数系的扩充与复数的引入知识点总结

合集下载

知识讲解_数学的扩充与复数的引入_知识讲解

知识讲解_数学的扩充与复数的引入_知识讲解

数系的扩充和复数的引入【要点梳理】要点一:复数的有关概念1.复数概念:形如()+a bi a b ∈R ,的数叫复数, 其中:a 叫复数的实部,b 叫复数的虚部,i 叫虚数单位(21=i -). 表示:复数通常用字母z 表示.记作:()=+z a bi a b ∈R ,.要点诠释:(1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.(2)复数=+z a bi 中,实部a 和虚部b 都是实数,这一点不容忽视,它列方程求复数的重要依据..(3)i 是-1的一个平方根,即方程12=x -的一个根. 方程12=x -有两个根,另一个根是i -;并且i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.复数集概念:复数的全体组成的集合叫作复数集.表示:通常用大写字母C 表示.要点诠释:⊆⊆⊆⊆N Z Q R C ,其中N 表示自然数集,Z 表示整数集Q 表示有理数集,R 表示实数集.3.复数相等概念:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.表示:如果,,,a b c d R ∈,那么a c a bi c di b d=⎧+=+⇔⎨=⎩ 特别地,00a bi a b +=⇔==.要点诠释:(1)根据复数a +b i 与c+di 相等的定义,可知在a =c ,b =d 两式中,只要有一个不成立,那么就有a +b i≠c+di (a ,b ,c ,d ∈R ).(2)一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小.(3)复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.要点二:复数的分类表示:用集合表示如下图:要点三:复数的几何意义1. 复平面、实轴、虚轴:如图所示,复数z a bi =+(,a b R ∈)可用点(,)Z a b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.要点诠释:实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数.2.复数集与复平面内点的对应关系按照复数的几何表示法,每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应.复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是复数的一种几何意义.3.复数集与复平面中的向量的对应关系在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数是一一对应的,所以,我们还可以用向量来表示复数.设复平面内的点(,)Z a b 表示复数z a bi =+(,a b R ∈),向量OZ 由点(,)Z a b 唯一确定;反过来,点(,)Z a b 也可以由向量OZ 唯一确定.复数集C 和复平面内的向量OZ 所成的集合是一一对应的,即复数z a bi =+←−−−→一一对应平面向量OZ 这是复数的另一种几何意义.4.复数的模 设OZ a bi =+u u u r (,a b R ∈),则向量OZ 的长度叫做复数z a bi =+的模,记作||a bi +.即22||||0z OZ a b ==+u u u r .要点诠释:①两个复数不全是实数时不能比较大小,但它们的模可以比较大小.②复平面内,表示两个共轭复数的点关于x 轴对称,并且他们的模相等.【典型例题】类型一:复数的概念例1.请说出下面各复数的实部和虚部,有没有纯虚数?(1)23i +; (2)132i -; (3)1-3i ; (4)3-52i ; (5)π; (6)0.【思路点拨】将复数化为()+a bi a b ∈R ,的标准形式,实数为a ,虚部为b .当实部0a =,而虚部0b ≠时,该复数为纯虚数.【解析】(1)复数23i +的实部是2,虚部是3,不是纯虚数;(2)132i -=132i -+,其实部是-3,虚部是21,不是纯虚数; (3)1-3i 的实部是0,虚部是-31,是纯虚数;(4)2=-22i ,其实部是2-,虚部是-2,不是纯虚数; (5)π是实数,可写成+0i π⋅,其实部为π,虚部为0,不是纯虚数;(6)0是实数,可写出0+0i ⋅,其实部为0,虚部为0,不是纯虚数.【总结升华】准确理解复数的概念,明确实部、虚部的所指是关键.举一反三:【变式1】符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.【答案】(1)存在且有无数个,如-2+i 等;(2)存在且不唯一,如1-2i 等;(3)存在且唯一,即-2i ;(4)不存在,因为纯虚数的实部为0.【变式2】以2i 22i +的实部为虚部的新复数是________.【答案】2i -222i +的实部为-2,所以新复数为2-2i .【高清课堂:数系的扩充和复数的概念 401749 例题1】例2.当实数m 取何值时,复数22(34)(56)i,(m )z m m m m =--+--∈R ,表示:(1)实数;(2)虚数;(3)纯虚数.【思路点拨】根据复数z 为实数、虚数及纯虚数的概念,判断实部与虚部取值情况.利用它们的充要条件可分别求出相应的m 值.【解析】(1)当z 为实数时,要求虚部为0,即2560m m --=,6m =,解得或1m =-.(2)当z 表示虚数,要求虚部非0,即2560m m --≠,解得6m ≠且1m ≠-. (3)当z 表示纯虚数,要求实部为0,且虚部非0,即22340560m m m m ⎧--=⎪⎨--≠⎪⎩,解得4m =. 【总结升华】 复数包括实数和虚数,虚数又分为纯虚数和非纯虚数,合理利用复数是实数、虚数以及纯虚数的条件是解决本类题目的关键.举一反三:【变式1】 若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为_________.【答案】1-. 由复数z 为纯虚数,得21010x x ⎧-=⎨-≠⎩,解得1x =-.【变式2】已知复数22276(56)i (R)1a a z a a a a -+=+-+∈-,试求实数a 分别取什么值时,z 为: (1)实数; (2)虚数; (3)纯虚数.【答案】(1)当z 为实数时,则225601a a a ⎧--=⎪⎨≠⎪⎩ ∴161a a a =-=⎧⎨≠±⎩或,故a =6, ∴当a =6时,z 为实数.(2)当z 为虚数时,则有225601a a a ⎧--≠⎪⎨≠⎪⎩,∴161a a a ≠-≠⎧⎨≠±⎩且, ∴a ≠±1且a ≠6,∴当a ∈(-∞,-1)∪(―1,1)∪(1,6)∪(6,+∞)时,z 为虚数.(3)当z 为纯虚数时,则有2225607601a a a a a ⎧--≠⎪⎨-+=⎪-⎩,∴166a a a ≠-≠⎧⎨=⎩且, ∴不存在实数a 使z 为纯虚数.