简单的线性规划(1).
简单的线性规划(一)
y
1
x+<0 x+y-1=0
x
二元一次不等式表示平面区域
例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
二元一次不等式表示平面区域
例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
简单的线性规划
中学所学的线性规划只是规划论中的极小一部分,
但这部分内容体现了数学的工具性、应用性,同时也 渗透了化归、数形结合的数学思想,为学生今后解决 实际问题提供了一种重要的解题方法―数学建模法.通 过这部分内容的学习,可使学生进一步了解数学在解 决实际问题中的应用,培养学生学习数学的兴趣、应 用数学的意识和解决实际问题的能力。
二元一次不等式表示平面区域
作业:P64 习题 7.4 1
;
/ 搜索引擎大全
twd03twu
块儿热毛巾轻柔地为自己擦脸呢,就伸出双手哆哆嗦嗦地抓住男娃儿的手,吃力地说:“小直子,是你吗?你哥和你姐呢?”小沙弥记 着师傅的嘱咐,不敢多说什么,只轻轻地说:“你一定饿坏了吧?我喂你多喝点儿热粥吧。等喝饱了,你就安静地睡觉。放心啊,一切 都好着呢!你先歇息,有什么话,咱们以后再说。”小沙弥说着,扶着耿老爹慢慢坐起来。然后端来一碗热粥,一勺一勺地喂给耿老爹 喝。耿老爹确实饿坏了,一口气喝下去两碗,这才对小沙弥说:“我喝好了。告诉爹,你是怎么逃命的啊?你的头发怎么没了呢?你哥 和你姐呢?”聪明的小沙弥有点儿明白了,这个落难的人,是把自己当成他的儿子了!而且,他们是父子四人一起落难的!震惊的小沙 弥不敢多问,赶快扶耿老爹重新躺下来,并且给他掖一掖被子,亲切地说:“你太累了,需要好好歇息。我先把灯熄了吧。我就睡在你 的旁边,有什么事情你就叫我。我也很累了,咱们睡觉吧!”小沙弥说着,一口吹灭了灯,躺在耿老爹身旁装睡。听耿老爹又念叨了一 句:“唉,怎么没有看见你哥和你姐呢?”一会儿,听到耿老爹呼吸均匀地睡着了,小沙弥轻轻地下炕,直奔师傅屋里去了。老和尚还 没有歇息,正微微眯缝着眼睛在铺上打坐呢。小沙弥进屋来没敢大声说话,只是垂手站在一边。老和尚听见动静微睁双眼,看到是机灵 的小徒弟进来了。他心下明白,小家伙这个时候还来,肯定是有重要事情要和他说,就问:“徒儿,可是落难的施主醒过来了?”小沙 弥说:“师傅,他醒过来了,我已经喂他吃了两碗热粥,此时睡着了。他把我认作自己的儿子了,睡着之前一直喊我小直子,问我是怎 么逃命的,头发怎么没有了;还说怎么没有看见我的哥哥和姐姐。”老和尚双手合十说:“阿弥陀佛!不幸的人啊,看来是父子四人同 时落难的。你回去一定要好生照顾。他刚刚活过来,意识尚未完全清醒呢。如果认你为儿,你不必否认。等他的身体逐渐恢复了,我再 给他慢慢疏导吧。”小沙弥听从师傅嘱咐,马上返回厨房的火炕上陪耿老爹睡觉去了。从此之后,耿老爹就在小寺庙里住了下来。这个 寺庙实在是太小了,除了前院正中供奉有大肚弥勒佛的香火房还算说得过去之外,前、后院加起来也就还有十几间极普通的木制板房了。 而且,这个寺庙里的僧人也就只有前面提到的师徒四人。不过,这个寺庙虽然很小,僧人也只有老少四人,但出家人慈悲为怀的慈善和 仁爱之心却是一点儿也不少的。尽管日日三餐都是粗茶淡饭,但师徒四人亲亲热热和和气气地生活在一起。因此,与其说这是一个寺庙, 倒不如说这里就是一个普普通通的人家。而且,师徒四人都用特别友善的心,非常耐心地对待身体逐渐恢复,但意识一直糊涂不清的耿 老爹。尤其是那个极其机
简单的线性规划问题(附答案)
简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
3.3.3简单的线性规划问题(1)
我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。
教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。
(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。
我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。
例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。
3.3.2简单的线性规划1
今需要A、 、 三种规格的成品分别为 三种规格的成品分别为15、 、 今需要 、B、C三种规格的成品分别为 、18、27 块,用数学关系式和图形表示上述要求,如何使所 用数学关系式和图形表示上述要求, 用钢板张数最少? 用钢板张数最少?
例6:一个化肥厂生产甲、乙两种混合肥料,生产 车皮甲种 :一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种 肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥 肥料的主要原料是磷酸盐 、硝酸盐 ;生产 车皮乙种肥 料需要的主要原料是磷酸盐1t、硝酸盐15t。 料需要的主要原料是磷酸盐 、硝酸盐 。现库存磷酸盐 10t、硝酸盐 ,在此基础上生产这两种混合肥料。列出满 、硝酸盐66t,在此基础上生产这两种混合肥料。 足生产条件的数学关系式,并画出相应的平面区域。 足生产条件的数学关系式,并画出相应的平面区域。若生产 一车皮甲种肥料,产生的利润为10000元;生产一车皮乙肥 一车皮甲种肥料,产生的利润为 元 产生的利润为5000元,那么非别生产甲乙肥料各多好车 料,产生的利润为 元 能够产生最大利润? 皮,能够产生最大利润?
