初三数学旋转练习题

合集下载

中考数学元复习《图形的旋转》练习题含答案

中考数学元复习《图形的旋转》练习题含答案

中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。

九年级数学图形的旋转同步练习题及

九年级数学图形的旋转同步练习题及

九年级数学图形的旋转同步练习题及答案我们经常听见这样的问题:你的数学怎么那么好啊?教教我诀窍吧?其实学习这门课没有什么窍门。

只要你多练习总会有收获的,希望小编的这篇九年级数学图形的旋转同步练习题及答案,能够帮助到您!1. 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△ OEF在这个旋转过程中:(1) 旋转中心是什么?旋转角是什么?(2) 经过旋转,点A、B分别移动到什么位置?2. (学生活动)如图,四边形ABCD四边形EFGHB是边长为1的正方形.(1) 这个图案可以看做是哪个基本图案通过旋转得到的?(2)请画出旋转中心和旋转角.(3) 指出,经过旋转,点A、B、C、D分别移到什么位置?3. 如图,△ ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B?对应点的位置,以及旋转后的三角形.4. 如图,四边形ABCD是边长为1的正方形,且DE=, △ ABFMAADE的旋转图形.⑴旋转中心是哪一点?(2) 旋转了多少度?(3) AF的xx是多少?(4) 如果连结EF,那么△ AEF是怎样的三角形?5. 如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M?在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.答案:1. 解:(1)旋转中心是O, AOE BOF等都是旋转角.(2)经过旋转,点A和点B 分别移动到点E和点F的位置.2. (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2) ?画图略.(3)点A、点B、点G点D移到的位置是点E、点F、点G、点H.(3)旋转前、后的图形全等.3. 分析:绕C点旋转,A点的对应点是D点,那么旋转角就是ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCB=ACD ?又由对应点到旋转中心的距离相等,即CB=CB就可确定B的位置,如图所示.解:(1)连结CD(2) 以CB为一边作BCE使得BCE=ACD(3) 在射线CExx截取CB=CB则B即为所求的B的对应点.⑷连结DB则^ DBC就是^ABC绕C点旋转后的图形.4. 分析:由^ABF是^ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF尚长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.?△ ABF与^ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2) △ ABF是由△ ADE旋转而成的B是D的对应点DAB=90就是旋转角(3) .・ AD=1, DE= AE==对应点到旋转中心的距离相等且F是E的对应点AF=(4)L EAF=90&旋转角相等)且AF=AEz\ EAF是等腰直角三角形.5. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:四边形ABCD四边形AKLM是正方形AB=AD, AK=AM,且BAD=KAM为旋转角且为90△ ADM是以A为旋转中心,BAD为旋转角由△ ABK旋转而成的BK=DM由小编提供给大家的这篇九年级数学图形的旋转同步练习题及答案就到这里了。

中考数学《旋转》专题练习含答案解析

中考数学《旋转》专题练习含答案解析

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。

【专项】中考数学复习几何旋转解答题专题练习(含解析)

【专项】中考数学复习几何旋转解答题专题练习(含解析)

