冰蓄冷复习小结

合集下载

冰蓄冷资料

冰蓄冷资料

三、 静态制冰、动态制冰优缺点及适用场合
制冰方式
主要优点
主要缺点
适用场合
1、 冷剂盐水含量高(25%),用量大,成 本增加。
2、 制冷机蒸发温度低(-10~-23℃),制冷
盘管 或冰 球等
1、 控制简单,容易实现。 2、 可直接选用成品蓄冰设备,商品化程度
高。
效率低。 3、 不可直接取用,需要二次换热,会增
加能量损失。 4、 取冷率低,不可以集中大量取冷。
1、 空调 2、 冷藏陈列柜供冷
静 态 制
5、 取冷温度高。 6、 盐水泄漏会污染被冷却介质。 7、 价格高,设备初投资较高。

1、 制冷机蒸发温度低(-15~-18℃),制冷 1、 陆用鱼贝类冷藏
管冰 或片 冰等
1、 结构简单,体积小 2、 控制简单,容易实现。 3、 可直接选用成品蓄冰设备,商品化程
制冰方式 静态制冰
工况
制冷量
轴功率
COP
35/-16
510.3
164.7
3.1
动态制冰
盐水溶液
35/-6
753.1
169.9
4.43
过冷水
35/-3
840.4
170.8
4.92
五、 相同冷量常规空调与蓄冷空调运行费用比较
对于不同的客户,要求不同,选择制冷机会有不同。不考虑主机配置成本,单就系统
运行费用差异比较。
附动态制冰照片
制出冰浆
冰层沉积
过冷水制冰系统
目前的冰蓄冷工程中,制冰方式主要有静态制冰和动态制冰两种型式。 1、静态制冰 常用的静态制冰主要有冰盘管式、封装式(如冰球等)或管冰、片冰、板冰等。 冰盘管式或封装式静态制冰在制冰过程中,载冷剂如乙二醇溶液、盐水溶液等冷却到 0℃以下并送入蓄冰槽内,在盘管内或冰球外流动,与盘管外的水或冰球内的溶液进行热交 换,使之降温结冰。管冰、片冰、板冰等静态制冰在制冰过程中,制冷剂与换热器另一侧 流动的水进行热交换,使水结成一定厚度的冰,然后采用热气融霜或机械方法将制成的片 状冰块或管状冰柱剥离换热表面。 上述各种静态制冰运行时,冰本身始终处于相对静止状态,都同样存在随着冰层的增 加,水与冷媒之间的热阻增大的问题,制冰过程必须克服随厚度增加而带来的越来越大的 冰层热阻,从而导致制冷机蒸发温度随之降低,制冷机制冰效率大大降低。 2、动态制冰 动态制冰目前使用的主要有过冷水制冰和盐水溶液制冰两种。 过冷水动态制冰在制冰过程中,水在过冷却器(即制冰机或蒸发器)内与制冷剂进行热交 换,被冷却至过冷状态(低于 0℃)而不结冰,保持水流动状态,再经过过冷解除装置,完 全释放过冷度成为 0℃的冰浆进入蓄冰槽中。在蓄冰槽中冰水分离,水被再次输送到过冷却 器继续循环,直至蓄冰槽中冰量达到要求。 盐水溶液动态制冰在制冰过程中,低浓度的盐水溶液或海水在制冰机中与管外流动的 制冷剂进行热交换,水被制成冰晶析出,成为冰浆进入蓄冰槽,制冰机内换热表面无冰层 附着。在蓄冰槽中冰与溶液分离,盐水溶液被再次输送到制冰机继续循环。 上述各种动态制冰运行时,冰浆始终处于运动状态,不存在冰层热阻的问题,制冰机 内始终保持水或盐水溶液与冷媒的换热,制冷机运行工况恒定,制冰效率在整个制冰过程 中没有衰减。

冰蓄冷课程设计

冰蓄冷课程设计

冰蓄冷课程设计一、课程目标知识目标:1. 学生能够理解冰蓄冷技术的基本原理和其在建筑节能中的应用。

2. 学生能够描述冰蓄冷系统的组成及其工作过程。

3. 学生能够掌握冰蓄冷系统的主要性能参数及其影响因素。

技能目标:1. 学生能够运用所学的知识,分析冰蓄冷系统在不同工况下的运行特性。

2. 学生能够设计简单的冰蓄冷系统,并进行初步的性能评估。

3. 学生能够运用图表、数据等工具,对冰蓄冷系统的节能效果进行定量分析。

情感态度价值观目标:1. 培养学生对冰蓄冷技术及其在节能减排中重要性的认识,激发学生对环保节能技术的兴趣。

2. 培养学生团队协作、积极主动参与探究的学习态度,增强学生的实践和创新能力。

3. 引导学生关注新能源和可再生能源的发展,树立绿色、可持续发展观念。

课程性质:本课程为高二年级物理学科选修课程,结合新能源技术在建筑节能领域的应用,提高学生的实际操作能力和创新能力。

学生特点:高二年级学生对物理知识有一定的掌握,具备基本的图表分析能力和实验操作能力。

教学要求:注重理论与实践相结合,通过案例分析、实验操作、小组讨论等形式,使学生掌握冰蓄冷技术的基本知识和应用能力。

同时,关注学生的情感态度价值观培养,提高学生的环保意识和创新能力。

在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 冰蓄冷技术原理:介绍冰蓄冷的基本概念、工作原理及在建筑节能中的应用。

教材章节:第二章第三节《新能源技术在建筑节能中的应用》2. 冰蓄冷系统组成:分析冰蓄冷系统的各个组成部分及其功能。

教材章节:第二章第四节《冰蓄冷系统的组成与分类》3. 冰蓄冷系统工作过程:讲解冰蓄冷系统在不同工况下的运行过程及其特性。

教材章节:第二章第五节《冰蓄冷系统的工作过程与运行特性》4. 冰蓄冷系统性能参数:介绍冰蓄冷系统的主要性能参数,包括蓄冷量、制冷量、COP等,并分析影响这些参数的因素。

教材章节:第二章第六节《冰蓄冷系统性能参数及其影响因素》5. 冰蓄冷系统设计:讲解冰蓄冷系统的设计方法,包括负荷计算、设备选型等。

冰蓄冷

冰蓄冷

一.名词解释相变蓄能(潜热蓄能):利用蓄热材料在发生相变时,吸收或放出热量来蓄能或释能。

显热蓄能:蓄能材料在蓄存和释放热能时,只是材料自身发生的温度的变化,而不发生其他的变化。

部分蓄冷:在夜间非用电高峰期时制冷设备运行,储存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分则由制冷设备承担。

全部蓄冷:在夜间非用电高峰期,启动制冷机进行制冷,当所蓄冷量达到空调所需的全部冷量时,制冷机停机;在白天空调时,蓄冷系统将冷量转移到空调系统,空调期间制冷机不运行。