分析: 分析:将已知数据列成表格
食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg
A B
0.105 0.105
0.07 0.14
0.14 0.07
三种规格, 例5: 要将两种大小不同的钢板截成 、B、C三种规格, : 要将两种大小不同的钢板截成A、 、 三种规格 每张钢板可同时截得三种规格的小钢板的块数如下表示: 每张钢板可同时截得三种规格的小钢板的块数如下表示: 规格 钢型 第一种钢板 第二种钢板 A规格 规格 2 1 B规格 规格 1 2 C规格 规格 1 3
• 通过不等式(组)的平面区域,我们可以 知道不等式的可能取值范围。那么在不等 式平面区域中,那个值是最有意义的取值 呢,比如对于资源的利用,人力调配,生 产安排等等,都需要我们有一个最优的处 理办法
简单的线性规划.(1)ppt
巩固练习一
设每天应配制甲种饮料x杯,乙种饮料y杯,则
咖9啡x 馆 4配y 制 3两60种0饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 料3的g34每,使xx乙杯用种15能限0饮yy获额料2利为3每0000奶0.杯070元粉含,3奶6乙0粉0种g4,g饮、咖料咖啡每啡2杯050g能0、g获糖利糖1013g.02.0元0已g,,如知每果每天甲天在种原原饮料料 解的:xy使将用00已限知额数内据饮列料为目能下标全函表杯数部:能为售:获出z利=,0.最7每x大+天1?.2应y 配制两种饮练习料一各.g多sp 少-
线性约束
线2x性+目3y ≤12转化
标函数
Z=xAx≥+0By
y一组平条行件x 线 BZ
y
Z的最大值为44
6.
最优解
.
5 4.
M(12 , 20)
3.
77
y≥0 转化 寻找平行线组
2.
可行域
最求优z解=9x+10y的最的大纵值截.距 最值9x+10y=0
. 1 .. .. . ..
x
线性目标函数
/ 哈夫节 泊头哈夫节
退下,看本将来取卢俊义性命/"罗成见薛万彻枪法紊乱,壹枪比壹枪沉,料定薛万彻将要落败,若是自己再否出手便可能损失壹员大将.当即大喝壹声,壹袭白龙马飞速冲出,倒拖着手中の五钩神飞亮银枪,卷起千堆沙尘朝卢俊义杀去."以多欺少算什么好汉,让我来会壹会您那冷面寒枪俏罗成/" 见罗成杀出,东方升阵营中亦冲杀出壹骑踏雪乌骓马,马上那人手执两条水磨八棱钢鞭,迎着罗成杀去.此人便是双鞭呼延灼.O(∩_∩)O)壹百四十五部分回马枪战场之上,风沙缭绕,杀气充斥着漫漫沙丘.卢俊义与薛万彻两人枪来枪往,转眼之间已经对上壹百七十回
江苏省泰兴市第一高级中学苏教版必修五数学《3.3.3 简单的线性规划问题(1)》教学设计
3.3。
3简单的线性规划问题(1)江苏省泰兴市第一高级中学陈燕教学目标:1.让学生了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念.2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.教学重点:用图解法求线性规划问题的最优解.教学难点:对用图解法求解简单线性规划问题的最优解这一方法的理解和掌握.教学方法:1.在学生的独立探究和师生的双边活动中完成简单的线性规划的数学理论的构建,在实践中掌握求解简单的线性规划问题的方法—-图解法.2.渗透数形结合的思想,培养分析问题、解决问题的能力.教学过程:一、问题情境1.情境:我们先考察生产中遇到的一个问题:(投影)某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t 、B 种原料12t,产生的利润为2万元;生产1t 乙种产品需要A 种原料1t 、B 种原料9t ,产生的利润为1万元.现有库存A 种原料10t ,B 种原料60t ,问如何安排才能使利润最大?为理解题意,可以将已知数据整理成下表:(投影)x 、y ,根据题意,A 、B 两种原料分别不得超过10t 和60t ,即41012960x y x y +≤⎧⎨+≤⎩,,,即4104320x y x y +≤⎧⎨+≤⎩,..这是一个二元一次不等式组,此外,产量不可能是负数,所以0,0≥≥y x ③于是上述问题转化为如下的一个数学问题:在约束条件410432000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,,,.④下,求出x ,y ,使利润(万元)y x P +=2达到最大.2.问题:上述问题如何解决? 二、学生活动①①让学生探究解决这个问题分几个步骤;②让学生分组讨论:如何在不等式组确定的区域中找到y=2取P+x得最大值的数对(x,y);③由学生整理解决这个问题的思路.(投影)首先,作出约束条件所表示的区域.其次,考虑yP+=2变x=2的几何意义,将yxP+形为P=2,它表示斜率为-2,在y轴上截距为P-y+x的一条直线.平移直线P34=x与20+yx的-xy+=2,当它经过两直线104=+y交点A(1.25,5)时,直线在y轴上的截距P最大.因此,当5x=2取得最大值5.7x时,yP+=y25,.1=+⨯,即甲、乙两2=525.1种产品分别生产1.25t和5t时,可获得最大利润7。
简单的线性规划问题(第1课时)课件2
x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