中考数学复习几何旋转解答题专题练习1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为;∠AOB度数为;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为.29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=时,DE∥BC,当∠α=时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为度时,AD∥BC,当α为度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).参考答案1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△CFD和△ABC中,,∴△CFD≌△ABC(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵BF=AC=AB,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.【解答】解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=(180°﹣50°)=65°;(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF===4.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为AE=BD;∠AOB度数为60°;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABO中,∠AOB=180°﹣(∠BAO+∠ABO)=180°﹣(∠BAO+∠CBO+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AOB=60°,故答案为:AE=BD,60°;(2)成立.证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,又∵∠ANO=∠BNC,∴180°﹣∠CAE﹣∠ANO=180°﹣∠CBD﹣∠BNC,∴∠AOB=∠ACB=60°.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.【解答】解:(1)∵将△ABC绕点C顺时针旋转一定的角度α得到△DEC,E点在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∴∠CAD=∠CDA==75°,又∵∠DEC=∠ABC=90°,∴∠ADE=90°﹣75°=15°;(2)∠FBC=30°时,四边形BFDE为平行四边形,∴∠FBC=∠ACB=30°,∴∠ABF=∠A=60°,∴BF=CF=AF,∴△ABF是等边三角形,∴BF=AB,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴DE=AB,△BCE是等边三角形,∠DEC=∠ABC=90°,∴∠CBE=∠BEC=60°,∴∠EBF=∠EBC﹣∠FBC=30°,∴∠DEB+∠EBF=180°,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.【解答】解:∵由旋转的性质可知AD=AB=,∴∠B=∠BDA=45°.∴∠DAB=90°.∴DB==2.∴CD=BC﹣DB=3﹣2=1,故DC的长为1.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠CBB'=∠AB'B=75°,由旋转的性质得:CB=CB',∴∠CB'B=∠CBB'=75°,∴∠BCB'=180°﹣75°﹣75°=30°,即旋转角α为30°;作B'E⊥BC于E,如图所示:则AB=B'E=CB'=2.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.【解答】解:由旋转可知:∠EBA=∠CBA=32°,AB=EB,∴∠EAB=∠AEB=(180°﹣32°)=74°.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°,在△ABF与△ADE中,,∴△ABF≌△ADE(SAS),∴AF=AE;(2)解:由(1)知,△ABF≌△ADE,∴∠BAF=∠DAE,∴∠BAF+∠BAE=∠DAE+∠BAE=90°,∴∠F AE=90°,∴△AEF是等腰直角三角形,在Rt△ADE中,∠D=90°,∠DAE=30°,DE=2,∴AE=2DE=4,∴△AEF的面积=×4×4=8.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.【解答】解:∵CC′∥AB,∴∠ACC′=∠BAC=70°,∵△ABC绕点A旋转到△AB'C′的位置,∴AC′=AC,∴∠CC′A=∠ACC′=70°,10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.【解答】解:设BE与AB′交于F,∵将△ABC绕点A逆时针旋转30°得到△AB′C′,∴∠B′=∠B,∠BAB′=30°,∵∠AFB=∠B′FE,∴∠BEB′=∠BAB′=30°,∴∠CEC′=180°﹣∠BEB′=150°.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=65度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.【解答】解:(1)∵将△ABC绕点A顺时针旋转得到△AED,∴AB=AE,∠DAE=∠CAB,∴∠AEB=∠ABE,∠EAB=∠CAD=50°,∴∠ABE==65°,故答案为:65;(2)证明:∵将△ABC绕点A顺时针旋转得到△AED,∴AD=AC,∴∠ADC=∠C=x,∴∠DAC=180°﹣2x,由旋转的性质得∠EAB=∠DAC=180°﹣2x,AE=AB,∴∠EBA=,∵∠BAC=90°,∴∠ABC=90°﹣x,∴∠EBC=∠EBA+∠ABC=x+(90°﹣x)=90°,即BE⊥BC;(3)由旋转的性质得AD=AC=2,∵∠BAC=90°,点D是BC的中点,∴BD=DC=AD=2,∴BC=4,∵DE=BC=4,∴BE==2.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.【解答】(1)证明:∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AE=AF,∠EAF=∠CAB=45°,∴∠F AC=∠EAB,在△ABE和△AMF中,∴△ABE≌△AMF(AAS),∴BE=FM;(2)∵四边形ABCD是正方形,∴AC=AB=4,∠ACD=45°,∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AM=AB=4,∴CM=4﹣4,∵FM⊥AC,∠ACD=45°,∴∠ACD=∠CFM,∴FM=CM=4﹣4,∴BE=4﹣4.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将BP绕点B顺时针旋转90°到BQ,∴BP=BQ,∠PBQ=90°,∴∠PBQ=∠ABC,∴∠ABP=∠CBQ,在△ABP和△CBQ中,,∴△ABP≌△CBQ(SAS),∴AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.【解答】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴△BFC≌△BEA,∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC,∵,BC2=22=4,∴BF2+FC2=BC2,∴∠BFC=90°=∠AEB,∴∠AEB+∠EBF=180°,∴AE∥BF;(2)解:AE2+AF2=2BF2,理由如下:∵AC是正方形ABCD的角平分线,∴∠BCA=∠BAC=45°,∴∠EAF=45°+45°=90°,∴AE2+AF2=EF2,∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴BE=BF,∠EBF=90°,∴2BF2=EF2,∴AE2+AF2=2BF2.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数60°.【解答】解:(1)∵将△ABC绕点B顺时针旋转60°得△DBE,∴AB=DB,∠ABD=60°,∴△ADB是等边三角形;(2)如图:∵点C的对应点E恰好落在AB的延长线上,∴∠ABD=∠BDE+∠E,由(1)知△ADB是等边三角形,∴∠BDE+∠E=∠ABD=60°,∵将△ABC绕点B顺时针旋转60°得△DBE,∴∠BDE=∠BAP,∴∠BAP+∠E=60°,∴∠APD=∠BAP+∠E=60°;故答案为:60°.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)【解答】解:(1)∠BOC=∠AOC,∠BOC+∠AOB=∠AOC,∴∠AOB=∠AOC,∵∠AOB=30°,∴∠AOC=120°;(2)由(1)知,∠AOC=120°,∠BOC=90°,①OP逆时针运动时,即0≤t≤12时,由OP,OQ的运动可知,∠AOP=10°t,∠BOQ=6°t,OP,OQ相遇前,如图2(1),∠AOQ=∠AOP+∠POQ=∠AOB+∠BOQ,即10°t+10°=30°+6°t,解得t=5,OP,OQ相遇后,如图2(2),∠AOP=∠AOB+∠BOQ+∠POQ,即10°t=30°+6°t+10°,解得t=10;②OP顺时针旋转时,∠COP=10°t﹣120°,∠BOQ=6°t,OP,OQ相遇前,如图(3),∠BOC=∠COP+∠BOQ+∠POQ,即90°=10°t﹣120°+6°t+10°,解得t=12.5,OP,OQ相遇后,如图(4),∠BOC=∠COP+∠BOQ﹣∠POQ,即90°=10°t﹣120°+6°t ﹣10°,解得t=13.75,综上,当t的值为5,10,12.5或13.75时,∠POQ=10°.(3)由(1)知∠AOC=120°,根据射线OP的运动,需要分四种情况,①当射线OP与OA重合前,如图3(1),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=∠AOC=60°;②当射线OP与OA重合后,∠AOP=180°前,如图3(2),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM﹣∠PON=∠AOP﹣∠COP=∠AOC=60°;③∠CON=180°前,如图3(3),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=(360°﹣∠AOC)=120°;④OP与OQ重合前,如图3(4),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠PON﹣∠POM=∠COP+∠AOP=∠AOC=60°;综上,∠MON的度数为60°或120°.17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA),∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=2,CQ=CP1,∴CQ=.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.【解答】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB∥DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.【解答】解:(1)由图①知,∠ADB=∠DBC=37°,如图②,连接BD,则BD=DG,∴∠DGB=∠DBG=37°,∴∠CDG=90°﹣∠DGC=90°﹣37°=53°,∴旋转角为:53°﹣37°=16°;(2)DL=EN+GM,理由如下:过点G作GK∥BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK∥ML,KL∥GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=EN+GM.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.【解答】解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=α=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形;连接BD,∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴==,故答案为:等腰直角三角形,;(3)(1)中的两个结论仍然成立.理由如下:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣﹣(90°﹣)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形;∴=,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴==,21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.【解答】解:∵AD=8,AB=6,∠D=90°,∴AC===10,∵△ADC按逆时针方向绕点A旋转到△AEF,∴∠EAF=∠DAC,AF=AC=10,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠F AC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠F AC=90°,∴△F AC是等腰直角三角形,∴CF=AC=10.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.【解答】解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴△ABE≌△CBF,∴BE=BF=,AE=CF=1,∠EBF=90°,∠AEB=∠BFC,∴△BEF为等腰直角三角形,∴EF=BE=2;(2)在△CEF中,CE=,CF=1,EF=2,∵CF2+EF2=12+22=5,CE2=5,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.【解答】(1)证明:∵△ABC绕点B按逆时针方向旋转100°,∴∠ABC=∠DBE=40°,∴∠ABD=∠CBE=100°,又∵BA=BC,∴AB=BC=BD=BE,在△ABD与△CBE中,,∴△ABD≌△CBE(SAS).(2)解:∵∠ABD=∠CBE=100°,BA=BC=BD=BE,∴∠BAD=∠ADB=∠BCE=∠BEC=40°.∵∠ABE=∠ABD+∠DBE=140°,∴∠AFE=360°﹣∠ABE﹣∠BAD﹣∠BEC=140°,∴∠AFC=180°﹣∠AFE=40°.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是等边三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=CE,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,∴∠DEC=∠BCH,∵∠D=90°,BH⊥AC,∴∠D=∠BHC,由旋转得,CE=CB,CD=CG,在△EDC和△CHB中,,∴△EDC≌△CHB(AAS),∴BH=CD=CG.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.【解答】解:(1)设CQ与AP交于D点,AB与CQ交于E点,∵将AP绕点B逆时针旋转60°得到CQ,∴AP=CQ,∠ADC=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ADC=∠ABC,∵∠AED=∠BEC,∴∠BAP=∠BCQ,在△ABP与△CBQ中,∴△ABP≌△CBQ(SAS),(2)连接PQ,PC,由△ABP≌△CBQ得:PB=BQ,∠PBA=∠CBQ,∠BP A=∠BQC=30°,QC=AP=4,∴∠QBP=∠ABC=60°,∴△PBQ为等边三角形,∴∠PQB=60°,PQ=BQ=3,∴∠PQC=∠PQB+∠BQC=60°+30°=90°,∴PC2=PQ2+QC2,∴PC===5.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD==.∴BD的长为.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为2.【解答】(1)证明:∵将△ADF绕点A顺时针旋转90°得到△ABG,∴△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,(2)解:设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.【解答】(1)证明:∵AB=BC,∴∠A=∠C,∵△A1BC1是由△ABC绕顶点B逆时针旋转而得,∴∠A=∠A1=∠C,∠A1BD=∠CBC1,AB=A1B,在△BCF和△BA1D中,,∴△BCF≌△BA1D(ASA);(2)解:四边形A1BCE是菱形.∵△ABC是等腰三角形,∠C=50°,∴∠A=∠C1=∠C=50°,又∵△BCF≌△BA1D,∴∠CBF=∠A1BD=50°,∴∠C1=∠CBF,∠A=∠A1BD,∴A1E∥BC,A1B∥EC,即四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.【解答】(1)解:P A=DC,理由如下:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,在△PBA和△DBC中,,∴△PBA≌△DBC(SAS),∴P A=DC;(2)解:CD=P A;理由如下:如图2中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=2BA•cos30°=BA,BD=2BP•cos30°=BP,∴,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴=,∴CD=P A.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=4°时,DE∥BC,当∠α=94°时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是49°<α<85°;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.【解答】解:(1)当DE∥BC时,如图(1),∵DE∥BC,∴∠EDA=∠B=40°,∵∠FDE=36°,∴∠α=∠EDA﹣∠FDE=40°﹣36°=4°,∴∠α=4°时,DE∥BC.当DE⊥BC时,如图(2),∵DE⊥BC,∴∠BGD=90°,∵∠B=40°,∠GDA是△GDB的一个外角,∴∠GDA=∠B+∠BGD=40°+90°=130°,∵∠EDF=36°,∴∠α=∠GDA﹣∠FDE=130°﹣36°=94°,∴∠α=94°时,DE⊥BC.故答案为:4°;94°.(2)①∵∠ACB=90°,CD平分∠ACB,∴∠BCD=45°,∵∠ABC=40°,∴∠ADC=∠ABC+∠BCD=40°+45°=85°,当ED经过点C时,∠α=∠ADC﹣∠EDF=85°﹣36°=49°,当FD经过点C时,∠α=∠ADC=85°,∴顶点C在△DEF内部时,49°<α<85°.∠1与∠2度数的和不发生变化,理由如下:延长DC至点H,∵∠NCH、∠MCH分别是△NCD和△MCD的外角,∴∠NCH=∠2+∠NDC,∠MCH=∠1+∠MDC,∴∠NCH+∠MCH=∠2+∠1+∠NDC+∠MDC,∴∠NCM=∠1+∠2+∠NDM,∵∠NCM=∠ACB=90°,∠NDM=∠FDE=36°,∴90°=∠1+∠2+36°,∴∠1+∠2=54°.③∵∠ABC=40°,∠ACB﹣90°,∴∠A=180°﹣40°﹣90°=50°,∵∠ADF是△MBD的外角∴∠α=∠ABC+∠1=40°+∠1,∵∠2≥2∠1,∠1+∠2=54°,∴54°﹣∠1≥2∠1,∴∠1≤18°,∴α≤58°,又∵49°<α<85°,∴49°<α≤58°.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为15度时,AD∥BC,当α为105度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.【解答】解:(1)如图(1),记DE与AC的交点为点F,DE与BC的交点为点G,∵AD∥BC,∴∠DAF=∠C=30°,∵∠DAE=45°,∴∠CAE=15°,即α=15°,如图(2),记AD与BC的交点为F,∵AD⊥BC,∴∠ADF=90°,∴∠DAC=180°﹣∠AFC﹣∠C=180°﹣90°﹣30°=60°,∴∠CAE=∠DAC+∠EAD=60°+45°=105°,即α=105°,故答案为:15,105.(2)①当AD∥BC时,如图1所示,由(1)得,α=15°;②当DE∥BC时,如图2所示,由(1)得,AD⊥BC,∴∠AFC=90°,∵∠ADE=90°,∴DE∥BC,∴α=105°;③当DE∥AB时,如图3所示,α=45°;④当DE∥AC时,如图4所示,α=∠EAD+∠BAC=45°+90°=135°;⑤∠EAC+∠C=180°,∵∠C=30°,∴∠EAC=150°,即α=150°;综上所述:旋转角α的所有可能的度数是:15°,45°,105°,135°,150°.拓展应用:当0°<α<45°,∠BDE+∠CAE+∠DBC=105°,保持不变,理由如下:如图6,设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠BDE+∠CAE+∠DBC=105°.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.【解答】解:(1)如图1,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,由旋转得∠D=∠A=60°,BE=BC,∠DBE=∠ABC=30°,∴∠BCE=∠BEC=(180°﹣30°)=75°,∴∠DEC=∠BCE﹣∠D=75°﹣60°=15°.(2)四边形CDEF是菱形,理由如下:如图2,∵△ABC绕点B逆时针旋转一个角度α得到△DBE,∴∠CBE=α=60°,∠DBE=∠ABC=30°,∠DEB=∠ACB=90°,∴∠DBC=30°,∴∠DBE=∠DBC,∵BD=BD,BE=BC,∴△DBE≌△DBC(SAS),∴∠BED=∠BCD=90°,∴CD=BD,ED=BD,∵F为BD的中点,∴CF=BD,EF=BD,∴CD=ED=CF=EF,∴四边形CDEF是菱形.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.。

