阶梯波产生

合集下载

阶梯波发生电路 -回复

阶梯波发生电路 -回复

阶梯波发生电路
阶梯波发生电路(也称作方波发生电路)是一种常见的信号发生电路,可以用来产生一系列矩形波或近似于矩形波的波形。

阶梯波发生电路通常由一个振荡器和一个分频器组成。

以下是一个简单的阶梯波发生电路的示例:
1.首先,我们使用一个振荡器来产生一个高频的正弦波信号。

2.然后,我们使用一个分频器将这个高频正弦波信号分频成较低
频率的矩形波或近似矩形波信号。

3.最后,我们使用一些逻辑门(如与门、或门、非门等)来对分
频器输出的信号进行处理,以生成我们想要的波形形状。

12.2阶梯波发生器电路

12.2阶梯波发生器电路

R7 U C 1 f = ⋅ ⋅ 2( R3 + RP1 ) R8 U 0 m
式中Uom为LM311最大输出电压,约为13V。 由上式可知,若要改变阶梯波的频率,可通过调 节压控振荡器的频率来实现。
对阶梯波幅值的要求可通过调节RP2来实现。 对阶梯波台阶的要求可通过改变74LS90的计 数状态来实现。 本例运放A1D、A1C输出电压随计数器74LS90 状态转换如表12.2.1 所示。
表12.2.1 运放U4D、U4C输出电压 随计数器74LS90状态转化表 74LS90 QD 0 0 0 0 1 QC 0 0 1 1 0 QB 0 1 0 1 0 A1D输出 A1D(V) 0 -1.25 -2.5 -3.75 -5.0 A1C输出 A1C(V) 0 2 4 6 8
电路仿真结果如图12.2.3所示。
12.2 阶梯波发生器电路
该电路产生5个台阶的阶梯波电路,电路 由电压跟随器、压控振荡器、五进制计数器、 缓冲器、反相求和电路及反相器组成,其框图 如图12.2.1所示。
12.2.原理电路如图12.2.2所示。
图12.2.2 阶梯波发生器原理电路
压控振荡器的频率
图12.2.3 5个台阶的阶梯波仿真图

阶梯波发生器电路

阶梯波发生器电路
图12.2.3 5个台阶的阶梯波仿真图
状态转换如表12.2.1 所示。
表12.2.1 运放U4D、U4C输出电压 随计数器74LS90状态转化表
74LS90 QD QC QB 000 001 010 011 100
A1D输出 A1C输出
A1D(V) A1C(V)
0
0
-1.25
2
-2.5
4
-3பைடு நூலகம்75
6
-5.0
8
电路仿真结果如图12.2.3所示。
2(R3 RP1 ) R8 U 0m
式中Uom为LM311最大输出电压,约为13V。 由上式可知,若要改变阶梯波的频率,可通过调 节压控振荡器的频率来实现。
❖ 对阶梯波幅值的要求可通过调节RP2来实现。 ❖ 对阶梯波台阶的要求可通过改变74LS90的计
数状态来实现。 ❖ 本例运放A1D、A1C输出电压随计数器74LS90
❖ 该电路产生5个台阶的阶梯波电路,电路 由电压跟随器、压控振荡器、五进制计数器、 缓冲器、反相求和电路及反相器组成,其框图 如图12.2.1所示。
12.2.1 阶梯波发生器电路框图
阶梯波发生器原理电路如图12.2.2所示。
图12.2.2 阶梯波发生器原理电路
❖ 压控振荡器的频率
f
1
R7 U C

阶梯波信号发生器(6阶梯)

阶梯波信号发生器(6阶梯)

目录第一章:绪论1.1 设计题目1.2 设计要求1.3 题目分析及构思第二章:总体设计与实践2.1 总体方框图2.2 电路原理分析第三章:测试及其分析3.1 定性说明和定量计算3.2 仿真第四章:程序设计历程4.1 仿真实现过程中遇到的问题及排除措施4.2 设计心得体会附录:参考文献第一章 绪论1.1【设计题目】:设计题目:阶梯波信号发生器1.2【设计要求】:设计要求: 1.设计一个能产生周期性阶梯波的电路;2.阶梯波周期在20ms 左右;3.输出电压范围10V ;4.阶梯个数4个以上; 5频率可调;6,输出电压可调。

