高一数学期末考试试题精选_新人教版

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

人教a版高一数学期末考试试题及答案

人教a版高一数学期末考试试题及答案

人教a版高一数学期末考试试题及答案人教A版高一数学期末考试试题一、选择题(每题4分,共40分)1. 函数f(x) = 2x - 3的零点是()A. x = 3/2B. x = -3/2C. x = 1D. x = 02. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B为()A. {1, 2}B. {2}C. {1}D. 空集3. 若a,b,c是等差数列,则下列等式成立的是()A. 2b = a + cB. 2b = a - cC. 2b = a + c + 1D. 2b = a - c + 14. 函数y = x^2 - 4x + 4的图像开口方向是()A. 向上B. 向下C. 向左D. 向右5. 已知函数f(x) = x^2 - 6x + 8,g(x) = 2x - 3,若f[g(x)] = 0,则x的值为()A. 1B. 2C. 3D. 46. 已知向量a = (1, 2),向量b = (2, 3),则向量a与向量b的点积为()A. 7B. 8C. 9D. 107. 已知直线l:y = 2x + 1与直线m:y = -x + 3平行,则直线l 与直线m之间的距离为()A. √2B. √5C. √10D. 2√28. 已知函数f(x) = |x|,则f(-2) + f(2)的值为()A. 0B. 2C. 4D. 69. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值为()A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. x^3 - 3x^2 + 210. 已知函数f(x) = sin(x) + cos(x),求f'(x)的值为()A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)二、填空题(每题4分,共20分)11. 已知等比数列{an}的首项a1 = 2,公比q = 3,则a5的值为______。

新课标人教版高一数学上学期期末试卷及答案2

新课标人教版高一数学上学期期末试卷及答案2

上学期期末考试高一英语试题第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What did the woman have for lunch?A. French fries.B. Some soup.C. A cheese sandwich.2. When is the man’s flight leaving?A. At 9:15.B. At 10:15.C. At 10:50.3. Where did the conversation take place?A. At a department store.B. At a dry-cleaning shop.C. At a dress-making shop.4. Why can’t the man give the woman a hand?A. He is too heavy to help her.B. He doesn’t know how to help her.C. He is too busy to help her.5. How does the man feel about his job?A. He enjoys it.B. He doesn’t like it at all.C. He wants to find a new job.第二节听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6至8题。

6. How is the relationship between the woman and her parents?A. Good.B. Bad.C. Hard to say.7. How much pocket money does the woman get a week?A. Three pounds.B. Two pounds.C. Four pounds.8. How old might the woman be?A. 16.B.17.C.18.听第7段材料,回答第9至11题。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1.现有这么一列数:1,32,54,78,(),1132,1364,…,按照规律,( )中的数应为( ). A.916B.1116C.12D.11182. 设,,a b c ∈R ,且a b >,则( ) A.ac bc >B.11a b< C.20c a b≥- D.11a b a>-3. 在△ABC 中,点D 在边BC 上,若2BD DC =,则AD = A. 14AB +34AC B.34AB +14AC C.13AB +23AC D.23AB +13AC 4. 设单位向量1cos 3e α⎛⎫= ⎪⎝⎭,,则cos 2α的值为( )A.79B.12-C.79-D.35. 已知ABC 中,23,22,4a b B π===,那么满足条件的ABC( ) A. 有一个解 B. 有两个解C. 不能确定D. 无解6.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212-a a b的值是 ( ) A.12B.12-C.12或12-D.147. 《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十四日所织尺数为( )A. 13B. 14C. 15D. 168. 