初三数学初中数学 旋转的专项培优 易错 难题练习题(含答案)附答案解析

初三数学初中数学 旋转的专项培优 易错 难题练习题(含答案)附答案解析

初三数学初中数学 旋转的专项培优 易错 难题练习题(含答案)附答案解析一、旋转1.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得2222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90°=90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴22222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =-=-, ∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =+=, ∴21712MN BE ==.综上所述,MN =17﹣1或17+1. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】(1)证明:∵ABC ∆是等边三角形, ∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆, ∴60CAE =︒,AC AE =. ∴ACE ∆是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆, ∴AF AD =,90DAF ∠=︒. ∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒. ∴四边形ADGF 是矩形. ∵AF AD =,∴四边形ADGF 是正方形. (4)如图,连接DE .∵四边形ADGF 是正方形, ∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ∆沿AE 折叠得到AME ∆, ∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =, ∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.3.如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD 于点P .(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .【答案】(1)BD ,CE 的关系是相等;(2534172034173)1,7 【解析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ; (2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CD CE ,进而得到53417;依据∠ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD =,进而得出63434,203417(3)以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小.分两种情况进行讨论,即可得到旋转过程中线段PD 的最小值以及最大值. 详解:(1)BD ,CE 的关系是相等.理由:∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°, ∴BA=CA ,∠BAD=∠CAE ,DA=EA , ∴△ABD ≌△ACE , ∴BD=CE ; 故答案为相等.(2)作出旋转后的图形,若点C 在AD 上,如图2所示:∵∠EAC=90°, ∴CE=2234AC AE +=,∵∠PDA=∠AEC ,∠PCD=∠ACE , ∴△PCD ∽△ACE , ∴PD CDAE CE =, ∴PD=53417; 若点B 在AE 上,如图2所示:∵∠BAD=90°, ∴Rt △ABD 中,2234AD AB +=,BE=AE ﹣AB=2,∵∠ABD=∠PBE ,∠BAD=∠BPE=90°,∴△BAD ∽△BPE , ∴PB BEAB BD=,即334PB =,解得PB=634 34,∴PD=BD+PB=34+63434=2034 17,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD 的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt△PDE中,2250491DE PE-=-=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.故答案为1,7.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.4.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.5.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.6.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证CF CN NF△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.试题解析:(1)证明:延长DN交AC于F,连BF,∵N为CE中点,∴EN=CN,∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,∴∠EAD=∠EDA=∠BAC=45°,∴DE∥AC,∴△EDN∽△CFN,∴DE EN DN==,CF CN NF∵EN=NC,∴DN=FN,FC=ED,∴MN是△BDF的中位线,∴MN∥BF,∵AE=DE ,DE=CF ,∴AE=CF ,∵∠EAD=∠BAC=45°,∴∠EAC=∠ACB=90°,在△CAE 和△BCF 中,CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCF (SAS ),∴∠ACE=∠CBF ,∵∠ACE+∠BCE=90°,∴∠CBF+∠BCE=90°,即BF ⊥CE ,∵MN ∥BF ,∴MN ⊥CE .(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,∵M 为BD 中点,∴MN 是△BDG 的中位线,∴BG=2MN ,在△EDN 和⊈CGN 中, DN NG DNE GNC EN NC ⎧⎪∠∠⎨⎪⎩===,∴△EDN ≌△CGN (SAS ),∴DE=CG=AE ,∠GCN=∠DEN ,∴DE ∥CG ,∴∠KCG=∠CKE ,∵∠CAE=45°+30°+45°=120°,∴∠EAK=60°,∴∠CKE=∠KCG=30°,∴∠BCG=120°,在△CAE 和△BCG 中,AC BC CAE BCG AE CG ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCG (SAS ),∴BG=CE ,∵BG=2MN ,∴CE=2MN .【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.7.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B 1A 1C =30°,点B ,C ,B 1在同一条直线上.(1)求证:AB =2BC(2)如图2,将△ABC 绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB 与A 1C 、A 1B 1分别交于点D 、E ,AC 与A 1B 1交于点F .当α等于多少度时,AB 与A 1B 1垂直?请说明理由.(3)如图3,当△ABC 绕点C 顺时针方向旋转至如图所示的位置,使AB ∥CB 1,AB 与A 1C 交于点D ,试说明A 1D=CD .【答案】(1)证明见解析(2)当旋转角等于30°时,AB 与A 1B 1垂直.(3)理由见解析【解析】试题分析:(1)由等边三角形的性质得AB =BB 1,又因为BB 1=2BC ,得出AB =2BC ;(2) 利用AB 与A 1B 1垂直得∠A 1ED=90°,则∠A 1DE=90°-∠A 1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A 1CB=180°-∠BDC-∠B=60°,所以∠ACA 1=90°-∠A 1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB 与A 1B 1垂直;(3)由于AB ∥CB 1,∠ACB 1=90°,根据平行线的性质得∠ADC=90°,在Rt △ADC 中,根据含30度的直角三角形三边的关系得到CD=12AC ,再根据旋转的性质得AC=A 1C ,所以CD=12A 1C ,则A 1D=CD . 试题解析: (1)∵△ABB 1是等边三角形;∴ AB =BB 1∵ BB 1=2BC∴AB =2BC(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°,∴∠A 1DE=90°-∠A 1=90°-30°=60°,∵∠B=60°,∴∠BCD=60°,∴∠ACA 1=90°-60°=30°,即当旋转角等于30°时,AB 与A 1B 1垂直.(3)∵AB ∥CB 1,∠ACB 1=90°,∴∠CDB=90°,即CD 是△ABC 的高,设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b ,∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD. 【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.8.已知Rt △DAB 中,∠ADB=90°,扇形DEF 中,∠EDF=30°,且DA=DB=DE ,将Rt △ADB 的边与扇形DEF 的半径DE 重合,拼接成图1所示的图形,现将扇形DEF 绕点D 按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB 时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.9.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.10.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.11.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.12.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.13.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AO B=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.14.如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.【答案】(1)见解析;5π;(2)旋转中心P的坐标为(3,3)或(6,6).【解析】【分析】(1)依据旋转的方向、旋转角和旋转中心即可得到点A运动的路径为弧线,再运用弧长计算公式即可解答;(2)连接两对对应点,分别作出它们连线的垂直平分线,其交点即为所求.【详解】解:(1)点A运动的路径如图所示,出点A运动的路径长为229024π⨯⨯+=5π;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换及其作图,掌握旋转的性质、旋转角以及确定旋转中心的方法是解答本题的关键.15.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

