合肥寿春中学2015年七年级期末试卷及解析

合集下载

安徽省合肥市庐阳区寿春中学2020-2021学年七年级(下)期末数学试卷及答案解析

安徽省合肥市庐阳区寿春中学2020-2021学年七年级(下)期末数学试卷及答案解析

2020-2021学年安徽省合肥市庐阳区寿春中学七年级(下)期末数学试卷一.选择题(本大题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)下列各式中,是分式的是()A.B.C.D.2.(4分)下列运算中,正确的是()A.a2•a4=a8B.(ab2)2=a2b4C.a2+a2=2a4D.a6÷a3=a23.(4分)若将分式中的x与y的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.不变C.扩大为原来的4倍D.无法确定4.(4分)将军要从村庄A去村外的河边饮马,有三条路可走AB、AC、AD,将军沿着AB路线到的河边,他这样做的道理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短5.(4分)下列说法不一定成立的是()A.若a<b,则a+c<b+c B.若a+c<b+c,则a<bC.若a<b,则ac2<bc2D.若ac2<bc2,则a<b6.(4分)若分式的值是负数,则x的取值范围是()A.B.C.D.7.(4分)两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,DE 与AC交于点M.若BC∥EF,则∠DMC的大小为()A.95°B.105°C.115°D.125°8.(4分)如图,直线AB与CD相交于点O,∠DOE=80°,∠DOF:∠AOD=2:3,射线OE平分∠BOF,则∠BOC的度数为()A.50°B.60°C.70°D.80°9.(4分)如图,将直角三角形ABC沿AB方向平移4个单位长度得到三角形DEF,CG=3,EF=8,则图中阴影部分的面积为()A.24B.26C.27D.2810.(4分)已知关于x的分式+=2的解为非负数,则a的范围为()A.a≤且a≠B.a≥且a≠C.a≤﹣且a≠﹣D.a≥且a≠二.填空题(共4小题,每题5分,共20分。

合肥市寿春中学七年级数学下册期末试卷选择题汇编精选培优复习考试试题

合肥市寿春中学七年级数学下册期末试卷选择题汇编精选培优复习考试试题

一、选择题1.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9答案:C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.2.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,-1),B (-1,-1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且PA =P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)答案:A解析:A【解析】试题解析:设P 1(x ,y ),∵点A (1,-1)、B (-1,-1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2, ∴2x =1,22y +=-1,解得x=2,y=-4, ∴P 1(2,-4).同理可得,P 1(2,-4),P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,…,∴每6个数循环一次. ∵20156=335…5, ∴点P 2015的坐标是(0,0).故选A .3.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB ∥CD ,∠EAB =80°,110ECD ∠=︒,则∠E 的度数是( )A .30°B .40°C .60°D .70°答案:A解析:A【分析】过点E 作//EF AB ,先根据平行线的性质可得100AEF ∠=︒,再根据平行公理推论、平行线的性质可得70CEF ∠=︒,然后根据角的和差即可得.【详解】解:如图,过点E 作//EF AB ,80EAB ∠=︒,180100A E B E A F ∠=︒-=∴∠︒,//AB CD ,//CD EF ∴,180CEF ECD ∴∠+∠=︒,110ECD ∠=︒,18070CEF ECD ∴∠=︒-∠=︒,1007030AEC AEF CEF ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.4.如图,在平面直角坐标系上有个点P (1,0),点P 第一次向上跳运1个单位至P 1(1,1),紧接着第二次向左跳动2个单位至点P 2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是( )A .(-24,49)B .(-25,50)C .(26,50)D .(26,51) 答案:C解析:C【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50).故答案为(26,50).5.如图,将整数按规律排列,若有序数对(a ,b )表示第a 排从左往右第b 个数,则(9,4)表示的数是( )A .49B .﹣40C .﹣32D .25答案:B解析:B【分析】根据有序数对(m ,n )表示第m 行从左到右第n 个数,对如图中给出的有序数对和(3,2)表示整数5可得规律,进而可求出(9,4)表示的数.【详解】解:根据有序数对(m ,n )表示第m 行从左到右第n 个数,对如图中给出的有序数对和(3,2)表示整数5可知:(3,2):3(31)2⨯-25+=;(3,1):()331142⎡⎤⨯--+=-⎢⎥⎣⎦;(4,4):()4414102⎡⎤⨯--+=-⎢⎥⎣⎦;…由此可以发现,对所有数对(m,n)(n≤m)有,()12m mn ⨯-+.表示的数是偶数时结果为负数,奇数时结果为正数,所以(9,4)表示的数是:()9914402⎡⎤⨯--+=-⎢⎥⎣⎦.故选:B.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律.6.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(﹣1,﹣1)B.(﹣1,1)C.(﹣2,1)D.(2,0)答案:A解析:A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解.【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为12112⨯=,物体甲运动的路程为11243⨯=,物体乙运动的路程为 21283⨯=, 此时在BC 边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为 12224⨯=, 物体甲运动的路程为12483⨯=,物体乙运动的路程为224163⨯=, 在DE 边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为12336⨯=, 物体甲运动的路程为136123⨯=,物体乙运动的路程为236243⨯=, 在A 点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵ 202136732÷=,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1).故选:A .【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点.7.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( )A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019- 答案:C解析:C【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值.【详解】解:设S = 1+2020+20202+20203+ (20202020)则2020S =2020+20202+20203+…+20202020+20202021②由②-①得:2019S =20202021-1 ∴2021202012019S -=. 故答案为:C .【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算.8.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .86 答案:A解析:A【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。

合肥市寿春中学七年级下册数学期末试卷(篇)(Word版 含解析)

合肥市寿春中学七年级下册数学期末试卷(篇)(Word版 含解析)

合肥市寿春中学七年级下册数学期末试卷(篇)(Word 版 含解析) 一、解答题1.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.2.已知点C 在射线OA 上.(1)如图①,CD //OE ,若∠AOB =90°,∠OCD =120°,求∠BOE 的度数;(2)在①中,将射线OE 沿射线OB 平移得O ′E '(如图②),若∠AOB =α,探究∠OCD 与∠BO ′E ′的关系(用含α的代数式表示)(3)在②中,过点O ′作OB 的垂线,与∠OCD 的平分线交于点P (如图③),若∠CPO ′=90°,探究∠AOB 与∠BO ′E ′的关系.3.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)4.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 5.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧. ①求PCG ∠的度数;②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.二、解答题6.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 220a b b --=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODPODQSS=?若存在,请求出t 的值:若不存在,请说明理由.(3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.7.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.8.已知AB ∥CD ,点M 在直线AB 上,点N 、Q 在直线CD 上,点P 在直线AB 、CD 之间,∠AMP =∠PQN =α,PQ 平分∠MPN .(1)如图①,求∠MPQ 的度数(用含α的式子表示);(2)如图②,过点Q 作QE ∥PN 交PM 的延长线于点E ,过E 作EF 平分∠PEQ 交PQ 于点F .请你判断EF 与PQ 的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN ,若NE 平分∠PNQ ,请你判断∠NEF 与∠AMP 的数量关系,并说明理由.9.(感知)如图①,//,40,130AB CD AEP PFD ︒︒∠=∠=,求EPF ∠的度数.小明想到了以下方法:解:如图①,过点P 作//PM AB ,140AEP ︒∴∠=∠=(两直线平行,内错角相等)//AB CD (已知),//∴PM CD (平行于同一条直线的两直线平行),2180PFD ︒∴∠+∠=(两直线平行,同旁内角互补). 130PFD ︒∠=(已知),218013050︒︒︒∴∠=-=(等式的性质). 12405090︒︒︒∴∠+∠=+=(等式的性质).即90EPF ︒∠=(等量代换).(探究)如图②,//AB CD ,50,120AEP PFC ︒︒∠=∠=,求EPF ∠的度数.(应用)如图③所示,在(探究)的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_______________︒.10.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)三、解答题11.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.12.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.13.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.14.Rt △ABC 中,∠C=90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 15.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、解答题1.(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC =120°,求出∠CAE 即可得到结论;(3)作CF ∥ST ,设∠CBT =β,得到∠CBT =∠BCF =β,分别表示出∠CAN 和∠CAE ,即可得到比值. 【详解】解:(1)如图,连接AB ,,360MAC ACB SBC ∠+∠+∠=︒,180ACB ABC BAC ∠+∠+∠=︒,180MAB SBA ∴∠+∠=︒, //MN ST ∴(2)2CAE CAN ∠=∠,理由:作//CF ST ,则////,MN CF ST 如图,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-,//AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠.即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=, 180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n nβββ︒-∠=︒-∠-∠=︒--+=︒-,11::1n CAE CAN n n n-∠∠==-, 故答案为1n -. 【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数; (2)解析:(1)150°;(2)∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′ 【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)如图②,过O 点作OF ∥CD ,根据平行线的判定和性质可得∠OCD 、∠BO ′E ′的数量关系;(3)由已知推出CP ∥OB ,得到∠AOB +∠PCO =180°,结合角平分线的定义可推出∠OCD =2∠PCO =360°-2∠AOB ,根据(2)∠OCD +∠BO ′E ′=360°-∠AOB ,进而推出∠AOB =∠BO ′E ′. 【详解】解:(1)∵CD ∥OE , ∴∠AOE =∠OCD =120°,∴∠BOE =360°-∠AOE -∠AOB =360°-90°-120°=150°; (2)∠OCD +∠BO ′E ′=360°-α. 证明:如图②,过O 点作OF ∥CD ,∵CD ∥O ′E ′, ∴OF ∥O ′E ′,∴∠AOF =180°-∠OCD ,∠BOF =∠E ′O ′O =180°-∠BO ′E ′,∴∠AOB =∠AOF +∠BOF =180°-∠OCD +180°-∠BO ′E ′=360°-(∠OCD +∠BO ′E ′)=α, ∴∠OCD +∠BO ′E ′=360°-α; (3)∠AOB =∠BO ′E ′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.4.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.5.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=12(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=12∠FCQ=12∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ =∠ECF +∠ECQ =27.5°×2+70°=125°,∴∠PCQ =12∠FCQ =62.5°,∴∠CPQ =∠ECP =62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键. 二、解答题6.(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP=t ,OP=2-t ,OQ=2t ,AQ=4-解析:(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠+∠∠进行计算即可. 【详解】解:(1)∵2a b -+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2,∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,∴S △DOP =12•OP •y D =12(2-t )×2=2-t ,S △DOQ =12•OQ •x D =12×2t ×1=t ,∵S △ODP =S △ODQ ,∴2-t =t ,∴t =1.(3)结论:OHC ACE OEC ∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC , ∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2. 【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.7.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.8.(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =∠AMP ,见解析【分析】1)如图①,过点P 作PR ∥AB ,可得AB ∥CD ∥PR ,进而可得结论; (2)根据已知条件可得2∠EPQ+2∠PEF =解析:(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =12∠AMP ,见解析【分析】1)如图①,过点P 作PR ∥AB ,可得AB ∥CD ∥PR ,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF =180°,进而可得EF 与PQ 的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=12(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可(180°﹣∠NQE)=12得结论.【详解】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;∠AMP,理由如下:(3)如图③,∠NEF=12由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=12(180°﹣∠NQE)=12(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣12(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+3 2α=12α=12∠AMP.∴∠NEF=12∠AMP.【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.9.[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线解析:[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.【详解】解:[探究]如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).答:∠EPF的度数为70°;[应用]如图③所示,∵EG是∠PEA的平分线,PG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GCF=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度数是35°.故答案为:35.【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.10.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据,平行线的性质和周角可求出,则,再根据,,可得,,可求出,,根据即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】 (1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.三、解答题11.(1)①45°;②∠F =a ;(2)∠F+∠H 的值不变,是定值180°.【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=∠CAE ,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.12.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.13.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 14.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2 解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP +∠CEP =360°,∠C +∠α+∠CDP +∠CEP =360°, ∴∠1+∠2=∠C +∠α,∵∠C =90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.15.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。