3.3.2简单线性规划(1_2)--上课用
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件
(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内
求
z 的最值 3
求
z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y
16, 12,
3
x
0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
简单的线性规划(一)
课题:简单的线性规划(一)教学目标:了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2010年考试说明要求A 级。
知识点回顾:1. 二元一次不等式表示的平面区域:在平面直角坐标系中,设有直线0=++C By Ax (B 不为0)及点),(00y x P ,则(1)若B>0,000>++C By Ax ,则点P 在直线的_____,此时不等式0>++C By Ax 表示直线0=++C By Ax 的______的区域;(2)若B>0,000<++C By Ax ,则点P 在直线的______,此时不等式0<++C By Ax 表示直线0=++C By Ax 的_____的区域;(3) 若B<0, 我们都把Ax +By +C >0(或<0)中y 项的系数B 化为正值.2. 目标函数可转化为y 轴上截距的z=ax+by 最值问题。
课前训练:1. 设变量x ,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数z=2x+3y 的最小值为2. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为3. 已知点(,3)P a 在不等式组352504301x y x y x +-≤⎧⎪-+≤⎨⎪≥⎩所表区域内;则a 的范围是4.已知点(3,1)和(-4,6)在直线023=+-a y x 的两侧,则a 的取值范围是5.若⎪⎩⎪⎨⎧≥-≤+-≥035,4,1y x y x y 表示的平面区域的面积6.图中阴影部分表示的平面区域可用二元一次不等式组来表示为 .典型例题:若A 为不等式组0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当实数a 从-2连续变化到1时,动直线x y a += 扫过A 中区域的面积为设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b+的最小值为课堂检测:1.已知点()2286,3424x y x y Q x y x y ⎧⎫⎧+<+⎪⎪∈⎨⎨⎬+>⎩⎪⎪⎩⎭,如果直线:20l ax y ++=经过点Q ,那么实数a 的取值范围是 .2. 已知在平面直角坐标系xOy 中,O(0,0), A(1,-2), B(1,1), C(2.-1),动点M(x,y) 满足条件⎩⎪⎨⎪⎧-2≤−→OM ·−→OA ≤21≤−→OM ·−→OB ≤2,则−→OM ·−→OC 的最大值为 。
3.3.2简单的线性规划问题(1).ppt1
y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
简单线性规划(一)教案
课题:简单线性规划(一)教学目标:1.知识目标:理解线性规划有关概念,初步学会解决简单的线性规划问题.2.能力目标:渗透数形结合的数学思想;加强学生自主探究、合作交流的意识;进一步培养学生在研究问题中主动借助现代信息技术手段辅助思维的习惯.3.情感目标:让学生感受探究问题的乐趣和解决问题的成就感,通过带领学生解决实际问题及对线性规划有关历史的简单回顾,感受数学的文化价值.教学重点、难点:探究解决简单线性规划问题的方法.教学方式:学生自主探究和教师引导相结合.教学手段:CASIO图形计算器、多媒体、几何画板.教学过程:一. 设置情境,问题引入通过实际问题,创设问题情境.问题一:资金分配前不久的四川大地震,牵动了全国人民的心,灾后重建是当务之急.北京某企业积极响应北京市对口支援什邡市重建的号召,打算对中小学教学楼的重建(包括各项附属设施)提供支援,预算投入资金不超过1000万元.根据当前实际情况,要求投入中学建设的资金不少于投入小学建设资金的1.8倍,初步估算中学教学楼的平均造价为每百平方米14万元,小学教学楼的平均造价为每百平方米8万元.并且对两者的建设面积都不低于1000平方米.请你帮该企业计算一下,如何分配这笔资金能使得教学楼重建后的面积最大?最大面积为多少?学生活动:(1)独立将实际问题转化为数学问题;(2)针对得到的“约束条件”(不等式组),做出相应的平面区域.预案:学生会比较顺利的列出不等式组,不容易想到列出“目标函数”,教师作适当引导,让学生列出二元函数表达式. 说明:(1) 学生已经学习了“二元一次不等式组表示平面区域”的问题,作为上述知识的应用,这里设计了从实际问题出发,创设问题情境,从而引起学生的探究兴趣; (2) 放手让学生独立解决.碰到问题(如何处理一个“二元函数”的最值问题),引起认知冲突,激发求知的欲望.二.