【变式3】设复数22lg(22)(32)i z m m m m =--+++,m ∈R ,当m 为何值时,z 是:(1)实数; (2)z 是纯虚数.【答案】(1)要使z 是实数,则需22320220m m m m ⎧++=⎪⎨-->⎪⎩⇒m =―1或m =―2,所以当m =-1或m =-2时,z 是实数. (2)要使z 是纯虚数,则需222213320m m m m m ⎧--=⎪⇒=⎨++≠⎪⎩,所以m =3时,z 是纯虚数. 类型二:两个复数相等例3. 已知(21)(3)x i y y i -+=--,其中,x y R ∈,求x 与y .【思路点拨】利用复数相等的条件,列方程组,求解x y ,.【解析】根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以52x =,4y = 【总结升华】两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.举一反三:【变式1】已知,x y ∈R 且22712+=+x y xyi i -,求以x 为实部、以y 虚部的复数. 【答案】由题意知22712x y xy ⎧-=⎨=⎩,解得44x y =⎧⎨=⎩ 或 43x y =-⎧⎨=-⎩. 所以x+yi 的值为4+3i 或-4-3i .【高清课堂:数系的扩充和复数的概念 401749 例题2】【变式2】,x y ∈R ,复数(32)5x y xi ++与复数(2)18y i -+相等,求x y ,.【答案】(2)1818(2)y i y i -+=--,所以321852x y x y+=⎧⎨=-⎩,解得212x y =-⎧⎨=⎩. 【变式3】已知集合M={(a +3)+(b 2-1)i,8},集合N={3i ,(a 2-1)+(b +2)i }同时满足:N≠⊂M ,M N ≠I Φ,求整数a ,b .【答案】 2(3)(1)3a b i i ++-=依题意得 ①或28(1)(2)a b i =-++ ②或223(1)1(2)a b i a b i ++-=-++ ③由①得a =-3,b =±2,经检验,a =-3,b =-2不合题意,舍去.∴a =-3,b =2由②得a =±3, b =-2.又a =-3,b =-2不合题意,∴a =3,b =-2; 由③得222231401230a a a ab b b b ⎧⎧+=---=⎪⎪⎨⎨-=+--=⎪⎪⎩⎩即,此方程组无整数解. 综合①②③得a =-3,b =2或a =3,b =-2.类型三、复数的几何意义例4. 在复平面内,若复数22(2)(32)=--+-+z m m m m i 对应点(1)在虚轴上;(2)在第二象限;(3)在直线=y x 上,分别求实数m 的取值范围.【思路点拨】复数()+a bi a b ∈R ,在复平面内对应的点为()a b ,: =0a ⇔()a b ,在虚轴上;0,0a b <⎧⇔⎨>⎩()a b ,在第二象限;=a b ⇔()a b ,在=y x 上. 【解析】复数22(2)(32)=--+-+z m m m m i 在复平面内的对应点为()22(2)(32)---+m m m m ,.(1)由题意得22--=0m m ,解得m =2或m =-1.(2)由题意得2220,320.---+m m m m ⎧<⎪⎨>⎪⎩,解得12,2 1.m m m -<<⎧⎨><⎩或 ∴-1<m <1. (3)由已知得22232--=-+m m m m ,解得m =2.【总结升华】按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.举一反三:【高清课堂:数系的扩充和复数的概念 401749 例题3】【变式1】已知复数22(23)(43)z m m m m i =--+-+(m ∈R )在复平面上对应的点为Z ,求实数m 取什么值时,点Z (1)在实轴上;(2)在虚轴上;(3)在第一象限.【答案】(1)点Z 在实轴上,即复数z 为实数,由2-43031m m m m +=⇒==或∴当31m m ==或时,点Z 在实轴上.(2)点Z 在虚轴上,即复数z 为纯虚数或0,故2230m m --=-13m m ⇒==或∴当-13m m ==或时,点Z 在虚轴上.3)点Z 在第一象限,即复数z 的实部虚部均大于0由22230430m m m m ⎧-->⎪⎨-+>⎪⎩ ,解得m <―1或m >3 ∴当m <―1或m >3时,点Z 在第一象限.【变式2】在复平面内,复数sin 2cos2z i =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】∵22ππ<<,∴sin20>,cos20<,故相应的点在第四象限,选D.【变式3】 已知复数(2k 2-3k -2)+(k 2-k)i 在复平面内对应的点在第二象限,则实数k 的取值范围.【答案】∵复数对应的点在第二象限,∴⎪⎩⎪⎨⎧>-<--,0,023222k k k k 即⎪⎩⎪⎨⎧><<<-.10,221k k k 或解得:10122k k -<<<<或 例5. 在复平面内,O 是原点,向量OA u u u r 对应的复数是2+i .(1)如果点A 关于实轴的对称点为点B ,求向量OB uuu r 对应的复数;(2)如果(1)中点B 关于虚轴的对称点为点C ,求点C 对应的复数.【解析】(1)设所求向量OB uuu r 对应的复数z 1=x 1+y 1i (x 1,y 1∈R ),则点B 的坐标为(x 1,y 1).由题意可知点A 的坐标为(2,1),根据对称性可知x 1=2,y 1=-1,故z 1=2-i .(2)设所求点C 对应的复数为z 2=x 2+y 2i (x 2,y 2∈R ),则点C 的坐标为(x 2,y 2).由对称性可知x 2=-2,y 2=-1,故z 2=-2-i .【总结升华】 由复数的几何意义知,复数与复平面上的点建立起一一对应的关系,因而在解决复数的相关问题时,我们可以利用复平面上的点的一些数学关系来解决.举一反三:【变式】在复平面内,复数z 1=1+i 、z 2=2+3i 对应的点分别为A 、B ,O 为坐标原点,OP OA OB λ=+u u u r u u u r u u u r .若点P 在第四象限内,则实数λ的取值范围是________.【答案】(12,13)OP λλ=++u u u r 由题意:120130λλ+>⎧⎨+<⎩,解得:1123λ-<<- 例6. 已知12z i =+,求z .【解析】z ==【总结升华】依据复数的模的定义,即可求得.举一反三:【变式1】若复数21(1)z a a i =-++(a R ∈)是纯虚数,则z = . 【答案】由210110a a a ⎧-=⇒=⎨+≠⎩, 所以z =2. 【变式2】已知z -|z|=-1+i ,求复数z .【答案】方法一:设z=x+yi (x ,y ∈R ),由题意,得i 1i x y +=-+,即(i 1i x y +=-+.根据复数相等的定义,得11x y ⎧-=-⎪⎨=⎪⎩,解得01x y =⎧⎨=⎩,∴z=i .方法二:由已知可得z=(|z|-1)+i ,等式两边取模,得||z =两边平方,得|z|2=|z|2-2|z|+1+1⇒|z|=1.把|z|=1代入原方程,可得z=i .。