合肥市寿春中学人教版七年级数学下册期末压轴难题试卷及答案

合肥市寿春中学人教版七年级数学下册期末压轴难题试卷及答案

合肥市寿春中学人教版七年级数学下册期末压轴难题试卷及答案一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列图形中,可以由其中一个图形通过平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,点()3,2A -在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题是真命题的是( ) A .两条直线被第三条直线所截,同位角相等 B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒ 6.若一个正数的两个平方根分别是2m +6和m ﹣18,则5m +7的立方根是( ) A .9B .3C .±2D .﹣97.如图,在//AB CD 中,∠AEC =50°,CB 平分DCE ∠,则ABC ∠的度数为( )A .25°B .30°C .35°D .40°8.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201920202021a a a ++=( )A .1009B .1010C .1011D .1012二、填空题9.已知 325.6≈18.044,那么± 3.256≈___________. 10.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,a ∥b ,∠1=68°,∠2=42°,则∠3=_____________.13.如图,在四边形ABCD 纸片中,AD ∥BC ,AB ∥CD .将纸片折叠,点A 、B 分别落在G 、H 处,EF 为折痕,FH 交CD 于点K .若∠CKF =35°,则∠A +∠GED =______°.14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____.16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x 值. (1)2164x -= (2)3(1)64x -=19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F . (1)请把下面证明过程中序号对应的空白内容补充完整. 证明:∴∠1=∠2(已知) 又∵∠1=∠DMN ( )∵∠2=∠DMN (等量代换) ∴DB ∥EC ( )∴∠DBC +∠C =180°( ). ∵∠C =∠D (已知),∴∠DBC +( )=180°(等量代换) ∴DF ∥AC ( ) ∴∠A =∠F ( )(2)在(1)的基础上,小明进一步探究得到∠DBC =∠DEC ,请帮他写出推理过程.20.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()2,3-A ,()3,1B -,()1,2C -.(1)将ABC 向右平移4个单位长度得到111A B C △,画出平移后的111A B C △; (2)将ABC 向下平移5个单位长度得到222A B C △,画出平移后的222A B C △; (3)直接写出三角形ABC 的面积为______平方单位.(直接写出结果) 21.23490a b a -+-=(1)求实数,a b 的值;(2)若b 的整数部分为x ,小数部分为y ①求2x y +的值;②已知103kx m -=+,其中k 是一个整数,且01m <<,求k m -的值.二十二、解答题22.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .(1)点M ,N 分别在射线QC ,QF 上(不与点Q 重合),当∠APM +∠QMN =90°时, ①试判断PM 与MN 的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理)24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 25.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线, (1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________ (3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO的度数.26.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、选择题 1.A 解析:A 【分析】根据平方根的定义,进行计算求解即可.解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A(-3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.解:A 、两条平行的直线被第三条直线所截,同位角相等, 原命题错误,是假命题,不符合题意;B 、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C 、在同一平面内,垂直于同一条直线的两条直线互相平行, 原命题正确,是真命题,符合题意;D 、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意; 故选:C . 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理. 5.A 【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠. 【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴,12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠,180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠,180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒, 1802(24)BKC BKC ∴∠=︒-∠-︒, 76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c . 6.B 【分析】根据立方根与平方根的定义即可求出答案. 【详解】解:由题意可知:2m +6+m ﹣18=0, ∴m =4, ∴5m +7=27, ∴27的立方根是3, 故选:B . 【点睛】考核知识点:平方根、立方根.理解平方根、立方根的定义和性质是关键. 7.A 【分析】根据平行线的性质得到∠ABC =∠BCD ,∠ECD =∠AEC =50°再根据角平分线的定义得到∠BCE =∠BCD =12∠ECD =25°,由此即可求解. 【详解】 解:∵AB ∥CD ,∴∠ABC =∠BCD ,∠ECD =∠AEC =50° ∵CB 平分∠DCE ,∴∠BCE =∠BCD =12∠ECD =25° ∠ABC =∠BCD =25° 故选A .【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.8.B 【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则,,,,,,,,由此可知当n 为偶数时;,,,,可得 ,,可以得到,由此求解即可.解析:B【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =;11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,可以得到21210n n a a -++=,由此求解即可.【详解】解:由题意可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),∴11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =, ∴2020202010102a == ∵11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,∴可以得到21210n n a a -++=,∴201920210a a +=,∴2019202020211010a a a ++=,故选B .【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解.二、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】 ∵,∴,即 1.8044±.故答案为±1.804410.(3,1)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P 关于x 轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要解析:(3,1)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P (3,﹣1)∴点P 关于x 轴对称的点Q (3,1)故答案为(3,1).【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫ ⎪⎝⎭【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y=,即可求得点E的坐标.【详解】解:设D(x,y),点D在第一象限的角平分线上,∴x y=,//CD AB,()20A-,,()04B,∴设直线AB的解析式为:4y kx=+,把()20A-,,代入得:k=2,24ABy x∴=+,2CDy x b∴=+,把()0,1C-代入,得b=-1,21CDy x∴=-,点D在21CDy x=-上,(11)D∴,,设直线AD的解析式为:11y k x b=+,可得1111120k bk b+=⎧⎨-+=⎩,111323kb⎧=⎪⎪∴⎨⎪=⎪⎩,1233ADy x∴=+,当x=0时,23y=,2(0)3E∴,,故答案为:2(0)3,【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68解析:110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68°,∵∠2=42°,∴∠5+∠2=68°+42°=110°,∵a∥b,∴∠3=∠2+∠5,∴∠3=110°,故答案为:110°.【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.13.145【分析】首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.【详解】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.【详解】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠A=∠C,根据翻转折叠的性质可知,∠AEF =∠GEF ,∠EFB =∠EFK ,∵AD ∥BC ,∴∠DEF =∠EFB ,∠AEF =∠EFC ,∴∠GEF =∠AEF =∠EFC ,∠DEF =∠EFB =∠EFK ,∴∠GEF ﹣∠DEF =∠EFC ﹣∠EFK ,∴∠GED =∠CFK ,∵∠C +∠CFK +∠CKF =180°,∴∠C +∠CFK =145°,∴∠A +∠GED =145°,故答案为145.【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键.14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐解析:(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.16.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)3 2 -【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式12783=-++=(2)原式11342⎛⎫=-⨯+- ⎪⎝⎭1342=-+-542=-32=-【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.18.(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x即可.详解:(1),∴;(2),∴x-1=4,∴x=5.点睛:本题考查了立方解析:(1)52x=±;(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x即可.详解:(1)225 4x=,∴52x=±;(2)()1x-∴x-1=4,∴x=5.点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∵∠DBC+(∠D)=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).(2)∵DB∥EC,∴∠DBC+∠C=180°,∠DEC+∠D=180°,∵∠C=∠D,∴∠DBC=∠DEC.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.20.(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应解析:(1)见解析;(2)见解析;(3)32【分析】(1)把三角形ABC 的各顶点向右平移4个单位长度,得到A 、B 、C 的对应点1A 、1B 、1C ,再顺次连接即可得到三角形111A B C ;(2)把三角形ABC 的各顶点向下平移5个单位长度,得到A 、B 、C 的对应点2A 、2B 、2C ,再顺次连接即可得到三角形222A B C ;(3)三角形ABC 的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.【详解】解:(1)平移后的三角形111A B C 如下图所示;(2)平移后的三角形222A B C 如下图所示;(3)三角形ABC 的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,∴S △ABC 11122212111222=⨯-⨯⨯-⨯⨯-⨯⨯14112=--- 32=. 【点睛】本题考查了作图-平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.21.(1);;(2)①;②【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的值,可得的整数部分和小数部分,①将x 和y 的值代入 解析:(1)7a =;21b =;(2)①2214;3【分析】(1)根据分式的值为0,分子为0且分母不能为023490a b a --=和70a +≠,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b b 的整数部分和小数部分,①将x 和y 的值代入2x y +即可求值;②估算103k 是一个整数,且01m <<,可得k 和m 的值,由此可得k m -的值.【详解】解:(1)∵0=,∴2490a -=且70a +≠, ∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125, ∴45<的整数部分为44,①244)4x y +=+=;②∵12<<, ∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<, ∴2,10242k m ==⨯=∴2(2k m -=-=【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性.(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键.二十二、解答题22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴,(2)∵22r ππ=, ∴r = ∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ ,再根据已知条解析:(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN =90°或∠APM -∠QMN =90°.【分析】(1)①利用平行线的性质得到∠APM =∠PMQ ,再根据已知条件可得到PM ⊥MN ; ②过点N 作NH ∥CD ,利用角平分线的定义以及平行线的性质求得∠MNH =35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM ⊥MN ,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.25.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E =∠EOQ ﹣∠EAO =12(∠BOQ ﹣∠BAO )=12∠ABO ,∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴∠EAF =∠EAO +∠FAO =12(∠BAO +∠GAO )=90°.在△AEF 中,∵∠BAO 与∠BOQ 的角平分线相交于E ,∴∠EAO = 12∠BAO ,∠EOQ =12∠BOQ ,∴∠E =∠EOQ -∠EAO =12(∠BOQ -∠BAO )=12∠ABO , ∵有一个角是另一个角的32倍,故有: ①∠EAF =32∠F ,∠E =30°,∠ABO =60°; ②∠F =32∠E ,∠E =36°,∠ABO =72°; ③∠EAF =32∠E ,∠E =60°,∠ABO =120°(舍去); ④∠E =32∠F ,∠E =54°,∠ABO =108°(舍去); ∴∠ABO 为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠, ∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒, ∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒, ∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠, ∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒, ∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F ,∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠,。