在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中22tan tan a B b A =,那么ABC 一定是()A. 锐角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形9. 已知α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,则sin β=( ) A.5665-B.1665-C. 3365D.636510. 如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD密线学校 班级 姓名 学号密 封 线 内 不 得 答 题=45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A.85 B.415C.215511. 设G 是ABC 的重心,且()()()sin sin sin 0A GA B GB C GC ++=,若ABC 外接圆的半径为1,则ABC 的面积为( )A. 33B.33C. 34D.91612.当x θ=时,函数()2cos f x sinx x =+取得最小值,则sin 3πθ⎛⎫+ ⎪⎝⎭的值为( ) A. -215510B.2515+ C. 10 D.310第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 当1x >时,41x x +-的最小值为______. 14. 在ABC 中,tan ,tan A B 是方程22370x x +-=的两根,则tan C =_______.15. 如图,在半径为3的圆上,C 为圆心,A 为圆上的一个定点,B 为圆上的一个动点,若||||+=-AC CB AC CB ,则AB AC ⋅=_____.16.已知数列{}n a 满足1212a a ++…2*1()n a n n n N n +=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*4()1nnT n N n λ≤∈+恒成立,则λ的最小值是_______.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. (10分)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). (1)求顶点D 的坐标;(2)求AC 与BD 所成夹角的余弦值.18. (11分)已知数列{}n a 是公比为2的等比数列,且234,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记2,,n n na nb log a n ⎧=⎨⎩为奇数为偶数,数列{}n b 的前n 项和为n T ,求2n T . 19. (11分)已知向量()cos 3m x x=,(cos ,cos )n x x =且函数()f x m n =⋅.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)求函数()f x 在,02x ⎡⎤∈-⎢⎥⎣⎦π时的值域; (2)设α是第一象限角,且112610f απ⎛⎫+= ⎪⎝⎭求sin()4cos(22)παπα++的值. 20. (12分)首届世界低碳经济大会的主题为“节能减排,绿色生态”.某企业在国家科研部门的支持下,投资810万元生产并经营共享单车,第一年维护费为10万元,以后每年增加20万元,每年收入租金300万元.(1)若扣除投资和各种维护费,则从第几年开始获取纯利润? (2)若干年后企业为了投资其他项目,有两种处理方案: ①纯利润总和最大时,以100万元转让经营权;②年平均利润最大时以460万元转让经营权,问哪种方案更优?21. (12分)已知ABC 的角A ,B ,C 的对边分别为a ,b ,c ,满足()(sin sin )()sin b a B A b c C -+=-. (1)求A ;(2)从下列条件中:①3a =②3ABCS=中任选一个作为已知条件,求ABC 周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22. (14分)函数()f x 满足:对任意,R αβ∈,都有()g()()αβαββα=+f f ,且(2)2f =,数列{}n a 满足()()2+=∈nn a f n N .(1)证明数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式;(2)记数列}{nb 前n 项和为n S ,且(1)nn n n ba +=,问是否存在正整数m ,使得(1)(4)190m m m S b +-+<成立,若存在,求m 的最小值;若不存在,请说明理由.参考答案与试题解析 第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1. A 【解析】 【分析】根据题意得出每个数的分母为2n ,分子为连续的奇数,即可求解.【详解】由题意知,一列数:1,32,54,78,(),1132,1364,…, 可得每个数的分母为2,n n N ∈,分子为连续的奇数,所以( )中的数应为916故选:A.【点睛】本题主要考查了数列的项的归纳推理,其中解答中根据数的排列,找出数字的规律是解答的关键,着重考查了归纳推理的应用. 2. C密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【解析】【分析】根据不等式的性质,直接判断即可. 