初三旋转考试题及答案

初三旋转考试题及答案

初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。

7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。

8. 若一个圆绕其圆心旋转任意角度,其周长________。

9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。

10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。

三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。

12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。

13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。

中考数学专题 旋转练习题(8套)含答案

中考数学专题 旋转练习题(8套)含答案

旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=21AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转 旋转中心 旋转角 2.A 45° 3.点A 60° 等边 三、1.(1)通过旋转,即以点A 为旋转中心,将△ABE 逆时针旋转90°.(2)BE=DF ,BE ⊥DF2.翻滚一次滚120° 翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC 绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于( ) A .50° B .210° C .50°或210° D .130° 2.在图形旋转中,下列说法错误的是( )A .在图形上的每一点到旋转中心的距离相等B .图形上每一点转动的角度相同C .图形上可能存在不动的点D .图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A3.D二、1.相等2.△ACE 图形全等= 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=21. 3.重合:证明:∵EG ⊥AF ∴∠2+∠3=90° ∵∠3+∠1+90°=180° ∵∠1+∠3=90° ∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC ∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB ∴△OBE 绕O 点旋转90°便可和△OAF 重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( ) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围 成的,如图是看到的万花筒的一个图案,图中所有三角形均 是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以 A 为中心( )A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是 ( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:21085(1)以顶点A 为对称中心,(2)以BC 边的中点K 为对称中心.2.如图,已知一个圆和点O ,画一个圆,使它与已知圆关于点O 成中心对称.3.如图,A 、B 、C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M ,现计划修建居民小区D ,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D 的位置.答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.FG DECA B1A 1B 1C 1D3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB 又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , ∴∠EFB=90°-21∠C 1FB ,∠FBG=90°-21∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG ∴四边形BEFG 是平行四边形. (2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG 同理可得:∠B 1BF=∠FB 1B . ∴∠B 1BG=90°,∴△B 1BG 是直角三角形 3.解:(1)如右图所示(2)由题意知A 、A 1、B 1三点的坐标分别是(-1,0),(0,1),(2,0)∴⎩=++⎪⎨=⎪⎧=-+a b cc a b c 04210 解这个方程组得⎩⎪⎪=⎪⎨=⎪⎪⎪=-⎧c b a 12121∴所求五数解析式为y=-21x 2+21x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是( ) A .y=x1B .y=2x+1C .y=-2x+1D .以上三种都不可能2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( )A .8cmB .22cmC .24cmD .11cm 二、填空题1.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P′的坐标是P′_______. 2.写出函数y=-x 3与y=x3具有的一个共同性质________(用对称的观点写). DCAB O三、解答题1.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC 关于x 轴对称的△A′B′C′,再画出△A′B′C′关于y 轴对称的△A″B″C″,那么△A″B″C″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1中点的反比例函数解析式; (3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B 二、1.(3,-1) 2.答案不唯一 参考答案:关于原点的中心对称图形. 三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称. 2.(1)如右图所示,连结A 1B 1; (2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=x k ,则y=-x2.25.(3)A 1B 1:设y=k 1x+b 1 ⎩=-⎨⎧=-k b 033311⎩=-⎨⎧=b k 3111∴y=x+3∵与A 1B 1直线平行且与y=x2.25相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-x2.25相切, ⎩⎪=-⎨⎪⎧=+x y y x 2.253 ⇒x 2+3x+2.25=0,b 2-4ac=9-4×1×2.25=0,∴y=x+3与y=-x2.25相切.旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )2.将三角形绕直线L 旋转一周,可以得到如图所示的立体图形的是( )二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题 1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?答案:一、1.D 2.B二、1.形状大小2.旋转三、1.(1)用同一块模块设计出的两个图案之间可能是由平移、旋转、•轴对称变化得到的,或者是由这三种变化的组合而成的;(2)略2.略。

初三数学旋转试题及答案

初三数学旋转试题及答案

初三数学旋转试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点A(3,4)绕原点O(0,0)顺时针旋转90°后,新位置的坐标是:A. (4,3)B. (-4,3)B. (3,-4)D. (4,-3)2. 若点P(-1,2)绕点O(0,0)逆时针旋转30°后,点P的新坐标为:A. (-1,2)B. (-√3/2, 1/2)C. (√3/2, 1/2)D. (1/2, √3/2)3. 在平面直角坐标系中,直线y=2x绕原点O(0,0)顺时针旋转45°后,新的直线方程是:A. y=xB. y=x+1C. y=x-1D. y=-x4. 点A(2,1)绕点B(1,2)旋转30°后,点A的新坐标为:A. (3,2)B. (1,3)C. (1,1)D. (2,3)5. 若一个正方形的四个顶点分别绕其对角线的交点顺时针旋转45°,那么正方形的边将:A. 变长B. 变短C. 保持不变D. 无法确定二、填空题(每题2分,共10分)6. 点A(1,1)绕原点O(0,0)顺时针旋转45°后,其坐标变为________。

7. 已知点P(2,3)绕点Q(1,1)顺时针旋转90°,点P的新坐标为________。

8. 直线y=3x+1绕原点O(0,0)逆时针旋转90°后,新的直线方程为________。

9. 若点M(-2,-3)绕点N(0,0)顺时针旋转60°,点M的新坐标为________。

10. 已知直线y=-2x绕原点O(0,0)逆时针旋转30°后,新的直线方程为________。

三、解答题(每题5分,共20分)11. 在平面直角坐标系中,点A(4,3)绕原点O(0,0)顺时针旋转60°后,求点A的新坐标。

12. 已知直线y=4x在平面直角坐标系中绕原点O(0,0)顺时针旋转30°,求旋转后的直线方程。

初三旋转试题及答案

初三旋转试题及答案

初三旋转试题及答案一、选择题(每题3分,共30分)1. 若一个图形绕某点旋转180°后与自身重合,则该图形是()。

A. 线段B. 等腰三角形C. 正方形D. 圆2. 一个正方形绕其中心旋转90°后,其形状和大小()。

A. 都不变B. 形状不变,大小改变C. 形状改变,大小不变D. 都改变3. 旋转对称图形的旋转中心是()。

A. 任意一点B. 图形的顶点C. 图形的中心点D. 图形的边4. 旋转对称图形的旋转角可以是()。

A. 任意角度B. 180°C. 90°D. 360°5. 一个图形绕某点旋转后,与原图形()。

A. 完全重合B. 形状相同C. 大小相同D. 位置相同6. 一个图形绕某点旋转180°后,其位置()。

A. 与原图形重合B. 与原图形相反C. 与原图形相邻D. 与原图形远离7. 一个图形绕某点旋转90°后,其()。

A. 形状不变B. 大小不变C. 位置不变D. 所有都不变8. 一个图形绕某点旋转360°后,其()。

A. 形状不变B. 大小不变C. 位置不变D. 所有都不变9. 一个图形绕某点旋转,若旋转前后图形完全重合,则该旋转是()。

A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称10. 一个图形绕某点旋转后,若旋转前后图形形状和大小都不变,则该旋转是()。

A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称二、填空题(每题4分,共20分)1. 一个图形绕某点旋转180°后,其位置与原图形()。

2. 一个图形绕某点旋转90°后,其形状()。

3. 一个图形绕某点旋转360°后,其位置()。

4. 一个图形绕某点旋转,若旋转前后图形大小不变,则该旋转是()。

5. 一个图形绕某点旋转,若旋转前后图形形状不变,则该旋转是()。

三、解答题(每题10分,共50分)1. 描述一个正方形绕其中心点旋转90°后的图形变化情况。

初中数学九年级上册旋转练习题(含答案)

初中数学九年级上册旋转练习题(含答案)