合肥市寿春中学七年级上册期末历史试卷

合肥市寿春中学七年级上册期末历史试卷

合肥市寿春中学七年级上册期末历史试卷一、选择题1.“山顶洞人有爱美意识”最能支持这一结论的是()A.历史学者的论述B.《山海经》中的神话传说C.《韩非子》关于远古时代的记述D.遗址中发现了骨针和装饰品2.某班历史兴趣小组的同学进行探究性学习,他们将收集到的下列图片构成一组,这组图片反映的原始居民的生产生活情况属于A.北京人B.山顶洞人C.河姆渡人D.半坡人3.2015年11月7日,两岸领导人在新加坡进行“世纪之握”台湾领导人马英九先生致辞说:“两岸人民同属中华民族。

都是炎黄子孙……”两岸人民都是“炎黄子孙”是因为A.炎、黄二部族的联合形成后来华夏族的主体B.炎帝和黄帝联合战胜了蚩尤C.两岸人民都是黄皮肤的黄色人种D.中华民族的团结友爱传统4.《史记卷四﹒周本纪》中记载:“於是封功臣谋士,而师尚父为首封。

封尚父於营丘,曰齐。

封弟周公旦於曲阜,曰鲁。

”这说明西周分封制A.稳定周初政治形势B.诸侯要向天子进贡C.对象是宗亲和功臣D.诸侯有较大独立性5.下列不属于商朝文明成就的是A.图1 B.图2 C.图3 D.图46.“尊王攘夷”一词出现于《春秋·公羊传》,大意是齐桓公会过问和制止那些侵犯周王室权威的事,而他也借助着周天子的影响号令诸侯。

齐桓公打着这一旗号的目的是()A.维护天子权威B.争夺中原霸主C.扩充齐国疆界D.控制少数民族7.史书记载:“商君相秦十年,宗室贵戚多怨望者(宗室贵族都有怨恨情绪)。

”出现这一现象的主要原因是商鞅变法A.确立县制,由国君直接派官吏治理B.改革户籍制度,加强对人民的管理C.废除井田制,允许土地自由买卖D.废除贵族的世袭特权8.颜回问什么是仁,孔子说:“克己复礼为仁。

”子贡问仁,孔子却说:“已欲立而立人,已欲达而达人。

”司马牛问仁,孔子说:“仁者其言也词(说话谨慎)。

”这说明孔子在教育学生方面()A.因材施教B.言传身教C.教学相长D.有教无类9.“他驱动万乘战车,点燃遍地烽烟……诸侯割据,十余年间便成了无影无踪的旧梦——这是中国大陆上第一次真正的统一……中国大陆永远连成了统一的整体。

2014-2015年安徽省合肥市七年级上学期期末数学试卷(解析版)

2014-2015年安徽省合肥市七年级上学期期末数学试卷(解析版)

2014-2015学年安徽省合肥市七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣的绝对值的相反数是()A.B.C.5D.﹣52.(3分)若每人每天浪费水0.32升,那么100万人每天浪费的水,用科学记数法表示为()A.3.2×104升B.3.2×105升C.3.2×106升D.3.2×107升3.(3分)在一定的条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4秒时,该物体所经过的路程为()A.28米B.48米C.68米D.88米4.(3分)如图中,不可能围成正方体的是()A.B.C.D.5.(3分)某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为()A.25%a元B.(1﹣25%)a元C.(1+25%)a元D.元6.(3分)已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0C.b﹣a>0D.a+b>07.(3分)下面是一个被墨水污染过的方程:2x﹣=x﹣,答案显示此方程的解是x=,被墨水遮盖的是一个常数,则这个常数是()A.2B.﹣2C.D.﹣8.(3分)能断定A、B、C三点共线的是()A.AB=2,BC=3,AC=4B.AB=6,BC=6,AC=6C.AB=8,BC=6,AC=2D.AB=12,BC=13,AC=15二、填空题(共8小题,每小题3分,满分24分)9.(3分)冬季的某日,上海最低气温是3℃,北京最低气温是﹣5℃,这一天上海的最低气温比北京的最低气温高℃.10.(3分)如果一个角的余角是15°,那么这个角的补角是.11.(3分)时钟在4点半时,时针与分针的夹角为度.12.(3分)若单项式3x2y5与﹣2x1﹣m y3n﹣1是同类项,则m n=.13.(3分)若(2x﹣y)2与|x+2y﹣5|互为相反数,则(x﹣y)2015=.14.(3分)已知|x|=4,|y|=,且xy<0,则的值等于.15.(3分)已知A、B、C三点在同一直线上,AB=16cm,BC=10cm,M、N分别是AB、BC的中点,则MN等于.16.(3分)如图是小明用火柴搭的1条、2条、3条“金鱼”…,则搭n条“金鱼”需要火柴根.三、解答题:本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:(1)﹣14÷(﹣5)2×(﹣)+|0.8﹣1|(2)5x3﹣3[﹣x2+2(x3﹣x2)].18.(8分)解方程(组):。

合肥市寿春中学人教版七年级数学上册期末试卷及答案

合肥市寿春中学人教版七年级数学上册期末试卷及答案

的 625 的对数,记为 log5 625 (即 log5 625 4 ),那么 log3 9 _________.
23.为了了解我市 2019 年 10000 名考生的数学中考成绩,从中抽取了 200 名考生成绩进 行统计.在这个问题中,下列说法:①这 10000 名考生的数学中考成绩的全体是总体:②每 个考生是个体;③从中抽取的 200 名考生的数学中考成绩是总体的一个样本:④样本容量 是 200.其中说法正确的有(填序号)______ 24.若 4a+9 与 3a+5 互为相反数,则 a 的值为_____.
12.有理数 a、b 在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0
B.ab>0
C.a﹣b<o
D.a÷b>0
二、填空题
13.已知 x=2 是方程(a+1)x-4a=0 的解,则 a 的值是 _______.
14.单项式﹣ a2b 的系数是_____,次数是_____. 2
15.如图,在长方形 ABCD 中, AB 10, BC 13. E, F, G, H 分别是线段
A. 50
B.130
C. 50 或 90
D. 50 或130
3.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出 44 个位置的16
个数(如1, 2 , 3 , 4 ,8 , 9 ,10 ,11,15 ,16 ,17 ,18 , 22 , 23, 24 , 25 ).若
用这样的正方形圈出这张数字卡片上的16 个数,则圈出的16 个数的和不可能为下列数中的
19.五边形从某一个顶点出发可以引_____条对角线. 20.方程 x+5= 1 (x+3)的解是________.

合肥市寿春中学人教版七年级数学下册期末试卷及答案

合肥市寿春中学人教版七年级数学下册期末试卷及答案

合肥市寿春中学人教版七年级数学下册期末试卷及答案一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a2.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 3.下列计算中,正确的是( )A .235235x x x +=B .236236x x x =C .322()2x x x÷-=- D .236(2)2x x -=- 4.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 5.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .4 6.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩ C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 8.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .729.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 10.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题11.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.12.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.13.已知22a b -=,则24a b ÷的值是____.14.a m =2,b m =3,则(ab )m =______.15.已知30m -=,7m n +=,则2m mn +=___________.16.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .17.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.18.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.19.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).23.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩. 24.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项)A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 25.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅26.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.27.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.28.0=,|1|z -=,求x y z ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b, 5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 3.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.4.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.5.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA 与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.7.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】此题考查了完全平方公式,找到等量关系列方程为解题关键.9.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.10.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.12.80°【解析】∵BC ∥DE ,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC ∥DE ,∴∠ADE =∠B =50°,∵∠EDF =∠ADE =50°,∴∠BDF =180°-50°-50°=80°.故答案为80°.13.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.14.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab )m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m =2,b m =3,所以(ab )m =a m •b m =2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知. 15.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单.16.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【解析:10【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.18.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.19.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b )2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a 2+2ab +b 2=7,然后把a 2+b 2=5代入可计算出ab 的值.【详解】解:∵(a +b )2=7,∴a 2+2ab +b 2=7,∵a 2+b 2=5,∴5+2ab =7,∴ab =1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键. 20.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a≤.答:最多可以购买54个A型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.(1)20°;(2)11 22 n m-【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)11xy=⎧⎨=-⎩;(2)13x≤<【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.24.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020)=12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.25.(1)89;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.26.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴△ABC的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.27.(1)21xy=⎧⎨=-⎩;(2)175125xy=⎧⎨=⎩.【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y xx y=-⎧⎨+=-⎩①②,把①代入②得:x+6x﹣15=﹣1,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩;(2)方程组整理得:300 5537500x yx y+=⎧⎨+=⎩①②,①×53﹣②得:48x=8400,解得:x=175,把x=175代入①得:y=125,则方程组的解为175125 xy=⎧⎨=⎩.【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.28.【分析】根据题意得到三元一次方程组,解方程组,求出x y z++,最后求平方根即可.【详解】0 =,|1|z-=,=|1|0 z-=,∴2113024010y xx yz-+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.。

