高等数学-复合函数的偏导数

合集下载

§8-4__多元复合函数的微分法及偏导数的几何应用

§8-4__多元复合函数的微分法及偏导数的几何应用

8.4多元复合函数的微分法在一元函数微分学中,复合函数的链式求导法则是最重要的求导法则之一,它解决了很多比较复杂的函数的求导问题.对于多元函数,也有类似的求导法则.8.4.1多元复合函数的求导法则 1.二元复合函数求导法则与一元复合函数求导相比,二元复合函数的求导问题要复杂的多.对于二元函数),(v u f z =,中间变量u 和v 都可以是x 和y 的二元函数;也可以只是某一个变量t 的函数,还可能中间变量u 和v 分别是不同个数自变量的函数,譬如u 是y x ,的函数,而v 只是x 的函数;等等。

下面讨论二元复合函数的求导法则,对二元以上的多元函数的求导法则可类似推出.定理8.4.1设函数),(v u f z =是v u ,的函数,),(),,(y x v y x u ψϕ==.若),(),,(y x y x ψϕ在点),(y x 处偏导数都存在,),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 处关于y x ,的两个偏导数都存在,且yv v z y u u z y z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂⋅∂∂+∂∂⋅∂∂=∂∂, (8-1) 我们借助于复合函数的函数结构图对复合函数求偏导数的过程进行分析.函数)],(),,([y x y x f z ψϕ=的结构图,如图8-4所示.从函数结构图可以看出,z 和x 的函数关系可以由两条路径得到.一条是经中间变量u 到达自变量x ,还有一条是经中间变量v 到达自变量x 的.从公式(1)的第一式可以看出,z 和x 的函数关系有两条路径,对应公式中就有两项,其中每一项由两个因子的乘积表示,两个因子的乘积都是函数关于中间变量的偏导数和中间变量关于自变量的偏导数的乘积构成.例8.4.1设)sin(y x e z xy+=,求x z ∂∂和yz ∂∂. 解:令y x v xy u +==,,则v e z usin = 函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv ∂∂⋅=sin cos uu e v y e v ⋅+ =sin()cos()xy xye x y y e x y +++,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv ∂∂⋅=sin cos uu e v x e v ⋅+=sin()cos()xy xye x y x e x y +++. 例8.4.2设2)(2y x y x z -+=,求x z ∂∂和yz ∂∂. 解:令22,y x v y x u -=+=,则vu z =,函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv∂∂⋅=1ln v v vu u u -+ =2222122()()()ln()x y x yx y x y x y x y ----+++-,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv∂∂⋅=12ln (2)v v vu y u u y -+- =22221222()()2()ln()x y x yy x y x y y x y x y ----+-+-.2.二元复合函数求导法则的推广和变形多元复合函数的中间变量可能是一个,也可能多于一个,同样,自变量的个数可能只有一个,也可能是两个或者更多.我们可以对定理1进行推广和变形,分以下几种情形讨论:(1)当函数z 有两个中间变量,而自变量只有一个,即)(),(),,(t v v t u u v u f z ===.函数结构图,如图8-6所示.因此(8-1)变形成为dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.因为复合结果和中间变量都是t 的一元函数,应该使用一元函数的导数记号;为了与一元函数的导数相区别,我们称复合后一元函数的导数dtdz 为全导数.当函数z 有三个中间变量,而自变量只有一个,即)(),(),(),,,(t w w t v v t u u w v u f z ====.函数结构图,如图8-7所示.因此公式(8-1)可以推广成为 dt dw w z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂=.(2)当函数z 有一个中间变量,而自变量有两个.例如),(),,(y x u x u f z ϕ==.函数结构图,如图8-8所示.此时(8-1)变形成为.yu u f y z x f x u u f x z ∂∂⋅∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂, 在上面第一个式中,xz∂∂表示在复合函数]),,([x y x f z ϕ=中,把y 看作常量,求得的z 对x 的偏导数;xf∂∂表示在复合函数],[x u f z =中,把u 看作常量,求得的z 对x 的偏导数,因此x z ∂∂和xf ∂∂表示的含义不同,在求偏导数是一定要注意,记号上不能混淆. 例如),(),(y x u u f z ϕ==,函数结构图,如图8-9所示.此时(8-1)变形成为.yu du dz y z x u du dz x z ∂∂⋅=∂∂∂∂⋅=∂∂,(3)当函数z 有两个中间变量,而自变量有三个,即),,(),,,(),,(w v u y y w v u x x y x f z ===.函数结构图,如图8-10所示。