人教版九年级(上)《旋转》数学试卷(低难度)一.选择题(共48小题)1.如图,把△ABC绕点C逆时针旋转90°得到△DCE,若BE=17,AD=7,则BC为()A.3B.4C.5D.62.如图,菱形ABCD,E是对角线AC上一点,将线段DE绕点E顺时针旋转角度2α,点D恰好落在BC边上点F处,则∠DAB的度数为()A.αB.90°﹣αC.180°﹣2αD.2α3.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D 恰好落在BC边上,若DE=12,∠B=60°,则点E与点C之间的距离为()A.12B.6C.6D.65.如图,在正方形ABCD中,点E、F分别在AB、AD边上,将△BCE绕点C顺时针旋转90°,得到△DCG,若△EFC≌△GFC,则∠ECF的度数是()A.60°B.45°C.40°D.30°6.如图,将△OAB绕点O逆时针旋转到△OA'B',点B恰好落在边A'B'上.已知AB=4cm,BB'=1cm,则A'B的长是()A.1cm B.2cm C.3cm D.4cm7.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE 8.如图,将斜边为4,且一个角为30°的直角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120°得到三角形EOC,则点D对应的点的坐标为()A.(1,﹣)B.(,1)C.(2,﹣2)D.(2,﹣2)9.如图,矩形ABCD的对角线AC,BD相交于点O,AB=2,∠ABO=60°,线段EF绕点O转动,与AD,BC分别相交于点E,F,当∠AOE=60°时,EF的长为()A.1B.C.2D.410.如图,在△ABC中,AB=2,BC=3,∠B=60°,将△ABC沿BC方向平移,得到△DEF,再将线段DE绕点D逆时针旋转一定角度后,若点E恰好与点C重合,则平移的距离是()A.0.5B.1C.1.5D.211.如图,在矩形ABCD中,AB=5,BC=6,点E在BC边上,且BE=2,F为AB边上的一个动点,连接EF,以EF为边作等边△EFG,且点G在矩形ABCD内,连接CG,则CG的最小值为()A.3B.2.5C.4D.212.如图,四边形ABCD是正方形,点E,F分别在边CD,BC上,点G在CB的延长线上,DE=CF=BG.下列说法:①将△DCF沿某一直线平移可以得到△ABG;②将△ABG沿某一直线对称可以得到△ADE;③将△ADE绕某一点旋转可以得到△DCF.其中正确的是()A.①②B.②③C.①③D.①②③13.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.1214.如图,在平面直角坐标系内,Rt△ABC的点A在第一象限,点B与点A关于原点对称,∠C=90°.AC与x轴交于点D,点E在x轴上,CD=2AD.若AD平分∠OAE,△ADE 的面积为1,则△ABC的面积为()A.6B.9C.12D.1515.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°16.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.2B.4C.2D.不能确定17.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得△A'B'C,连接AB',若∠A'B'A=25°,则∠B的大小为()A.80°B.70°C.50°D.45°18.如图,将矩形ABCD绕点A逆时针旋转得到矩形AB′C′D′,AB′交CD于点E,若DE=B′E,AB=5,AD=4,则AE的长为()A.3B.2C.D.19.如图,将菱形ABCD绕点A顺时针旋转得到菱形AB'C'D',使点D'落在对角线AC上,连接DD',B'D',则下列结论一定正确的是()A.DD'=B'D'B.∠DAB'=90°C.△AB'D'是等边三角形D.△ABC≌△AD'C'20.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为()A.3B.C.D.21.如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是()A.B.C.D.22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,0)、B(5,0)、C(5,1),将△ABC绕点A逆时针旋转90°得到△AB'C',则点C′的坐标为()A.(2,3)B.(1,3)C.(3,﹣3)D.(2,﹣3)23.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5B.2.5C.D.124.如图,四边形ABCD中,∠DAB=30°,连接AC,将△ABC绕点B逆时针旋转60°,点C的对应点D重合,得到△EBD,若AB=5,AD=4,则点AC的长度为()A.5B.6C.D.25.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是()A.1cm B.2cm C.cm D.2cm26.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4D.27.在平面直角坐标系中,点G的坐标是(﹣2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG',则点G'的坐标为()A.(2,﹣1)B.(2,1)C.(1,﹣2)D.(﹣2,﹣1)28.如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,则∠ADF的度数为()A.15°B.20°C.25°D.30°29.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+130.已知如图,在正方形ABCD中AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△AED绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG交AF于M,则下面结论:①△AGF≌△AEF;②DE+BF=EF;③BF=;④,其中正确的个数为()A.1B.2C.3D.431.如图,在等边△ABC中,AB=2,点D在△ABC内或其边上,AD=2,以AD为边向右作等边△ADE,连接CD,CE.设CE的最小值为m;当ED的延长线经过点B时,∠DEC=n°,则m,n的值分别为()A.,55B.,60C.2﹣2,55D.2﹣2,60 32.如图,在Rt△ABC中,∠BAC=60°,点A的坐标为(﹣1,0),点B的坐标为(2,4),将△ABC绕点A顺时针旋转α(0°<α<90°),得到△AB1C1,若AC1⊥x轴,则点B1的坐标为()A.B.C.D.33.如图,已知正方形ABCD的边长为3,点E是AB边上一动点,连接ED,将ED绕点E 顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是()A.3B.4C.5D.234.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若P A=6,PB=8,PC=10,则四边形APBQ的面积为()A.24+9B.48+9C.24+18D.48+1835.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形36.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.37.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)38.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.39.如图,矩形ABCD的顶点A、B分别在x轴、y轴上,OA=OB=2,AD=4,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点C的坐标为()A.(6,4)B.(4,﹣6)C.(﹣6,4)D.(﹣4,6)40.如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转130°得到△AB′C′,连接BB′,若AC′∥BB',则∠CAB′的度数为()A.75°B.85°C.95°D.105°41.如图,将△ABC绕点A逆时针旋转到△AED,其中点B与点E是对应点,点C与点D 是对应点,且DC∥AB,若∠CAB=65°,则∠CAE的度数为()A.10°B.15°C.20°D.25°42.如图,在△ABC中,∠ACB=90°,将△ABC绕点C逆时针旋转θ角到△DEC的位置,这时点B恰好落在边DE的中点,则旋转角θ的度数为()A.60°B.45°C.30°D.55°43.如图△ABO的顶点分别是A(3,1),B(0,2),O(0,0),点C,D分别为BO,BA 的中点,连AC,OD交于点G,过点A作AP⊥OD交OD的延长线于点P.若△APO绕原点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P的坐标是()A.(2,1)B.(2,2)C.(1,2)D.A(1,1)44.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.折叠后∠ABE和∠CBD一定相等B.△EBD是等腰三角形,EB=EDC.折叠后得到的整个图形是轴对称图形D.△EBA和△EDC一定是全等三角形45.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()A.B.C.D.46.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=()A.5B.5.5C.6D.747.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)48.如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A.B.C.3D.二.填空题(共2小题)49.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.50.如图,已知线段AB=4,O为AB的中点,P是平面内的﹣个动点,在运动过程中保持OP=1不变,连结BP,将PB绕点P逆时针旋转90°到PC,连结BC、AC,则线段AC 长的最大值是.人教版九年级(上)《旋转》数学试卷(低难度)参考答案与试题解析一.选择题(共48小题)1.如图,把△ABC绕点C逆时针旋转90°得到△DCE,若BE=17,AD=7,则BC为()A.3B.4C.5D.6【解答】解:∵△ABC绕点C逆时针旋转90°得到△DCE,∴AC=CE,CD=BC,设AC=CE=x,CD=BC=y,∵BE=17,AD=7,∴x+y=17.x﹣y=7,∴x=12,y=5,∴BC=5,故选:C.2.如图,菱形ABCD,E是对角线AC上一点,将线段DE绕点E顺时针旋转角度2α,点D恰好落在BC边上点F处,则∠DAB的度数为()A.αB.90°﹣αC.180°﹣2αD.2α【解答】解:如图,连接BE,∵四边形ABCD是菱形,∴CD=BC,∠DAB=∠DCB,∠ACD=∠ACB,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴DE=BE,∠EDC=∠EBC,∵将线段DE绕点E顺时针旋转角度2α,∴DE=EF,∠DEF=2α,∴BE=DE=EF,∴∠EBF=∠EFB,∴∠EDC=∠EBC=∠EFB,∵∠EFB+∠EFC=180°,∴∠EDC+∠EFC=180°,∵∠EDC+∠EFC+∠DEF+∠DCF=360°,∴∠DCF=180°﹣2α=∠DAB,故选:C.3.