.1.2【设计要求】:设计能产生周期性阶梯波的电路:tu o oU 0.25U55550.5U 0.75U图2 阶梯信号发生器输出波形示意图1.3【题目分析及构思】:阶梯信号发生器可由电压跟随器、555定时器构成的多谐振荡器、六进制计数器、缓冲器、反相求和电路及反相器组成,其框图如图6.3.1所示。

该电路能产生6个台阶的阶梯波。

图6.3.1 阶梯信号发生器框图信号发生器产生三角波通过电压跟随器进入555定时器构成的多谐振荡器,,电路形成自激振荡,输出为矩形脉冲,输出的矩形脉冲通过六进制计数器进行计数,计数结果通过缓冲器进入反相求和电路进行波形相加,形成反相的阶梯波形,输出结果再通过反相器输出为正相阶梯波形。

第二章总体设计与实践2.1【总体方框图】图6.3.1 阶梯信号发生器框图2.2【电路原理分析】需要信号发生器来作为信号源。

用运算放大器、电阻和可调电阻构成电压跟随器,具有电压跟随作用。

555定时器构成的多谐震荡器,由震荡器产生自激震荡产生矩形脉冲,电路的充放电常数决定波的周期,所以用555定时器构成的多谐震荡器来控制阶梯波的周期。

计数器74LS90D调为六进制计数,用来控制阶梯波的阶梯数。

缓冲器用来缓冲信号。

反相求和电路用来将信号相加,形成反相的阶梯波形。

然后再通过反相器形成正相6个阶梯的阶梯波形。

阶梯波调制

阶梯波调制

阶梯波调制
阶梯波调制是一种电力电子技术中的调制方法,其基本原理是将矩形波或三角波通过一个或多个开关进行切换,以产生阶梯形状的波形。

这种调制方法在许多领域都有应用,如电机控制、逆变器和开关电源等。

阶梯波调制的基本原理是将一个基础波形(如矩形波或三角波)与一个或多个开关进行配合,通过开关的通断状态来控制基础波形的输出。

具体来说,当开关处于开启状态时,基础波形的一部分被输出;当开关处于关闭状态时,基础波形的一部分被切除。

通过多次重复这一过程,可以得到阶梯形状的调制波形。

阶梯波调制的特点是输出波形具有良好的谐波抑制性能,可以减小对电网的谐波干扰。

此外,阶梯波调制还具有电路简单、易于实现等优点。

然而,阶梯波调制也存在一些缺点,如输出波形不够平滑、会产生较大的电压电流突变等。

在实际应用中,阶梯波调制可以通过不同的方式实现,如单相阶梯波调制和三相阶梯波调制等。

其中,单相阶梯波调制主要用于单相电机的控制,而三相阶梯波调制则主要用于三相电机的控制和逆变器的设计。

总之,阶梯波调制是一种简单、实用的电力电子技术,在电机控制、逆变器和开关电源等领域有广泛的应用前景。

虽然阶梯波调制存在一些缺点,但随着技术的不断发展和改进,相信其应用前景将会更加广阔。

阶梯波

阶梯波

Multisim设计报告姓名: 田丹丹学院: 机电与信息工程学院专业: 电子信息科学与技术班级: 2011级电子2班学号: 201100800337 日期 2013年7月11日指导教师: 李素梅、常树旺山东大学威海分校信息工程学院阶梯波信号发生器仿真设计(一)题目设计要求,设计电路实现的功能、性能指标。

题目设计设计要求:设计一个频率可调、阶数可调的阶梯波发生器,在Multisim中进行仿真分析。

电路实现的功能:得到一个频率可调、阶数可调的阶梯波发生器。

电路的性能指标:频率可调范围比较大,阶数可调的阶数范围合理,输出完美的平滑的无毛刺的阶梯波。

(二)设计方案a.由时钟信号发生器、计数器和D/A转换器组成电路。

b.时钟信号发生器的信号频率可调,可采用压控振荡器或由555构成的多谐振荡器。

c.计数器的进制数决定阶梯波的阶数,(所以可采用有预置数功能的减法计数器,通过置数改变计数器的进制数。

)d. D/A转换器将计数器的输出值转换为模拟电压。

e.通过低通滤波器使输出的波形变得平滑无毛刺。

(三)电路框图时钟信号发生器(f可调)N 进制计数器D/A转换器N阶阶梯波(四)电路原理图从图中可以看出一共有四个部分a.74LS161D构成的十六进制计数器,b.555构成的多谐振荡器,c.D/A转换器和低通滤波器。