【详解】对A ,当0c时,不成立,故A 错对B ,若a 为正数,b 为负数,不成立,故B 错对C ,由a b >,所以0a b ->,所以20c a b ≥-成立,故C 正确对D ,当2,1a b ==-时,11a b a>-不成立,故D 错 故选:C【点睛】本题考查不等式的性质,选择题可以使用特殊值法,便于计算,属基础题. 3. C 【解析】 分析】根据向量减法和2BD DC =用,AB AC 表示BD ,再根据向量加法用,AB BD 表示AD .【详解】如图:因22,()33BC AC AB BD BC AC AB =-==-,所以212()333AD AB BD AB AC AB AB AC =+=+-=+,故选C. 【点睛】本题考查向量几何运算的加减法,结合图形求解. 4. A【解析】 由题设可得2218cos 1cos 99αα+=⇒=,则27cos 22cos 19αα=-=,应选答案A . 5. B 【解析】 【分析】通过比较sin a B 与b 的大小关系,简单判断可得结果. 【详解】由题可知:23,22,4a b B π===2sin 2362==a B 622<=<b a 所以可知ABC 有两个解故选:B【点睛】本题考查两边及其一边所对应的角判定三角形个数,掌握比较方法以及正弦定理的使用,属基础题. 6. A【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d ,则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q ,则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a a b --==.本题选择A 选项.7. B 【解析】【分析】由已知条件利用等差数列的前n 项和公式和通项公式列出方程组,求出首项和公差,由此能求出第十四日所织尺数. 【详解】设第一天织1a 尺,从第二天起每天比第一天多织d 尺,由已知得1111721284715a d a d a d a d +⎧⎨+++++⎩==解得:111a d ==, ,∴第十四日所织尺数为14113113114=+=+⨯=a a d .故选:B . 【点睛】本题考查等差数列的性质,考查了等差数列的前n 项和,是基础的计算题. 8. D 【解析】 【分析】根据正弦定理sin sin a bA B =,将等式中的边,a b 消去,化为关于角,A B的等式,整理化简可得角,A B 的关系,进而确定三角形ABC 的形状.【详解】由正弦定理可得:22sin tan sin tan =A B B A ,整理得sin cos sin cos A A B B =,因此有11sin 2sin 222A B =,可得22A B =或22A B π=-, 当22A B =时,ABC 为等腰三角形;当22A B π=-时,有2A B π+=,ABC 为直角三角形,故选:D .【点睛】本题考查通过正弦定理化简判定三角形形状,熟悉正弦定理、余弦定理以及三角形面积公式,属基础题. 9. D 【解析】 【分析】 计算得到4cos 5α=,()12sin 13αβ+=,再根据()sin sin βαβα=+-展开得到答案. 【详解】α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,故4cos 5α=,()12sin 13αβ+=. ()()()63sin sin sin cos cos sin 65βαβααβααβα=+-=+-+=.故选:D . 【点睛】本题考查了同角三角函数关系,和差公式,意在考查学生的计算能力. 10. B 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值.【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin12043sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin4546sin sin603CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:415AB =所以A 与B 的距离415AB =故选B点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题. 11. B 【解析】 【分析】根据G 是三角形ABC 的重心得到0GA GB GC ++=,结合已知条件进行化简,求得sin sin sin A B C ==,由此判断出三角形ABC 是等边三角形,再结合三角形ABC 外接圆半径以及正弦定理,求得三角形ABC 的边长,由此求得三角形ABC 的面积. 【详解】∵G 是ABC 的重心,∴0GA GB GC ++=,则GA GB GC =--,代入()()()sin sin sin 0A GA B GB C GC ++=得,()()sin sin sin sin 0A B GB A C GC -+-=,∵GB GC ⋅不共线,∴sin sin 0A B -=且sin sin 0A C -=, 即sin sin sin A B C ==,∴ABC 是等边三角形,又ABC 外接圆的半径为1,∴由正弦定理得,22sin 60aR ==︒,则3a =∴2333ABC S ==△.故选:B. 【点睛】本小题主要考查三角形重心的向量表示,考查正弦定理的运用,考查化归与转化的数学思想方法,属于中档题.12. A 【解析】 【分析】利用辅助角公式可知函数min ()f x ,然后把x θ=代入结合平方关系可得sin ,cos θθ,最后利用两角和的正弦公式计算可得结果. 