主机在蓄冷槽上游:空调回水先经主机,使主机能在较高的蒸发温度下运行,提高了压缩机的容量和效率,使能耗降低。

蓄冷槽在较低温度下运行,释冷速度放低。

主机下游:空调回水先经蓄冷槽,使蓄冷槽的放冷速度提高,但为了防止过快的消耗蓄冷量,需要控制蓄冷槽出口温度。

而主机在较低的温度下工作,使能耗增加。

蓄冷密度:m3 /(kw·h)动态蓄冰:冰的制备和存储不在同一位置,制冰机和蓄冷槽相对独立。

静态蓄冰:冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构。

自然分层型蓄冰槽:利用密度的影响将热水和冷水分隔开。

水的密度与温度有关,温度越低,密度越大。

间接供冷水系统:在供冷回路中采用换热器与用户间形成间接连接。

换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路。

蓄能:TES:Thermal Energy StorageIPF :Ice Packing FactorFOM:Figure of MeritGSHP:Ground Source heat pump二.书本知识点P9 1.蓄冷空调:在夜间电网低谷期,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网用电高峰期,再将冷量释放出来,满足高峰负荷的需要。

水蓄冷——是利用蓄冷温度在4~7°C之间的显热进行蓄冷。

使用常规的制冷机组,可实现蓄冷和蓄热的双重用途。

蓄冷、释冷运行时冷水温度相近,制冷机组在这两种运行工况下均能维持额定容量和效率。

冰蓄冷技术

冰蓄冷技术

冰蓄冷技术周明一、冰蓄冷空调技术及其发展背景蓄冰空调系统即是在电力负荷很低的夜间用电低谷期,采用电制冷机制冷,将冷量以冰的形式贮存起来。

在电力负荷较高的白天也就是用电高峰期,把储存的冷量释放出来,以满足建筑物空调负荷的需要。

同时在空调负荷较小的春秋季减少电制冷机的开启,尽量融冰释冷,提供空调负荷。

蓄冰空调系统是“转移用电负荷”或“平衡用电负荷”的有效方法。

电力工业是国民经济的基础产业,目前我国的发电装机容量已居世界第二位,但仍不能满足电力消费量;同时电力消费出现夏季冬季差值持续加大的现象,而同一天的上午和晚上电力消费量亦较其他时段达到高峰。

过去国家实行供电侧调节,主要靠新建电厂和建设蓄能电站,但仍满足不了每年用电量以5~7%增长的需要,同时电力系统峰谷差也急剧增加,电网负荷率明显下降,极大影响了发电的成本和电网的安全运行。

由于电能本身不易储存,因此近年来国家从电用户方面考虑并制定了一系列的移峰填谷和节约用电政策加强对用电需求侧的管理(DSM),由于高峰用电量中空调用电一般占了30%以上,建筑物用电的40~60%左右,采用蓄冰空调后可大大缓解由于空调用电负荷在用电峰谷时段的不均衡而造成的电网不均衡。