深入研究, 探求解法针对“问题一”中提出的数学问题,让学生自己探究解决的方法,教师巡视观察. 设建设中学教学楼面积为x 百平方米, 建设小学教学楼面积y 百平方米,建筑总面积为z 百平方米. z = x +y .满足:学生活动:学生合作交流,进行自主探究.1481000141.881010x y x y x y +≤⎧⎪≥⨯⎪⎨≥⎪⎪≥⎩z =x +y预案一:学生利用图形计算器的取点功能作出自由点,并度量其坐标,然后在所绘区域内移动该点,并直接计算x+y的值进行比较,容易猜想出使z取得最大值的点的位置.预案二:让学生思考使z取某个特殊值(如60)时点的位置.部分学生容易想到:满足条件的点的集合为直线x+y =60与所画区域的交集.可再取两个特殊值让学生思考,引导他们发现直线之间的平行关系,并思考z的几何意义:把目标函数化成=-+的形式,这表示一组平行直线,而z表示的是直线的纵截距,通过平移直y x z线,当直线的纵截距最大时,z取最大值.预案三:(教材解法)利用点到直线的距离公式进行转化,点到直线x + y =0的距离为:d=,把它化成x y+=.因为区域内的点的横纵坐标都是正数,所以=+=.从而到直线x + y =0z x y的距离最大的点就是使z取最大值的点.说明:(1)引导学生合作交流,主动寻求问题的解答;(2)培养学生利用现代信息技术手段辅助思维的意识;(3)教师巡视观察,适当点拨;(4)教师配合学生的探究结果,利用“ClassPad 300计算机模拟软件”及“几何画板”进行动态演示.三. 结合问题,介绍概念结合前面两个实例,介绍线性规划的有关概念:(1)目标函数(线性目标函数);(2)约束条件(线性约束条件);(3)线性规划问题;(4)可行解、可行域、最优解.说明:(1)强调“目标函数”是涉及两个自变量的函数;(2)总结解法时明确,涉及两个自变量的线性规划问题可以借助图形解决,但涉及更多自变量时不适用,但在中学阶段不要求.四. 巩固知识,实际演练问题二:食品配制营养学家对高一学生中午的营养配餐提出建议:每人至少需要从食物中获取0.120 kg的碳水化合物,0.024kg的蛋白质,不超过0.032kg的脂肪.现有两种食物A和B,每种食物每千克中所含成分及价格如下表:碳水化合物蛋白质(kg) 脂肪(kg) 价格(元)(kg)A (1kg) 0.120 0.020 0.020 6B (1kg)0.096 0.032 0.020 8为满足上面的饮食要求,并且食物A至少需0.5kg,则两种食物如何搭配可以使花费最低?最低为多少元?学生活动:在笔记本上独立解决.设食物A 需要x kg ,食物B 需要y kg ,花费为z 元.则: z = 6x +8y . 满足: 说明:(1)换个领域的问题,锻炼学生的类比能力;(2)通过又一个实际问题的解决,帮助学生体会线性规划问题广泛的适用性,从而初步掌握解决简单线性规划问题的一般方法.5455865580.50x y x y x y x y +≥⎧⎪+≥⎪⎪+≤⎨⎪≥⎪≥⎪⎩z =6x +8y0.1200.0960.1200.0200.0320.0240.0200.0200.0320.50x y x y x y x y +≥⎧⎪+≥⎪⎪+≤⎨⎪≥⎪≥⎪⎩问题三:设变量x 、y 满足下列条件:分别求下列目标函数的最小值: (1)z = y -x ; (2)z = 2x -3y ; (3)z = x +y .学生活动:分组合作完成表格的填写.目标函数 最小值 最优解 z = y -x z = 2x -3y z = x +y说明:(1) 借助练习,落实知识的掌握;223435251x y x y x y x +≥⎧⎪-≤⎪⎨+≤⎪⎪>⎩(2)通过题目中呈现出的最优解的不同情况,给学生一个完整的、严谨的数学概念.五. 回顾历史,感受文化“线性规划之父”——“丹齐克”“数学的战争”——“波斯湾战争”说明:通过对“线性规划”的历史及应用的大致介绍,使学生感受数学的文化价值.六. 小结全课,概括升华带领学生从知识与方法两个方面进行回顾与总结,指出:在知识方面,初步学习了解决“简单线性规划”的一般方法;并且更重要的是通过解决问题的过程,体会“模型建立”、“数形结合”以及转化、类比等研究数学问题的一般方法.七. 布置作业,设疑铺垫作业:P94 —练习1、2、3.思考题:34241x yx yx⎧-≤⎪+≤⎪⎨≥⎪已知:x、y 满足条件:求:z= x+3y的最大值.说明:通过思考题中对变量必须为自然数的限制要求,引导学生思考对“整数规划”问题的继续自主探究,为后面的内容做好铺垫.《简单线性规划一》教案设计说明写在前面的话在准备本节课的过程中,新加坡--麻省理工学院联盟院士、新加坡国立大学企业管理学院决策科学系副教授、《亚太运筹学报》副主编孙捷的一段话引起了我的思考,他说:“在历史上,从来没有哪一种数学方法可以像线性规划一样,在实际生产生活中有着极其广泛的应用,为人类直接和间接地创造出如此巨额的财富,甚至对历史的进程产生影响”.因此我决定对简单线性规划部分的教学做一些尝试:通过实际问题创设情境,让学生体会到数学的应用价值,并通过借助信息技术主动探究问题的解决方法,进一步让学生体会研究数学问题的基本方法思想.下面针对本节课的整体设计做一些说明.一.关于教学思路和内容的确定本节课是在讲了二元一次不等式和二元一次不等式组表示的平面区域的基础上,简单线性规划知识的第一节课.重点是介绍线性规划的有关概念和利用图解法求解,难点是线性规划的实际应用.