第3讲 数系的扩充与复数的引入

第3讲 数系的扩充与复数的引入

第3讲 数系的扩充与复数的引入一、 基础知识梳理:1.复数的有关概念:(1)复数①定义:形如a +b i 的数叫作复数,其中a ,b ∈R,i 叫作 ,a 叫作复数的 ,b 叫作复数的 .②表示方法:复数通常用字母 表示,即 (a ,b ∈R).(2)复数集①定义: 组成的集合叫作复数集.②表示:通常用大写字母C 表示.2.复数的分类及包含关系(1)分类:复数(a +b i ,a ,b ∈R)⎩⎨⎧ 实数b =0虚数b ≠0⎩⎪⎨⎪⎧ 纯虚数a =0非纯虚数a ≠0(2)集合表示: .3.两个复数相等:a +b i =c +d i 当且仅当 .4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)Z (a ,b ) 复平面内的点 ;(2)复数z =a +b i(a ,b ∈R) OZ →=(a ,b )平面向量 .5.复数的模:复数z =a +b i(a ,b ∈R)对应的向量为OZ →,则OZ →的模叫作复数z 的模或绝对值,记作|z |,且|z |= .二.问题探究探究点一:复数的概念例1 请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数.①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0.跟踪训练1:符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.探究点二:复数的分类例2:当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为 (1)实数;(2)虚数;(3)纯虚数.跟踪训练2:实数m 为何值时,复数z =m (m +2)m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.探究点三:两复数相等例3:已知x ,y 均是实数,且满足(2x -1)+i =-y -(3-y )i ,求x 与y .跟踪训练3:已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R),求x 的值.探究点四:复数的几何意义例4:在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应点(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的取值范围.跟踪训练4: 已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求复数z .三.方法小结:1.复数a +b i 中,实数a 和b 分别叫作复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫作复数的虚部.2.两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.3.按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值四.练一练1.指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。

第三章 数系的扩充与复数的引入单元小结

第三章 数系的扩充与复数的引入单元小结

联系,复数及其代数形式的加 、减运算与平面 向量及其加、减运算的 联系 还应注意复数及其 , 代数形式的加法、减法 、乘法运算与多项式及 其加法、减法、乘法运 算的联系 .
这些关系可以用以下框 图表示:
多项式及 类比 复数及 类比 其运算 其运算
特 殊 化
平面向量 及其运算
实数及 类比 数轴上的向 量及其运算 其运算 特 殊 化
2
学习复数应联系实数,注意到复数事实上是一
对有序实数 请比较实数、虚数、纯 , 虚数、复数之 间的区别和联系 ,比较实数和复数几何意 义的区别 .
3 你对复数四则运算法则 规定的合理性,以及复 数代数形式的加、减运 算与向量的加减运算的 一 致性有什么体会?
4
在学习本章时 应注复数与实数、有理 , 数的
有理数及其运算
单元小结