因此现在全国有许多城市的电力部门都适时推出了分时电价结构和许多相关的优惠政策,以鼓励人们使用蓄冰空调。

冰蓄冷空调技术是实现电网削峰填谷主要方法之一,目前该项技术在世界上属于成熟的技术,正被世界各国广泛的应用于各个领域。

根据权威机构99年的资料显示,蓄冰工程已有1.5万个在全球各地正常运行,仅我国台湾省到2000年末就有近500个蓄冰空调系统正在运行。

国内目前也有150个蓄冰空调系统工程在运行或建设之中,发展势头十分迅猛。

国家电力公司也在有关文件中提出积极推广蓄冰空调技术,转移高峰电力,提高电网经济运行和资源综合利用水平,以达到节能和环境保护的目的。

二、冰蓄冷空调系统主要特点冰蓄冷空调系统相对于常规空调系统具有以下一些特点:1. 冷水机组高效率运行,系统运行灵活,冷量一比一的配置对负荷变化的适应性很强。

冰蓄冷知识点总结

冰蓄冷知识点总结

冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。

当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。

2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。

在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。

二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。

2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。

3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。

4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。

5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。

三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。

2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。

3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。

4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。

四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。

2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。

3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。

4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。

冰蓄冷储能 示范作用-概述说明以及解释

冰蓄冷储能 示范作用-概述说明以及解释

冰蓄冷储能示范作用-概述说明以及解释1.引言1.1 概述概述冰蓄冷储能作为一种新兴的储能技术,在能源管理和节能领域发挥着重要的作用。

它利用低峰时段的电能,将电能转化为冷能,然后储存起来,在高峰用电时释放出冷能,从而实现了能源的高效利用和需求的灵活调节。

冰蓄冷储能系统具有大容量、高效性、可靠性等优点,因此在建筑物空调、工业制冷、能源供应管理等领域具有广泛应用前景。

本文将对冰蓄冷储能的原理、应用领域以及其示范作用进行详细探讨。

首先,我们将介绍冰蓄冷储能的基本原理,包括冰蓄冷储能的工作原理和基本组成部分。

然后,我们将探讨冰蓄冷储能在建筑物空调、工业制冷以及能源供应管理中的应用领域,包括其在节能减排、电力峰谷填谷、可再生能源利用等方面的价值和潜力。

通过对冰蓄冷储能的示范作用的分析,我们将探讨其在能源领域中的重要作用。

冰蓄冷储能可以通过平衡电网负荷、提高节能效果、增强电力系统的稳定性等方面,为未来能源供应提供重要支持。

同时,我们也将对未来冰蓄冷储能技术的发展前景进行展望,包括其在能源管理、可再生能源发展等方面的应用前景。

综上所述,冰蓄冷储能作为一种新型的节能技术,具有广泛的应用前景和示范作用。

通过深入研究和应用冰蓄冷储能技术,我们可以实现能源的高效利用、电力系统的可靠稳定以及减少对传统能源的依赖,进一步推动可持续能源的发展。

1.2文章结构文章结构部分的内容可以描述整篇文章的框架和主要内容安排,为读者提供一个清晰的大纲,使其能够更好地理解文章的组织结构和内容安排。

在介绍文章结构时,可以使用下述内容:本文将按照以下结构来组织论述内容:第一部分是引言部分,主要包括三个方面的内容:概述、文章结构和目的。

在概述中,将简要介绍冰蓄冷储能的背景和概念,引发读者对该技术的兴趣。

随后,将详细介绍本文的结构,包括各个部分的标题和主要内容,以便读者能够清晰地了解全文的组织结构。

最后,明确本文的目的,即通过论述冰蓄冷储能的示范作用和未来发展前景,提高读者对冰蓄冷储能技术的认识和了解。

冰蓄冷课程设计说明书

冰蓄冷课程设计说明书

冰蓄冷课程设计说明书一、教学目标本课程旨在让学生了解和掌握冰蓄冷技术的基本原理和应用,培养学生的科学思维和创新能力,提高学生的环保意识和实践能力。

具体目标如下:1.知识目标:学生能够理解冰蓄冷技术的原理、设备和应用场景,掌握相关的物理和化学知识。

2.技能目标:学生能够运用冰蓄冷技术解决实际问题,如设计简单的冰蓄冷空调系统,进行能效分析和优化。

3.情感态度价值观目标:学生能够认识到冰蓄冷技术在节能减排和可持续发展方面的重要性,培养学生的社会责任感和使命感。

二、教学内容本课程的教学内容主要包括冰蓄冷技术的基本原理、设备和应用。

详细的教学大纲如下:1.冰蓄冷技术的基本原理:介绍冰蓄冷技术的概念、工作原理和优点,分析冰蓄冷过程中的热力学现象和能量转换。

2.冰蓄冷设备:讲解冰蓄冷设备的种类、结构和性能,包括冰盘管、冰球、冰砖等,以及各自的优缺点和适用场景。

3.冰蓄冷应用:介绍冰蓄冷技术在空调、制冷、储能等领域的应用,分析冰蓄冷系统的设计和运行原理。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:通过讲解冰蓄冷技术的基本原理、设备和应用,使学生掌握相关知识。

2.讨论法:学生针对冰蓄冷技术的热点问题和实际案例进行讨论,培养学生的思考和分析能力。

3.案例分析法:分析具体的冰蓄冷项目案例,使学生了解冰蓄冷技术在实际工程中的应用和效果。

4.实验法:安排学生进行冰蓄冷实验,让学生亲手操作,培养学生的实践能力和创新能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用国内权威出版的冰蓄冷技术教材,为学生提供系统的理论知识。

2.参考书:提供相关的科研论文和工程案例,拓展学生的知识视野。

3.多媒体资料:制作冰蓄冷技术的多媒体课件和视频,提高学生的学习兴趣。

4.实验设备:配置冰蓄冷实验所需的设备器材,让学生进行实践活动。

五、教学评估本课程的评估方式将采用多元化的形式,以全面、客观地评价学生的学习成果。

冰蓄冷的原理

冰蓄冷的原理

冰蓄冷的原理一、引言冰蓄冷技术是一种通过利用冰的融化吸收热量来实现空调制冷的技术。

这种技术在工业、商业和家庭等领域得到广泛应用,具有节能环保、运行稳定等优点。

本文将详细介绍冰蓄冷的原理。

二、冰蓄冷的基本原理1.相变潜热物质在相变时会吸收或释放大量的热量,这种热量称为相变潜热。

水从液态转变为固态时,需要吸收相当于其自身质量乘以80%的热量,而从固态转变为液态时,则需要释放同样数量的热量。

2.传导换热传导是物质之间由高温向低温传递能量的过程。

在冰蓄冷系统中,通过传导将室内空气中的热量传递到储存了大量冰块的蓄冰槽内,使得室内温度得到降低。

3.循环系统循环系统是指将制冷剂通过压缩、膨胀、液化和汽化等过程循环使用,从而实现制冷的过程。

在冰蓄冷系统中,循环系统是将制冷剂通过蒸发器、压缩机、冷凝器和节流阀等部件进行循环使用。

三、冰蓄冷的工作原理1.储存阶段在储存阶段,制冷剂通过压缩机被压缩成高温高压气体,然后通过冷凝器散发热量,变成高温高压液体。

接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。

这时,蓄冰槽内的水开始结成大块的冰块,并吸收室内空气中的热量。

2.放电阶段在放电阶段,当室内温度达到预设值时,控制系统会切断制冷剂的供应,并启动水泵将储存在蓄冰槽中的大块冰块带入蒸发器。

此时,室内空气通过风机被吹过蒸发器并与储存在其中的大块冰块接触。

由于相变潜热的作用,冰块在融化的过程中吸收了室内空气中的热量,从而使得室内温度得到降低。

3.再生阶段在再生阶段,当储存在蓄冰槽中的大块冰块全部融化后,控制系统会启动制冷机组进行再生。

制冷剂被压缩成高温高压气体,并通过冷凝器散发热量变成高温高压液体。

接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。

同时,储存在蓄冰槽中的水开始结成大块的冰块,并吸收室内空气中的热量。

四、结语通过以上介绍,我们可以看出,冰蓄冷技术是一种通过利用相变潜热和传导换热来实现空调制冷的技术。

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用冰蓄冷空调系统是一种先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中的空调系统。

它可以在夜间低电价时段使用电力,将冷却剂冷却到较低温度,然后将其储存下来,白天通过蓄冷设备释放冷量,达到降温的目的。

1.电动机和压缩机:电动机将冷却剂吸入,并将其压缩成高压、高温的气体状态。

2.冷却剂管道和换热器:冷却剂通过管道传输,在换热器中与空气或水进行换热,从而将空气或水的温度降低。

3.蓄冷设备:蓄冷设备是冰蓄冷系统的核心部分,用于储存冷却剂。

在夜间低电价时段,电动机将冷却剂冷却到低温,并将其储存在蓄冷设备中。

白天,通过控制阀门的开启和关闭,冷却剂释放出来,用于降低室内温度。

4.控制系统:冰蓄冷空调系统的控制系统根据室内温度和外界环境条件,控制电动机的启停以及蓄冷设备的开启和关闭,以实现室内温度的精确控制。

1.节约能源:冰蓄冷空调系统通过在夜间低电价时段储存冷却剂,并在白天释放冷量,能够更高效地利用电力资源,减少能源消耗。

2.提高能源利用率:由于低温冷却剂的制备和蓄冷设备的储存,冰蓄冷空调系统能够提高制冷效果和能源利用率,从而降低运行成本。

3.灵活控制:冰蓄冷空调系统的控制系统可以根据室内温度和外界环境条件,实现对室内温度的精确控制。

并且,它可以根据能源价格的变化灵活调整运行模式。

4.方便维护:冰蓄冷空调系统的维护相对简单,只需要定期进行冷却剂的添加和设备的检查维护即可。

冰蓄冷空调系统在建筑物、工厂、商场、酒店等场所有着广泛的应用前景。

由于其节能环保的特点,越来越多的地区和国家开始采用冰蓄冷空调系统来替代传统的空调系统。

它能够有效降低能耗,减少电力需求峰值,提高能源的利用率,同时减少对地球环境的负荷,达到节能减排的目的。

总之,冰蓄冷空调系统通过先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中,通过控制系统实现精确控制。