1、74LS161D构成的十六进制计数器电路采用74LS161十进制加法计数器构成的十六进制计数器。

采用置数端归零的方法,清零端接高电平。

通过控制单刀双掷开关将A、B、C、D与高电平或低电平相连,DCBA表示的十进制数是15-N,N为输出阶梯波的阶数,即通过单刀双掷开关控制阶梯波的阶数。

如,DCBA为0111时,即ABC接高电平,D接低电平,输出为8阶阶梯波。

2、由555构成的多谐振荡器电路图。

电源接通后,Vcc通过电阻R1、R2、R3向电容C2充电。

当C2上电压达到2/3Vcc时,THR端触发,比较器翻转,输出V0变低电平,同时放电管导通,电容C2通过R2放电;当C2上电压下降到1/3Vcc 时,下比较器工作,输出电压V0变高电平,C2放电终止,重新充电,周而复始,形成矩形波。

晶体三极管特性曲线测试仪设计

晶体三极管特性曲线测试仪设计

晶体三极管特性曲线测试仪设计摘要晶体管特性曲线测试仪广泛用于科研,实验教学和工业中,论文选题具有实际意义。

本文在学习和查阅相关文件的基础上,介绍了实现一个简易晶体管伏安特性曲线测试仪基本原理和实现方案。

在系统硬件设计中,以MCS-51单片机最小系统为核心,扩展了人机对话接口、A/D转换接口;采用555振荡器实现了方波和三角波的输出信号,利用计数器74161和DAC0832产生梯形波,通过比较器LM311构成识别晶体管类型的判断。

系统的软件设计是在Keil51的平台上,使用C语言与汇编语言混合编程编写了系统应用软件;包括主程序模块、显示模块、数据采集模块和数据处理模块。

关键词:晶体管图示仪;伏安特性;单片机Crystal three transistor characteristic cure tester ABSTRACT:Transistor curve tracers used in research, teaching and industrial experiments, the practical significance of topics. In this paper, learning and access to relevant documents, based on the realization of a simple transistor introduced voltammetric curve tracers basic theory and programs.In the system hardware design to MCS-51 microcomputer as the core, extending the man-machine dialogue interfaces, A / D conversion interface; Achieved by 555 square wave oscillator and triangle wave output signal, generated using counters 74161 and DAC0832 trapezoidal wave, Constitute recognition by the comparator LM311 transistor type judgments.The software design is the platform Keil51 using C language and assembly language programming prepared hybrid system application software; Including the main program module, display module, data acquisition module and data processing module KEY WORDS: Transistor Tracer , V olt-ampere characteristics, Single slice of machine目录第1章前言 (1)1.1 设计的背景及意义 (1)1.2 晶体管及晶体管特性曲线测试仪历史及研究现状 (1)第2章晶体管特性曲线测试仪的系统设计 (3)2.1 晶体三极管原理及工作状态分析 (3)2.2 系统整体框图设计 (4)2.3 各模块方案设计与选择 (5)2.3.1 555振荡器方波和阶梯波发生模块 (5)2.3.2 晶体管放大倍数的显示模块 (5)2.3.3 电源供电模块 (6)第3章系统的硬件设计 (7)3.1 MCS-51单片机最小系统 (7)3.2 电源电路的设计 (8)3.3 AD采样电路设计 (9)3.3.1 ADC0809的内部逻辑结构 (9)3.3.2 ADC0809引脚结构 (9)3.3.3 ADC0809应用说明 (10)3.3.4 A/D电路的设计原理 (11)3.4 波形电路的设计 (11)3.4.1阶梯波与三角波产生电路 (11)3.4.2 555振荡器的管脚功能 (12)3.5 显示电路设计 (13)第4章系统的软件设计 (17)4.1 系统的软件结构图 (17)4.2数据采集电路的软件设计 (17)4.3显示电路的软件设计 (19)第5章系统的调试与测试 (21)5.1调试和测试仪器 (21)5.2 系统的调试 (21)5.3测试结果与分析 (23)结论 (27)致谢 (28)参考文献 (28)附录 (29)第1章前言1.1 设计的背景及意义晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