本章知识结构
数系扩充 复数引入
复数的概念
复数代数形式 的四则运算
二而得到的 .
数系扩充的过 程体 现了实际需求与数学内 部 的矛盾( 数的运算规则、方程求 )对数学发展 根 的推动作用,同时也体 现了人类理性思维的作 学史料, 并对" 整数 分数有理数 实数 复数" 的数系扩充过程进行整 . 理 用 .请你收集一些从实数系 扩充 到复 数系的数

复数讲义(含知识点和例题及解析)

复数讲义(含知识点和例题及解析)

数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。

若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。

(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。

(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。

(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。

x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。

2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。

(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。

3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。

②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。

③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。

④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。

(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。

第三章复习小结:数系的扩充与复数的引入

第三章复习小结:数系的扩充与复数的引入

5. 复数 (1+ 1i )2 的值是 ( ) (A) 2i (B) -2i (C) 2
(C) 5+5i (D) 2 (D) -2
(D) 5-5i
6. 如果复数 2- bi 的实部和虚部互为相反数, 那么实数 b 的值为 ( )
何运算.
y Z2
O
Z
Z1 x
Z
6. 复数的乘法
(a+bi)(c+di) = ac+adi+bci+bdi2 = (ac-bd)+(ad+bc)i.
类似于实数的二项式与二项式相乘. 注意: i2= -1. 复数的乘法也满足: 交换律、结合律、分配律, 乘法公式: (a+bi)2=a2+2a(bi)+(bi)2
=2a-ai+2bi-bi2 =(2a+b)+(-a+2b)i.
得 2a+b=11, 解得 a=3, b=5. -a+2b=7,
则 z=3+5i.
3. 把复数 z 的共轭复数记作 z, i 为虚单位, 若 z=1+i, 则 (1+z)·z 等于 ( A )
(A) 3-i (B) 3+i (C) 1+3i (D) 3 解: z=1+i,
则 z= -2i 时, (z+2)2-8i 是纯虚数.
3. 已知 z1=5+10i,
z2=3-4i,
1 z
=
1 z1
+
1 z2
,
求 z.
解:

B组
1. 把复数 z 的共轭复数记作 z, 已知 (1+2i) z

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结
数系的扩充和复数的概念
复数的概念:形如a + bi (a∈R。

b∈R)的数叫做复数,其中a和b分别叫做实部和虚部。

根据b的值,复数可以分类为实数(当b=0),虚数(当b≠0),以及纯虚数(当a=0且
b≠0)。

复数的几何意义:复数可以用点在平面内的位置来表示,这个平面叫做复平面(或高斯平面),其中实轴和虚轴分别表示实部和虚部。

复数集C和复平面内所有的点是一一对应的关系,即每一个复数都有复平面内唯一的一个点和它对应,反之亦然。

复数的运算:复数的加、减、乘、除可以按照特定的法则进行。

例如,设z1=a+bi,z2=c+di,则z1±z2=(a±c)+(b±d)i,z1•z2=(ac-bd)+(ad+bc)i,z1/z2=(ac+bd)/(c^2+d^2)+(bc-
ad)/(c^2+d^2)i(其中z2≠0)。

关于虚数单位i的一些固定结论:i^2=-1,i^3=-i,i^4=1,i^n+i^(n+1)+i^(n+2)+i^(n+3)=0(其中n为自然数)。

注意事项:(1)两个复数不能比较大小,但是两个复数
的模可以比较大小;(2)在实数范围内的求根公式在复数范
围内同样适用。

1.复数$a+bi$与$c+di$的积是实数的充要条件是$ad+bc=0$。

2.当$m<1$时,复数$m(3+i)-(2+i)$在复平面内对应的点位
于第三象限。

3.复数$\frac{13}{2}+\frac{1}{2}i$位于第一象限。

4.已知复数$z$和$z+2-8i$都是纯虚数,求$z$。

5.删除此段。

第四章 第四节 数系的扩充与复数的引入

第四章  第四节  数系的扩充与复数的引入

[题组自测 题组自测] 题组自测 1.若复数 z 满足 +i)z=1-3i,则复数 z 在复平面上的 . 满足(1+ = - , 对应点在 A.第四象限 . C.第二象限 . B.第三象限 . D.第一象限 . ( )
1-3i (1-3i)( -i) - )(1- ) - )( 解析: =-1- , 解析:由已知得 z= = = =- -2i,则 1+i )(1- ) + (1+i)( -i) + )( z 所对应的点为 -1,- ,故 z 对应的点在第三象限. 所对应的点为(- ,- ,-2), 对应的点在第三象限.
a+2i + (a+2i)i + ) 解析: 解析:由题可知 i =b+i,整理可得 i2 =b+i, +, +, =-1, = , 即 2-ai=b+i,根据复数相等可知 a=- ,b=2, - = +, =- 所以 a+b=1. + =
答案: 答案: B
3.若复数z1=4+29i,z2=6+9i,其中 是虚数单位,则 .若复数 是虚数单位, + , + ,其中i是虚数单位 复数(z 的实部为________. 复数 1-z2)i的实部为 的实部为 . 解析:∵z1=4+29i,z2=6+9i, 解析: + , + , =-20- , ∴(z1-z2)i=(-2+20i)i=- -2i, =- + =- 的实部为- ∴复数(z1-z2)i的实部为-20. 复数 的实部为 答案: 答案:-20
答案:B 答案:
)(2+ ) (1+2i)( +i) + )( 3.复数 . 等于 (1-i)2 -) 5 A. 2 5 C. i 2 5 B.- .- 2 5 D.- i .- 2
(
)
)(2+ ) (1+2i)( +i) 2+4i+i+2i2 + )( + ++ 5i 5 解析: 解析: = = =- . 2 (1-i)2 -) -2i -2i