在教育部制订的《普通高中数学课程标准》(实验)中指出:“线性规划是优化的具体模型之一,教师应引导学生体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.”经过仔细研究教材,结合我校学生的实际情况,我制订了本节课的教学目标和由实际问题引入,学生自主探究的主要思路.二.关于教学目标的确定根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、能力和情感三个方面制订了教学目标.从知识层面上看,本节课与前面的内容联系紧密,是简单线性规划的第一节课,目的是让学生从实际问题出发建立数学模型,从中理解相关概念,并通过学生自主探究、教师总结点拨,初步掌握图解法.从能力层面上看,根据我校学生的实际情况,我确立了放手让学生利用图形计算器探究问题的教学策略,以培养学生体验、感受、掌握独立研究问题的能力为目标.并努力使学生在探究过程中,体会数学的严谨性、系统性,帮助学生建立严谨的科学态度,发展学生的创新意识和实践能力.同时,注意渗透数学的基本思想和方法.从情感态度层面上看,是想训练学生的探索精神,体会独立研究问题的乐趣和成就感,激发学习数学的兴趣.在教学过程中渗透数学文化,充分体会数学的文化价值.三.教学过程的设计根据教学内容,结合学生的具体情况,我采用了学生自主探究和教师启发引导相结合的教学方式.在整个的教学过程中让学生尽可能地动手、动脑,调动学生积极性,充分地参与学习的全过程.[创设情境]《普通高中数学课程标准》(实验)中要求学生能从实际情境中抽象出一些简单的二元线性规划问题.经过仔细地考虑和研究,结合生活实际,我使用了“资金分配”和“食品配制”两个实际问题来创设情境,激发学生探究的兴趣.让学生体会数学与生活的紧密联系.[合作探究]问题提出后,教师不急于讲解,而是由学生合作解决,教师适当引导.这一环节中,列出“目标函数”,以及“图解法”的得出,都是学生可能碰到的“难题”.但我采取的是放手由学生去做,鼓励他们自己利用已有知识主动探究.同时,在探究过程中注重充分借助图形计算器和计算机辅助思维.[类比深入、落实双基]借助“问题二”、“问题三”,帮助学生巩固探究的结果,落实掌握.并在问题层层深入的过程中,涉及约束条件和目标函数的不同情况,让学生体会线性规划问题中最优解的几种不同可能性,使知识更加完整、严谨,落实知识的掌握与方法的理解.此外,在探究过程中,进一步训练学生分析问题、解决问题和总结归纳等能力.[历史回顾]在课的最后,我设计了一个“对线性规划历史背景简单介绍”的环节,并通过让学生课后查阅资料,渗透数学文化,体现人文精神.让学生逐步了解数学学科与人类社会发展之间的相互作用,体会数学的科学价值、应用价值和文化价值;开阔视野,探寻数学发展的历史轨迹,提高学生的文化素养,激发学生在后续学习中继续探究的兴趣.[小结提升、后续铺垫]这一环节,主要由学生完成.引导学生从知识与方法两个方面进行小结.培养学生及时总结,概括提升的能力.而思考题是针对“整数规划”的一个设计.目的是让学生在引起了认知冲突后,在课后也能继续独立探究、思考,不但为后面的教学埋下伏笔,也让学生养成不断思考研究的习惯,有利于他们的持续发展.四.教学特点和效果分析线性规划主要是解决日常生活中遇到的求最优解问题.有的题目背景远离学生的生活空间,不同程度的影响了学生的求知欲望.我作课的时间是6月初,当时四川的震情牵动全国亿万人的心.我以灾后重建为背景,编写了问题一,学生感到问题不空洞,数学就在我们身边.并且感到解决好这个问题,也是我们向灾区献爱心的一种表现,学生的求知欲望倍增.问题二也取材于学生的生活空间,现在我们有80%的学生在学校吃营养配餐.在绿色奥运,营养健康的口号下,问题二更体现线性规划的广泛应用,学生在学习过程中,一种亲切感油然而生.技术的发展促进了学习方式的变革.在技术不普及的时候,学生学习这个内容只能单纯的听教师的讲解.现在学生可以自己动手操作,借助CASIO图形计算器可以画出由二元一次不等式组确定的平面区域,然后在限定区域内寻求最优解.学生通过自己的操作,对于问题的理解程度加深了,自我获得知识的成就感也会增加.我在课堂上注重学生的主体参与,努力创设教师引导下的学生自主探究、合作交流的学习方式.通过课堂练习及课后作业,看到学生基本上能掌握利用图解法求解问题.课前制定的教学目标基本实现.。
3.3.2简单的线性规划(1)
结 论 : 形 如2 x y t ( t 0) 的直线与 2 x y 0平 行.
y
C
5
A:(5.00, 2.00) B: (1.00, 1.00) C:(1.00, 4.40) x-4y+3=0
A
2.作出下列不 等式组所表示 的平面区域
B
O
1 5
3x+5y-25=0
x=1
x
线性规划
线性规划:求线性目标函数在线性约束条件下的 最大值或最小值的问题,统称为线性规划问题. 可行解 :满足线性 约束条件的解(x,y) 叫可行解; 可行域 :由所有可行 解组成的集合叫做可 行域; 最优解:使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
(1,1)
2x+y=3
2x+y=12
x
3x+5y-25=0
直线L越往右平移,t 随之增大. 以经过点A(5,2)的直 线所对应的t值最大; 经过点B(1,1)的直线 所对应的t值最小.