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)【解答】解:如图,点M的坐标是(1,﹣1),故选:B.4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D 恰好落在BC边上,若DE=12,∠B=60°,则点E与点C之间的距离为()A.12B.6C.6D.6【解答】解:如图,连接EC,∵将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,∴DE=BC=12,AD=AB,AC=AE,∠DAB=∠EAC,∵∠B=60°,∴∠ACB=30°,∴AB=BC=6,AC=AB=6,∵AD=AB,∠B=60°,∴△ABD是等边三角形,∴∠DAB=60°=∠EAC,∴△ACE是等边三角形,∴AC=AE=EC=6,故选:D.5.如图,在正方形ABCD中,点E、F分别在AB、AD边上,将△BCE绕点C顺时针旋转90°,得到△DCG,若△EFC≌△GFC,则∠ECF的度数是()A.60°B.45°C.40°D.30°【解答】解:∵将△BCE绕点C顺时针旋转90°,∴∠BCE=∠GCD,∵△EFC≌△GFC,∴∠ECF=∠GCF,∴∠ECF=∠GCD+∠DCF=∠BCE+∠DCF,∴∠ECF=∠BCD=45°,故选:B.6.如图,将△OAB绕点O逆时针旋转到△OA'B',点B恰好落在边A'B'上.已知AB=4cm,BB'=1cm,则A'B的长是()A.1cm B.2cm C.3cm D.4cm【解答】解:∵将△OAB绕点O按逆时针方向旋转至△OA′B′,∴△OAB≌△OA′B′,∴AB=A′B′=4,∴A′B=A′B′﹣BB′=4﹣1=3(cm),故选:C.7.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE 【解答】解:∵将△ABC绕点B顺时针旋转50°得△DBE,∴△ABC≌△DBE,∠ABD=∠CBE=50°,∴AB=DB,∠CBD=80°,∵∠ABD=∠E+∠BDE,∴∠ABD≠∠E,故选:C.8.如图,将斜边为4,且一个角为30°的直角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120°得到三角形EOC,则点D对应的点的坐标为()A.(1,﹣)B.(,1)C.(2,﹣2)D.(2,﹣2)【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△A′OB′,连接OD,OD′,过D′作DM⊥y轴,∴∠DOD′=120°,∵D为斜边AB的中点,∵AD=OD=AB=2,∴∠BAO=∠DOA=30°,∴∠MOD′=30°,在Rt△OMD′中,OD′=OD=2,∴MD′=1,OM=,则D的对应点D′的坐标为(1,﹣),故选:A.9.如图,矩形ABCD的对角线AC,BD相交于点O,AB=2,∠ABO=60°,线段EF绕点O转动,与AD,BC分别相交于点E,F,当∠AOE=60°时,EF的长为()A.1B.C.2D.4【解答】解:∵四边形ABCD是矩形,∴OA=OB,∠ABC=∠BAD=90°,又∵∠ABO=60°,∴△ABO为等边三角形,∴∠BAO=60°,∴∠OAE=30°,∵线段EF绕点O转动,∠AOE=60°,∴∠AEO=180°﹣60°﹣30°=90°,∴四边形ABFE为矩形,∴AB=EF=2.故选:C.10.如图,在△ABC中,AB=2,BC=3,∠B=60°,将△ABC沿BC方向平移,得到△DEF,再将线段DE绕点D逆时针旋转一定角度后,若点E恰好与点C重合,则平移的距离是()A.0.5B.1C.1.5D.2【解答】解:连接DC,∵∠B=60°,将△ABC沿射线BC的方向平移,得到△DEF,再将线段DE绕点D逆时针旋转一定角度后,若点E恰好与点C重合,∴∠DEF=60°,AB=DE=DC=2,∴△DEC是等边三角形,∴EC=DE=2,∴BE=BC﹣EC=3﹣2=1.故选:B.11.如图,在矩形ABCD中,AB=5,BC=6,点E在BC边上,且BE=2,F为AB边上的一个动点,连接EF,以EF为边作等边△EFG,且点G在矩形ABCD内,连接CG,则CG的最小值为()A.3B.2.5C.4D.2【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=2+2=4,故选:C.12.如图,四边形ABCD是正方形,点E,F分别在边CD,BC上,点G在CB的延长线上,DE=CF=BG.下列说法:①将△DCF沿某一直线平移可以得到△ABG;②将△ABG沿某一直线对称可以得到△ADE;③将△ADE绕某一点旋转可以得到△DCF.其中正确的是()A.①②B.②③C.①③D.①②③【解答】解:∵四边形ABCD是正方形,∴AB=AD=CD,∠ABC=∠ADE=∠DCB=90°,又∵DE=CF,∴△ADE≌△DCF(SAS),同理可得:△ADE≌△ABG,△ABG≌△DCF,∴将△DCF沿某一直线平移可以得到△ABG,故①正确;将△ABG绕点A旋转可以得到△ADE,故②错误;将△ADE绕线段AD,CD的垂直平分线的交点旋转可以得到△DCF,故③正确;故选:C.13.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.12【解答】解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=OB′=BD=8,在Rt△AO′B′中,根据勾股定理,得AB′==10.则点A与点B′之间的距离为10.故选:C.14.如图,在平面直角坐标系内,Rt△ABC的点A在第一象限,点B与点A关于原点对称,∠C=90°.AC与x轴交于点D,点E在x轴上,CD=2AD.若AD平分∠OAE,△ADE 的面积为1,则△ABC的面积为()A.6B.9C.12D.15【解答】解:如图,连接OC,作EM⊥AD于M,作ON⊥AC于N,由点B与点A关于原点对称.可得OA=OB,又∵△ABC是直角三角形,∴OC=OA,所以∠OCD=∠OAD,∵AD平分∠OAE,∴得∠OAD=∠EAD,∴∠OAD=∠EAD,又∵∠ADE=∠CDO,∴△ADE∽△CDO,∵CD=2AD,∴ON=2EM,AC=3AD,∴BC=2ON=4EM,∴=.故选:C.15.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.16.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.2B.4C.2D.不能确定【解答】解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=4,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=CD=2,∴DQ==2,∴DQ的最小值是2,故选:C.17.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得△A'B'C,连接AB',若∠A'B'A=25°,则∠B的大小为()A.80°B.70°C.50°D.45°【解答】解:∵将Rt△ABC绕直角顶点C顺时针旋转90°,得△A'B'C,∴∠B=∠CA'B',AC=B'C,∠ACB'=90°,∴∠CAB'=45°,∴∠CA'B'=∠CAB'+∠A'B'A=45°+25°=70°,故选:B.18.如图,将矩形ABCD绕点A逆时针旋转得到矩形AB′C′D′,AB′交CD于点E,若DE=B′E,AB=5,AD=4,则AE的长为()A.3B.2C.D.【解答】解:∵将矩形ABCD绕点A逆时针旋转得到矩形AB′C′D′,∴AB′=AB=5,∵DE=B′E,∴AE=CE,设AE=CE=x,∴DE=5﹣x,∵∠D=90°,∴AD2+DE2=AE2,即42+(5﹣x)2=x2,解得:x=,∴AE=,故选:D.19.如图,将菱形ABCD绕点A顺时针旋转得到菱形AB'C'D',使点D'落在对角线AC上,连接DD',B'D',则下列结论一定正确的是()A.DD'=B'D'B.∠DAB'=90°C.△AB'D'是等边三角形D.△ABC≌△AD'C'【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠ABC=∠ADC,∵将菱形ABCD绕点A顺时针旋转得到菱形AB'C'D',∴AD=AD',CD=C'D',∠AD'C'=∠ADC,∴AB=AD',BC=C'D',∠ABC=∠AD'C',∴△ABC≌△AD'C'(SAS),故选:D.20.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为()A.3B.C.D.【解答】解:∵∠AOB=90°,AO=4,BO=8,∴AB===4,∵△AOB绕顶点O逆时针旋转到△A′OB′处,∴AO=A′O=4,A′B′=AB=4,∵点E为BO的中点,∴OE=BO=×8=4,∴OE=A′O=4,过点O作OF⊥A′B′于F,S△A′OB′=×4•OF=×4×8,解得OF=,在Rt△EOF中,EF===,∵OE=A′O,OF⊥A′B′,∴A′E=2EF=2×=,∴B′E=A′B′﹣A′E=4﹣=;故选:B.21.如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是()A.B.C.D.【解答】解:如图,连接OA,OB,OC.设平行四边形的面积为4s.∵点O是平行四边形ABCD的对称中心,∴S△AOB=S△BOC=S平行四边形ABCD=s,∵EF=AB,GH=BC,∴S1=s,S2=s,∴==,故选:B.22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,0)、B(5,0)、C(5,1),将△ABC绕点A逆时针旋转90°得到△AB'C',则点C′的坐标为()A.(2,3)B.(1,3)C.(3,﹣3)D.(2,﹣3)【解答】解:∵△ABC三个顶点的坐标分别为A(2,0)、B(5,0)、C(5,1),将△ABC绕点A逆时针旋转90°得到△AB'C',如图所示:则点C′的坐标为(1,3).故选:B.23.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5B.2.5C.D.1【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故选:B.24.如图,四边形ABCD中,∠DAB=30°,连接AC,将△ABC绕点B逆时针旋转60°,点C的对应点D重合,得到△EBD,若AB=5,AD=4,则点AC的长度为()A.5B.6C.D.【解答】解:∵△EBD是由△ABC旋转得到,∴BA=BE,∠ABE=60°,AC=DE,∴△ABE是等边三角形,∴∠EAB=60°,∵∠BAD=30°,∴∠EAD=90°,∵AE=AB=5,AD=4,∴DE===,故选:D.25.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是()A.1cm B.2cm C.cm D.2cm【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,∴AC=AB,则AB=2AC=2cm.又由旋转的性质知,AC′=AC=AB,B′C′⊥AB,∴B′C′是△ABB′的中垂线,∴AB′=BB′.根据旋转的性质知AB=AB′=BB′=2cm.故选:B.26.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4D.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.27.在平面直角坐标系中,点G的坐标是(﹣2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG',则点G'的坐标为()A.(2,﹣1)B.(2,1)C.(1,﹣2)D.(﹣2,﹣1)【解答】解:由题意G与G′关于原点对称,∵G(﹣2,1),∴G′(2,﹣1),故选:A.28.如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,则∠ADF的度数为()A.15°B.20°C.25°D.30°【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=∠ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,故选:D.29.