(完整版)数系的扩充与复数的引入

(完整版)数系的扩充与复数的引入

数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式:z a bi (a R,b R)
2 7 , 0.618, 2 i, 0
7
i i 2 , i 1 3 , 3 9 2i, 5 +8,
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
例1: 实数m取什么值时,复数
z m 1 (m 1)i
(1)实数? (2)虚数?(3)纯虚数?
满足 i2 1
数系的扩充
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运
算时,原有的加法与乘法的运算律(包括交换律、结 合律和分配律)仍然成立。
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集, 一般用字母C表示 .
数系的扩充
复数的概念
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R位。
讨 论?
复数集C和实数集R之间有什么关系?
实数b 0
R C
复数a+bi虚数b

《高中数学知识梳理》 系数的扩充与复数的引入

《高中数学知识梳理》 系数的扩充与复数的引入

-@>% )一复数的相关概念1.虚数单位i是虚数单位,满足i2=-1,实数可以与i进行四则运算,进行四则运算时原有的加法㊁乘法运算律仍然成立.2.复数形如a+b i(a,bɪR)的数叫作复数,其中a是复数的实部,b是复数的虚部.全体复数组成的集合叫作复数集,用字母C表示.复数a+b i(a,bɪR),当b=0时,就是实数;当bʂ0时,叫作虚数;当a=0,bʂ0时,叫作纯虚数.把复数表示成a+b i(a,bɪR)的形式,叫作复数的代数形式.3.数系的发展自然数集N㊁整数集Z㊁有理数集Q㊁实数集R以及复数集C之间有如下关系:N⫋Z⫋Q⫋R⫋C.11两个复数z1=a+b i(a,bɪR),z2=c+d i(c,dɪR),当且仅当a=c且b=d时,z1=z2.特别地,当且仅当a=b=0时,a+b i=0.5.复数的模复数z=a+b i(a,bɪR)的模记作z或|a+b i|,有|z|=|a+b i|=a2+b2.6.共轭复数当两个复数的实部相等㊁虚部互为相反数时,这两个复数叫作互为共轭复数.在复平面内,表示两个共轭复数的点关于实轴对称.特别地,实数a的共轭复数仍是它本身.7.复数的几何意义从复数相等的定义我们知道,任何一个复数z= a+b i(a,bɪR)都可以用一个有序实数对(a,b)唯一确定,这样我们可以用建立了直角坐标系的平面来表示复数.建立了直角坐标系来表示复数的平面叫作复平面. x轴叫作实轴,y轴叫作虚轴.这样,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.复数z=a+b i(a,bɪR)与复平面内的点Z(a,b)及向量O Pң=(a,b)是一一对应的.复数的模表示复数对应的点到原点的距离.1811 二复数的运算对于复数z 1=a +b i (a ,b ɪR ),z 2=c +d i (c ,d ɪR ).(1)复数的加减运算:z 1ʃz 2=(a ʃc )+(b ʃd )i .(2)复数的乘除运算:z 1㊃z 2=(a +b i )(c +d i )=(a c -b d )+(b c +a d )i;z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=a c +b d c 2+d 2+b c -a d c 2+d 2i (c 2+d 2ʂ0).。

数系的扩充与复数的引入

数系的扩充与复数的引入
答案:D
返回
4. 若复数 z=(a-1)+3i(a∈R )在复平面内对应的点在直线 y=x +2 上,则 a 的值等于 A.1 C.5 B. 2 D.6 ( )
解析:因为复数 z=(a-1)+3i(a∈R )在复平面内对应的点为 (a-1,3),由题意得点在直线 y=x+2 上,所以 3=a-1+2, 解得 a=2.
a=-2, 或 b=-1,
∴a2+b2=5,ab=2.
答案:5 2
返回
[怎样快解·准解] 紧扣定义解决复数概念、共轭复数问题 (1)求一个复数的实部与虚部, 只需将已知的复数化为代数形 式 z=a+bi(a,b∈R ),则该复数的实部为 a,虚部为 b. (2)求一个复数的共轭复数, 只需将此复数整理成标准的代数 形式,实部不变,虚部变为相反数,即得原复数的共轭复数.复 数 z1=a+bi 与 z2=c+di 共轭⇔a=c,b=-d(a,b,c,d∈R ).
a-i 3.(2017· 天津高考)已知 a∈R ,i 为虚数单位,若 为实数, 2+i 则 a 的值为________.
a-i a-i2-i 2a-1 2+a 2+a 解析: 由 = = - i 是实数, 得- 5 5 5 2+i 2+i2-i =0,所以 a=-2.
答案:-2
返回
―→ 平面向量 OZ . ____________
返回
3.复数的运算 (1)复数的加、减、乘、除运算法则 设 z1=a+bi,z2=c+di(a,b,c,d∈R ),则 ①加法:z1+z2=(a+bi)+(c+di)= (a+c)+(b+d)i ; ②减法:z1-z2=(a+bi)-(c+di)= (a-c)+(b-d)i ; ③乘法:z1· z2=(a+bi)· (c+di)= (ac-bd)+(ad+bc)i ; z1 a+bi a+bic-di ac+bd bc-ad ④除法: = = = (c+di≠0). z2 c+di c+dic-di c2+d2 + c2+d2 i