复合函数的偏导数

复合函数的偏导数

由于函数z f (u, v)在点(u, v)有连续偏导数
z

z u
u

z v
v

1u

2v,
当u 0,v 0时, 1 0, 2 0
z tz u源自u tz v

v t

1
u t


2
v t
当t 0时, u 0,v 0
证: 把 u (x2 y2 )看作是由函数
u (z)及 z x2 y2
复合而成,分别对 x 与 y求导得
u (z) 2x, u (z) 2y,
x
y
从而 x u y u 2xy(z) 2xy(z) 0.
y x
例8 设z f (u, x, y), 其中 f 具有对各变量的连续的 二阶偏导数,且 u xey , 求 2 z . yx
ux
zv
z z u z v z w y u y v y w y
wy
特殊地 z f (u, x, y) 其中 u ( x, y)
即 z f [( x, y), x, y], 令 v x, w y,
v 1, w 0,
x
x
其中 fij表示 f 先对第i个变量求导,再对第j个求二阶偏导.
三、小结
1、链式法则 (特别要注意课中所讲的特殊情况)
2、全微分形式不变性 (理解其实质)
思考题
设z f (u,v, x),而u ( x) ,v ( x),
则 dz f du f dv f , dx u dx v dx x
中的 y 看作不变而对x 的偏导数 变而对x 的偏导数

7-4第四节 多元复合函数和隐函数的偏导数

7-4第四节  多元复合函数和隐函数的偏导数

LOGO
y 的偏导数,复合 x 和 w w( x , y ) 都在点( x , y ) 具有对
函数 z f [ ( x , y ), ( x , y ), w( x , y )] 在对应点( x , y ) 两个偏导数存在,且可用下列公式计算
z z u z v z w , x u x v x w x z z u z v z w z . y u y v y w y
z Fx , x Fz
Fy z . y Fz
LOGO
例:设由方程
e xy 2 z e z 0所确定的隐函数 z z z f ( x , y ),试求 , . x y
YOUR SITE HERE
z 例 5 设 x y z 4 z 0 ,求 2 . x
YOUR SITE HERE
t t
e (cos t sin t ) cos t .
t
YOUR SITE HERE
3、全微分形式不变性
LOGO
z z dz du dv ;当 u ( x , y ) 、v ( x , y ) u v z z dx dy . 时,有dz x y
中的 y 看作不变而对x 的偏导数
变而对 x 的偏导数
v 1, x
w 0, x
v 0, y
w 1. y
YOUR SITE HERE
例 1 设 z e u sin v ,而u xy ,v x y ,
LOGO
z z 求 和 . x y

z z u z v x u x v x
第四节 多元复合函数与隐函 数的求导法则
目录

复合函数求偏导

复合函数求偏导

x u x v x z z u z v .
(1)
y u y v y
复合函数的结构图是
公式(1)给出z对x的偏导数是
z z u z v
(*)
x u x v x
公式(*)与结构图两者之间的对应关系是:偏导数 z 是由两项组成的,每项又是两个偏导数的乘积,公 x 式(*)的这两条规律,可以通过函数的结构图得到,即
y u y v y
u v
其中 z , z不能再具体计算了,这是因为外层函数f u v
仅是抽象的函数记号,没有具体给出函数表达式.
例3 设 w f (x2, xy, xyz),其中f(u,v,w)为可微函数, 求 w, w, w.
x y z
解 令 u x2,v xy,t xyz.可得
z z u z v y u y v y
eu sin v x eu cos v 1
exy[xsin( x y) cos( x y)].
解法2 对于具体的二元复合函数,可将中间变量u,v, 用x,y代入,则得到 z exy sin( x y) ,z 是x,y二元复合函数,根 据复合函数的链式法则,得
例8
求u
x
x
例1
设 z eu sinv,u
xy,v
x
y, 求 z , z . x y
解法1 得
z z u z v x u x v x
eu sin v y eu cos v 1
exy[ y sin(x y) cos(x y)],
z z u z v z w.
(2)
x u x v x w x
同理可得到,