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1【解答】解:方法一:∵在Rt△ABC中,AB=2,∠C=30°,∴BC=2,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2,∴B′C=2,延长C′B′交BC于F,∴∠CB′F=∠AB′C′=90°,∵∠C=30°,∴∠CFB′=60°,B′F=B′C=,∵B′D=2,∴DF=2+,过D作DE⊥BC于E,∴DE=DF=×(2+)=+1,方法二:过B′作B′F⊥BC于F,B′H⊥DE于H,则B′F=HE,B′H=EF,在Rt△ABC中,AB=2,∠C=30°,∴BC=2,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2,∴B′C=2,∴B′F=AB=1,∴HE=1,∵∠B′HD=∠HEC=90°,∴∠HB′C=∠C=30°,∴∠DB′H=60°,∴∠B′DH=30°,∴B′H=1,DH=,∴DE=,故选:D.30.已知如图,在正方形ABCD中AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△AED绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG交AF于M,则下面结论:①△AGF≌△AEF;②DE+BF=EF;③BF=;④,其中正确的个数为()A.1B.2C.3D.4【解答】解:∵AG=AE,∠F AE=∠F AG=45°,AF=AF,∴△AGF≌△AEF(SAS),故①正确,∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故②正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=,∴BF=,故③正确,∵BM∥AG,∴△FBM∽△FGA,∴=()2,∴S△FBM=,故④正确,故选:D.31.如图,在等边△ABC中,AB=2,点D在△ABC内或其边上,AD=2,以AD为边向右作等边△ADE,连接CD,CE.设CE的最小值为m;当ED的延长线经过点B时,∠DEC=n°,则m,n的值分别为()A.,55B.,60C.2﹣2,55D.2﹣2,60【解答】解:∵△ADE为边长为2的等边三角形,∴点E在以A为圆心,2为半径的圆上,∴CE≥AC﹣AE(当且仅当A、E、C共线时取等号),∴m=AC﹣2=2﹣2;当ED的延长线经过点B时,如图,∵△ADE为等边三角形,∴∠ADE=∠DAE=∠AED=60°,AD=AE,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴∠BAD=∠CAE,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE,∴∠ADB=∠AEC,而∠ADB=180°﹣∠ADE=120°,∴∠AED=120°,∴∠DEC=∠AEC﹣∠AED=120°﹣60°=60°.即n=60°.故选:D.32.如图,在Rt△ABC中,∠BAC=60°,点A的坐标为(﹣1,0),点B的坐标为(2,4),将△ABC绕点A顺时针旋转α(0°<α<90°),得到△AB1C1,若AC1⊥x轴,则点B1的坐标为()A.B.C.D.【解答】解:过点B1作B1H⊥x轴于H.∵A(﹣1,0),B(2,4),∴AB==5,∵∠BAC=∠B1AC1=60°,AC1⊥OA,∴∠OAB1=30°,∴B1H=AB1=,AH=B1H=,∴OH=,∴B1(,).故选:A.33.如图,已知正方形ABCD的边长为3,点E是AB边上一动点,连接ED,将ED绕点E 顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是()A.3B.4C.5D.2【解答】解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC′的角平分线,即F点在∠CBC′的角平分线上运动,∴C'点在AB的延长线上,当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∴DC'=3,∴DF+CF的最小值为3,故选:A.34.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若P A=6,PB=8,PC=10,则四边形APBQ的面积为()A.24+9B.48+9C.24+18D.48+18【解答】解:连接PQ,如图,∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AQ=AP,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠P AQ﹣∠P AB=∠CAB﹣∠P AB,∴∠CAP=∠BAQ,在△APC和△AQB中,∴△APC≌△AQB(SAS),∴CP=BQ=10,在△BPQ中,∵PQ=6,BP=8,BQ=10,而62+82=102,∴PQ2+PB2=BQ2,∴△BPQ为直角三角形,∠BPQ=90°,∴四边形APBQ的面积=S△BPQ+S△APQ=×6×8+×62=24+9.故选:A.35.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意;C、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意;D、菱形既是中心对称图形,又是轴对称图形,故本选项正确.故选:B.36.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.37.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.38.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,是中心对称图形,故本选项符合题意.故选:D.39.如图,矩形ABCD的顶点A、B分别在x轴、y轴上,OA=OB=2,AD=4,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点C的坐标为()A.(6,4)B.(4,﹣6)C.(﹣6,4)D.(﹣4,6)【解答】解:如图,过点C作CE⊥y轴于点E,连接OC,∵OA=OB=2,∴∠ABO=∠BAO=45°,∵∠ABC=90°,∴∠CBE=45°,∵BC=AD=4,∴CE=BE=4,∴OE=OB+BE=6,∴C(﹣4,6),∵矩形ABCD绕点O顺时针旋转,每次旋转90°,则第1次旋转结束时,点C的坐标为(6,4);则第2次旋转结束时,点C的坐标为(4,﹣6);则第3次旋转结束时,点C的坐标为(﹣6,﹣4);则第4次旋转结束时,点C的坐标为(﹣4,6);…发现规律:旋转4次一个循环,∴2020÷4=505,则第2020次旋转结束时,点C的坐标为(﹣4,6).故选:D.40.如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转130°得到△AB′C′,连接BB′,若AC′∥BB',则∠CAB′的度数为()A.75°B.85°C.95°D.105°【解答】解:∵将△ABC绕点A按逆时针方向旋转l30°得到△AB′C′,∴∠BAB′=∠CAC′=130°,AB=AB′,∴∠AB′B=(180°﹣130°)=25°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=25°,∴∠CAB′=∠CAC′﹣∠C′AB′=130°﹣25°=105°.故选:D.41.如图,将△ABC绕点A逆时针旋转到△AED,其中点B与点E是对应点,点C与点D 是对应点,且DC∥AB,若∠CAB=65°,则∠CAE的度数为()A.10°B.15°C.20°D.25°【解答】解:∵DC∥AB,∴∠CAB=∠DCA=65°,∵将△ABC绕点A逆时针旋转到△AED,∴AC=AD,∠DAE=∠CAB=65°,∵∠ADC=∠ACD=65°,∴∠DAC=50°,∴∠CAE=∠DAE﹣∠DAC=15°,故选:B.42.如图,在△ABC中,∠ACB=90°,将△ABC绕点C逆时针旋转θ角到△DEC的位置,这时点B恰好落在边DE的中点,则旋转角θ的度数为()A.60°B.45°C.30°D.55°【解答】解:∵∠ACB=90°,B为DE的中点,∵将△ABC绕点C逆时针旋转θ角到△DEC的位置,∴CB=CE,∴CB=CE=BE,∴△ECB为等边三角形,∴∠ECB=60°,∴∠ACD=∠ECB=60°,故选:A.43.如图△ABO的顶点分别是A(3,1),B(0,2),O(0,0),点C,D分别为BO,BA 的中点,连AC,OD交于点G,过点A作AP⊥OD交OD的延长线于点P.若△APO绕原点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P的坐标是()A.(2,1)B.(2,2)C.(1,2)D.A(1,1)【解答】解:∵点C,D分别为BO,BA的中点,∴点G是三角形的重心,∴AG=2CG,∵B(0,2),∴C(0,1),∵A(3,1),∴AC=3,AC∥x轴,∴CG=1,AG=2,∵OC=1,∴OC=CG∴△COG是等腰直角三角形,∴∠CGO=45°,∵AP⊥OD,∴△AGP是等腰直角三角形,∴AG边上的高为1,∵AG边上的高也是中线,∴P(2,2),∵2020=4×55,∴每4次一个循环,第2020次旋转结束时,P点返回原处,∴点P的坐标为(2,2).故选:B.44.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.折叠后∠ABE和∠CBD一定相等B.△EBD是等腰三角形,EB=EDC.折叠后得到的整个图形是轴对称图形D.△EBA和△EDC一定是全等三角形【解答】解:∵四边形ABCD为矩形,∴∠A=∠C,AB=CD,AD∥BF,在△EBA和△EDC中,∴△AEB≌△CED(AAS)(故D选项正确,不合题意)∴BE=DE,△EBD是等腰三角形(故B选项正确,不合题意),无法得到∠ABE=∠CBD(故A选项不正确,符合题意)∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确,不合题意)故选:A.45.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()A.B.C.D.【解答】解:如图,作CH⊥MN于H,连接NC,作MJ⊥NC交NC的延长线于J.∵∠ACB=90°,BC=4,∠A=30°,∴AB=A′B′=2BC=8,∠B=60°.∵CB=CB′,∴△CBB′是等边三角形,∴∠BCB′=60°,∵BN=NA′,∴CN=NB′=A′B′=4,∵∠CB′N=60°,∴△CNB′是等边三角形,∴∠NCB′=60°,∴∠BCN=120°,在Rt△CMJ中,∵∠J=90°,MC=2,∠MCJ=60°,∴CJ=MC=,MJ=CJ=3,∴MN===2,∵•NC•MJ=•MN•CH,∴CH=,故选:A.46.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=()A.5B.5.5C.6D.7【解答】解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=4,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE==5,∴BD=5.故选:A.47.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)【解答】解:∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OE=1,DE=,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.48.如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A.B.C.3D.【解答】解:如图,延长DE交BC于F,∵将△ABC绕点A逆时针旋转90°,∴AE=AC=2,∠EAC=90°=∠DEA=∠ACB,∴AE∥CB,AC∥EF,∴CF=EF=2=AC,∠EFC=90°,∴BF=2,∴BE===2,故选:B.二.填空题(共2小题)49.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为5.。