详解】由题可知:()()2cos 5,tan 2ϕϕ=+=+=f x sinx x x所以min ()5=-f x 2cos 5θθ+=-sin密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以225sin sin 2cos 5sin cos 125cos 5θθθθθ⎧=⎪⎧+=-⎪⎪⎨⎨+=⎪⎩⎪=-⎪⎩所以2155sin sin cos cos sin 33310πππθθθ⎛⎫+=+=- ⎪⎝⎭故选:A【点睛】本题考查辅助角公式以及平方关系,还考查了两角和的正弦公式,着重考查计算,属基础题.第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 5 【解析】 【分析】将所求代数式变形为()4111x x -++-,然后利用基本不等式可求得所求代数式的最小值. 【详解】1x >,10x ∴->,由基本不等式得()()444112115111x x x x x x +=-++≥-⋅=---. 当且仅当3x =时,等号成立.因此,41x x +-的最小值为5.故答案为:5.【点睛】本题考查利用基本不等式求代数式的最值,考查计算能力,属于基础题. 14.13【解析】 【分析】根据韦达定理以及两角和的正切公式计算即可.【详解】由题可知:tan ,tan A B 是方程22370x x +-=的两根所以37tan tan ,tan tan 22+=-=-A B A B 所以()tan tan tan tan 1tan tan 13+=-+=-=-A B C A B A B故答案为:13【点睛】本题主要考查两角和的正切公式,牢记公式,细心计算,属基础题. 15. 9 【解析】 【分析】化简||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=,然后将AB 用,CA CB 表示,然后进行计算即可.【详解】由题可知:||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=AB CB CA =-所以()()229⋅=-⋅-=-⋅==AB AC CB CA CA CA CA CB CA故答案为:9【点睛】本题考查向量的运算以及向量的数量积,属基础题. 16. 32 【解析】 【分析】依据题意可得2=2n a n ,然后可得n b ,利用裂项相消法可得nT ,最密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题后化简以及函数的单调性可得结果.【详解】由题可知:1212a a ++…21+=+n a n n n ① 当2n ≥时,1212a a ++…()211111-+=-+--n a n n n ② ①-②是可得:12n a n n =,所以()2=22≥n a n n当1n =时,1=2a 符合上式,所以()2=2*∈n a n n N则()()2222121211114411+⎛⎫++===- ⎪ ⎪++⎝⎭n n n n n b a a n n n n 所以()122222*********...1...422331⎛⎫ ⎪=+++=-+-+++- ⎪+⎝⎭n n T b b b n n 所以()()()2221114141⎛⎫+ ⎪=-=⎪++⎝⎭n n n T n n又41λ≤+n n T n ,所以()()22111124411λλ+⇒≥+⨯=≤+++++n n n n n n n n又函数()111f x x =++在()0,∞+单调递减 所以max 13112⎛⎫+= ⎪+⎝⎭n 所以*4()1n n T n N n λ≤∈+恒成立,则32λ≥故答案为:32【点睛】本题主要考查裂项相消法求和以及数列中恒成立问题,审清题意,细心计算,属中档题.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤.17. (1)(2,2);(2)685.【解析】【分析】(1)根据向量的坐标表示,计算AB DC =,可得结果. (2)用坐标表示AC ,BD ,然后根据平面向量的夹角公式计算即可.【详解】(1)设顶点D 的坐标为(,)x y .(2,1)A -,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB ∴=----=,(3,4)DC x y =--,又AB DC =,所以(1,2)(3,4)x y =--.即13,24,x y =-⎧⎨=-⎩解得2,2.x y =⎧⎨=⎩所以顶点D 的坐标为(2,2). (2)由22(5,3),||5334AC OC OA AC =-==+=22(3,1),||3(1)10BD OD OB BD =-=-=+-=353(1)12AC BD ⋅=⨯+⨯-=685cos ,||||3410AC BD AC BD AC BD ⋅∴<>===⋅⨯【点睛】本题考查向量的坐标运算以及向量夹角公式,重在明白向量坐标的表示方法以及夹角公式的记忆,属基础题. 18. (1)12n n a -=;(2)224133=+-n n T n .【解析】 【分析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)依题意利用等差数列的性质可得22a=,然后利用等比数列通项公式计算即可.(2)由(1)的结论可得12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数,然后利用分组求和,可得结果.【详解】(1)由题意可得()32421a a a +=+,即()2222214a a a +=+,解得:22a =,∴2112a a ==, ∴数列{}n a 的通项公式为12n n a -=.(2)12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数21232=+++⋯+n n T b b b b3242152162()()-+++⋯++++⋯=++n n n T b b b b b b b b()024*******(13521)-=+++⋯+++++⋯+-n n T n2214(121)4114233-+-=+=+--n nn n n T n 【点睛】本题主要考查数列分组求和,掌握常用的求和方法:公式法、裂项相消法、分组求和法、错位相减法等,属基础题.19. (1)1[,1]2-;(2)522-.