它具有节约能源、提高能源利用率、灵活控制和方便维护等优点,广泛应用于各个领域中。

冰蓄冷原理

冰蓄冷原理

冰蓄冷原理冰蓄冷是一种利用低温冰块来储存冷量,然后在需要时释放冷量的技术。

它在工业生产和生活中有着广泛的应用,能够有效地节约能源,提高能源利用效率。

冰蓄冷原理是基于物质的相变过程和热力学原理,下面我们来详细介绍一下冰蓄冷的原理和应用。

首先,冰蓄冷的原理是利用冰的相变过程。

在冰的温度保持在零度时,将其加热,直到冰完全融化为止,所需的热量称为融化热。

而在冰的温度保持在零度时,将其冷却,直到冰完全凝固为止,释放的热量也称为凝固热。

这两个过程中的热量变化是相等的,这就是冰的相变热原理。

因此,当我们需要冷量时,只需将冰块从零度的状态转变为融化状态,就可以释放大量的冷量。

其次,冰蓄冷的原理还涉及到热力学的热量平衡。

在冰的相变过程中,无论是融化还是凝固,都需要吸收或释放大量的热量。

这种热量的吸收和释放是通过冰块与外界的热交换来实现的。

当冰块吸收热量时,周围的环境就会变得更冷,从而实现了冷却的效果。

而当冰块释放热量时,周围的环境就会变得更热,从而实现了加热的效果。

这种热量平衡的原理是冰蓄冷技术能够实现节能的关键。

最后,冰蓄冷技术的应用非常广泛。

在工业生产中,冰蓄冷可以用于空调系统、冷冻设备、制冷车辆等领域,能够有效地降低能源消耗,提高生产效率。

在生活中,冰蓄冷可以用于制冷剂、冷藏食品、冷藏药品等领域,能够延长物品的保鲜期,提高生活质量。

此外,冰蓄冷还可以用于储能系统,将低峰期的电能转化为冷能,然后在高峰期释放冷量,实现电能的储存和调峰。

总之,冰蓄冷技术是一种高效节能的制冷技术,其原理是基于冰的相变和热量平衡。

它在工业生产和生活中有着广泛的应用,能够提高能源利用效率,降低能源消耗,是一种非常值得推广和应用的技术。

希望通过本文的介绍,能够更多地了解冰蓄冷的原理和应用,促进其在各个领域的推广和发展。

冰蓄冷空调介绍

冰蓄冷空调介绍

蓄冷技术原理简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调争用高峰电力的矛盾。

目前较为流行的蓄冷方式有三种,即水蓄冷、冰蓄冷、优态盐蓄冷[1]。

空调蓄冷系统合理利用峰谷电能,削峰填谷。

在电力结构峰谷差距不断加大的今天,蓄冷系统将会带来空调系统的革命,在平衡电力消耗方面将起到不可估量的作用。

冰蓄冷空调系统是在空调负荷很低的时间制冷蓄冰,而在空调负荷高峰时化冰取冷,以此来全部或部分转移制冷设备的运行时间,并采用此办法规避用电高峰,让出空调用电份额给其他生产部门,以创造更多的财富;另外利用夜间低价电,可降低运行费用,同时利用蓄冰技术,可减少制冷设备的装机容量,减少电力负荷,降低主机一次性投入,其主要优点有:1).利用蓄能技术移峰填谷,平衡电网峰谷荷,提高电厂发电设备的利用率,降低运行成本,节省建设投入。

2).利用峰谷荷电力差价,降低空调年运行费用。

3).减少冷水机组容量,降低主机一次性投资;总用电负荷少,减少配电容量与配电设施费,减少空调系统电力增容费。

4).使用灵活,过渡季节或者非工作时间加班,使用空调可由融冰定量提供,无需开主机,冷量利用率高,节能效果明显,运行费用大大降低。

5).具有应急冷源,提高空调系统的可靠性,特别是针对南昌地区线路老化,常停电。

6).冷冻水温度可降到1~4℃,可实现大温差低温送风,节省水、风系统的投资及能耗,相对湿度低,提高空调高品质,防止中央空调综合症。

总结蓄冷空调设计要点如下:一、设计前提条件制冷以电为驱动能源的空调工程,符合下列条件之一时,可采用蓄冰系统。

1.非全日制空调工程或昼夜负荷相差悬殊的空调工程;2.空调负荷峰谷悬殊的连续空调工程;3.无电力增容条件或限制增容的空调工程;4.某一时段限制空调制冷用电的空调工程;5.需备用冷源的空调工程;6.要求采用低温冷水或低温送风的空调工程;7.获得电力补贴或通过技术经济比较,确能获得经济效益的空调工程。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点模板1:【冰蓄冷空调系统的优点和缺点】一:冰蓄冷空调系统的优点1.1 节能环保冰蓄冷空调系统采用冰蓄冷技术,能够利用夜间电力峰谷时段进行蓄冷,白天通过释放冷能来供应空调需求。

相比传统空调系统,冰蓄冷系统的能效更高,可节约能源,减少能源消耗与排放。

1.2 调节性好冰蓄冷空调系统具有良好的调节性能,能够根据室内空调需求实时调节制冷量,保持室内舒适温度,提高的使用体验。

1.3 降峰填谷冰蓄冷空调系统的蓄冷技术使其能够利用夜间电力低谷时段进行蓄冷,实现降峰填谷。

这不仅可以缓解白天用电高峰时段的电力压力,还能提高电网供电的稳定性和安全性。

1.4 声音低冰蓄冷空调系统的主要制冷设备通常安装在室外或者室内的专用机房中,因此室内的噪音较低,对的生活和工作不会造成太大的干扰。

二:冰蓄冷空调系统的缺点2.1 设备成本高由于冰蓄冷空调系统需要配备专门的设备和蓄冷设施,其设备成本相对较高。

对于一些小型场所来说,可能无法承担这种高额设备投资。

2.2 维护成本较高冰蓄冷空调系统需要定期进行维护和检修,确保设备的正常运行。

这就需要投入额外的人力和财力成本,对于一些资源有限的来说会增加一定的负担。

2.3 系统复杂冰蓄冷空调系统由多个组成部分组成,包括冷源设备、储冷设备、供冷系统等,系统复杂度相对较高。

这就需要操作人员具备一定的专业知识和技能,才能保证系统正常运行。

2.4 储冰空间需求大冰蓄冷空调系统需要专门的蓄冷设施来储存冷能,而这些设施通常占地较大,对于一些场所空间有限的地方来说,可能无法满足储冷需求。

【文档结束】本文档涉及附件:无【法律名词及注释】1. 能效:能源效率,衡量能源利用程度的指标。

2. 降峰填谷:利用低谷时段进行电力供应,平衡电力负荷。

模板2:【冰蓄冷空调系统的优点和缺点】一:冰蓄冷空调系统的优点1.1 能量利用率高冰蓄冷空调系统通过储存冷能,在夜间低谷时段制冷,白天供应冷空气,能充分利用电能,并提高能量利用率。