实验二 模拟和数字信号光纤传输系统实验

实验二 模拟和数字信号光纤传输系统实验

输入序列
D
加扰输出
D
D
D
D
解扰器的框图如下:
输入加扰序列
D
加扰输出
D
D
D
D
解扰输出
6. PCM 编译码原理及数字电话光纤传输系统 PCM 主要包括抽样、 量化与编码三个过程。 抽样是把连续时间模拟信号转换成离散时间连续幅度的抽 样信号;量化是把离散时间连续幅度的抽样信号转换成离散幅度的数字信号;编码是将量化后的信号编码 形成一个二进制码组输出。国际标准化的 PCM 码组(电话语音)是八为码组代表一个抽样值。从通信中 的调制概念,可以认为 PCM 编码过程是模拟信号调制一个二进制脉冲序列,载波是脉冲序列,调制改变 脉冲序列的有无“1”、“0”,所以 PCM 编码称为脉冲编码调制。国际上存在 A 律和 μ 律两种 PCM 编译码标 准系列。脉码调制的过程如下图所示: 模拟信源
一路挂机后另一路将送忙音,当两部电话都挂机后通话结束。 电话接口芯片采用的是 AM79R70,电路原理如下:
AM79R70 应用电路图 AM79R70 的工作状态说明如下表: /DET 输出 状态 0 1 2 3 4 5 6 7 C3 0 0 0 0 1 1 1 1 C2 0 0 1 1 0 0 1 1 C1 0 1 0 1 0 1 0 1 两线状态 E1=1 开路 振铃 通话状态 挂机传输 Tip 开路 候机(备用) 接通极性反转 挂机极性反转 振铃回路 振铃回路 环路检测 环路检测 环路检测 环路检测 环路检测 环路检测 E1=0 振铃回路 振铃回路 B2EN 接地键 接地键 接地键 接地键 接地键 B2EN 接地键 B2EN=1** VBAT1 馈电选择
二、实验内容
1.通过不同频率的正弦波、方波、三角波信号进行光传输实验。 2.电话语音通过光纤的模拟信道进行传输。 3.PN 序列的光纤传输。 4.CMI 码的光纤传输。 5.扰码的光纤传输。 6.用示波器观察两路音频信号的编码结果,改变音频信号的幅度,观察和测试译码器输出信号的信噪 比变化情况,改变音频信号的频率,观察和测试译码器输出信号幅度变化情况。

multisim仿真教程 阶梯波发生器电路

multisim仿真教程 阶梯波发生器电路

A1C输出
A1C(V) 0 2 4 6 8
电路仿真结果如图12.2.3所示。
图12.2.3 5个台阶的阶梯波仿真图
R7 U C 1 f 2( R3 RP ) R8 U 0m 1
式中Uom为LM311最大输出电压,约为13V。
由上式可知,若要改变阶梯波的频率,可通过调 节压控振荡器的频率来实现。


对阶梯波幅值的要求可通过调节RP2来实现。
对阶梯波台阶的要求可通过改变74LS90的计
数状态来实现。
12.2 阶梯波发生器电路源自该电路产生5个台阶的阶梯波电路,电路
由电压跟随器、压控振荡器、五进制计数器、
缓冲器、反相求和电路及反相器组成,其框图
如图12.2.1所示。
12.2.1 阶梯波发生器电路框图
阶梯波发生器原理电路如图12.2.2所示。
图12.2.2 阶梯波发生器原理电路

压控振荡器的频率

本例运放A1D、A1C输出电压随计数器74LS90 状态转换如表12.2.1 所示。
表12.2.1 运放U4D、U4C输出电压 随计数器74LS90状态转化表
74LS90
QD 0 0 0 0 1 QC 0 0 1 1 0 QB 0 1 0 1 0
A1D输出
A1D(V) 0 -1.25 -2.5 -3.75 -5.0