2x y 0
Z max 2 5 2 12, Z min 2 1 1 3
线性 Z=2x+y称为目标函数,(因这 里目标函数为关于x,y的一 规划 次式,又称为线性目标函数 问题:
达到最小值。 可使 l 0平移过A点时, l 1
A
达到最大值。 解方程组可求得A(5,2) 22 C (1, ) 5
3x+5y-25=0
-1 O
3
4
5
6
7
x
-1 注意:直线取最大截距 l 0 l2 时,等价于 1 z 2 取得最大值,则z取 22 39 z 1 2 得最小值 min
简单线性规划(一)
简单线性规划(一)预习案一、 自学教材,思考下列问题1.对于变量x 、y 的约束条件,都是关于的一次不等式,称其为 ;z=f(x,y)是欲达到的最值所涉及的变量x 、y 的解析式,叫 。
当z=f(x,y)是关于x 、y 的一次函数解析式时,z=f(x,y)叫做 。
2.试说明可行解、可行域、最优解的关系。
二、 一试身手1.在直角坐标系xOy 中,△AOB 三边所在直线方程分别为x=0,y=0,2x+3y=30,则△AOB 的内部和边上的整点(即横、纵坐标均为整数的点)的个数为( ) A .95 B .91 C .88 D .752.变量x 、y 满足下列条件⎪⎪⎩⎪⎪⎨⎧≥≥=+≥+≥+0,024*********y x y x y x y x ,则使y=3x+2y 的值最小的最优点坐标为( )A .(4.5,3)B .(3,6)C .(9,2)D .(6,4)导学案一、 学习目标1.知识目标:理解线性规划有关概念,初步学会解决简单的线性规划问题.2.能力目标:渗透数形结合的数学思想;加强学生自主探究、合作交流的意识;进一步培养学生在研究问题中主动借助现代信息技术手段辅助思维的习惯.3.情感目标:让学生感受探究问题的乐趣和解决问题的成就感,通过带领学生解决实际问题及对线性规划有关历史的简单回顾,感受数学的文化价值. 二、 学习过程(1) 课内探究 问题情境1.问题:在约束条件410432000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?建构数学首先,作出约束条件所表示的平面区域,这一区域称为可行域,如图(1)所示. 其次,将目标函数2P x y =+变形为2y x P =-+的形式,它表示一条直线,斜率为,且在y 轴上的截距为P .平移直线2y x P =-+,当它经过两直线410x y +=与4320x y +=的交点5(,5)4A 时,直线在y 轴上的截距最大,如图(2)所示.因此,当5,54x y ==时,目标函数取得最大值5257.54⨯+=,即当甲、乙两种产品分别生产54t 和5t 时,可获得最大利润7.5万元. 这类求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题.其中5(,5)4使目标函数取得最大值,它叫做这个问题的最优解.对于只含有两个变量的简单线性规划问题可用图解法来解决.说明:平移直线2y x P =-+时,要始终保持直线经过可行域(即直线与可行域有公共点). (2) 典型例题例1.设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.例2.设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.例3.已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .例4.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可使获利最大?分析:这是一个二元线性规划问题,可先将题中数据整理成下表,以方便理解题意:资 金 (百万元) 场 地 (平方米) 利 润(百万元)A 产品 2 2 3B 产品 3 1 2 限 制 14 9 然后根据此表数据,设出未知数,列出约束条件和目标函数,最后用图解法求解总结:解线性规划应用题的一般步骤:(3) 当堂检测 一.选择题:1.在△ABC 中,三个顶点A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z=x -y 最大值为( )A.1 B.-3 C.-1 D.32.已知x 、y 满足⎪⎪⎩⎪⎪⎨⎧≥+≥≥≤+320152y x y x y x ,则x y 的最值是( )A.最大值2,最小值1 B.最大值1,最小值0C.最大值2,最小值0 D.有最大值,无最小值3.设x 、y ∈R ,则满足条件⎪⎩⎪⎨⎧≤-+-+≤--≥+04240530222y x y x y x y x 的点P(x,y)所在的平面区域面积为( )A.π89 B.π2 C.π3 D.π827二.填空题:4.变量x 、y 满足下列条件⎪⎩⎪⎨⎧≤+≥≤≤8342y x y x ,则使得z=3x-2y 的值最大的(x ,y )为__________.5.给出下面的线性规划问题:求z=3x+5y 的最大值和最小值,使x 、y 满足约束条件⎪⎩⎪⎨⎧≤-+≤≤+3511535y x x y y x .如果想使题目中的目标函数只有最小值而无最大值,请你改造约束条件中的一个不等式,那么新的约束条件是 。
3.3.2hao简单线性规划(第1课时)_课件
五、课堂作业
P86 练习2 P93 A组4 B组 3
(3)求:通过解方程组求出最优解; (4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
三、在哪个顶点取得不仅与B的符号有关,而且 还与直线 Z=Ax+By的斜率有关.
四、本课小结
本节主要学习了线性约束下如何求目 标函数的最值问题; 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健; 线性目标函数的最值一般都是在可行 域的顶点或边界取得; 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定 要弄清楚.
二、概念学习
1.线性约束条件
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
象这样关于x,y二元一次不等式组 的约束条件称为线性约束条件.