蓄冰工程施工总结

蓄冰工程施工总结

蓄冰工程施工总结一、工程背景随着我国经济的快速发展,电力需求逐年攀升,电网负荷高峰时段电力供应紧张的问题日益凸显。

为缓解这一问题,提高电网调峰能力,降低电力系统运行成本,蓄冰工程应运而生。

蓄冰工程是一种利用低峰时段的电能进行冰蓄冷,高峰时段将蓄冰释放的热能用于空调、照明等负荷的工程技术。

本文以某蓄冰空调工程为例,对施工过程进行总结和分析。

二、工程概况本工程为某大型办公楼蓄冰空调系统,主要包括蓄冰池、冰盘管、冷却水系统、电源系统、控制系统等。

蓄冰池容量为200吨,采用水作为冷却介质。

冰盘管安装在办公楼的空调末端,通过循环泵和膨胀阀控制冰盘管的流量。

电源系统为蓄冰系统提供电力,控制系统负责对整个蓄冰系统进行监控和调节。

三、施工过程1. 蓄冰池施工蓄冰池施工的关键在于确保结构的严密性和强度。

首先,根据设计图纸进行蓄冰池的土建施工,包括池体、进水口、出水口等。

然后,进行池体的防水处理,采用内外防水混凝土,确保蓄冰池的防水性能。

最后,进行蓄冰池的设备安装,包括冷却水泵、进出水管道等。

2. 冰盘管施工冰盘管施工的关键在于确保冰盘管的布置合理、水流畅通。

首先,根据设计图纸进行冰盘管的布管,注意避免出现折弯和死弯。

然后,进行冰盘管的固定,采用专用固定支架,确保冰盘管的稳定性和安全性。

最后,进行冰盘管的保温层施工,采用保温材料对冰盘管进行保温,减少热量损失。

3. 冷却水系统施工冷却水系统施工的关键在于确保冷却水的流通能力和防腐蚀性能。

首先,进行冷却水泵的安装,根据设计要求选择合适的冷却水泵,确保冷却水泵的流量和扬程满足要求。

然后,进行冷却水管道的安装,注意管道布置的合理性和水流畅通。

最后,进行冷却水系统的防腐蚀处理,采用防腐材料对管道进行防腐,延长系统使用寿命。

4. 电源系统和控制系统施工电源系统和控制系统施工的关键在于确保系统的安全性和稳定性。

首先,进行电源系统的设备安装,包括变压器、开关柜等。

然后,进行控制系统的设备安装,包括PLC、传感器等。

冰蓄冷与常规方案比较说明

冰蓄冷与常规方案比较说明

冰蓄冷与常规方案比较说明冰蓄冷技术是一种利用低温储存能量的方法,在很多领域得到了广泛应用。

与常规方案相比,冰蓄冷具有许多优点,如高效节能、环保、可靠性高等。

下面将详细比较冰蓄冷与常规方案的优缺点。

首先,冰蓄冷技术在节能方面具有明显的优势。

常规空调系统大多采用直接电力供应,耗能较高。

而使用冰蓄冷技术,则可以利用低峰时段的电力进行制冷,将过剩的电能转化为冷能储存起来,以后在高峰时段使用。

这种储冷方式可以大幅度降低能耗,提高能源利用效率。

其次,冰蓄冷技术对环境友好。

常规制冷设备中,使用的制冷剂通常是臭氧层破坏物质,对环境造成危害。

而冰蓄冷技术使用的制冷剂是水,无毒、无害、可再生。

同时,冰蓄冷系统循环利用冷却水,避免了水资源的浪费。

在当前环境保护意识不断增强的背景下,冰蓄冷技术表现出独特的优势。

此外,冰蓄冷技术具有较高的可靠性和稳定性。

由于储冷系统是在低负荷时段工作,不受气温和负荷的波动影响,因此可以提供稳定的冷量输出。

与之相比,常规制冷系统在高峰时段可能面临负荷过大而无法满足需求的情况。

此外,冰蓄冷技术的储冷设备寿命周期较长,一般可达20年以上,相对于常规制冷设备的寿命更长。

然而,冰蓄冷技术也存在一些不足之处。

首先是设备成本较高。

冰蓄冷系统需要建造、安装和维护储冷设备,相对于常规制冷系统的投资成本较高。

其次,冰蓄冷系统的空间要求较大,需要有足够的场地来安装储冷设备,这在一些建筑空间有限的场合可能遇到困难。

此外,冰蓄冷技术在运行中需要合理安排供电时间和负荷需求,以便在合适的时段进行低价电能的储存和使用,这对于系统管理和运行控制提出了更高的要求,需要充分考虑到储冷系统与供电系统的协同作用。

综上所述,冰蓄冷技术在节能、环保、可靠性等方面具有明显的优势,尤其适用于大型建筑物、工业生产等场所。

虽然存在设备成本高、空间需求大等不足之处,但相信随着技术的发展和成本的下降,冰蓄冷技术将逐渐得到更广泛的应用,并为能源节约和环境保护做出更大的贡献。

制冷及制冷设备期末复习总结

制冷及制冷设备期末复习总结

制冷及制冷设备期末复习总结第一篇:制冷及制冷设备期末复习总结第一章1制冷:作为一门科学是指用人工的方法在一定时间和一定空间内将某物体火流体冷却,使其温度降到环境温度以下,并保持这个低温。

制冷技术的研究内容和理论基础:1)研究或的低温的方法和有关的激励以及与此相应的制冷循环,并对制冷循环进行热力学的分析和计算。

2)研究制冷剂的性质,从而为制冷机提供性能满意的工作介质。

机械制冷要通过制冷剂热力状态的变化才能实现。

所以,制冷剂的热物理性质是进行循环分析和计算的基础数据。

3)研究实验制冷循环所必须的各种机械和技术设备,包括他们得工作原理,性能分析,结构设计,以及制冷装置的流程组织,系统配套设计。

制冷机使用的工作介质称为制冷机。

制冷的方法很多,常见的有以下四种:液体汽化制冷、气体膨胀制冷、我流管制冷和热电制冷。

液体汽化制冷循环由工质低压下汽化、蒸汽升压、高压汽化和高压液体降压四个基本过程组成。

蒸汽喷射式制冷组成:喷射器、冷凝器、蒸发器、节流阀、泵。

7 喷射器组成:喷嘴、吸入室、扩压器。

8 吸附制冷:热能为动力的能量转换系统。

一定的固体吸附剂对某种制冷剂气体具有吸附作用。

吸附能力随吸附剂温度的不同而不同。

周期性的冷却和加热吸附剂,使之交换吸附和解析。

常用的吸附剂:水热电制冷:铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正、负极上,通电后,发现一个街头变热,另一个接头变冷。

这个效应称为帕尔贴效应。

用铜板和铜导线将N。

P半导体连成一个回路,同板和导线只起导电作用,回路用低压直流电源供电。

回路中接通电流时,一个结点变冷,另一个结点变热。

如果改变电流方向,两结点的冷、热作用互易,即原来的冷结点变热,原来的热结点变冷。

涡流管制冷:是压缩气体产生涡流运动并分离成冷、热两部分,其中冷气流用来制冷。

组成:喷嘴、涡流室、孔板、管子和控制阀涡流室将管子分为冷端和热端。

第二章1、理论循环与实际循环之间的差别:理论循环中没有考虑到制冷剂液体过冷和蒸汽过热的影响;没有考虑冷凝器、蒸发器和连接各设备的管道中因制冷剂的流动阻力产生的压力降;实际压缩过程并非等熵过程;系统中存在不凝性气体等。