2023-2024学年安徽省合肥市庐阳区寿春中学七年级(下)期末数学试卷及答案解析

2023-2024学年安徽省合肥市庐阳区寿春中学七年级(下)期末数学试卷及答案解析

2023-2024学年安徽省合肥市庐阳区寿春中学七年级(下)期末数学试卷一、选择题(本大题共10小题,每题4分,满分40分,在每小题所给四个选项,只有一个符合题目要求)1.(4分)下列实数中,是无理数的是()A.B.C.3.14D.02.(4分)华为首款手机SoC芯片麒麟用0.000000028m四核处理器,开启了智能手机芯时代,数0.000000028用科学记数法表示为()A.28×10﹣9B.2.8×10﹣9C.2.8×10﹣8D.2.8×10﹣103.(4分)如图,直线a∥直线b,AB⊥BC,若∠1=50°,则∠2的度数是()A.40°B.50°C.25°D.60°4.(4分)当x=3时,下列分式中,值为0的是()A.B.C.D.5.(4分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N6.(4分)已知,则=()A.B.C.D.7.(4分)如图,点O为CB延长线上一点,下列条件不能判定EF∥BC的是()A.∠FEB=∠EBC B.∠AFE=∠OBA C.∠FEC+∠C=180°D.∠AEF=∠C8.(4分)已知,则n可以表示为()A.B.C.D.9.(4分)端午期间,班主任王老师带领全班同学去距离学校25km的公园做活动,男生在班长的带领下,骑自行车提前80分钟出发,女生在王老师的带领下乘公交车出发,结果两队同时到达,若公交车的速度是自行车速度的3倍,设男生队骑车的速度是x km/h,则方程为()A.B.C.D.10.(4分)如图,点B是线段CD上一点,以AB、BC为边向外作正方形,面积分别为S1、S2,若S1+S2=25,DC=7,三角形ABC的面积是()A.6B.7C.8D.5二、填空题(本大题共4小题,每题5分,满分20分)11.(5分)化简:=.12.(5分)因式分解:ab2﹣9a=.13.(5分)已知关于x的分式方程有增根,则k=.14.(5分)使等式成立的x的值为x=1或x=3;使等式成立的x的值为x=2或;使等式成立的x的值为x=4或.根据上述材料,回答下列问题:(1)使等式成立的x的值为;(2)使等式成立的m的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解不等式组:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)先化简,再求值,其中﹣2≤a≤2且a为整数,请你从中选取一个合适的数代入求值.18.(8分)如图,学校有一块边长为(2a+b)米的正方形空地,计划在阴影部分的地方进行绿化,搭建一个小花坛,中间修建一个长为(a+b)米、宽为b米的鱼池供观赏.(1)求绿化的面积是多少平方米?(2)若a=4,b=3时,求绿化面积.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在正方形网格中有一个格点三角形ABC(三角形ABC的各顶点都在格点上).(1)画出三角形ABC中AB边上的高CD.(2)将三角形ABC先向上平移2格,再向右平移4格,画出平移后的三角形A'B'C'.(3)连接AA',BB',求四边形A'ABB'的面积.20.(10分)如图,已知∠ABC+∠GDE=180°,CB平分∠ACG.(1)证明:BC∥DE;(2)若∠E=40°,求∠EFC的度数.六、(本题满分12分)21.(12分)夏天来到,天气较为炎热,黄老师为了给学生降温,准备给学生购买冰淇淋,在购买时发现梦龙的单价比巧乐兹的单价高60%,用160元购买梦龙的个数比用160元购买巧乐兹的个数少12个.(1)购买梦龙、巧乐兹的单价是多少元?(2)现需要购买梦龙和巧乐兹共45个,且购买的总费用不超过280元,则至多购买多少个梦龙冰淇淋?七、(本题满分12分)22.(12分)【提出问题】利用“图形”能够证明“等式”,如“完全平方公式”、“平方差公式”都可以用图形进行证明,那么“图形”能否证明“不等式”呢?请完成以下探究性学习内容.【自主探究】用直角边分别为a和b的两个等腰直角三角形进行拼图,由图①得到图②.(1)请你仔细观察图形变化,解决下列问题.(i)图①中两个三角形的面积分别为和,图②中长方形ABCD的面积为.(用含a,b的字母表示)(ii)当a≠b时,比较大小:ab.(填“>”或“<”)(iii)当a和b满足什么条件时,与ab相等?甲同学说:我可以通过计算进行说明.乙同学说:我可以通过画图进行说明.请你选择其中一人的方法,进行说明.【知识应用】(2)已知m>0,n>1,且m(n﹣1)=9,利用(1)发现的结论求m2+n2﹣2n+1的最小值.八、(本题满分14分)23.(14分)如图1,已知∠MON=30°,将一块含30°角的直角三角板ABC按如图所示放置(∠ACB =30°),使顶点B落在ON边上,绕点B转动三角板ABC,始终保持点C在ON的上方,过点C作DE∥ON.(1)当∠ABO=°时,AC∥OM.(2)如图2,作∠BCE的角平分线CF.(i)若AB∥CF,求∠BFC的度数.(ii)将三角板ABC绕点B转动,当三角板ABC有一边与OM垂直时,求∠BFC的度数.(直接写出答案)2023-2024学年安徽省合肥市庐阳区寿春中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题4分,满分40分,在每小题所给四个选项,只有一个符合题目要求)1.【分析】根据立方根,无理数的定义判断即可.【解答】解:∵,3.14,0是有理数,∴是无理数,故选:B.【点评】本题考查了无理数即无限不循环小数,立方根,熟练掌握定义是解题的关键.2.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:0.000000028=2.8×10﹣8,故选:C.【点评】本题考查科学记数法表示较小的数,熟练掌握其定义是解题的关键.3.【分析】先根据平行线的性质求出∠ACB的度数,再由垂直的定义得出∠ABC的度数,根据三角形内角和定理即可得出结论.【解答】解:∵直线a∥b,∠1=50°,∴∠ACB=∠1=50°.∵AB⊥BC,∴∠3=90°,∴∠2=90°﹣∠ACB=90°﹣50°=40°.故选:A.【点评】本题考查的是平行线的性质,关键掌握两直线平行,同位角相等.4.【分析】直接利用分式的值为零的条件分析得出答案.【解答】解:A、当x=3时,x2﹣9=0,此时分式无意义,故此选项不合题意;B、当x=3时,2x﹣6=0,x+2≠0,此时分式的值为零,符合题意;C、,当x=3时,x﹣3=0,此时分式无意义,故此选项不合题意;D、当x=3时,x+3=6,x+1=4,此时分式的值不为零,故此选项不合题意;故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.5.【分析】先估算的值,即可判断.【解答】解:∵25<26<36,∴5<<6,∴4<﹣1<5,∴数轴上表示实数﹣1的点可能是点N,故选:D.【点评】本题考查了实数,实数与数轴,估算无理数的大小,熟练掌握估算无理数的值是解题的关键.6.【分析】首先根据=,设a=2k,b=3k,再将化简为,然后将a=2k,b=3k代入计算即可得出答案.【解答】解:∵,∴设a=2k,b=3k,∴====.故选:C.【点评】此题主要考查了分式的运算,求分式的值,熟练掌握分式的约分,以及求分式值的方法与技巧是解决问题的关键.7.【分析】根据平行线的判定定理判断求解即可.【解答】解:∵∠FEB=∠EBC,∴EF∥BC,故A不符合题意;由∠AFE=∠OBA,不能判定EF∥BC,故B符合题意;∵∠FEC+∠C=180°,∴EF∥BC,故C不符合题意;∵∠AEF=∠C,∴EF∥BC,故D不符合题意;故选:B.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.8.【分析】根据分式方程的解法,先去分母,转化为关于n的整式方程求解即可.【解答】解:两边都乘以n得,Rn﹣r=sn,所以n=,故选:C.【点评】本题考查解分式方程,掌握分式方程的解法是正确解答的关键.9.【分析】设男生队骑车的速度是x km/h,则生队骑车的速度是3x km/h,根据同时到达,可以时间作为等量关系列出方程.【解答】解:设男生队骑车的速度是x km/h,则生队骑车的速度是3x km/h,根据题意得﹣=,即﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程的.准确找出等量关系是解决问题的关键.10.【分析】设AB=x,BC=y,由S1+S2=25,DC=7,得x2+y2=25,x+y=7,得2xy=(x+y)2﹣(x2+y2)=24,可得三角形ABC的面积=24÷4=6.【解答】解:设AB=x,BC=y,由S1+S2=25,DC=7,得x2+y2=25,x+y=7,得2xy=(x+y)2﹣(x2+y2)=24,得三角形ABC的面积=24÷4=6.故选:A.【点评】本题主要考查了正方形的性质,解题关键是正确设未知数.二、填空题(本大题共4小题,每题5分,满分20分)11.【分析】根据二次根式的性质解答.【解答】解:原式===4.【点评】解答此题,要根据二次根式的性质:=|a|解题.12.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】先去分母得到k+3=x﹣2,再根据分式方程有增根,得到x=2,代入即可求出k=﹣3.【解答】解:去分母得,k+3=x﹣2,∵分式方程有增根,∴x﹣2=0,即x=2,∴k+3=0,∴k=﹣3,故答案为:﹣3.【点评】此题考查了已知分式方程的根的情况求参数,正确理解分式方程增根的意义是解题的关键.14.【分析】(1)按照上述材料的方法,即可求得x的值;(2)将化为m﹣2+=9+,按照上述材料的方法,即可求得m的值.【解答】解:(1)使等式成立的x的值为x=或x=.故答案为:x=或x=.(2)∵,∴+=,∴=,∴=,∴m﹣2+=9+,∴m﹣2=9或m﹣2=,∴m=11或m=2.故答案为:m=11或m=2.【点评】本题考查解分式方程,解题的关键是正确理解题意,熟练掌握解题方法,本题属于中等题型.三、(本大题共2小题,每小题8分,满分16分)15.【分析】先计算立方根、零次幂、负整数指数幂,最后计算加减.【解答】解:=2﹣+1=.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.16.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+得:x≤1,解不等式5x≥3x﹣1得:x≥﹣,则不等式组的解集为﹣≤x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、(本大题共2小题,每小题8分,满分16分)17.【分析】先算括号内的式子,然后计算括号外的除法,再从﹣2≤a≤2且a为整数中选取一个使得原分式有意义的值代入计算即可.【解答】解:=÷()==﹣,当a =0时,原式=﹣(答案不唯一).【点评】本题考查分式的化简求值,解答本题的关键是明确分式混合运算的运算法则.18.【分析】(1)根据S 绿化部分=S 正方形﹣S 长方形进行计算即可;(2)把a =4,b =3代入(1)中的代数式进行计算即可.【解答】解:(1)S 绿化部分=S 正方形﹣S 长方形=(2a +b )2﹣b (a +b )=4a 2+4ab +b 2﹣ab ﹣b 2=(4a 2+3ab )平方米,答:绿化的面积是(4a 2+3ab )平方米;(2)当a =4,b =3时,4a 2+3ab =4×16+3×4×3=100(平方米),答:当a =4,b =3时,绿化面积为100平方米.【点评】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确解答的关键.五、(本大题共2小题,每小题10分,满分20分)19.【分析】(1)根据三角形的高的定义画图即可.(2)根据平移的性质作图即可.(3)利用平行四边形的面积公式计算即可.【解答】解:(1)如图,CD 即为所求.(2)如图,三角形A 'B 'C '即为所求.(3)四边形A 'ABB '的面积为3×2=6.【点评】本题考查作图﹣平移变换、三角形的角平分线、中线和高,熟练掌握平移的性质、三角形的高的定义是解答本题的关键.20.【分析】(1)根据邻补角定义求出∠GBC =∠GDE ,根据“同位角相等,两直线平行”即可得证;(2)根据平行线的性质及角平分线定义求解即可.【解答】(1)证明:∵∠ABC +∠GDE =180°,∠ABC +∠GBC =180°,∴∠GBC =∠GDE ,∴BC∥DE.(2)解:∵BC∥DE,∴∠E=∠ACB=40°,∠EFC=∠BCG,∵CB平分∠ACG,∴∠ACB=∠BCG=40°,∴∠EFC=40°.【点评】此题考查了平行线的判定与性质、角平分线的定义,熟练运用平行线的判定定理与性质定理是解题的关键.六、(本题满分12分)21.【分析】(1)设巧乐兹的单价是x元,则梦龙的单价是(1+60%)x元,根据用160元购买梦龙的个数比用160元购买巧乐兹的个数少12个列方程即可得到结论;(2)设购买m个梦龙冰淇淋,则购买了(45﹣m)个巧乐兹,根据购买的总费用不超过280元列不等式即可得到结论.【解答】解:(1)设巧乐兹的单价是x元,则梦龙的单价是(1+60%)x元,根据题意得=+12,解得x=5,经检验x=5是原方程的解,(1+60%)×5=8.答:巧乐兹的单价是5元,则梦龙的单价是8元;(2)设购买m个梦龙冰淇淋,则购买了(45﹣m)个巧乐兹,根据题意得8m+5(45﹣m)≤280,解得m≤,答:至多购买18个梦龙冰淇淋.【点评】本题考查了分式方程的应用,一元一次不等式的应用,正确地列出方程和不等式是解题的关键.七、(本题满分12分)22.【分析】(1)(i)根据三角形、长方形面积的计算方法进行计算即可;(ii)由a≠b可得(a﹣b)2>0,进而得出结论;(iii)通过计算可得结论;(2)设x=m,y=n﹣1,由题意可得xy=m(n﹣1)=9,由m2+n2﹣2n+1=x2+y2≥2xy可得答案.【解答】解:(1)(i)图①中两个三角形的面积分别为a2,b2,图②中长方形的长为b,宽为a的长方形,因此面积为ab,故答案为:a2,b2,ab;(ii)∵a≠b,∴(a﹣b)2>0,即a2﹣2ab+b2>0,∴a2+b2>2ab,∴>ab,故答案为:>;(iii)选择甲同学的方法,当a=b时,=a2,ab=a•a=a2,所以当a=b时,=ab,(2)设x=m,y=n﹣1,xy=m(n﹣1)=9,m2+n2﹣2n+1=x2+y2≥2xy,当x=y时,最小值是2xy=2m(n﹣1)=2×9=18,答:m2+n2﹣2n+1的最小值是18.【点评】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确解答的关键.八、(本题满分14分)23.【分析】(1)延长CA交OB于G,当∠CGB=∠MON=30°时,CG∥OM,由平行线的性质和直角三角形的两个锐角互余,即可求解;(2)(i)由平行线的性质得∠A+∠ACF=180°,由角平分线的定义得∠ECF=∠BCF=60°,由平行线的性质即可求解;(ii)①当BA⊥OM时,由角的和差得∠OBC=∠OBP+∠ABC=120°,由平行线的性质得∠BCE=∠OBC=120°,∠BFC=∠ECF,由角平分线的定义,即可求解;②当BC⊥OM时,同理可求;③当AC⊥OM时,同理可求;【解答】解:(1)如图,延长CA交OB于G,当∠CGB=∠MON=30°时,CG∥OM,∵∠BAC=90°,∴∠BAG=90°,∴∠ABG=90°﹣∠CGB=60°;∴∠ABO=60°;故答案为:60;(2)(i)∵AB∥|CF,∴∠A+∠ACF=180°,∵∠BAC=90°,∴∠ACF=90°,∵∠ACB=30°,∴∠BCF=90°﹣30°=60°,∵CF平分∠BCE,∴∠ECF=∠BCF=60°,∵DE∥ON,∴∠BFC=∠ECF=60°;(ii)①如图,当BA⊥OM时,∴∠PBO=90°,∵∠MON=30°,∴∠OBP=90°﹣30°=60°,∵∠ACB=30°,∴∠ABC=90°﹣30°=60°,∴∠OBC=∠OBP+∠ABC=120°,∵DE∥ON,∴∠BCE=∠OBC=120°,∠BFC=∠ECF,∵CF平分∠BCE,∴=60°,∴∠BFC=60°;②如图,当BC⊥OM时,∵∠MON+∠ABC=90°,∴此时AB在射线ON上,∵DE∥ON,∴∠BCE=∠ABC=60°,∠BFC=∠ECF,∵CF平分∠BCE,∴=30°,∴∠BFC=30°;③如图,当AC⊥OM时,∴∠MON+∠CHO=90°,∴∠CHO=90°﹣30°=60°,∴∠AHB=60°,∴∠ABH=90°﹣∠AHB=30°,∴∠OBC=∠ABC﹣∠ABH=30°,∵DE∥ON,∴∠BCE=∠OBC=30°,∠BFC=∠ECF,∵CF平分∠BCE,∴=15°,∴∠BFC=15°,综上所述:∠BFC的度数为15°或30°或60°.【点评】本题考查了直角三角形的特征,角平分线的有关计算,平行线的判定及性质,掌握直角三角形的特征及平行线的性质,能用分类讨论思想求解是解题的关键。