2.线性目标函数 3.线性规划
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数). 在线性约束下求线性目标函数的最值问题, 统称为线性规划.
x
问题:求利润2x+3y的最大值. 若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少?
2 z 2 把z =2x +3y变形为y =- x + ,这是斜率为- , 3 3 3 z z 在y轴上的截距为 的直线(x 0时,y = ), 3 3 当点P在可允 z 的最值 求 求 z的最值. 许的取值范 3 围内
4
N(2,3)
x
3
0
4
1 x4 2 1 z y x 3 3 y
高中数学:简单线性规划(1)-可行域上的最优解
14
解线性规划应用问题的一般步骤:
1)理清题意,列出表格:
2)设好变元并列出不等式组和目标函数
3)由二元一次不等式表示的平面区域作出可行域;
画出线性约束条件所表示的可行域,画图力保准确;
4)在可行域内求目标函数的最优解 法1:移-在线性目标函数所表示的一组平行线中,利用平移的方 法找出与可行域有公共点且纵截距最大或最小的直线; 法2:算-线性目标函数的最大(小)值一般在可行域的顶点处 取得,也可能在边界处取得(当两顶点的目标函数值相等时最优解 落在一条边界线段上)。此法可弥补作图不准的局限。 5)还原成实际问题 (准确作图,准确计算)
x 1
时,求z的最大值和最小值.
3
思考:还可以运用怎样的方法得到目标函数
的最大、最小值?
点的可目以y标通函过数比值较大可小行得域到边。界顶
x 4 y 3 1.先作出3x 5 y 25
x 1
A: (5.00, 2.00) B: (1.00, 1.00)
C C: (1.00, 4.40)
5
x-4y+3=0
所 表 示 的 区 域. 2.作直线l0 : 2x y 0
3.作 一 组 与 直 线l 0 平 行 的 直线l : 2x y t, t R
A B
直线L越往右平移,t 随之增大.
O1
x 以经过点A(5,2)的
5
3x+5y-25=0
直线所对应的t值
x=1
最大;经过点B(1,1)
2x+y=300
A 125
O
300x+900y=112500
C x+2y=250
150 B 250
答案:当x=0,y=0时,z=300x+900y有最小值0.
简单线性规划(1)
2012-12-26
练习1:
画出下列不等式表示的平面区域:
(1)2x+3y-6>0 (2)2x+5y≥10 (3)4x-3y≤12
Y Y Y
2
O
3
X
2
O
X
5
O
3 -4
Hale Waihona Puke X(1)(2)
(3)
例2:画出不等式组
Y
x y 5 0 x y 0 x 3
表示的平面区域
x+y=0
Y
3
O
2
3
X
2.由三直线x-y=0;x+2y-4=0及y+2=0所 围成的平面区域如下图:
则用不等式可表示为:
y x x 2 y 4 y 2
应该注意的几个问题:
1、若不等式中不含0,则边界应 画成虚线,否则应画成实线。 2、画图时应非常准确,否则将得 不到正确结果。 3、熟记“直线定界、特殊点定域” 方法的内涵。
第一节
二元一次不等式表示平面区域
提出问题—引入新课 解决问题—得出结论 典型例题分析与练习 课堂小结与课外作业
y
o
x
点 的集合{(x,y)|x-y+1=0}表示 什么图形? 点的集合{(x,y)|x-y+1>0} 表示什么图形?
想 一 想 ? 在平面直角坐标系中,
猜一猜:
(1)对直线L右下方的点(x,y), x-y+1>0 成立. (2)对直线L左上方的点(x,y), x+y-1<0 成立.
求不等式|x-2|+|y-2|≤2所表 示的平面区域的面积.
(3)注意所求区域是否包括边界直 线.
对简单的线性规划问题案例的探讨 (1)
对《简单的线性规划问题》案例的探讨厦门一中陈建国(发表于《福建教育》2007年第7-8期)一、“线性规划”应关注的6个方面的问题“简单的线性规划问题”属于高中数学新课程必修模块5,人民教育出版社A版高中数学教材将其安排在第三章《不等式》中,是二元一次不等式表示平面区域的后续内容。
“线性规划”是以数学为工具,来研究人力、财力、物力、时间、空间等资源在一定的约束条件下。
如何用最少的资源获取最大经济效益,属于最优化问题。
中学数学的线性规划只是规划论中的极小部分,但这部分内容体现了数学的工具性、应用性的特点,体现现代数学的特征,也生透露化归、数学结合等重要的数学思想,同时为解决实际问题提供了一种重要的解题方法――数学建模法。
本节课的教学应该关注以下方面:1、突出应用。
学习线性规划知识的最终目的就是运用其解决一些实际问题。
生活中常遇到资源利用、人力调配、生产安排等问题,它们需要涉及线性规划相关知识。
教学过程应该注意创设问题情境,通过一些由着丰富内涵和宽广外延的典型实例,如“火车运输问题”、“工厂生产安排”、“营养搭配问题”等生产、生活实际背景,以问题为驱动,激发学生对问题的解决产生兴趣,引导学生探索,经历问题的解决过程,体验数学在解决实际问题中的作用。
规划问题的极为重要的技术环节,其步骤大致可分为四个部分:(1)审题,弄清题意,明确约束条件的目标要求,理顺数量关系。
(2)建模,将文字语言转化为数学语言,列出线性约束条件、线性目标函数,建立相应的数学模型。
(3)求模,应用“图解法”,先求出可行解、可行域,再求出最优解。
(4)还原,将得出的结果还原为实际问题的结论。
3、重视数学结合思想。
本节课的重点是线性规划的图解法,其实质是“以形助数”,把抽象的数学语言转化为直观的图形,借助“形”的几何直观性来阐明“数”之间的关系,兼有数的严谨和形的直观之长,这就是数学结合的思想方法。
图解法是解决线性规划问题重要且常用的方法,可以避免繁杂的计算,是一种基本的数学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:在平面直角坐标系中作出经过点(0,1) 和(1,0)的直线l,并写出直线l上所有点的集合.