阶梯波电路工作原理

阶梯波电路工作原理

阶梯波电路工作原理
阶梯波电路是一种电子电路,由一个定时器产生的一系列脉冲信号经过一个电容器和一个电阻器的组合,形成一种类似于阶梯状的电压波形。

阶梯波电路通常用于模拟或产生一些特定的波形,例如产生可变频率的正弦波、方波或三角波等。

具体来说,阶梯波电路的工作原理如下:首先,由一个定时器(例如555 定时器)产生一系列短脉冲信号。

这些脉冲信号经过一个电容器和一个电阻器的组合,形成一系列电压波形。

电容器和电阻器的值可以根据需要进行调整,以实现所需的波形。

在阶梯波电路中,电容器和电阻器的组合充当了一个积分器的角色。

它们将输入的短脉冲信号转换为一系列平滑的电压波形。

电容器和电阻器的值越大,输出的波形就越平滑,变化越缓慢。

通常情况下,阶梯波电路还需要一个比较器来控制输出波形的幅度和频率。

比较器可以将阶梯波和一个参考电压进行比较,然后输出一个调节后的波形信号。

比较器可以使用运算放大器等电子元件实现。

总之,阶梯波电路是一种可变波形电路,可以产生各种各样的波形。

它在信号发生器、音频合成器、音乐合成器、计时器等领域得到广泛应用。

电子电路综合实验报告 示波器功能扩展电路的设计

电子电路综合实验报告 示波器功能扩展电路的设计

北京邮电大学电子电路综合实验报告示波器功能扩展电路的设计学院:电子工程学院班级:学号:班内序号:姓名:目录摘要关键字 (3)实验目的 (3)实验仪器与器件 (3)实验任务要求 (3)设计思路和总体结构框图 (3)分块电路原理 (4)总体结构框图与电路原理总结 (6)实现功能说明以及主要测试数据 (7)故障及问题分析 (9)总结和心得体会 (9)PROTEL绘制的原理图 (11)面包板与PCB板 (11)所有元器件及测试仪表清单 (12)参考文献 (13)课题名称:示波器功能扩展电路的设计与实现摘要:本实验是示波器功能扩展电路,可同时用一路通道检测分离4路信号。

电路分为五个基本分块电路——(1)555定时器作多谐振荡器产生时钟信号,时钟电路产生方波;(2)地址产生电路:计数器74LS169产生方波的二分频与四分频信号;(3)位移电路:CD4052一路为直流通道,另一路为信号通道,两路信号通过衰减器后在示波器水平位置上同时显示四路不同的信号;(4)放大调整和加法器电路:集成运放用于信号衰减放大与加法,将交流信号叠加到直流信号上实现纵向分离。

关键词:选通电路、信号叠加、交流放大,多踪显示。

一、实验目的:1.了解掌握555定时器的用作多谢振荡器的方法。

2.了解运算放大器组成的加法器实际应用。

3.学习模拟多路选择器的工作原理和使用方法。

4.复习巩固示波器原理和使用的相关知识。

5.提高独立设计电路和验证试验的能力二、实验仪器与器件:1. 直流稳压电源2. 函数信号发生器3. 示波器4. 晶体管毫伏表5. 万用表6. 芯片:NE555定时器;集成运算放大器LF353;计数器74LS169;多路模拟开关CD4052;7.电阻电容导线若干8. 面包板三、实验任务要求设计制作一个示波器功能拓展电路,能够实现将普通双踪示波器改装成为多踪示波器进行多路信号测试。