《数系的扩充与复数的引入》复习

《数系的扩充与复数的引入》复习
m m20 位于第二象限,求实数m的取值范围。 得m32或 mm21 m(3,2) (1,2)
背景知识
有序实数对(a,b)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
(数) 复数的一个几何意义
(形)
z=a+bi
y
Z(a,b)
b
复平面
a
ox
x轴------实轴 y轴------虚轴
01
复数z=a+bi 点Z(a,b)
3 复数相等的问题
4 转化
5 求方程组的解的 问题
6 一种重要的数学 思想—转化思想
变式练习
x 2 误点警示:虚数不能比较大小!
1
若方程
m +(m+2i)x+(2+2
mi)=0 至少有一 个实数根,试求实 数m的值.
2
m m 2
2
已知不等式 -
( -3m)i
3
<10+( 4m+3)i,试求实数 m的值.
(4)|zz1zz2|2a
回顾总结
1
两个复数相等的充 要条件是实现把复 数问题转化为实数 问题的重要途径, 也是我们解决有关 的方程、不等式问 题的重要依据。
2
在熟练进行复数运 算的同时,掌握一 些运算技巧方法, 以求快速准确地解 答问题。
回顾总结
复数的几何表示建立了复数与平面图形、 复数与向量沟通的桥梁,由此我们可以 方便地进行数形转换,寻找更为直观、 方便的解题方法与途径。
高考链接
i
(06年陕西卷)复数
(1 i) 2 等于 1 i
A.1-i
B.1+i
C.-1+ i D.-1-i

高中数学常用公式及结论(数系的扩充与复数的引入总结)

高中数学常用公式及结论(数系的扩充与复数的引入总结)

高中数学常用公式及结论(数系的扩充与复数的引入总结)•、复数的定义:形如a+bi(fl9be R)复数图(1)的数叫复数,a叫复数的实部,b叫复数的虚部□注:a^bi(a.be&)复数图(2)称为复数z的代数形式,其中「2一1a二、复数a^bi(fl9beR)复数图(3)与实数的关系:实敝g复教Z=a-bi怎0&A)<虚数彷工0)—般虚数0)纯虚数(bn0q=0)复数与实数的关系图三、复数的相等:a-\-bl-c-\-di<^>a-c,b-d.(a.b.c.d e R>两个复数相等图四、共轴复数:1、复数z=a^的共匏复数记作八即T=af共貌复数图2、i的性质:如果nN则有严=1咨心=很血=-侦心=—ii的性质图3、法则(分母实数化法):a+bi(々+质X c-S){ac^bd)^(fic-ad)i_ac+bd^bc-adc+di(c+尻)(c-*)cf法则(分母实数化法)图五、复数的几何意义:1、复平面:建立了直角坐标系来表示复数的平面;X轴叫做实轴,y轴叫做虚轴。

注:实轴上的点表示实数;虚轴上的点(除原点)都表示纯2、复数z=a±bi<—定>复平面内的点Z(qi)复数图(1)z=a^bi〈一*>复平面上的平面向量无复数图(2)规定:相等的向量表示同一复数o3、5向量沅的模叫做复数前的模,模图(1)记作日或|。

+团,则:=a^bi=J疽+旋z模图(2)六、复平面上的两点间的距离公式:d=\z Y-z21=J(x2-X,)2+(>•,-J i)2z2=x2+tj).。

【高中数学】数系的扩充与复数的引入

【高中数学】数系的扩充与复数的引入

【高中数学】数系的扩充与复数的引入知识讲解1. 复数的有关概念 (1)复数的概念形如a+bi (a,b ∈R)的数叫做复数,其中a,b 分别是它的实部和虚部。

若b=0,则a+bi 为实数;若b≠0,则a+bi 为虚数;若a=0且b≠0,则a+bi 为纯虚数。

{}{}虚数纯虚数⊂,{}{}{}实数虚数复数 ==C(2)复数相等:a+bi=c+di ⇔=⎧⎨=⎩a c b d(a,b,c,d ∈R).(3)共轭复数:a+bi 与c+di 共轭⇔=⎧⎨=-⎩a c b d(a,b,c,d ∈R)两个重要命题:定理:复数是实数的充要条件是;1z z z =定理:复数是纯虚数的充要条件是()200z z z z +=≠ (4)复平面建立直角坐标系来表示复数的平面,叫做复平面。

x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

复数集与平面上的点集之间能建立一一对应关系,故可用平面上的点来表示复数,一般的,可用Z (a,b) (a,b ∈R)表示复数a+bi (a,b ∈R)或用向量O Z表示复数a+bi.(5)复数的模向量O Z的模叫做复数z=a+bi 的模,记为|z|或|a+bi|,即|z|=|a+bi|=22a b +。