冰蓄冷的原理特点应用

冰蓄冷的原理特点应用

冰蓄冷的原理特点应用原理介绍冰蓄冷是一种利用冰的物理特性来实现热能储存和释放的技术。

其原理基于冰的相变过程,即固态的冰在吸收热量的过程中会发生熔化,吸收的热量将用于将冰转化为水,而在释放热量的过程中,水会重新结晶为冰,从而释放出热量。

特点1.高储能密度:冰蓄冷系统能够在较小的体积内储存大量的热能,这使得冰蓄冷技术在需要高储能密度的领域具有优势。

例如,在建筑空调中的应用,冰蓄冷系统能够在低峰时段制冷并储存冷能,然后在高峰时段释放冷能,从而降低能源消耗。

2.高效节能:冰蓄冷系统利用低价电能制冷,在低峰时段制冷储存冷能,然后在高峰时段释放冷能供应空调系统使用,从而减少了高峰时段对电网的负荷需求,实现了电能的合理分配和利用,提高了能源利用效率。

3.稳定可靠:冰蓄冷系统采用稳定的物理过程,不涉及化学反应和移动部件,因此具有较高的可靠性。

而且,冰的相变过程有较大的潜热,可以在短时间内释放大量的热量,满足突发热负荷需求。

4.环保节能:冰蓄冷系统利用低价电能在低峰时段制冷,不仅降低了电能成本,还减少了电网的负荷需求。

同时,冰的制冷过程不会产生有害气体,对环境无污染。

应用领域1.建筑空调系统:冰蓄冷技术广泛用于大型建筑物的空调系统中。

它可以在夜间利用低价电能制冷并储存冷能,然后在白天高峰时段释放冷能供应空调系统使用,从而实现能源的高效利用,降低运营成本。

2.医疗领域:冰蓄冷技术在医疗领域也有应用。

例如,在手术中需要大量冷却的情况下,可以利用冰蓄冷系统提供大量的冷能,确保手术过程中的温度控制和患者的安全。

3.工业领域:一些工业过程需要控制温度,而冰蓄冷技术则可以用于提供稳定的制冷能力。

例如,在食品加工过程中需要进行冷却的情况下,可以利用冰蓄冷系统提供稳定的制冷能力,确保产品的质量和安全。

4.太阳能热利用系统:太阳能热利用系统中,冰蓄冷技术可以用于储存太阳能的热量。

例如,在太阳能集热系统中,可以用太阳能加热水,然后将热水通过冰蓄冷系统储存为冰,夜间或需要的时候再释放热能供应给建筑空调系统等。

冰蓄冷优缺点

冰蓄冷优缺点

冰蓄冷系统优缺点简述1 冰蓄冷系统优点1) 平衡电网峰谷荷,减缓电厂和供配电设施的建设。

2) 制冷主机容量减少,减少空调系统电力增容费和供配电设施费。

3) 利用电网峰谷荷电力差价,降低空调运行费用。

4) 电锅炉及其蓄热技术无污染、无噪声、安全可靠且自动化程度高不需要专人管理。

5) 冷冻水温度可降到1-4℃,可实现大温差、低温送风空调,节省水、风输送系统的投资和能耗。

6) 相对湿度较低,空调品质提高,可有效防止中央空调综合症。

7) 具有应急冷〔热〕源,空调可靠性提高。

8) 冷(热)量全年一对一配置,能量利用率高。

2 冰蓄冷系统缺点1) 通常在不计电力增容费的前提下,其一次性投资比常规空调大2) 蓄能装置要占用一定的建筑空间。

3) 制冷蓄冰时主机效率比在空调工况下运行低、电锅炉制热时效率有可能较热泵低。

4) 设计与调试相对复杂。

采用冰蓄冷空调系统的优缺点,主要优点:(1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧张;(2)冰水主机的容量减少,节省增容费用;(3)总用电设施容量减少,可减少基本电费支出;(4)利用低谷段电价的优惠可减少运行电费;(5)冰水温可低至1~4℃,减少空调设备风管的费用;(6)冷却水泵、冷冻水泵、冷却塔容量减少;(7)电力高压侧及低压侧设备容量减少;(8)室内相对湿度低,冷却速度快,舒适性好;(9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小;(10)充分利用24h有效时间,减少了能量的间歇耗损;(11)充分利用夜间气温变化,提高机组产冷量;(12)投资费用与常规空调相当,经济效益佳。

冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。

当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。

与普通空调相比所具有的优势:(1)节省电费。

(2)节省电力设备费用与用电困扰。

(3)蓄冷空调效率高,具有节能效果。

(4)节省冷水设备费用。

(5)节省空调箱倒设备费用。

请问冰蓄冷的原理和特点

请问冰蓄冷的原理和特点

请问冰蓄冷的原理和特点
冰蓄冷是一种利用冰的相变过程来储存和释放冷能的技术。

其原理主要包括以下几个步骤:
1. 储能阶段:通过制冷机组或夜间低温条件等方式将水或其他物质冷却到冰点以下,使其凝固成冰,并将冰储存在储冰容器中。

2. 蓄冷阶段:当需要冷却时,通过将冷却介质(如空气或水)与储冰容器接触,使冰吸收周围的热量并逐渐融化。

融化的过程会吸收大量的热量,从而使空气或水的温度降低。

3. 结冰恢复阶段:当冷却需求结束后,再次通过制冷机组或其他方式将剩余的冰重新冷却,恢复储存状态,以备下次使用。

冰蓄冷的特点包括:
1. 高储存密度:冰的相变热非常高,单位质量冰蓄冷能力远远超过常规的冷媒,可以在限定的空间内储存大量的冷能。

2. 高效节能:冰的相变过程需要吸收大量热量,使空气或水的温度降低,在蓄冷过程中能够节约能源成本,减轻电网的负荷。

3. 灵活性强:冰蓄冷系统可以根据需求进行调节,提供灵活的冷却能力,可以根据负荷需求进行峰谷调峰,实现能源的平衡利用。

4. 环保节能:冰蓄冷系统使用水为储存介质,无需使用化学冷媒等对环境有害的物质,同时冰蓄冷系统对电力系统具有削峰填谷的效应,可以提高电力系统的能效。

总之,冰蓄冷技术在能源节约和环境保护方面具有很大潜力,可广泛应用于建筑空调、工业制冷等领域。

冰蓄冷的优缺点介绍

冰蓄冷的优缺点介绍

冰蓄冷的优缺点介绍冰蓄冷空调的原理和优缺点介绍一、冰蓄冷的技术原理:冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。