1.基本要求:(1)能够实现用示波器一路探头输入稳定显示四路被测波形;(2)输入信号幅度为0~10V,频率不低于500Hz;(3)系统电源DC+-5V。

实验十九阶梯波产生电路

实验十九阶梯波产生电路

实验十九阶梯波产生电路(设计型)
一、实验目的
1、掌握梯形波产生的原理
2、学会数字电路与模拟电路的综合应用。

3、培养独立设计的能力。

二、实验设备及器件
1、示波器 1台
2、器件自选
三、实验内容及步骤
梯形波产生电路应由D/A转换器、可逆计数器、上下限比较器、定时器、启动复位五部分组成。

下面步骤由学生独立设计完成;
1、设计原理线路图;
2、选择元器件;
3、组装调试。

4、写出实验报告.
四、设计提示
用 4 位二进制计数器 74LS161 、 D/A 转换器 DAC0832 和集成运放组成阶梯波发生器,电路如图19-1所示。

将 f = 1000Hz 的脉冲信号加到计数器的 CP 端,用示波器观察输出的波形并记录。

图 19-1 阶梯波发生器。

阶梯波发生电路的设计

阶梯波发生电路的设计

与理论上不符。ห้องสมุดไป่ตู้
R3/
1
k
2
3
4.02 5.1
10
阶梯 高度 /V
436.939
103
808.903
103
1.09 8 1.339
1.544
改变 R3 的值,其余不变
2.143
2>积分电路对波形高度影响 改变 C3 的值会改变阶梯的高度,具体关系见下表 3.01 (电容换成虚拟元件进行测试)。由
表可知,当其余值保持不变,仅改变 C3 的值,则阶梯的高度与之成反比。
同样 C2 的值也会影响阶梯高度,具体关系见下表。由表可知,当其余值保持不变,仅改变
C2 的值,则阶梯高度与之成正比。
C2/ nF
10
30
51
100
704.721
阶梯高度/V
103
2.144
3.649
7.138
改变 C2,其余值不变 R3 的值对阶梯高度也有影响,见下表。可以看出,阶梯高度与 R3 并没有明显的正比关系,
值时,也不会正常显示阶梯波。 (4)同时改变周期和高度的量
①改变 R4 的值,波形也会发生变化。当增大 R4 时,阶梯高度变小,周期变大,但电压变
化范围基本不变。当 R3=10 k ,即扩大 5 倍时,波形如下图所示。
R3=10 k ,其余不变
②在一定范围内(当接近 15V 时没有影响,运放饱和有关)改变 D1 和 D2 的击穿电压时,
振荡控制电路
方波发生
微分电路
限幅电路
积分累加电路
比较器
电源
电子开关电路
2、实验原理图
阶梯波发生原理框图
阶梯波原理图 四、实验过程 1、电路设计 (1)方波发生电路设计 设计电路如图 3.03 所示,从图 3.04 所示的示波器中可读出方波的周期为 3.774ms。

示波器功能扩展电路设计实验报告

示波器功能扩展电路设计实验报告

电子电路综合实验实验报告实验名称:示波器功能扩展电路的设计学院:信息与通信工程学院班级:姓名:学号:课题名称:示波器功能扩展电路的设计摘要:示波器是一种用途十分广泛的电子测量仪器。

在示波器的具体应用中,常常需要同时观测多路信号,或需要比较同一电路中不同点之间信号的频率、幅值和相位,以及观测电信号通过网络后的相移和失真等情况。

为了对信号进行测量和比较研究,需要把不同信号或同一信号的不同部分同时显示在荧光屏上。

这些都需要在荧光屏上能同时显示多路波形,本实验介绍的就是将单踪示波器转换为多踪示波器的装置。

关键词:示波器,555定时器,计数器,模拟开关,集成运算放大器一、设计任务要求:设计制作一个示波器功能扩展电路,该电路能够实现将普通双踪示波器改装成多综示波器进行多路信号测试。

1.基本要求1)能够实现用示波器的一路探头稳定显示四路被测信号波形;2)被测输入信号幅度为0-10V,频率不低于500Hz;3)系统电源为DC±5V,设计该电路的电源部分。

2.提高要求1)四路被测信号波形的大小可分别调整;2)用CPLD设计示波器功能扩展电路的数字系统部分;3)其他示波器功能扩展的设计和解决方案。

3.注意事项1)被测信号的频率应较低,而用作多路选择器和阶梯波地址的信号频率应较高,最终实现类似于示波器的断续方式,即先显示一路信号的一部分,再显示下一电路的一部分,每一路信号实际上是不完整的,但视觉上的效果是连续的。

2)阶梯波与选通后的被测信号叠加时,应调节各路信号的分压比使各路信号不重叠。

3)在电路正常工作的前提下,应尽量提高振荡器的频率以提高被测信号的频率范围。

4)设计与调测时,需用示波器观察555定时器的输出波形是否正确,其频率值与计算值是否相同,然后用示波器观测计数器的QA、QB端的波形是否为555时基信号的二分频、四分频,最后观察第一路开关的输出是否为阶梯波信号,台阶数值分别为0V、1V、2V、3V。