求复合函数偏导数的链式法则解

求复合函数偏导数的链式法则解
z x
Yunnan University
e [ y sin( x y ) cos( x y )]dx
xy
z y
e xy [ x sin( x y ) cos( x y )]dy .
§2. 求复合函数偏导数的链式法则
例 9 已知 e

xy
d e
2 z e 0 ,求 z 和 z .
Yunnan University
§2. 求复合函数偏导数的链式法则
u u 证明: ' ', a ' a ', x t 2u 2u 2 2 '' '', a '' a '', 2 2 x t 所以
2 2u u 2 a . 2 2 t x
将 x0 , y0 换成D内任一点 x , y , 有 xf yf nf x , y ,
' 1 ' 2
即 f f x y nf . x y
Yunnan University
§2. 求复合函数偏导数的链式法则
对z f x , y
x 2 y 2 , 它满足
Yunnan University
§2. 求复合函数偏导数的链式法则
二、复合函数的全微分
设函数 z f ( u, v ) 具有连续偏导数,则 u,v 不论是 自变量还是中间变量,总有全微分
dz z du z d,结论显然。
(2)如果 u,v 是中间变量, u ( x , y ), v ( x , y ). 有全微分:
§2. 求复合函数偏导数的链式法则

高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则

高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则

存在,那么称极限为函数z= J(x,y) 在点(布,Yo ) 处对于x的偏导数,记作
一|。'ZI
δ!X lx=xo
;:ll'I ,斗ax lx=xo
,z;lx=句或兀(xo ,Yo ). )I=均
类似的,函数 z =f(x,y) 在点(x。. ,Yo ) 对y的偏导数定义为
lim /(布,Yo +11y)-f(句,Yo )
dt
[答案J e' (cost-sint)+cost
第三节全微分及全微分形式不变性 设函数Z = f(x,y) 在点。,y) 的某邻域内有定义,如果函数在点(x,y) 的全增量
&=f(x+缸, y+6y)-f(x,y)
可以表示为 &=AAt+B6y+o(p),
其中 A,B 不依赖于 llx和6y ,而仅与 x和y 有关, p=o(」(At)2+(6y)勺,那么称函数
az , az 例13设
z=f(lnx

一),其中函数
y
f(u

可微,贝tlx

ax

Y'�



[答案JO
(2012年,数学二)
f 例14设 z = f(x+ y,x-y,圳,其中 具有二阶连续偏导数, 求dz 与£ axay 乙
λ(
[答案]飞
’+J;’+yj3' I)dx+飞(刀’+儿’+乓f;' I)命;
【解题步骤】理清函数与变元之间的关系z (1)画出函数结构图,理清函数间复合关系,注意到哪些变元是自变量,中间变量,因变量. (2)注意函数映射是多元函数,还是一元函数, 注意导数符号的不同. (3)先对中间变量求偏导,再乘以中间变量对自变量的偏导数.

高等数学偏导数

高等数学偏导数

授课单元7教案课题1 偏导数一、复习x处的导数,y=f(x)的导数一元函数y=f(x)在二、偏导数的概念、我们已经知道一元函数的导数是一个很重要的概念,是研究函数的有力工具,它反映了该点处函数随自变量变化的快慢程度。

对于多元函数同样需要讨论它的变化率问题。

虽然多元函数的自变量不止一个,但实际问题常常要求在其它自变量不变的条件下,只考虑函数对其中一个自变量的变化率。

例如,一定量的理想气体P ,体积V ,热力学温度T 的关系式为常数)R V RTP (,= (1)当温度不变时(等温过程),压强P 关于体积V 的变化率为2T VRT )(-=为常数dV dP (2)当体积V 不变时(等容过程),压强P 关于温度T 的变化率为V RdTdP V ==常数)(. 这种变化率依然是一元函数的变化率问题,这就是偏导数概念,对此给出如下定义。