2014-2015沪科版合肥寿春中学七年级数学(下)期末复习题

2014-2015沪科版合肥寿春中学七年级数学(下)期末复习题

合肥寿春中学七年级数学(下)期末复习题姓名: 班级: 分数: 家长签字: 一、选择题(本大题共10小题,每小题3分,满分30分) 1、代数式11+-x x 有意义时,x 的取值范围是………………………………………………【 】 A .x ≠-1 B .x ≠0 C .x ≠1 D .x ≠±12、已知a b >,则下列不等式一定成立的是………………………………………………【 】 A .23a b +>+ B .22a b ->- C .22a b ->- D .22a b< 3、计算()4323b a --的结果是…………………………………………………………………【 】 A .12881b aB .7612b aC .7612b a -D .12881b a -4、下列各式中,哪项可以使用平方差公式分解因式………………………………………【 】 A .22a b -- B .29a -+ C .22()p q -- D .23a b -5、下列各图中,正确画出△ABC 中AC 边上的高的是……………………………………【 】A .①B .②C .③D .④6、如图,给出下列四个条件:①∠BAC=∠BDC ;②∠DAC=∠BCA ;③∠ABD=∠CDB ; ④∠ADB=∠CBD ,其中能使AD ∥BC 的条件是………………………………………【 】 A .①② B .③④ C .②④ D .①③④7、如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果 ∠1=25°,那么∠2的度数是……………………………………………………………【 】 A .30° B .25° C .20° D .15°8、如图,从甲地到乙地有三条路线:(1)甲→A→B→乙 (2)甲→C→B→乙(3)甲→C→D→乙 在这三条路线中,走哪条路线近?答案是………………………【 】 A .(1) B .(1)(2) C .(2)(3) D .(1)(2)(3) 9、关于x 的方程211x ax +=-的解是正数,则a 的取值范围是……………………………【】 A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-2第6题图 第8题图 第7题图10、小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是………………………………………【 】 A .40340204x x =⨯+ B .34040420x x ⨯=+ C .40140204x x +=+ D .40140204x x-=+二、填空题(本大题共6小题,每小题3分,满分18分)11、我国航天工业近10年来迅猛发展,有关数据计算精确度越来越高,“神州十号”飞船发射偏差已达到0.0000102,若用科学记数法表示这个数,应为 ; 12、因式分解32244m m n mn -+的结果是 ;13、计算21424x x ---的结果是 ; 14、已知117m n m n +=+,则n mm n+的值是 ;15、如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,FH 平分∠EFD ,三、计算题(本大题共4小题,每题6分,共24分) 17()()2201313513π-⎛⎫---+-+ ⎪⎝⎭第15题图20、先化简2314223a aa a+-⎛⎫+÷⎪--⎝⎭,再选择一个你喜欢的数代入求值。