晶体管特性曲线测试电路

晶体管特性曲线测试电路

近代电子学实验之晶体管特性曲线测试电路实验设计项目名称:晶体管特性曲线测试电路实验设计摘要:该电路可以实现NPN型晶体管输出特性曲线(Ic—Vce)的测试。

在晶体管的基极通入恒定的电流,在集电极加载一定的电压,集电极就会产生放大后的电流输出。

此时,便得到了晶体管的一条Ic—Vce曲线,即是晶体管的特性曲线的一条。

若往基极通阶梯波,集电极加载锯齿波,那么输出特性曲线就是一簇曲线。

该曲线可以得到晶体管的工作状态,对于研究晶体管特性静态特性有很大的用处。

搭好电路后,最终的波形将在数字示波器上显示。

实验设计目的:1、应用运算放大器产生一些基本脉冲波:矩形波、锯齿波、阶梯波。

2、熟悉掌握运算放大器运用与设计。

3、应用这些脉冲波形构成简单的晶体三极管特性曲线测试电路。

实验设计内容及要求:1、矩形波:频率为500Hz,幅度-10V—+10V。

2、锯齿波:幅度0—10V连线可调,输出极性可变。

3、阶梯波:3—10阶连线可调。

4、电压—电流变换器:0.001<=I1<=0.2(mA),输出电流方向可变(每阶0.001<=Ib<=0.02(mA))。

实验设计的基本原理:三极管特性曲线测量电路的基本原理:晶体三极管为电流控制器件,他们特性曲线的每一根表示当Ib一定时Vc与Ic的关系曲线,一簇表示不同Ib时Vc与Ic的关系曲线的不同关系曲线,就称为单晶体三极管的输出特性曲线,所以在晶体三极管的基级加上阶梯电流源表示不同 Ib。

在每级阶梯内测量集射极电压 Vc和集电极定值负载电阻上的电压 Vr,通过电压变换电路将 Vr换算成集电极电流 Ic, 以 Ic作为纵轴, Vc 为横轴, 在数字示波器上即可显示一条晶体管输出特性曲线。

示波器的地线与测量电路地不可相通。

即测量电路的稳压电源不能接大地。

(因为示波器外壳已接大地)晶体三极管特性曲线测量电路原理框图如下:框图在本测量电路中,两种波形的准确性直接影响到了输出曲线的好坏。

阶梯波发生器原理-概念解析以及定义

阶梯波发生器原理-概念解析以及定义

阶梯波发生器原理-概述说明以及解释1.引言概述:阶梯波发生器是一种能够产生具有固定幅度和可控升降时间的方波信号的电路。

它在电子工程领域中具有重要的应用价值,可以用于数字电路的时序控制、模拟电路的测试和测量等方面。

本文将深入探讨阶梯波发生器的工作原理、实际应用及其未来发展前景,以期为相关领域提供理论支持和技术指导。

波发生器的未来发展": {}}}}请编写文章1.1 概述部分的内容1.2 文章结构文章结构部分的内容可以包括对整篇文章内容的概述和安排,以及对每个章节的简要介绍。

例如:文章结构部分旨在概述本篇文章的内容和安排,并对每个章节进行简要介绍。

本文分为引言、正文和结论三个部分。

在引言部分,我们将介绍阶梯波发生器的概念、工作原理和在实际中的应用。

在正文部分,我们将详细讨论阶梯波发生器的概念、工作原理和应用案例。

最后,在结论部分,我们将总结阶梯波发生器的重要性、阐述其优势,并展望其未来发展。

通过本篇文章的阅读,读者将能够深入了解阶梯波发生器的原理和应用,以及对其未来发展进行展望。

1.3 目的本文的目的是对阶梯波发生器进行深入剖析,以便读者对该设备的工作原理和实际应用有更清晰的理解。

通过对阶梯波发生器的概念、工作原理和实际应用进行详细介绍,旨在帮助读者掌握该设备的基本原理,并为相关领域的研究和应用提供理论支撑。

同时,通过对阶梯波发生器的重要性、优势及未来发展进行展望,旨在引导读者对该设备的前景有更深入的认识,为相关领域的领先发展提供参考建议。

通过本文的阐述,希望读者能够全面了解阶梯波发生器,并对其在工程技术领域的应用有更广泛的认识和应用。

2.正文2.1 阶梯波发生器的概念阶梯波发生器是一种能够产生稳定、周期性的阶梯状波形信号的电子设备。

它可以将输入的连续波形信号转换为一系列等幅度、等时隔的阶梯波形信号输出。

通常情况下,阶梯波发生器会采用不同的工作原理和电路设计来实现这一功能,例如利用计数器、比较器、递推电路等。

示波器功能扩展电路的设计和实现

示波器功能扩展电路的设计和实现

电子电路综合设计实验报告示波器功能扩展电路的设计与实现示波器功能扩展电路的设计与实现一、摘要:本实验旨在对普通示波器进行功能扩展,实验电路通过时钟产生电路NE555、地址产生电路74LS169、多路模拟开关CD4052、运算放大器LF353(对信号进行放大调整和线性叠加)的使用,将一个普通的双踪示波器改装为多踪示波器,能够实现用示波器一路探头输入稳定显示四路被测信号波形,并且四路被测信号的波形大小可以分别调整。