1、z=f(x,y)在),(00y x 处的偏导数 (1) z =f (x , y )在点(x 0, y 0)处对x 的偏导数设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量∆x 时, 相应地函数有增量f (x 0+∆x , y 0)-f (x 0, y 0).如果极限xy x f y x x f x ∆-∆+→∆),(),(lim00000存在,则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作),(00y x x z ∂∂,),(00y x xf∂∂, ),(00y x xz ', 或),(00y x f x '.即 xy x f y x x f y x f x x ∆-∆+='→∆),(),(lim),(0000000(2)z =f (x , y )在点(x 0, y 0)处对y 的偏导数),(00y x yz ∂∂=),(00y x yf ∂∂=),(00y x yz '=),(00y x f y '=yy x f y y x f y ∆-∆+→∆),(),(lim000002、偏导函数(简称偏导数) (1)z =f (x , y )对自变量x 的偏导函数如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作x z ∂∂= x f ∂∂= 'x z =),(y x f x'xy x f y x x f x ∆-∆+=→∆),(),(lim 0.(2) z =f (x , y )对y 的偏导函数y z ∂∂=y f∂∂= 'y z =),(y x f y '=yy x f y y x f y ∆-∆+→∆),(),(lim 0说明(1)由偏导数的定义可知,求二元函数的偏导数并不需要新的方法求xz ∂∂时,把y 视为常数而对x 求导;求yz∂∂时,把x 视为常数而对y 导,这仍然是一元函数求导问题 (2)偏导数的概念还可推广到二元以上的函数. 例如三元函数u =f (x , y , z )在点(x , y , z )处对x 的偏导数定义为 xz y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim),,(0例 求z =x 2sin 2y 的偏导数. 解y x xz 2sin 2=∂∂, y x y z 2cos 22=∂∂例 求z =x 2+3xy +y 2在点(1, 2)处的偏导数. 解y x xz 32+=∂∂, y x y z 23+=∂∂. 8231221=⋅+⋅=∂∂==y x x z , 7221321=⋅+⋅=∂∂==y x yz 例 设f(x,y)= ,求)0,1(x f '解 如果先求偏导数),(y x f x '是比较复杂的,但是若先把函数中的y 固定在y = 0,则有 f (x ,0) = 2ln x ,从而xx f x 2)0,(=',)0,1(x f '=2 说明 求z=f(x,y)在),(00y x 处的偏导数方法(1)00),(),(00y y x x x x y x f y x f =='=', 00),(),(00y y x x y y y x f y x f =='='(2)0]),([),(000x x x y x f dx d y x f ==', 0]),([),(000y y y y x f dyd y x f =='.例 设)1,0(≠>=x x x z y , 求证: zyz x x z y x 2ln 1=∂∂+∂∂证1-=∂∂y yx xz , x x y z y ln =∂∂ ,z x x x x x yx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-. 例 求222z y x r ++=的偏导数. 解r x z y x x x r =++=∂∂222; ry z y x y y r =++=∂∂222.例 已知理想气体的状态方程为pV =RT (R 为常数),求证:1-=∂∂⋅∂∂⋅∂∂pTT V V p . 证 因为V RT p =, 2V RT V p -=∂∂; p RT V =, p R T V =∂∂; RpV T =, R V p T =∂∂;所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT RV p R V RT p T T V V p .)ln(22arctany x e xy +说明 偏导数的记号是一个整体记号, 不能看作分子分母之商. 练习 求下列函数的偏导数)ln(222y x x z +=,xy e u =,x y z arctan=,y x xy z +=,22yx xy z += 例 并联可变电阻总电阻的调节问题由n 个可变电阻并联成为一个总的可变电阻器,其中各个可变电阻的电阻值 之间的大小关系为⋅<<<n R R R 21现在用通过对各个电阻进行逐个调节 的方法来达到对总电阻的调节。

第67讲 多元抽象复合函数的偏导数计算

第67讲 多元抽象复合函数的偏导数计算

所以
1 = 1,1 + 1,1 ⋅ (1,1) +
= + +(+) =+ + + .
(1,1) ⋅ ( (1,1) +
(1,1)
= −2 , 例 67.6 设变换 = + 可将方程 6 +
= 0,求常数 .
− = 0 简化为
பைடு நூலகம்
【解】由于 = + , = ⋅ (−2) + ⋅ = −2 + ,
=+
+
+ = +2
依题意,有 6 + − = 0, 但10 + 5 ≠ 0 , 故 = 3.
例67.1 设函数 = ( , , ), = ( , ), = ( , )均具有一阶连续 偏导数,求 , . 【解】如图,由 至 的路径为
→, → →, → →→.
因此, = +
+
.
同理,由 至 的路径为 → , → → → .
因此,
=+
.
【注】用树形图的方法求多元抽象复合函数的偏导数的步骤如下: (1) 按从因变量到自变量的顺序用有向线段表示函数关系,
=+
, ,其中 具有连续的一阶偏导数,求 , .
=+
⋅ + ⋅ ⋅2
+2
.
==
⋅2 + ⋅ ⋅ =2
+
.
【注】抽象复合函数与其他函数进行四则运算而得到的函数,在对其求偏 导数时,要同时利用一元函数的求导四则运算法则及复合函数求导的链式 法则.
例67.4 设 = ( + ) + ( + ),其中 , 具有二阶连续导数, 证明: − 2 + = 0.