初三旋转测试题及答案

初三旋转测试题及答案

初三旋转测试题及答案一、选择题(每题3分,共30分)1. 旋转对称图形是指绕某一点旋转一定角度后能够与自身重合的图形。

下列选项中,哪一个不是旋转对称图形?A. 正方形B. 正三角形C. 五边形D. 圆2. 一个图形绕某点旋转180°后与原图形重合,这个点称为图形的:A. 旋转中心B. 对称轴C. 旋转角D. 旋转对称中心3. 一个图形绕一点旋转90°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正六边形4. 一个图形绕某点旋转180°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角5. 一个图形绕某点旋转120°后与自身重合,这个图形是:B. 正三角形C. 正五边形D. 正六边形6. 一个图形绕某点旋转360°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角7. 一个图形绕某点旋转60°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正八边形8. 一个图形绕某点旋转45°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正八边形9. 一个图形绕某点旋转30°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正十二边形10. 一个图形绕某点旋转72°后与自身重合,这个图形是:A. 正方形C. 正六边形D. 正十边形二、填空题(每题4分,共20分)1. 一个图形绕某点旋转______度后与自身重合,这个点是图形的旋转中心。

2. 一个图形绕某点旋转______度后与自身重合,这个图形是正六边形。

3. 一个图形绕某点旋转______度后与自身重合,这个图形是正五边形。

4. 一个图形绕某点旋转______度后与自身重合,这个图形是正三角形。

5. 一个图形绕某点旋转______度后与自身重合,这个图形是正方形。

初三数学旋转翻折等几何试题及答案

初三数学旋转翻折等几何试题及答案

旋转、平移、翻转等问题讨论答案例1、已知P为等边△ABC内一点,PA=2,PB=,PC=4.求△ABC中∠APB的度数.解:将△PBC绕点B顺时针旋转60°得到△P′BA,连接PP′.则△PBC≌△P′BA.∴BP=BP′=.而∠PBP′=60°,∴△PBP′是等边三角形,∴∠2=60°,PP′=BP =.∵,∴,∴∠1=90°.故∠APB=∠1+∠2=150°.例2、如图所示,已知P为正方形ABCD的对角线AC上一点,(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=PD;(2)如图,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明.(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.答案:(1)证明△APB≌△APD(SAS)得BP=PD.(2)解:不是总有BP=DP.理由:若旋转角为45°,则点P在BC上.∵正方形ABCD中∠DCP=90°,∴PD>DC.∵DC=BC,∴PD>BC.∵BC>PB,∴PD>PB.(3)解:BE=DF始终成立.证明:∵正方形ABCD和正方形PECF中,∠BCD=∠ECF=90°,∴∠1=∠2.∵CE=CF,CB=CD,∴△CBE≌△CDF.∴BE=DF.例3、如图,将△ABC绕点C(0,-1)旋转180°得到△ABC,设点A的坐标为(a,b),则点A的坐标为()A.B.C.D.例4、如图,在坐标平面内,△ABC的三个顶点坐标分别为A(0,5),B(-20,-10),C(5,-10).(1)求△ABC的面积.(2)如何把△ABC平移到△A′B′O的位置,使点C与原点O重合,点B′在x轴的负半轴上?(3)求△A′B′O的顶点A′、B′的坐标.解:(1)因为B、C两点的坐标分别为(-20,-10)、(5,-10),所以BC∥x轴,BC=|5-(-20)|=25.设BC与y轴相交于点D,则点D的坐标为(0,-10).又点A坐标为(0,5),AD是△ABC的高,故AD=|5-(-10)|=15.所以,△ABC的面积(2)由(1),得BC∥x轴,由此可知将BC边平移到B′O,与把点C平移到点O的规律相同.因为点C的坐标为(5,-10),所以由点C往左平移5个单位,向上平移10个单位可与点O重合.所以,将△ABC向左平移5个单位,向上平移10个单位即可到达△A′B′O的位置.(3)根据平移的规律,得点A′的坐标为(0-5,5+10),点B′的坐标为(-20-5,-10+10),即点A′、B′的坐标分别为A′(-5,15)、B′(-25,0).点拨:已知三角形的三个顶点,求三角形面积这类问题中,本例(1)是特殊情形,其中有两个顶点的纵坐标(或横坐标)相等,即有一边平行于坐标轴.因此,它的底边和高可直接利用公式d=|x2-x1|或d=|y2-y1|求出.本例(2)、(3)的图形,在平移前后对应点的坐标的变化规律:每一点的横坐标都比原来增加(或减小)同一个数,纵坐标也都比原来增加(或减少)同一个数.如本例(2),由平移前后的对应点C和O的坐标变化分析出△ABC的平移规律;本例(3)再按这个平移规律分别求出A、B的对应点A′、B′的坐标.例5、(天津市中考题)在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段,若点的坐标为(-2,2),则点的坐标为()A.(4,3)B.(3,4)C.(-1,-2)D.(-2,-1)例6、如图,已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积;(2)若平移距离为x(),求△ABC与△A′B′C′的重叠部分的面积y,并写出y与x的关系式.显示答案解:(1)由题意CC′=3,BB′=3,所以BC′=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为.(2)(0≤x≤4)例7、如图所示,A、B两点在l的两侧,在l上找一点C,使C到A、B的距离之差最大.分析:以l为对称轴作A点的对称点A′,作直线A′B交l于C点,则C为所求作的点.证明:在l上异于C点,找一点C′,连接C′A,C′B∵A,A′关于l轴对称,∴l为AA′的垂直平分线,则CA=CA′.∴CA-CB=CA′-CB=A′B.又∵C′在l上,在△A′BC′中,C′A′-C′B<A′B,∴C′A′-C′B<CA-CB.例8、在直角坐标系中,已知点A(4,0)和B(0,3),若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).解:(-4,0),(-4,3),(4,-3),(0,-3),(4,3),.例9、如图所示,AD为△ABC的高,∠B=2∠C,用轴对称证明CD=AB+BD.显示答案证明:作点B关于AD的对称点E,连接AE,因为AD⊥BC,所以E点在BC上.由轴对称性质知,BD=DE,AB=AE,∠1=∠B.因为∠1=∠2+∠C,∠B=∠1=2∠C.所以∠2=∠C,所以 AE=CE.所以CD=BD+AB.例10、下列投影中,不属于中心投影的是()A.晚上路灯下小孩的影子B.舞台上灯光下演员的影子C.阳光下树的影子D.电影屏幕上演员的影子解:太阳光是平行光,不是点光源发出的光线,故选C.例11、一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C. D.例12、与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子,树影是路灯灯光形成的,如下图所示,你能确定此时路灯光源的位置吗?解:过盆花及其影子顶端作直线,作反射面法线,并作∠2=∠1,得光线l1,过树及其影子顶端作直线l2,两线交于点O,则O处为灯光位置.例13、如图,不透明的圆锥体DEC放在直线BP所在水平面上,且BP过底面圆的圆心,圆锥高为,底面半径为2m,某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.隐藏答案解:(1)设圆心为O,连DO,则DO⊥BP,在△BOD中,BO=BE+EO=4+2=6(m),Welcome To Download欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学 旋转练习题
1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点
A 旋转1800,点C 落在C 1处,则C C 1的长为( ) A .24
B .4
C .32
D .52
2、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE= ∠A+∠E=
3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.
4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,
•△DEC 按顺时针方向转动一个角度后成为△DGA .
(1)图中哪一个点是旋转中心?(2)旋转了多少度?
(3)指出图中的对应点,对应线段和对应角;
(4)求∠GDF 的度数.
5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:
E D C B
A
A
B C B 1 C 1
(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由
,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.
(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.
7,如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L ,M ,D 在AK 的同旁,连结BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.
,8,.如图所示,等边△ABC 中,D 是AB 边上的动点(不与A 、B 重合),以CD 为一边,向上作等边△EDC 。

连结AE 。

⑴图中是否存在旋转关系的三角形,若有,请说出其旋转中心与旋转角,若没有,请说明理由。

⑵求证: AE ∥BC ;
C F
E
D
B A
,9、如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.
10,如图所示,C是线段AB上的一点,△ACD和△BCE都是等边三角形
⑴图中是否存在旋转关系的三角形,若有,请说出其旋转中心与旋转角,若没有,请说明理由。

⑵AE与BD的大小关系如何,并说明理由
⑶图中还存在是旋转关系的三角形吗?。

相关文档
最新文档