二、关键词:时钟电路、地址产生电路、多路模拟开关、多路示波器三、设计任务要求:1、实验目的:1)深入掌握运算放大器组成加法器的应用2)掌握555 定时器用作多谐振荡器的方法3)学习模拟多路选择器的工作原理和使用方法4)重温巩固示波器原理和使用方法5)提高独立设计电路和验证实验的能力2、基本要求设计一个将普通双踪示波器改装成为多踪示波器的电路,包括多踪示波器的时钟电路、位移电路、衰减和放大电路。

能够实现用示波器一路探头输入稳定显示四路被测信号波形。

输入信号幅度为0~10V,频率不低于500Hz,系统电源DC±5V。

3、提高要求四路被测信号波形的大小可以分别调整四、设计思路、总体结构框图:五、分块电路和总体电路的设计:5.1时钟产生电路:利用NE555构成多谐振荡器,产生20K到200KHz的方波,其高低相间的电平可作为后续地址产生电路的控制信号。

1)电路组成:用555定时器构成的多谐振荡器电路如上图所示:图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。

定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C的充、放电;外界控制输入端(5脚)通过电容接地。

2)工作原理:多谐振荡器的工作波形如图上图所示:电路接通电源的瞬间,由于电容C 来不及充电,Vc=0 V ,所以555定时器状态为1,输出Vo 为高电平。

产生spwm信号的几种方法

产生spwm信号的几种方法

SPWMSPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.我们先说说什么叫PWMPWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。

广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。

所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。

它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。

三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

该方法的实现有以下几种方案.1.3.1 等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2 硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制.1.3.3 软件生成法由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法.1.3.3.1 自然采样法[2]以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制.1.3.3.2 规则采样法[3]规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样.规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小.以上两种方法均只适用于同步调制方式中.1.3.4 低次谐波消去法[2]低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法.其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波.该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点.该方法同样只适用于同步调制方式中.1.4 梯形波与三角波比较法[2]前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%.因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制.由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率.但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波.。

脉冲波形的产生与变换

脉冲波形的产生与变换

02
脉冲波形的产生
矩形脉冲的产生
矩形脉冲:通过将电压快速地加到高 电平然后减到低电平,再重复这个过 程,可以产生矩形脉冲。
矩形脉冲的宽度和高度可以通过改变 电压的上升和下降速度以及高低电平 的电压值来调整。
三角脉冲的产生
三角脉冲:三角脉冲可以通过比较器电路产生,当输入信号大于某个阈值时,比 较器输出高电平,否则输出低电平。
脉冲波形产生与变换技术的实际应用
为了更好地发挥脉冲波形产生与变换技术的优势,未来研究可以加强该技术在各领域的实 际应用研究。通过与产业界的合作,推动脉冲波形产生与变换技术的成果转化,为经济发 展和产业升级提供技术支持。
感谢您的观看
THANKS
压力传感器
通过检测压力变化产生的 脉冲波形,实现对压力的 测量。
温度传感器
利用热敏元件产生的脉冲 波形,实现对温度的测量。
在医学领域的应用
超声成像
利用超声波产生的脉冲波形,通 过接收反射回的脉冲信号进行成
像。
核磁共振成像
通过施加脉冲磁场和射频脉冲, 获取组织中的氢原子核磁矩信息,
重建图像。
脉冲激光治疗
目的和意义
随着科技的发展,脉冲波形在各个领 域的应用越来越广泛,对脉冲波形产 生与变换的研究具有重要的实际意义。
此外,脉冲波形的产生与变换也是信 号处理领域的重要研究方向之一,对 于推动相关领域的发展具有重要意义。
研究脉冲波形的产生与变换,有助于 深入了解信号的特性和传播规律,为 信号处理、通信系统设计等领域提供 理论支持和技术指导。
够将输入的脉冲波形进行变换,得到所需的输出波形。实验结果表明,
该算法具有快速、准确和稳定的特点。
03
脉冲波形在各领域的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档