寿春中学期末考试数学试卷

寿春中学期末考试数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -32. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. -a > -bD. a^2 > b^23. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9...B. 1, 4, 9, 16, 25...C. 2, 4, 8, 16, 32...D. 3, 6, 12, 24, 48...4. 下列各函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^45. 下列各图形中,面积最大的是()A. 正方形B. 矩形C. 菱形D. 梯形6. 已知函数f(x) = 2x + 1,则函数f(-x)的图像关于()A. x轴对称B. y轴对称C. 原点对称D. 任意直线对称7. 下列各三角形中,内角和最大的三角形是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 普通三角形8. 已知等差数列{an}的前n项和为Sn,若S10 = 110,公差d = 2,则第15项an = ()A. 19B. 21C. 23D. 259. 下列各数中,是二次根式的是()A. √9B. √-9C. √25D. √010. 已知函数y = kx + b的图像经过点(1, 3),且斜率k = 2,则截距b = ()A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)11. 若a + b = 5,ab = 6,则a^2 + b^2 = ______。

12. 已知等差数列{an}的前n项和为Sn,若S5 = 35,公差d = 3,则第10项an = ______。

13. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(2, -3),则a= ______,b = ______。

安徽省合肥寿春中学2015-2016学年七年级上学期期末复习数学试卷

安徽省合肥寿春中学2015-2016学年七年级上学期期末复习数学试卷

合肥寿春中学2016学年七年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.22.据某域名统计机公布的数据显示,截止2014年2月17日,我国“.NET”域名注册量约为745000个,居全球第三位,将745000用科学记数法表示应为()A.745×103B.74.5×104C.7.45×105D.0.745×1063.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.若单项式x a+1y3与y b x2是同类项,则a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=25.若是方程ay﹣x=3的解,则a的取值是()A.5B.﹣5 C.2D.16.已知方程组,则x+y的值为()A.﹣1 B.0C.2D.37.为了了解某校1000名2014-2015学年七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1000名学生的体重是总体B.1000名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本8.下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个9.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°10.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;②60m+10=62m+8;③;④中,其中正确的有()A.①③B.②④C.①④D.②③二、填空题(每小题3分,共24分)11.如果4m﹣5的值与3m﹣9的值互为相反数,那么m等于.12.小红和小花在玩一种计算的游戏,计算的规则是=ad﹣bc.现在轮到小红计算的值,请你帮忙算一算结果是.13.若∠α=72°31′,则∠α的余角大小为.14.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有个.15.有理数a在数轴上对应的点如图所示,则a,﹣a,﹣1由小到大用小于号连接为.16.用四舍五入法得到的近似数8.8×103,精确到位.17.观察下列等式:1、42﹣12=3×5;2、52﹣22=3×7;3、62﹣32=3×9;4、72﹣42=3×11;…则第n(n是正整数)个等式为.18.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图:从2009~2013年,这两家公司中销售量增长较快的是公司.三、计算或先化简再求值题19.﹣12+3×(﹣2)2+(﹣6)÷(﹣)2.20.化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.四、解方程或方程组(本题共1小题,每小题12分,满分12分)21.(1)x﹣=1﹣(2).五、看图计算并回答22.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)图中是否有互余的角?若有请写出所有互余的角.六、数据统计23.某校为了了解本校2014-2015学年八年级学生课外阅读的喜好,随机抽取该校2014-2015学年八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是人.七、应用题24.某商场用36000元购进甲、乙两种计算器,销售完后共获利6000元,其中甲种计算器每个进价120元,售价138元,乙种计算器每个进价100元,售价120元.(1)该商场购进甲、乙两种计算器各多少个?(2)若该商场第二次以原进价购进甲、乙两种计算器,购进乙种计算器的个数不变,而购进甲种计算器的个数是第一次的2倍,甲种计算器按原售价出售,而乙种计算器打折销售.若两种计算器销售完毕,要使第二次经营活动获利润8160元,乙种计算器售价应打几折?八、数学思想方法应用25.(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.安徽省亳州市蒙城县2014-2015学年七年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.2考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.点评:本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.2.据某域名统计机公布的数据显示,截止2014年2月17日,我国“.NET”域名注册量约为745000个,居全球第三位,将745000用科学记数法表示应为()A.745×103B.74.5×104C.7.45×105D.0.745×106考点:科学记数法—表示较大的数.word格式-可编辑-感谢下载支持分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将745000用科学记数法表示为:7.45×105.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.若单项式x a+1y3与y b x2是同类项,则a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:同类项.分析:根据同类项是字母相同且相同字母的指数也相同,可得答案.解答:解:由单项式x a+1y3与y b x2是同类项,得a+1=2,b=3,解得a=1,b=3,故选:A.点评:本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2015届中考的常考点.5.若是方程ay﹣x=3的解,则a的取值是()A.5B.﹣5 C.2D.1考点:二元一次方程的解.专题:计算题.分析:将x与y的值代入方程计算即可求出a的值.解答:解:将x=2,y=1代入方程得:a﹣2=3,解得:a=5,故选A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.已知方程组,则x+y的值为()A.﹣1 B.0C.2D.3考点:解二元一次方程组.专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.解答:解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.为了了解某校1000名2014-2015学年七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1000名学生的体重是总体B.1000名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:A、1000名学生的体重是总体,故A正确;B、1000名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.点评:考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个考点:余角和补角;直线、射线、线段;两点间的距离;度分秒的换算;角平分线的定义.分析:根据射线的定义,同角的补角相等,角平分线的定义,两点之间的距离的定义,度分秒的换算以及余角的定义对各小题分析判断即可得解.解答:解:①射线AB与射线BA不表示同一条射线,因为它们的端点不同,故本小题错误;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确;③应为一条射线把一个角分成两个角相等的角,这条射线叫这个角的平分线,故本小题错误;④应为连结两点的线段的长度叫做两点之间的距离,故本小题错误;⑤40°50′≈40.83°,故本小题错误;⑥互余且相等的两个角都是45°,正确.综上所述,说法正确的有②⑥共2个.故选B.点评:本题考查了余角与补角的定义,射线的定义,角平分线的定义以及度分秒的换算,是基础题,熟记相关概念与性质是解题的关键.9.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°考点:垂线.专题:计算题;压轴题;分类讨论.分析:此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.解答:解:①当OC、OD在AB的一旁时,∵OC⊥OD,∠COD=90°,∠AOC=30°,∴∠BOD=180°﹣∠COD﹣∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=180°﹣∠AOD=120°.故选D.点评:此题主要考查了直角、平角的定义,注意分两种情况分析.10.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;②60m+10=62m+8;③;④中,其中正确的有()A.①③B.②④C.①④D.②③考点:由实际问题抽象出一元一次方程.分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解答:解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:=,故选:A.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.二、填空题(每小题3分,共24分)11.如果4m﹣5的值与3m﹣9的值互为相反数,那么m等于2.考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到m的值.解答:解:根据题意得:4m﹣5+3m﹣9=0,移项合并得:7m=14,解得:m=2.故答案为:2点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.小红和小花在玩一种计算的游戏,计算的规则是=ad﹣bc.现在轮到小红计算的值,请你帮忙算一算结果是﹣2.考点:代数式求值.专题:计算题.分析:根据题中的新定义化简所求式子,计算即可得到结果.解答:解:=1×4﹣2×3=4﹣6=﹣2.故答案为:﹣2.点评:此题考查了代数式求值,弄清题中的新定义是解本题的关键.13.若∠α=72°31′,则∠α的余角大小为17°29′.考点:余角和补角;度分秒的换算.分析:根据余角的定义可得∠α的余角等于90°﹣72°31′=17°29′.解答:解:∠α的余角等于90°﹣72°31′=17°29′.故答案为:17°29′.点评:本题比较容易,考查余角的定义:若两个角的和为90°,则这两个角互余.14.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有两个.考点:整式.分析:根据单项式与多项式统称为整式,可得答案.解答:解:①m是整式;②x+5=7是方程,不是整式;③2x+3y是整式;④m>3是不等式;⑤是分式,不是整式,故答案为:两.点评:本题考查了整式,单项式与多项式统称为整式,注意等式、不等式都不是整式,是分式,不是整式.15.有理数a在数轴上对应的点如图所示,则a,﹣a,﹣1由小到大用小于号连接为a<﹣1<﹣a.考点:有理数大小比较;数轴.分析:先根据a在数轴上的位置判断出其符号,再比较出其大小即可.解答:解:∵由图可知,a<0,|a|>1,∴﹣a>1,∴a<﹣1<﹣a.故答案为:a<﹣1<﹣a.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.16.用四舍五入法得到的近似数8.8×103,精确到百位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:8.8×103精确到百位.故答案为百.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.17.观察下列等式:1、42﹣12=3×5;2、52﹣22=3×7;3、62﹣32=3×9;4、72﹣42=3×11;…则第n(n是正整数)个等式为(n+3)2﹣n2=3(2n+3).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:观察分析可得:1式可化为(1+3)2﹣12=3×(2×1+3);2式可化为(2+3)2﹣22=3×(2×2+3);…故则第n个等式为(n+3)2﹣n2=3(2n+3).解答:解:第n个等式为(n+3)2﹣n2=3(2n+3).点评:本题是一道找规律的题目,这类题型在2015届中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图:从2009~2013年,这两家公司中销售量增长较快的是甲公司.考点:折线统计图.分析:结合折线统计图,求出甲、乙各自的增长量即可求出答案.解答:解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400﹣100=300辆;则甲公司销售量增长的较快.故答案为:甲.点评:本题主要考查了折线图,从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.三、计算或先化简再求值题19.﹣12+3×(﹣2)2+(﹣6)÷(﹣)2.考点:有理数的混合运算.分析:先算乘方,再算乘除,最后算加法,由此顺序计算即可.解答:解:原式=﹣1+3×4+(﹣6)×9=﹣1+12﹣54=﹣43.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.20.化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.解答:解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.点评:此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.四、解方程或方程组(本题共1小题,每小题12分,满分12分)21.(1)x﹣=1﹣(2).考点:解二元一次方程组;解一元一次方程.分析:(1)根据去分母、去括号、移项、合并同类项、系数化为1,可得方程的解;(2)根据加减消元法,可得方程组的解.解答:解:(1)去分母,得6x﹣2(x+2)=6﹣3(x﹣1),去括号,得6x﹣2x﹣4=6﹣3x+3,移项,得6x﹣2x+3x=6+3+4,合并同类项,得8x=13系数化为1,得x=;(2),①×2+②,得11x=22,解得x=2,把x=2代入①,得3×2﹣y=7,解得y=﹣1,原方程组的解是.点评:本题考查了解二元一次方程组,(1)去分母时都乘以分母的最小公倍数,分子要加括号;(2)加减消元是解方程组的关键.五、看图计算并回答22.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)图中是否有互余的角?若有请写出所有互余的角.考点:余角和补角;角平分线的定义.分析:(1)根据∠DOE=(∠BOC+∠COA)即可求解;(2)互余就是两角的和是90°,根据定义即可作出判断.解答:解:(1)∠DOE=(∠BOC+∠COA)=[62°+(180°﹣62°)】=90°;(2)∠DOA与∠COE互余,∠DOA与∠BOE互余,∠DOC与∠COE互余,∠DOC与∠BOE互余.点评:本题考查了角度的计算,正确根据角平分线的定义理解∠DOE=(∠BOC+∠COA)是关键.六、数据统计23.某校为了了解本校2014-2015学年八年级学生课外阅读的喜好,随机抽取该校2014-2015学年八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于36度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180人.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)根据条形图可知阅读小说的有80人,根据在扇形图中所占比例得出调查学生数;(2)根据条形图可知阅读其他的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据科普常识的学生所占比例,即可估计全校人数.解答:解:(1)80÷40%=200人,(2)20÷200×360°=36°,(3)200×30%=60(人),如图所示:(4)600×30%=180人,故答案为:(1)200,(2)36,(4)180.点评:此题主要考查了条形图与扇形图的综合应用,根据图形得出正确信息,两图形有机结合是解决问题的关键.七、应用题24.某商场用36000元购进甲、乙两种计算器,销售完后共获利6000元,其中甲种计算器每个进价120元,售价138元,乙种计算器每个进价100元,售价120元.(1)该商场购进甲、乙两种计算器各多少个?(2)若该商场第二次以原进价购进甲、乙两种计算器,购进乙种计算器的个数不变,而购进甲种计算器的个数是第一次的2倍,甲种计算器按原售价出售,而乙种计算器打折销售.若两种计算器销售完毕,要使第二次经营活动获利润8160元,乙种计算器售价应打几折?考点:二元一次方程组的应用.分析:(1)设商场购进甲种计算器x个,乙种计算器y个,根据某商场用36000元购进甲、乙两种计算器,销售完后共获利6000元,列出方程组解决问题;(2)设乙种计算器售价应打z折,由第二次经营活动获利润8160元,列出方程解决问题.解答:解:(1)设商场购进甲种计算器x个,乙种计算器y个,根据题意得:,解得.答:该商场购进甲种计算器200个,乙种计算器120个.()(2)设乙种计算器每个售价打z折,根据题意,得120(﹣100)+2×200×(138﹣120)=8160,解得:z=9.答:乙种计算器售价打9折.点评:此题考查二元一次方程组与一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.八、数学思想方法应用25.(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.考点:角的计算;两点间的距离.分析:(1)先根据点M、N分别是AC、BC的中点求出MC及CN的长,再根据MN=MC+CN即可得出结论;(2)由(1)的计算方法得出规律即可;(3)类比于线段的中点,以“角的平分线”在角的内部写出题目解答即可;(4)分两种情况探讨答案:在线段AB上;在线段AB的延长线上.解答:解:(1)MN=MC+NC=MN=AC+BC=(AC+BC)=×(12+8)=10;(2)MN=MC+NC═AC+BC=(AC+BC)=a;规律:线段上任意一点把线段分成二部分的中点之间的距离等于原线段长度的一半;(3)已知:如图所示,射线OC在∠AOB的内部,∠AOC=α,∠BOC=β,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数;结果:∠DOE=(α+β),(4)分二种情况:如果在线段AB上,MN=MC+NC=MN=AC+BC=(AC+BC)=×(12+8)=10;如果在线段AB的延长线上,MN=MC﹣NC=AC﹣BC=(AC﹣BC)=×(12﹣8)=2.点评:本题考查了线段中点定义和两点间的距离的应用,主要考查学生的计算能力,同时渗透类比思想.。