在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。

国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。

二、冰蓄冷技术与普通空调相比所具有的优势:1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。

2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。

3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。

B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。

4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。

b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。

c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。

三、冰蓄冷技术与普通空调相比所具有的缺点:1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。

2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。

3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。

4、与普通空调系统相比需增加水管和风管的保温费用。

5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。

冰蓄冷空调常识

冰蓄冷空调常识

冰蓄冷空调系统常识冰蓄冷是利用冰的熔解热进行蓄冷,因此蓄冷密度较水蓄冷大,相同蓄冷能力的蓄冰槽与蓄水槽之体积比1:8~10。

与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使用蓄冷槽体积较小;温度稳定,便于控制。

常见的冰蓄冷系统形式:1、冰球式(Ice Ball):将溶液注入塑胶球内但不充满,预留一膨胀空间。

将塑料球放入蓄冰罐内,再注入冷水机组制出的低温乙二醇水溶液,使冰球内的溶液冻结起来。

融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过冰罐内塑胶球将冰球内的冰融化而释冷。

2、完全冻结式(Total-Freeze-Up):是将塑料或金属管伸入蓄冰筒(槽)内,管内通以冷水机组制出的低温乙二醇水溶液(也称二次冷剂),使蓄冰筒内90%以上的水冻结起来。

融冰时,让从空调负荷端流回的温度较高的乙二醇水溶液通过塑料或金属管内部,将管外的冰融化而释冷。

冰蓄冷空调系统是怎样运行的?夜间,冷水机组保持乙烯乙二醇溶液在-3℃~ -4℃运行,此时的乙烯乙二醇溶液会在机组与冰筒的热交换之间对流,慢慢的将冰筒内的水结成冰块。

在制冰运行时,乙烯乙二醇溶液是不通过空气处理机组的。

日间,由冷水机组回来的11℃部分溶液通过冰筒冷却至1℃;另一部分11℃的溶液则与冰筒出来的1℃溶液混合在一起而成为6℃,再而进入空气处理机组,约在13℃离去。

设定在6℃的三通控制阀操作此混合状态。

空气处理机组将24℃的空气冷却到13℃﹙常温系统﹚。

春秋季的日间,可以随意由冷水机组或蓄冰筒提供建筑物的全部冷量。

市场应用较成熟的有盘管式、冰球式、冰晶式。

盘管式特点:蓄冷及放冷过程稳定,水力管网易于平衡。

蓄冰及融冰速度较慢;盘管管道较细,流动阻力大。

冰球式特点:设备结构简单,阻力小,技术要求低。

蓄冰及融冰速度较快。

缺点:冰球需密集堆放,会造成冰球外冷媒水的流量不均及旁通,易引起传热的不稳定,冰球间反复挤压影响寿命。

蓄冰装置中使用塑料换热管与金属换热管之比较金属管的导热系数比之塑料管要大很多,但是,在对冰筒的影响方面,这只是一个并不重要的方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释
1、蓄冷密度:单位质量蓄冰介质所蓄存的能量
2、相变(潜热)蓄能:利用蓄冰介质的相变特性,蓄存相变潜热的蓄能方式
3、显热蓄能:指利用蓄能材料的温度变化来蓄存显热能量的蓄能方法
4、动态蓄冰:指冰的制备和储存不在同一位置,制冰机和蓄冷槽相对独立
5、静态蓄冰:指冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构
6、相变(潜热)蓄冷:利用介质的物态变化来蓄冷
7、显热蓄冷:通过降低蓄冷介质的温度进行蓄冷
8、飞轮蓄能:机械蓄能的一种,将电能转化成可蓄存的动能或势能:(1)电网电量富裕时,飞轮蓄能系统通过电动机拖动飞轮加速以动能形式蓄存电能(2)电网需电量时,飞轮减速并拖动发动机发电以放出电能
9、抽水蓄能:利用电力系统负荷低谷时的剩余电量,由抽水蓄能机组作水泵工况运行,将下水库的水抽至上水库,即将不可蓄存的电能转化成可蓄存的水的势能,并蓄存于上水库中
10、部分蓄冷:在夜间非用电高峰时制冷设备运行,蓄存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分由制冷设备承担。

11、全部蓄冷:其蓄冷时间与空调时间完全错开:夜间启动制冷机蓄冷,当其制冷量达到空调所需全部冷量时待机,白天空调时,蓄冷系统将冷量转移到空调系统,空调期间制冷机不工作
12、主机上游:空调回水先流经主机,使主机能在较高的蒸发温度下进行。

13、主机下游:在串联流程中,主机在蓄冷槽之后,空调回水先回到蓄冷槽里降温,再到主机降至供冷温度
14、机组优先:在串联流程中,主机位于蓄冷槽上游,空调回水先到其中取冷
15、蓄冰优先:从空调负荷端流回的热乙二醇溶液,先经蓄冰装置冷却到某一中间温度,而后经制冷机冷却至设定温度
16、移峰填谷:指在夜间电网低谷时间,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网高峰用电时间,再将冷量释放出来满足高峰空调负荷的需要。

这样,制冷系统的大部分耗电发生在夜间用电低谷期,而在白天用电高峰期只有辅助设备在运行,从而实现用电负荷的“移峰填谷”
17、自然分层型蓄水槽:利用密度的影响将冷热水隔开,依靠稳定的斜温层
斜温层:由于冷热水间自然的导热作用而形成的一个冷热温度过渡层。

厚度0.3~1.0m 18、间接供冷水蓄冷系统:系统在供冷回路中采用换热器与用户形成间接连接换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路,这样用户侧管路可防止氧化腐蚀、有机物及菌类繁殖等影响。

适用场合:主要适用于高层、超高层空调供冷。

19、外融冰:温度较高的空调回水直接送入盘管的表面结有冰层的蓄冷槽,使盘管表面上的冰层自外向内逐渐融化;
20、内融冰:来自用户或二次换热装置的温度较高的载冷剂(或制冷剂)仍在盘管内循环,通过盘管表面将热量传递给冰层,使盘管外表面的冰层自内向外逐渐融化进行取冷
21、盘管外蓄冰:是空调系统中常见的一种蓄冰方式即直接冻结在蒸发盘管上,盘管伸入蓄冷槽内构成结冰时的主干管
22、功能热流体:是由相变材料微粒(直径为微米量级)和单向传热流体构成的一种固液多相流体
23、封装冰蓄能:是将封装在一定形状的塑料容器内的水制成冰的过程
24、TES:蓄能Thermal Energy Storage
25、IPF:制冰率Ice Packing Factor 指蓄冷槽中制冰量与制冰前蓄冷槽内水量的体积百分比
26、FOM:冷量释放系数,指从蓄冷槽移走的冷量与理论可用蓄冷量之比。

27、GSHP:地源热泵Groud Source Heat Pump是以地源能作为热泵空调夏季制冷的冷却源,冬季采暖供热的低温热源,同时是实现采暖、制冷和生活用水的一种系统
简答题
1.空调系统应用的前提条件有哪些?
(1)合适的电费结构及其他优惠政策(2)空调冷负荷在用电峰谷时段应有一定的不均衡性。