2、复数的几何意义(1)复数z=a+bi ←−−−→一一对应复平面内的点Z (a,b) (a,b ∈R) (2)复数z=a+bi ←−−−→一一对应平面向量O Z(a,b ∈R) 3、复数的运算(1)四则运算法则(可类比多项式的运算)加法:R d c b a i d b c a di c bi a ∈+++=+++,,,)()()()( 减法:i d b c a di c bi a )()()()(-+-=+-+ 乘法:i ad bc bd ac di c bi a )()())((++-=++除法:)())(())(()()(转化为乘法运算…=-+-+=++=+÷+di c di c di c bia dic bi a di c bi a ,简记为“分母实数化”。

数系的扩充和复数概念和公式总结

数系的扩充和复数概念和公式总结

数系的扩充和复数概念和公式总结1.虚数单位i:它的平方等于-1,即i2i2.i与一1的关系:i就是一1的一个平方根,即方程x2=—1的一个根,方程x2=—1的另一个根是—i3.i 的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1.4.复数的定义:形如a bi(a,b R)的数叫复数,a叫复数的实部,b叫复数的虚部.全体复数所成的集合叫做复数集,用字母C表示.复数通常用字母z表示,即z a bi(a,b R)5.复数与实数、虚数、纯虚数及0的关系:对于复数a bi(a,b R),当且仅当b=0时,复数a+bi (a、be R)是实数a;当bw0时,复数z=a+bi叫做虚数;当a=0且bw0时,z=bi叫做纯虚数;aw0且b w0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.一"正实数「上:胃是实数《曰实数0复数«+ bl)〔与负实数―>纯虚数显।m是虚数](庭口,展R)堂壬0 ■I」非纯速数的虚数6.复数集与其它数集之间的关系:甲奉Q奉C7.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等. 如果a, b, c, deR,那么a+bi =c+di a=c, b=d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小.当两个复数不全是实数时不能比较大小.8.复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b€ R)可用点Z(a, b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数.(1)实轴上的点都表示实数.(2)虚轴上的点都表示纯虚数,(3)原点对应的有序实数对为(0, 0)设 z i =a+bi, Z 2=c+di(a 、b 、c 、dCR)是任意两个复数,9 .复数 Z i 与 Z 2 的加法运算律:Z i +Z 2=(a+bi)+( c+di )=( a+c)+( b+d) i .10 复数 z i 与 Z 2 的减法运算律:Z i -Z 2=(a+bi)-( c+di )=( a-c)+( b-d) i .11 .复数 Z i 与 Z 2 的乘法运算律:Z i Z 2= ( a+bi)( c+di )=( ac — bd)+( bc+ad) i .12.复数Zi 与Z2的除法运算律:Z 1Z 2 =( a+bi) + (c+di 尸ac b d bc ad i(分母实数化)2222c d c d13.共腕复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共腕复数 于0的两个共腕复数也叫做共腕虚数.通常记复数Z 的共腕复数为Z o 例如Z =3+ 5i 与Z =3—5i 互为共腕复数14.共腕复数的性质(D 实数的共腕复数仍然是它本身/ 一、__ 2 ——2(2) Z Z Z Z(3)两个共腕复数对应的点关于实轴对称.虚部不等i4.复数的两种几何意义:i5复数 Z a bi a,b R几个常用结论,…22(i) i i 2i , (2) i i 2i(3)i i .(4)——ii i点 Z(a,b)•——对应(5)复数Z a bi 的模Z ,a 2 b 22 , 2(6) a bi a bi a b2009 — 20i4年高考文科数学试题分类汇编一一复数对应uuu*向量OZ2.(2009浙江卷文)设z=i+i (i是虚数单位),则:+z2=(A) i + i (B) — i+i (C) i — i.、,… 3— i-3.(2009山东卷又)复数--r等于( )i — i(A) i + 2i (B) i-2i (C) 2+i4.(2009安徽卷文)i是虚数单位,i (i + i)等于( )(A) i + i (B) — i —i (C) i-i、一.......... .. (5i)5.(2009天津卷又)i是虚数单位,T—=( )2—i(A) i + 2i (B) — i — 2i (C) i - 2i )(D) — i 一i (D) 2- i(D) —i+i (D) — i + 2i17.(2010北京文数(2))在复平面内,复数6+5i , -2+3i对应的点分别为A B,若C为线段AB的中点,则点C对应的复数是()(A) 4+8i18.(2010四川理数((A) — 119.(2010天津文数)(A) 1 + 2i20.(2010天津理数)(A) 1 + i(B)8+ 2i(B)2+ 4ii是虚数单位,复数(C)5+ 5i(D)— 1 -2i —1 + 3i6. (2009宁夏海南卷文)复数3+2i 2 —3i(A) 1 (B) — 1 (C) i (D) - i17.(2009辽宁卷又)已知复数z=1—2i,那么2=()(A)介乎(B)害一W5 5 5 52 1 8.(2010湖南又数1)复数等于(1— i1(C)5(D)5 -5 i(A) 1 + i (B) 1 — i (C) — 1+iM (2010全国卷 1 2理数)复数(£ ) 2=()(D) — 1 一i(A) — 3 —4i (B) -3+4i (C) 3 —4i11.(2010陕西文数)复数z=Wr在复平面上对应的点位于((A)第一象限(B)第二象限(C)第三象限(D) 3+ 4i )(D)第四象限1+2i i12.(2010辽宁理数(2))设a, b为实数,若复数-7-7 =1 + i ,则( )a十b i― 3 , 1(A) a = 2 , b = 2 (B) a= 3, b= 11. 3 一.八(C) a=2 , b=2 (D) a=1, b=3a+ 2i(A) - 1 (B) 1 (C) 2 (D) 321.(2010 广东理数)若复数Z1=1 + i , Z2 = 3—i ,则Z1 • Z2=((A) 4+2 i22.(2010福建文数)(B) 2 + i (C)2+2 i1 + i Ai是虚数单位,(「)等于()1)) i是虚数单位,计算i + i2+i 3=( )(B) 1 (C) - i3+ ii是虚数单位,复数 -一r =( )1 — i(C) 2+4i (D) 4+ i(D) i(D) 2- i(D) — 1 一i)a+ 2i,24. (2010 山东理)已知 一一 =b+i (a, i bCR ),其中i 为虚数单位,则a+b=(),.,,、一 一、“, i — 226. 2011年北东理复数-■——=1 + 2i29. (2011年安徽理(1))设i 是虚数单位,复数 詈为纯虚数,则实数 a 为()2 — i‘、,一一 1'一 1(A ) 2(B )— 2 (C )-2 (D )-30. (2011年福建文)i 是虚数单位,1 + /等于( ) (B) — i(C) 1 + i(D) 1-i31. (2011年广东理1)设复数z 满足(1 + i ) z=2,其中i 为虚数单位,则 Z=()55.12012湖南文2]复数z=i (i +1) (i 为虚数单位)的共轲复数是(62. (2013年北京卷(文))在复平面内,复数i (2—i )对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限67. (2013年江西卷)复数z = i (― 2—i ) (i 为虚数单位)在复平面内所对应的点在()(A) i(B) — i (C) 1(D) — 123. (2010全国卷1理数(1))复数 3+2i 2—3i(A) i (B) -i(C) 12- 13i(D) 12 +13i(A) — 1 (B) 1(C) 2(D) 3(A)(B) — i(C)4 3. ---- i5 5(D)」+3i(A) i(A) 1 + i (B) 1-i (C) 2+2i (D) 2- 2i32. (2011年广东文1)设复数z 满足i z=1,其中i 为虚数单位,则z=( (A) - i(B) i(C) — 1............ 1+i on-11 33. (2011年湖北理1) i 为虚数单位,则(-一r ) =(1 — i(D) 1(A) - i (B) — 1 (C) i(D) 1(A) — 1-i(B) —1+i (C) 1-i (D) 1 + i1 + 2i =( )(C) — 5-5i(A )第一象限(B )第二象限(C )第三象限 (D )第四象限。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数系的扩充与复数的引入知识点总结
一。