答:{(x,y)︱x+y-1=0}
y
1 x
o
1
问题1:点集:{(x,y)︱x+y-1≠0}在平面直角坐标系中表示什么图 形?点集{(x,y) ︱x+y-1>0}与点集{(x,y) ︱x+y-1<0}又表示 什么图形?
X+y+2≥0.所以三角形区域上 的点(x,y)应满足不等式组
-2
-1 o -1 -2
1
2 X+2y+1=0
{
2x+y+1≤0 x+2y+1≤0 X+y+2≥0
X+y+2=0
课堂练习:课本60页T1(1)(3),2 补充:不等式3x+ay-6<0(a>0)表示区域是在直线 3x+ay-6=0( )的点的集合。
·
·
图形展示如下:
直线x+y-1=0
y
x+y-1>0
区域
1 x
o X+y-1<0的 区域
1
3.二元一次不等式表示的平面区域 根据上面的例子可以得出一般性结论: 二元一次不等式ax+by+c>0在平面直角坐标 系中表示直线ax+by+c=0某一侧所有点组成 的平面区域,把直线画成虚线以表示区域 不包括边界直线;若画不等式ax+by+c≥0表 示的平面区域时,此区域包括边界直线, 则要把边界直线画成实线。
结论:对直线x+y-1=0右上方的点 y (x,y), X+y-1>0成立,对直线 2 X+y-1=0左下方的点(x,y) 1 X+y-1<0成立。
ห้องสมุดไป่ตู้ o
1
2
x
2、证明猜想
证明:如图,在直线x+y-1=0上任取一点P(x0,y0),过点P作平行于x y 轴的直线y=y0,在此直线上 点P右侧的任意一点(x,y) l 都有:x>x0,y=y0.所以 X+y>x0+y0, ∴x+y-1>x0+y0-1=0 1 即有:x+y-1>0.因为点P(x0,y0)是直线上的 P(x0,y0) (x,y) 任意点,所以,对于直线x+y-1=0右上方的 x 任意点(x,y),x+y-1>0都成立。同理,对于 1 o 直线x+y-1=0的左下方的任意点(x,y),x+y-1<0成立 ∴在平面直角坐标系中,点集{(x,y) ︱x+y-1>0}表示直线x+y-1=0右上方 的平面区域,点集{(x,y) ︱x+y-1<0}表示直线左下方的平面区域。
4、应用举例
例1 画出不等式2x+y-6>0表示的平面区域。 y 6 解:先画出直线2x+y-6=0 作为边界,取原点(0,0) 代入2x+y-6中,因为 2×0+0-6=-6<0,所以原点不在 x 2x+y-6>0表示的区域内,不等式 3 2x+y-6>0表示的区域为直线 2x+y-6=0的右上方区域(不包括边界),如图所示。
X+y=0 X=3
例3 用不等式组写出由直线 x+y+2=0,x+2y+1=0,2x+y+1=0围成的三 角形区域(包括边界)。
解如图,因为O(0,0)代入2x+y+1中可得 2×0+0+1>0且O(0,0)与三角形区域 在直线2x+y+1=0的异侧.所以 2x+y+1=0 2 三角形区域上的点(x,y)满足 1 2x+y+1≤0.同理可得x+2y+1≤0
课堂小结: 1、二元一次不等式表示的区域。 2、掌握画二元一次不等式(组)所表示的区 域。 3、会把若干直线围成的平面区域用二元一次 不等式组表示。 作业:课本64页习题7。4中第一题
反思归纳
画二元一次不等式表示的平面区域的方法 和步骤: (1)画直线定界(要注意实、虚线),简称: 定界; (2)用特殊点定区域(如ax+by+c>0中的 c≠0时,常把原点作为此特殊点);简称: 找点定域。
例2 画出不等式组
{
X-y+5≥0 X+y≥0 x≤3
表示的区域
解:不等式x-y+5≥0表示直线x-y+5=0上及右下方的 点的集合,x+y≥0表示 X-y+5=0 直线x+y=0上及右上方的 8 点的集合,x≤3表示直线 x=3上及左方的点的集合, 4 所以,不等式组表示的 o -6 -2 2 6 区域如图所示。
新课开始 1。归纳猜想 问1:在平面直角 坐标系中作出A(1,1) B(1,2)、C(0,0) D(2,2)四点,并判 断这四点与直线l的位置 关系
y
2
1 B D A
o
1
2
x
问2:请把A(1,1)、B(1,2)、C(0,0)、D(2,2)四点 的坐标代入x+y+1中,发现所得的值的符号有什么 规律?