2、主要蓄冷系统有哪些?各有何特点?
(1)水蓄冷系统:可使用常规冷水机组,显热蓄冷,蓄冷密度小(2)冰蓄冷系统:蓄冷密度大,蒸发温度低,制冷机效率降低(3)共晶盐蓄冷系统:蓄冷密度小,蒸发密度适中,腐蚀性强。

2、空调蓄冷系统的优缺点?
优点:(1)实现电力负荷的移峰填谷(2)减少空调冷热源设备的安装容量(3)作为备用冷源在供电不足时满足建筑物的空调要求(4)扩大供冷能力(5)采用风冷热泵型制冷机组的蓄冷系统cop的提升。

缺点:(1)制冰工况蒸发温度降低导致制冷机组的性能系数降低(2)增加投资,占用空间3、各类建筑物冷负荷分布图的区别包括哪些方面?
(1)冷负荷循环周期不同(2)冷负荷延续时间不同(3)平均负荷系数不同
4、蓄冷系统的运行策略是什么?有哪两种?一般选哪种?
指蓄冷系统以设计循环周期(如设计日或周等)的负荷及其特点为基础,以电费价格结构等条件对系统以蓄冷容量、释冷供冷或以释冷连同制冷剂共同供冷作出最优的运行安排考虑。

分为全部蓄冷和部分蓄冷,一般选用部分蓄冷
5、蓄能材料的分类及特性:
(1)显热蓄能材料:水是自然界最常见最理想的蓄能单纯物质,不仅溶解潜热很大,而且比热容也很大,价格便宜,无毒无害,随处可取
(2)潜热蓄能材料:a碱:碱的比热容高,熔解热大,稳定性强,在高温下蒸气压很低,价格便宜,也是较好的蓄热物质b金属与合金:金属必须是低毒、廉价的,铝熔解热大,导热性高,蒸气压力低,是一种较好的蓄能材料c混合盐:可根据需要将各种盐类配制成120~850度温度范围内使用的蓄热材料,其溶解热大,熔融时体积变化小,传热较好。

6、蓄冷系统工作流程有哪些?各有何特点?
串联和并联,串联又分为主机上游和主机下游(1)并联的优点是可以兼顾压缩机与蓄冰槽的容量与效率,但控制复杂(2)a 主机上游串联时,空调回水先流经主机,使主机在较高的蒸发温度下运行,可提高主机的效率,使能耗降低 b 主机下游串联适用于低温空调系统
7、内外融冰各有何特点?
(1)内融冰由于冰层的自然浮升力作用,使得冰层在整个融化过程中与盘管表面的接触面积可以保持基本不变,因而保证了在整个取冷过程中,取冷水温相当稳定
(2)外融冰由于空调回水与冰直接接触,换热效果好,取热快
8、简述水蓄冷系统与非蓄冷系统的差异
(1)模式:水蓄冷是开式,非是闭式(2)运行方式:水蓄冷是制冷回路与供热回路各自运行独立性强,非是两回路必须同时进行(3)效率:水蓄冷是利用夜间电力运行移峰填谷,非是加剧高峰用电量。

9、水蓄冷有何优优缺点?
优点:(1)设备选择性和可用性范围广(2)适用于常规供冷系统的扩容与改造(3)两种工况下均能维持额定容量和效率(4)降低初投资(5)可以实现蓄冷和蓄热的双重功能,(6)技术要求低,维修方便
缺点:(1)蓄冷密度小,占用空间大(2)蓄冷槽体积大,需增加保温层(3)不同温度的冷冻水容易混合,影响蓄冰效率(4)开放式蓄冷槽与空气接触,不洁,增加处理费用。

按照槽内水的混合情况,水蓄冷系统可分为混合型和温度分层型。

10、水蓄冷系统与空调系统的连接形式有哪几种?
(1)简单水蓄冷空调系统(2)换热器间接供冷式水蓄冷空调系统(3)压力控制直接供冷方式水蓄冷空调系统。

11、动态制冰和静态制冰相比有何优点?
冰层热阻小,在制冰期间制冷系统的COP下降小,制冰效率高;可产生流体冰,直接输送到冷空间,节省系统辅助设备投资
12、蓄冷空调和常规空调异同?
冷源不同,其余相同。

意义:移峰填谷、平衡电力负荷、改善发电机组效率、减小环境污染
14、影响斜温层的主要因素有(1)透过斜温层的导热(2)水与水槽壁面计沿槽壁的导热
15、布水器(散流器)的作用是什么?
引导水以重力流的形式缓慢地进入蓄冷槽,减少水流对槽内的扰动,形成一个冷温水混合程度最小的斜温层并通过减小可能产生的混合作用维持斜温层的稳定,减少因冷温水混合而引起的可利用冷量的损失。

16、水蓄冷槽结构设计要注意的方面有(1)应具有一定的结构强度(2)防水和防腐蚀性能(3)
具有良好的保温效果。

考虑的因素:形状、安装位置、结构与材料、防水保温
17、水蓄冷防水和保温的目的是什么?
保温:提高蓄冷能力,减少蓄冷槽的冷损失和因冷损失引起的蓄冷槽表面结露以及为防止温度变化产生的应力使蓄冷槽损坏
防水:避免保温材料由于吸水而影响保温材料性能,并防止地下水渗入保温层。

18、动态蓄冰相对于静态蓄冰的优点在(1)冰层势阻小,制冷机组cop下降小,制冷效率高(2)
可产生流体冰,直接输送到蓄冷空调,节省系统辅助设备投资。

19、共晶盐蓄冷系统的特点:(1)与常规空调系统基本相同,可采用高效冷水机组,并入已有的
空调系统(2)适用于常规空调系统改建为蓄冰系统,适用于旧楼房空调系统的改造(3)与冰蓄冷系统相比,主机效率可以提高很多,大约为30%(4)因蓄冷系统工作在0度以上,设计时无需考虑管道系统的冻结问题(5)蓄冷能力比水蓄冷大,其蓄冷槽容积仅为水蓄冷系统的三分之一(6)蓄冷温度高于冰蓄冷系统,蓄冷槽的保温可减少,散热损失也减少(7)蓄冷槽不占用有效空间(8)在放冷过程中蓄冷槽的冷冻水供应温度为9~10度,不能为空调系统直接使用,不能采用全部蓄冷模式,必须采用部分蓄冷(9)共晶盐蓄冷材料在蓄冷和放冷过程中存在组分离析现象(10)蓄冷材料密度大,在相同的蓄冷量下,重量约为冰蓄冷系统的2~3倍20、低温送风系统的分类:
空调送风系统类型送风温度/度冷源
范围名义值冷媒温度/度冷媒形式常规送风系统12~16 13 7 冷水机组
低温送风系统
9~11 10 4~5 冷水机组、水蓄冷或直接膨胀6~8 7 2~4 蓄冰系统或直接膨胀
不大于5 4 不大于2 蓄冰系统
21、低温送风系统的特点:(1)初投资低(2)减少高峰电力需求,降低运行费用(3)节省空
间,降低建筑造价(4)适用于改建工程(5)提高空调的舒适性。

相关文档
最新文档