高等数学《复合函数的求导法则》

高等数学《复合函数的求导法则》
例 8 设z f ( x2,e2x ),f 可微,求 dz . dx
定理的结论可推广到中间变量多于两个的情况.
例:z f (u,v, w) , u u(t ) , v v(t ) , w w(t ) ,
则 dz z du z dv z dw dt u dt v dt w dt
f
(
xy,
x y
),f
可微,求
z
x

z
y
.

zx
f1
y
f
2
(
1 y
)
y
f1
1 y
f2 .
zy
f1 x
f2
(
1 y2
)
x
f1
x y2
f2 .
定理的结论可推广到中间变量多于两个的情况.
(2) 设u ( x, y)、v ( x, y)、w w( x, y)
都在点( x, y)具有对 x 和 y 的偏导数,复合函数
2、全微分形式不变性 ( 理解其实质 ) 3、求复合函数偏导数时,由于复合关系比较复 杂,用链式法则求偏导数时,首先要搞清楚哪些 是自变量,哪些是中间变量,其次要分清是求偏 导数或是全导数.
总结:
1、多元函数偏导数的类型很多,有求偏导数, 有证明偏导数存在,有讨论可微与连续及与偏 导数的关系问题.
——全导数公式
证 设 t 获得增量 t,
则 u (t t) (t), v (t t) (t); 由于函数z f (u, v)在点(u,v)有连续偏导数
z zuu zvv 1u 2v,
当u 0,v 0时, 1 0, 2 0
z t
zu
u t
zv
v t

复合函数求偏导解读

复合函数求偏导解读

如果函数z不含v,只是u的函数,于是公式(5)变成
dz dz du. dx du dx 这正是一元复合函数的求导公式.
4.设函数z=f(x,v)有连续偏导数,v(x,y)有偏导数,
求复合函数 zf[x,(x,y)的]偏导数 z , z .
x y
自变量x到达z的路径有二条,第一路径上只有一
个函数,即z是x的函数.第二路径上有两个函数z和v.自 变量y到达z的路径只有一条,于是 z , z 的偏导数
免混淆,将公式(6)右端第一项写 f ,而不写为 z .
x
x
பைடு நூலகம்
例1

z e u sv i,u n x,v y x y ,求
z x
,
z y
.
解法1 得
zzuzv x ux vx
eusivn yeuco v1 s
ex[y ysix ny )( co x y s), (]
zzuzv y u y v y
(2) (3)
2.设函数w=f(u,v)有连续偏导数,而 u(x,y,z),
v(x,y,z)都有偏导数,求复合函数
w f[( x ,y ,z )( ,x ,y ,z )]
的偏导数 w,w,w . x y z
借助于结构图,可得
w w u w v, x u x v x
wwuw v,
(4)
y u y v y
x y 公式应是:
z f f v,
x x v x z f v.
(6)
y v y
注意: 这里的 z 与f 是代表不同的意义.其中 z
x x
x
是将函数 zf[x,(x,y)中]的y看作常量而对自变量x
求偏导数,而 f 是将函数f(x,v)中的v看常量而对第一 x

专科起点升本科高等数学(二)知识点汇总

专科起点升本科高等数学(二)知识点汇总

专科起点升本科高等数学(二)知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)cbx axyb kx y 2一般形式的定义域:x ∈R(2)xk y 分式形式的定义域:x ≠0 (3)x y 根式的形式定义域:x ≥0(4)x ya log 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x 时,恒有)()(21x f x f ,)(x f 在21x x ,所在的区间上是增加的。

当21x x 时,恒有)()(21x f x f ,)(x f 在21x x ,所在的区间上是减少的。

2、函数的奇偶性定义:设函数)(x f y 的定义区间D 关于坐标原点对称(即若D x ,则有D x )(1) 偶函数)(x f ——D x ,恒有)()(x f x f 。

(2) 奇函数)(x f ——D x,恒有)()(x f x f 。

三、基本初等函数1、常数函数:c y,定义域是),(,图形是一条平行于x 轴的直线。

2、幂函数:ux y ,(u 是常数)。

它的定义域随着u 的不同而不同。

图形过原点。

3、指数函数定义: xa x f y)(, (a 是常数且0a,1a ).图形过(0,1)点。

4、对数函数定义: x x f y a log )(, (a 是常数且0a,1a )。

图形过(1,0)点。

5、三角函数(1) 正弦函数: x ysin 2T ,),()(f D ,]1,1[)(D f 。

(2) 余弦函数:x y cos .2T ,),()(f D ,]1,1[)(D f 。

(3) 正切函数: x y tan .T ,},2)12(,|{)(Z R kkxxx f D ,),()(D f .(4) 余切函数: x y cot .T ,},,|{)(Z R kk xxx f D ,),()(D f .5、反三角函数(1) 反正弦函数: x y sin arc ,]1,1[)(f D ,]2,2[)(D f 。