合肥市寿春中学人教版七年级生物下册期末非选择题综合探究题试卷及答案

合肥市寿春中学人教版七年级生物下册期末非选择题综合探究题试卷及答案

合肥市寿春中学人教版七年级生物下册期末非选择题综合探究题试卷及答案一、实验探究综合题1.下图是我国营养学家建议居民一日三餐对各类食物的摄取比例,请据图回答下列问题。

(1)我们每天摄取的食物中,Ⅴ所占的比例最大,这是因为(________)是人体最重要的供能物质。

A、蛋白质B、脂肪C、糖类D、维生素(2)1913年,俄罗斯“圣虎克号”的船员们在航行途中患了一种疾病,他们牙龈肿胀,容易出血。

根据你所学习的知识可知,图中__________(填标号)类食物能防治这种病。

(3)处于生长发育时期的青少年应多吃一些含蛋白质、钙、磷和维生素丰富的食物,请你从图中选取合适的食物__(填标号)。

(4)位于中国居民的“平衡膳食宝塔”中最顶层,应该少吃的一类食物是(_________)A、水果、蔬菜类 B、动物性食品 C、谷物类 D、油脂类(5)下列饮食习惯合理的是(_________)A、经常吃“洋快餐”B、不挑食、不偏食,按时进餐C、用喝果汁、可乐等饮料来代替饮水D、睡觉前多吃一些食物,早餐可以不进食2.如图所示是某地男生和女生身高的情况,请据图回答下列问题:(1)图中所示曲线说明了青春期身体发育的一个显著特点是_________________________________(2)由图可知男孩身高开始突增的年龄是(____)A.10.5 B.12.5 C.8.5 D.13(3)从图中可知女孩发育__________男孩。

(填“早于”或“晚于”)(4)经调查发现在身高突增的年龄段里,性器官也迅速发育,男性是由于__________分泌的__________起作用,女性是由于__________分泌的__________起作用。

(5)专家建议青少年要多吃含__________丰富的食品,因为它是人体细胞生长的主要原料。

3.考场上的你,信心满满,大脑如陀螺般飞速运转,笔尖轻快地写下答案。

这些生命活动需要消耗能量,能量来自细胞内有机物的氧化分解。

合肥市寿春中学历史七年级上册期末试卷

合肥市寿春中学历史七年级上册期末试卷

合肥市寿春中学历史七年级上册期末试卷一、选择题1.1929年,中国考古学家裴文中在北京房山发掘出一块完整的古人类头盖骨化石,为人类起源的研究提供了可靠的证据,下列史实与该考古发现的“北京人”相符的是()A.是我国境内目前已确认的最早的古人类B.会使用火和打制石器C.已经会制造工具和种植水稻 D.会建造房屋和使用陶器2.在河姆渡遗址,考古学者发现了木结构水井;在半坡遗址,居住区外有公共墓地。

这些发现说明他们都A.过着定居生活B.使用磨制石器C.学会制作陶器D.养殖家禽家畜3.传说,炎帝发明耒耜、陶器、天文历法等,黄帝发明弓箭、水井、衣裳等。

这些传说A.反映了中国先民的智慧B.体现炎黄是部落的首领C.再现了真实可靠的历史D.说明世袭制取代禅让制4.位于武汉东湖磨山风景区内的磨山楚城门,是对历史上楚国都城郢都纪南城城门的一个再现。

请问楚国的起源与下列哪一制度有关()A.禅让制B.郡县制C.分封制D.世袭制5.历史学家和考古学家郭沫若考察殷墟时留下的著名诗句,“洹水安阳名不虚,三千年前是帝都”。

下列文物出土于“帝都”的是()A.青铜立人B.后母戊鼎C.四羊方尊D.青铜神树6.《史记・周本纪》记载,“平王之时,周室衰微,诸侯强并弱,齐、楚、秦、晋始大,政由方伯。

”材料中体现出春秋时期最显著的政治特点是()A.统一趋势进一步加强B.霸主尊王攘夷,扶助弱小C.周王室衰微,诸侯争霸D.周王室中兴,强化分封制7.2008年5月12日,四川汶川发生里氏8.0级地震。

都江堰是离震中最近的地区之一,据都江堰景区工作人员介绍,未发现都江堰水利工程受损的迹象。

下列关于都江堰的叙述错误的是A.都江堰修筑在岷江流域B.内江用于分洪,外江用于灌溉C.代表了当时水利工程的先进水平D.内江水通过宝瓶口引入支流8.“在五千多年的文明发展中,中华民族一直追求和传承着和平、和睦、和谐。

以和为贵,与人为善,己所不欲、勿施于人等理念……是建设人类命运共同体的重要思想宝库。

合肥市寿春中学地理七年级上册期末试卷

合肥市寿春中学地理七年级上册期末试卷

合肥市寿春中学地理七年级上册期末试卷1.1519一1522年,葡萄牙航海家麦哲伦率领船队,首次实现人类环绕地球一周的航行。

据此完成下面小题。

1.此次环球航行能证实()A.“地球是一个球体”B.“天圆地方”C.“地球是一个两级稍扁、赤道略鼓的不规则球体”2.此次环球航行没有经过的大洋是()A.太平洋B.北冰洋C.大西洋【答案】1.C2.B3.除夕夜,当零点钟声敲响后,晓红兴奋地给在美国的姑妈打电话送去新年问候,当她向姑妈问候“新年好”时,姑妈却回答“除夕好”。

