n A'( A, B, A ',B '为常数)1 q 1 q推广公式: a n nma m q推导过程:5、等比数列的判定方法等比数列(2) 等比中项: a n 2 a n 1a n 1(a n1a n 1 0) { a n }为等比数列 (3) 通项公式: a n A B n A B 0 {a n } 为等比数列(4) 前 n 项和公式:S n A A B n 或S n A'B n A' A,B,A',B'为常数{a n } 为等比数列6、 等比数列的证明方法a依据定义:若 an q q 0 n 2,且n N * 或a n 1 qa n {a n } 为等比数列 an 17、等比数列相关技巧:(1)等比数列的通项公式及前 n 和公式中,涉及到 5个元素:a 1、q 、n 、 a n 及S n ,其中 a 1 、 q 称作为基本元素。
只要已知这 5个元素中的任意 3个,便 可求出其余 2 个,即知 3 求 2。
(2)为减少运算量,要注意设项的技巧,一般可设为通项: a na 1q n 1如奇数个数成等比, 可设为⋯, a2,a,a,aq,aq 2⋯(公比为 q ,中间项用 a表示); qq注意隐含条件公比 q 的正负8、等比数列的性质: (1) 当 q 1 时a 1 q n A B n A B 0 是关于 n 的带有系数的 q类指数函数,底数为公比 q1)用定义:对任意的 n,都有 a n 1 a n 1 qa n 或a nq (q 为常数, a n 0) {a n } 为①等比数列通项公式a n a 1q n 1a 1 q n②前n项和S n1 a1 a1q a1 a1q n A A B nA'B n A',系数n1 q 1 q 1 q 1 q和常数项是互为相反数的类指数函数,底数为公比q (2) 对任何m,n N*,在等比数列{a n} 中,有a n a m q n m,特别的,当m=1 时,便得到等比数列的通项公式。
因此,此公式比等比数列的通项公式更具有一般性。
(3) 若m n s t ( m, n,s,t N*),则a n a m a s a t 。
特别的,当m n 2k 时,得2a n a m a k(4)列{a n},{b n}为等比数列,则数列{ k} ,{k a n},{a n k},{k a n b n}{an} (k 为非零a n b n 常数) 均为等比数列。
【可以化为a n A B n A B 0 {a n} 为等比数列】(5)数列{ a n}为等比数列,每隔k(k N *)项取出一项(a m,a m k,a m 2k,a m 3k, )仍为等比数列(6) 如果{ a n}是各项均为正数的等比数列,则数列{log a a n} 是等差数列(7)若{ a n}为等比数列,则数列S n,S2n S n ,S3n S2n, ,成等比数列(8) 若{a n} 为等比数列,则数列a1 a2 a n,a n 1 a n 2 a2n , a2n 1 a2n 2 a3n成等比数列备注:和( 7)本质上是一样的。
(9) ①当 q 1 时,③ 当 q=1 时,该数列为常数列(此时数列也为等差数列) ④ 当 q<0 时,该数列为摆动数列。
(10)在等比数列{a n }中, 当项数为 2n (n N * )时,S 奇1, S 偶 q(11) 若{a n }是公比为 q 的等比数列,则S n m S n q n S m{aa 110,则{ a n }为递增数列 0,则{ a n }为递减数列,{a a 110,则{ a n } 为递减数列 0,则{ a n} 为递增数列 ②当 0<q 1时,。