复合函数求偏导解读

复合函数求偏导解读

z f f v , x x v x (6) z f v . y v y
z z f 注意: 这里的 与 是代表不同的意义.其中 x x x 是将函数 z f [ x, ( x, y )] 中的y看作常量而对自变量x f 求偏导数,而 是将函数f(x,v)中的v看常量而对第一 x 个位置变量x求偏导数,所以两者的含意不同,为了避 f 免混淆,将公式(6)右端第一项写 ,而不写为z . x x
z 由结构图看出自变量x到达z的路径有三条,因此 x 由三项组成.而每条路径上都有一个函数和一个中间变
量,所以每项是函数对中间变量及中间变量对其相应
自变量的偏导数乘积,即
z z u z v z w . x u x v x w x
同理可得到,
(2)
公式(*)与结构图两者之间的对应关系是:偏导数
式(*)由两项组成.
(2)公式(*)每项偏导数乘积因子的个数,等于该条路 径中函数及中间变量的个数.如第一条路径 x u z, 有一个函数z和一个中间变量u,因此,第一项就是两 z u 个偏导数 与 的乘积. u x 复合函数结构虽然是多种多样,求复合函数的偏 导数公式也不完全相同,但借助函数的结构图,运用 上面的法则,可以直接写出给定的复合函数的偏导数 的公式.这一法则通常形象地称为链式法则.
如何求出函数z对自变量x,y的偏导数呢?
定理8.5 设函数 u ( x, y ), v ( x, y )在点(x,y)处有偏 导数,而函数z=f(u,v)在对应点(u,v)有连续偏导数,则 复合函数 z f [ ( x, y ), ( x, y )] 在点(x,y)处的偏导数 z z 存在,且有下面的链式法则: , x y z z u z v , x u x v x (1) z z u z v . y u y v y 复合函数的结构图是

D9-4,5复合函数求导,隐函数求导

D9-4,5复合函数求导,隐函数求导

x y zx y z
y z f2 (x y z, xyz)
2w xz
f12 xy
f22 x y
为简便 起f11见
,y引(x入 z记) f号12
f1xy
2zf u
f,22f12yf2u2fv
,
例6 设 z 1 f ( xy) y( x y), f ,具有二阶连续
x 偏导数,求 2z .
xy
解 先求x的偏导数比较复杂,由题意知:
混合偏导数相等,则先求 z , y
z 1 f ( xy) x ( x y) y( x y),
y x
f ( xy) ( x y) y( x y),
2z 2z yf ( xy) ( x y) y( x y).
xy yx
二、多元复合函数的全微分 设函数 z f (u,v) 具有连续偏导数,则全微分
及求导方法 .
例如求由方程e y xy e 0所确定的隐函数y的导数.
两边同时对x求导:e y
dy dx
y
x
dy dx
0,dy dx
x
y ey
.
或用微分法:e ydy
xdy
ydx
0
dy dx
x
y ey
.
一、一个方程所确定的隐函数及其导数
定理1. 设函数
在点
的某一邻域内满足
① 具有连续的偏导数;
( yf1 zf 3)dx ( xf1 zf2)dy ( yf 2 xf 3)dz
u x
yf1
zf 3
u y
xf1
zf 2
u z
yf 2
xf
du u dx u dy u dz x y z

复合函数的偏导数和全微分--非常重要

复合函数的偏导数和全微分--非常重要

例 2 设 z = uv + sin t ,而 u = e t ,v = cos t ,
dz 求全导数 . dt

dz ∂z du ∂z dv ∂z = ⋅ + ⋅ + dt ∂u dt ∂v dt ∂t
= ve − u sin t + cos t
t
= e cos t − e sin t + cos t
链式法则如图示
u
x
z
v
y
∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ , ∂x ∂u ∂x ∂v ∂x
∂z ∂z ∂u ∂z ∂v ⋅ = + ⋅ . ∂y ∂u ∂y ∂v ∂y
类似地再推广,设 u = φ ( x , y ) 、v = ψ ( x , y ) 、 类似地再推广,
w = w( x , y ) 都在点( x , y ) 具有对 x 和 y 的偏导数,复合 的偏导数,
2
∂f 2′ ∂f 2′ ∂u ∂f 2′ ∂v ′′ ′′ = f 21 + xyf 22 ; = ⋅ + ⋅ ∂u ∂z ∂v ∂z ∂z ∂ 2w ′′ ′′ ′′ ′′ = f11 + xyf12 + yf 2′+ yz( f 21 + xyf 22 ) 于是 ∂x∂z
′′ ′′ ′′ = f11 + y( x + z ) f12 + xy 2 zf 22 + yf 2′.
第五节
复合函数的偏导数和全微分
一、链式法则
定理 定理 如果函数 u = φ (t ) 及 v = ψ (t ) 都在点t 可 导 , 函数 z = f ( u, v ) 在对应点 ( u, v ) 具有连续偏 导数, 导数,则复合函数 z = f [φ ( t ),ψ ( t )]在对应点t 可 且其导数可用下列公式计算: 导,且其导数可用下列公式计算:

多元复合函数的偏导数

多元复合函数的偏导数

z x v u v 1 u x ( u v ln u ) v x 因此 2 x ( x y ) ( x 2 y 2 ) x y 1 ( x 2 y 2 ) x y ln( x 2 y 2 ) 类似可得 z y .
z z dz du dv u v ( v u v 1 ) du ( u v ln u) dv (v uv 1 ) ( ux dx u y dy ) (uv ln u) (v x dx v y dy ) [v uv 1ux (uv ln u) v x ]dx [v uv 1u y (uv ln u)v y ]dy
三. 复合3 型
定理 3. 设 z f (u, v ) 在点(u,v) 处可微, u ( x , y ) , v ( x, y ) 在点(x,y) 处可微, 则复合函数 z f [ ( x , y ), ( x , y )] 在 点 (x,y) 处可微, 且
z z u z v ; x u x v x
z z u z v . y u y v y
注: 若只求偏导数, 则要求u, v 偏导数存在就可以了。 但必须要求外层函数 f 可微。
p f ( x 2 y 2 z , x y z ), f 具有二阶偏导数, 例 4. 设 求 p x , p xz , p yz .
当 z f (u, v ) 不是复合函数时也有 dz f1 ' du f 2 ' dv . 这称为一阶全微分不变性。 高阶全微分不具有不变性。
例 8. 设 z ( x 2 y 2 ) x y , 求 z x , z y . 记 解: u x 2 y 2 , v x y , 则 z u v ,

高等数学偏导教材下册目录

高等数学偏导教材下册目录

高等数学偏导教材下册目录第一章偏导数的概念与计算方法1.1 偏导数的引入1.1.1 多元函数的定义1.1.2 偏导数的定义1.1.3 偏导数的几何意义1.2 偏导数的计算方法1.2.1 隐函数求偏导1.2.2 复合函数求偏导1.2.3 参数方程求偏导1.3 高阶偏导数与混合偏导数1.3.1 高阶偏导数的定义1.3.2 高阶偏导数计算方法1.3.3 混合偏导数的计算第二章偏导数的几何应用2.1 切线与法线2.1.1 曲线的切线与法线定义2.1.2 曲线的切线与法线斜率计算 2.1.3 高阶导数与曲率2.2 函数的极值与最值2.2.1 极值的定义与判定条件2.2.2 最值的计算方法2.2.3 函数图像的分析与应用2.3 泰勒展开与最优逼近2.3.1 泰勒展开的概念2.3.2 泰勒展开的计算方法2.3.3 最优逼近的原理与应用第三章多元函数微分学3.1 多元函数的微分3.1.1 多元函数的微分定义3.1.2 多元函数的微分计算方法 3.1.3 微分的几何应用3.2 隐函数与参数方程的微分3.2.1 隐函数的微分定理3.2.2 参数方程的微分计算3.2.3 微分方程的应用3.3 多元函数的全微分与导数3.3.1 多元函数全微分的概念3.3.2 多元函数全微分的计算方法 3.3.3 多元函数导数的应用第四章多元函数的积分学4.1 重积分的引入4.1.1 二重积分的定义与性质4.1.2 三重积分的定义与性质4.1.3 重积分计算方法4.2 广义积分与变量变换4.2.1 广义积分的定义与收敛性 4.2.2 变量变换的概念与方法4.2.3 曲面积分的计算4.3 重积分的应用4.3.1 几何体的体积计算4.3.2 质心与转动惯量的计算4.3.3 牛顿引力与电荷的计算第五章多元函数的级数展开5.1 函数的多项式逼近5.1.1 傅里叶级数展开的基本思想5.1.2 傅里叶级数与函数的逼近5.1.3 傅里叶级数的计算方法5.2 幂级数与泰勒级数5.2.1 幂级数的概念与性质5.2.2 幂级数的收敛域与收敛性5.2.3 泰勒级数的计算与应用5.3 多元函数的级数展开5.3.1 多元函数的Tayler展开5.3.2 多元函数的Fourier展开5.3.3 级数展开在物理与工程中的应用总结通过《高等数学偏导教材下册目录》的学习,我们了解了偏导数的概念与计算方法,同时学习了偏导数在几何应用中的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
u du , v dv t dt t dt
uv
o( )
tt
(△t<0 时,根式前加“–”号)
d z z d u z dv ( 全导数公式 ) d t u d t v d t
4
说明: 若定理中
偏导数连续减弱为
偏导数存在, 则定理结论不一定成立.
例如: z f (u, v)
f 具有二阶连续偏导数,
求 w, 2w . x xz
w , f1 , f2
解: 令 u x y z , v xyz , 则
uv
w f (u, v)
w x
f2 yz
x y zx y z
y z f2 (x y z, xyz)
2w xz
f12 x y
解: u f x x