数系的扩充和复数的概念
1.复数的概念
(1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部.
(2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数.
(3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.
即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ⎧⇔⎨⎩,特别地:。

(4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数。

即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是
2。

复数的几何意义
(1)数()可用点表示,这个建立了直角坐标系来表示复数的平
面叫做复平面,也叫高斯平面,
轴叫做实轴,轴叫做虚轴.
实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数.
复数集C和复平面内所有的点所成的集合是一一对应关系,即复数
复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法.
(2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作.即
. 3.复数的运算
(1)复数的加,减,乘,除按以下法则进行
设12,(,,,)z a bi z c di a b c d R =+=+∈则
12()()z z a c b d i ±=±+±
12()()z z ac bd ad bc i •=-++
12222()()(0)z ac bd ad bc i z z c d
-++=≠+ (2)几个重要的结论
2222121212||||2(||||)z z z z z z ++-=+
22||||z z z z •==
若z 为虚数,则22||z z ≠
(3)运算律
m n m n z z z +•=
()m n mn z z =
1212()(,)n n n z z z z m n R •=•∈
(4)关于虚数单位i的一些固定结论:
21i =-
3i i =-
41i =
2340n n n n i i i i ++++++=
注:(1)两个复数不能比较大小,但是两个复数的模可以比较大小 (2)在实数范围内的求根公式在复数范围内照样能运用
二。

同步检测
1.复数a+b i 与c+d i 的积是实数的充要条件是
A 。

ad +b c=0 B.ac +bd =0
C.a c=bd D.a d=bc
2.复数
5-2
i 的共轭复数是 A .i +2 B.i -2 C.-2-i D .2-i
3.当2<<13m 时,复数m(3+i )—(2+i )在复平面内对应的点位于 A.第一象限 B .第二象限 C.第三象限 D.第四象限
4。

复数3
1+22⎛⎫ ⎪ ⎪⎝⎭

5.已知复数z 与()2+2-8z i 都是纯虚数,求z
6.已知(1+2=4+3i z i )
,求z 及z z
7.已知1z =5+10i ,2z =3—4i ,
12
111=+z z z ,求z
8.已知2i -3是关于x 的方程22
x +px +q=0的一个根,求实数p,q的值。

相关文档
最新文档