对此现象解释正确的是()A.两地习俗不同B.两地季节不同C.两地存在时差【答案】C【解析】【详解】地球自转产生的现象是昼夜交替、日月星辰东升西落和时间差异。

由于地球的自转运动,相同纬度的地区东边的地点早一刻看到日出,这样不同经度的地方时间的早晚出现了差别,即时间差异。

由于中国和美国之间存在时间差,中国时间较早,美国时间较晚,中国已经进入新年了,美国时间还处在除夕,C正确。

跟习俗无关,A错误。

两地都是北半球,季节相同,B错误。

故选C。

4.在一间暗室里,将一盏电灯固定放在桌子上代表太阳,在电灯旁固定放置一个地球仪代表地球,然后拨动地球仪模拟地球运动。

根据所学知识,读图完成下面小题。

4.用地球仪演示地球自转时,正确的做法是()A.平视地球仪,自左向右拨动球体B.从北极上方向下俯视,顺时针旋转球体C.手托底座任意拨动球体5.演示地球自转时,最早从我们视线中消失的是图中ABC三点中的()A.A点B.B点C.C点6.此实验能较好地演示()A.四季变化B.五带的形成C.昼夜交替【答案】4.A5.A6.C【解析】【分析】4.在侧视情况下,地球自转方向为自西向东,也就是自左向右,A正确,C错误。

从北极上空向下看地球自转方向为逆时针,南极上空向下看为顺时针,B错误。

故本题选A。

5.地球自西向东运动,最先消失的为A,A正确。

B点后消失,C点最后消失,故本题选A。

6.随着地球仪的转动,地球仪上面的能够被照射的地方不断变化,明暗交替,模拟的是地球昼夜变化,C正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5பைடு நூலகம்
22、(本题 9 分)某水果批发市场香蕉的价格如下表
购买香蕉数(千克) 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
每千克的价格
6元
5元
4元
例:李老师购买了 35 千克香蕉,则需要花去: 35 5 175 元。请回答一下问题:
(1)若李老师准备花 150 元购买香蕉,则他最多能购买多少千克香蕉?
4
①教师讲授,学生练习习题;
②学生合作交流,探索规律;
③教师引导学生总结规律,学生练习;
④教师引导学生总结规律,学生合作交流。
蒋老师将上述教学方法作为调研内容发到七年级所有同学手中,要求每位同学选出自己最喜
欢的一种,他随机抽取了若干名学生的调查问卷,统计如图:
图一
图二
其中,序号代表上述四种教学方法,图二选择①的扇形的中心角度数为 36 。请回答问题:
(1)蒋老师共抽取了
位学生进行调查,并将条形统计图补充完整。
(2)图二中选择第③种教学方法的扇形中心角为

(3)若七年级学生中选择第④种教学方法的有 540 人,则七年级总人数约为
人。
(4)请你根据以上数据谈谈你对以上四种教学方法的看法。
21、(本题 8 分)如图所示,已知 O 为直线 AD 上一点, AOC 与 AOB 互补。 (1)试说明 AOB 和 COD 相等。 (2)若 OM、ON 分别是 AOC 、 AOB 的平分线,若 MON 40 ,求 AOC 。

A. CD AC BD
C.
CD
1 2
AB
BD
B. CD 2BC AD D. CD AD BC
6.央视新闻联播节目每晚都会在十九点播出,此时时针和分针之间的夹角为(

A.150°
B.135°
C.120°
D.90°
7.下列统计活动中,适合用问卷调查方法收集数据的是(

①七年级(1)班同学的身高;
解得
y
36
当 0 x 10, y 40 时,
x y 50 由题意得 6x 4 y 264
x 32
解得
y
18
(不合题意,舍去)
当 20 x 25 时, 25 y 30 。
10
此时,李老师用去的款项为 5x 5y 5(x y) 5 50 250 264 (不合题意,舍去)
x 17
x 17
(2) 2x3(1x21)y y 11 x 1 6y x 6y 1 2x 2 y 11 2x y 9 2(6 y 1) y 9 12 y 2 y 9 11y 11 y 1 x5
18.解:
2(ab b2 a2 ) 3(2a2 b2 ) b2
2ab 2b2 2a2 6a2 3b2 b2
21.解:(1) AOC与AOB互补, AOC AOB 180, AOC DOC 180, DOC AOB
(2) OM和ON是AOC和AOB的平分线,
AOM
1 2
AOC,
AON
1 2
AOB,
MON
MOA AON
1 2
AOC
1 2
AOB
1 2
(AOC
AOB),
MON 40,
AOC AOB 80,
AOC AOB 180,
AOC 130.
22.解:(1)由图表可知:150 5 30 千克。
(2)设李老师第一次购买香蕉 x 千克,第二次购买香蕉 y 千克。
由题设得 0 x 25 当10 x 20,30 y 40 时,
x y 50 由题意得 6x 5y 264
x 14
18.先化简,再求值:
2(ab
b2
a2
)
3(2a 2
b2
)
b2
,其中
a
2, b
5 2
.
19.作图题(本题 5 分):如下图,已知三角形的三个内角分别是 A 、B 、C( C B )。 求作 MON ,使 MON C B (尺规作图不写作法,保留作图痕迹)。
20、(本题 8 分)“小组合作制”正在我校七年级如火如荼地开展,旨在培养七年级学生 的合作学习的精神和能力,学会在合作中自主探索。数学课上,年轻蒋老师在讲授“角平分 线”时,设计了如下四种教学方法:
时,4 分钟内最多通过 800 名学生,则 3 分钟内通过此 4 道门的人数最多为(

A.400
B.600
C.1200
D.2400
9.如右图,将一副三角尺叠放在一起,绕点 O 任意转动其中一个三角尺,若 BOD 65 ,
则 AOC 为( )
A.155°
B.125°
C.120°
D.115°
10.规定了一种关于非零实数
②某中学办学多年招生人数;
③七年级学生对数学学科教师的满意程度;
④1 小时内通过某路口的车辆数
A.①②
B.②③
C.①③
D.③④
1
8.我校一号教学楼共有 4 道门,其中两道正门大小相同,两道侧门大小也相同,当同时开启
一道正门和两道侧门时,2 分钟内最多通过 560 名学生,当同时开启一道正门和一道侧门
(2)若李老师两次共购买 50 千克香蕉,已知第二次购买的数量多于第一次购买的数量,
共付出 264 元,请问李老师第一次和第二次分别购买香蕉多少千克?
附加题(本题共 5 分,计入总分,但试卷总分不得超过 100 分)
图形是研究数学的重要工具,有一些复杂运算若用图形表示出来,一看便知其结果。例如计
算:1
a, b
的新运算法则,按照这个新运算法则可得1#2
2#1
5 2

(3)#2
2#
(3)
13 6
,(
3)#
(5)
(5)#
(3)
34 15
,在以下选项中,按照这种新运
算法则计算正确的是(

A.1#3
3#1
7 3
C.
5#
(2)
(2)#5
29 20
B.
(3)#
(4)
(4)#
(3)
25 12
D. (2)#2 2# (2) 2
2
13.合肥市正在修建地铁 1 号线和 2 号线,1 号线将于 2016 年年底通车,在修建时,设计
者往往会将弯曲的路线改直,以缩小两地距离。主要原理为___________.
14.如上图,每一个多边形都可以按图甲(的n 方3法) 连接虚线,该虚线称为“对角线”。在图甲
中,从某一点出发的“对角线”分别有 1,2,3 条。则在图乙中的七边形中,从某一点出发的
16.(1)
(83
1 6
3 4
)
(24)

9 24
4 24
1284 )
(24)
5 24
(24)
5
(2)
14
(1
0.5)
1 3
[2
(3)2
]
1
1 2
1 3
(2
9)
1
1 2
1 3
(7)
1
7 6
1 6
8
x
2
3
2x 3
1
1
17.(1) 3(x 3) 2(2x 1) 6
3x 9 4x 2 6
二.填空题(本大题共 5 小题,每题 3 分,共 15 分) 11.-5 的倒数为___________. 12.网购越来越多的成为年轻人的一种消费方式,刚刚过去的 2014 年 11 月 11 日的网上促 销活动中,阿里巴巴淘宝可谓是独占鳌头,当天交易额达到了惊人的 571 亿元,其中 571 亿元用科学计数法表示为___________.
“对角线”有___________条;在 n 边形
中,从某一点出发的“对角线”有___________
条。
15.一艘轮船由 A 地顺流而下到 B 地,然后又逆流而上到 C 地,其中 A,B,C 三地在同一直线 上,共行驶 7 小时。已知船在静水中的速度为 6 千米每小时,水流速度为 2 千米每小时, 若 A,C 两地相距 10 千米,则 A,B 之间的距离为___________千米。
2014~2015 学年上学期七年级寿春中学 期末数学试题
一.选择题(本大题包括 10 小题,每小题 3 分,共 30 分)
1.下列各数中最小的数是(

A.2
B. -3
C. -0.5
D.0
2.下列各式中,不相等的是(
).
A. (3)2 和 3 2
B. 32 和 32
C. (2)3和 23
D. (3 2)2 和 3 22
2ab 4a2

a
2, b
5 2
时,原式
2
(2)
5 2
4 (2)2
10
16
26
19.解:
20.解:(1)60.
总人数=6+9+18+27=60.
(2)108 .
选择第③种教学方法的扇形中心角度数
18 3
3
108

(3)1200.
9
七年级总人数
540
27 60
1200

(4)以上四种教学法都缺乏学生参与和师生互动环节。(答案不唯一,合理即可)
1 2
1 4
1 8
1 16
,结果即为图中的阴影部分,
6
1、观察图形填空: 1
1 2
1 4
1 8
1 2n

2、你能创造一个图形来描述1 3 5 7 9 的结果吗?利用画出的图形你能得出
1 3 5 7 (2n 1) (其中 n 为正整数)的结果吗?
相关文档
最新文档