2xex2
y2 z2
2ze x 2

y
2

z
2

2
x sin
y
u
2 x (1 2 x2 sin 2 y) e x2 y2 x4 sin 2 y
xyz
u y

f y

f z

z y
2ye x2 y2 z2 2ze x2 y2 z2 x2 cos y
1) 中间变量多于两个的情形. 例如, z f (u, v, w) ,
u (t), v (t), w (t)
dz z du z dv z dw d t u d t v dt w dt
z
uvw
f1 f2 f3

f12
f2 2
x
yx y
6
3) z f (x, v) , v (x, y)
当它们都具有可微条件时, 有
z f
z x

f x
z y
f1 f21 f2 2
xv xy
注意: 这里 z 与 f 不同, x x
z 表示固定 y 对 x 求导, f 表示固定 v 对 x 求导
uvt tt
注意:多元抽象复合函数求导在偏微分方程变形与 验证解的问题中经常遇到, 下列两个例题有助于掌握 这方面问题的求导技巧与常用导数符号.
11
练习2:
u x

f1
u y

f1
u z
f 2

1 y
f1
f2


x y2
f1

1 z
f 2


y z2
f 2
12
例4. 设
f22 x y
为简便 起f11见
,y引(x入 z记) f号12
f1xy
2zf u
f,22f12yf2u2fv
,

13
练习3:
z x
f1
2z x y
f2
f 11
f 21 f 23
f 13
v y
eu sin v eu cos v 1
uv x yx y
8
练习1:
z z z
v x
y
1

y x2

x y2

u
2
u
v
2
(1)
9
例2. u f (x, y, z) ex2 y2 z2 , z x2sin y, 求 u , u x y
2) 中间变量是多元函数的情形.例如,
t tt
z f (u, v) , u (x, y), v (x, y)
z x
z u z v u x vuv
z z u z v y u y v y
u
u2v 2 v
2
,
0,
u2 v2 0 u2 v2 0
ut, vt
易知:
但复合函数 z f (t, t ) t 2
d z 1 z du z dv 0 1 0 1 0
d t 2 u dt v dt
5
推广: 设下面所涉及的函数都可微 .
第四节 多元复合函数的求导法则
1
一元复合函数 求导法则
微分法则
本节内容: 一、多元复合函数求导的链式法则 二、多元复合函数的全微分
2
一、多元复合函数求导的链式法则
定理. 若函数
z f (u, v)
处偏导连续, 则复合函数
在点 t 可导, 且有链式法则
d z z d u z dv d t u d t v d t
x
x
口诀 : 分段用乘, 分叉用加, 单路全导, 叉路偏导
7
例1. 设 z eu sin v , u xy , v x y , 求 z , z .
x y
解: z
z v
x
v x
eu sin v eu cos v 1
z
z
z v
y
z
uv
证: 设 t 取增量△t , 则相应中间变量 有增量△u ,△v ,
z z u z v o ( )
u v
tt
3
z z u z v o( ) ( (u)2 (v)2 )
t u t v t t
则有 u 0, v 0,
14
二、多元复合函数的全微分
设函数
都可微,
则复合函数 z f ( (x, y) , (x, y))的全微分为
dz z dx z dy x y
( z u z v ) dy u y v y
( u dx u dy ) x y
( v dx v dy ) x y
du dv
可见无论 u , v 是自变量还是中间变量, 其全微分表达 形式都一样, 这性质叫做全微分形式不变性.
15
例 6. 利用全微分形式不变性再解例1.
2 ( y x4 sin y cos y ) e x2 y2 x4 sin 2 y
xy
10
例3. 设 z uv sin t , u et , v cost , 求全导数 dz .
dt
解: dz z du
z
dt u dt
t
z
vet
cost
e t (cos t sin t) cos t
相关文档
最新文档