【解析】【分析】(1)用坐标表示向量的数量积以及辅助角公式可得 (1)1()sin(2)62f x x π=++,然后使用整体法以及正弦函数的性质可得结果.(2)根据(1)的条件可得3cos 5α=,然后使用两角和的正弦公式以及二倍角的余弦公式化简求值即可. 【详解】(1)由2()cos 3sin cos f x m n x x x =⋅=()1311cos 22sin(2)2262π=+=++f x x x x50,22666x x ππππ-≤≤∴-≤+≤ 1sin(2)[1,]62x π∴+∈-,则()f x 的值域为1[,1]2-(2)π11(),2610f α+=ππ111 sin 2()266210α⎡⎤∴+++=⎢⎥⎣⎦ 则π3sin()25α+=即3cos 5α= ,又α为第一象限的角,则4sin 5α22π2sin()cos )42cos(2π2)c 2cos )2co o s s 2sin ααααααααα++==++-则πsin()4cos(2π2)2522cos sin 2αααα==--++【点睛】本题考查向量数量积的坐标表示以及正弦型函数的性质,考查三角恒等变形,本题重在考查公式的应用以及计算能力的培养,属中档题.20. (1)从第4年开始获取纯利润;(2)方案②. 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】(1)依据题意可知每年的维护费用满足的是等差数列,然后可得利润2300(81010)y n n =-+,令0y >,简单计算以及判断可得结果.(2)根据(1)的结论可计算方案①所获利润,计算2300(81010)--=n n W n结合基本不等式可得所获利润,然后进行比较可得结果.【详解】(1)设第n 年获取利润为y 万元,n 年共收入租金300n 万元,付出维护费构成一个以10为首项,20为公差的等差数列,共2(1)1020102n n n n -+⨯=因此利润2300(81010)y n n =-+ 令0y >,解得:327n <<所以从第4年开始获取纯利润.(2)方案①:纯利润22300(81010)10(15)1440y n n n =-+=--+ 所以15年后共获利润:1440+100=1540(万元) 方案②:年平均利润2300(81010)810300(10)n n W n n n--==-+810300210120n n≤-⨯= 当且仅当81010n n =,即n =9时取等号所以9年后共获利润:120×9+460=1540(万元)综上:两种方案获利一样多,而方案②时间比较短,所以选择方案②.【点睛】本题考查数列模型的应用问题,审清题意,理清思路,细心就算,属中档题. 21.(1)3A π=;(2)选择①,(23,33;选择②,[6,) +∞. 【解析】【分析】(1)根据正弦定理将角化边计算可得1cos 2A =,最后可得结果.(2)选①根据正弦定理以及辅助角公式化简可得周长23)36π=+l B ,然后根据角度范围可得结果;选②可得bc ,然后结合余弦定理以及不等式可得结果. 【详解】(1)因为()(sin sin )()sin b a B A b c C -+=- 由正弦定理得()()()b a b a b c c -+=-,即222b c a bc +-=由余弦定理得2221cos ,(0,)22b c a A A bc π+-==∈所以3A π=(2)选择①3a =由正弦定理2sin sin sin b c aB C A===, 即ABC 周长22sin 2sin 32sin 2sin()33l B C B B π=+=+- 3sin 33B B =23)36B π=+251 (0,) ,sin()1366626B B B πππππ∈∴<+<<+≤密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题即ABC 周长的取值范围(23,33选择②3ABCS.,得13sin 324ABC S bc A bc ===△,得4bc =.由余弦定理得22222()3()12,a b c bc b c bc b c =+-=+-=+-即ABC 周长2()12,l a b c b c b c =++=+-+24b c bc +≥=,当且仅当2b c ==时等号成立 2 41246l a b c ∴=++-= 即ABC 周长的取值范围[6,) +∞【点睛】本题考查正弦定理、余弦定理以及面积公式解三角形,注意边角如何转化,以及求范围问题常会转化为三角函数或者不等式的应用,属中档题.22. (1)证明见解析;2n n a n =⋅;(2)存在,4. 【解析】【分析】(1)依据题意计算()()()1122222,++==⋅+⋅n n nn a f f f 然后可得1122n n n a a ++=+,根据递推关系以及等差数列的定义可得结果. (2)根据(1)的结论可得12n nn b +=,然后利用错位相减法可得n S ,最后构造函数,利用函数的单调性可得结果.【详解】(1)()()112,22,=∴==n n a f a f()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅1122n n n a a ++∴=+, 11122n nn na a ++∴-= 2n na ⎧⎫∴⎨⎬⎩⎭为等差数列,首项为112a =,公差为1,,22nn n na n a n ∴∴==⋅.(2)由(1)12n n n n n n b a ++==23111111234(1)22222n n nS n n -=⨯+⨯+⨯++⨯++⨯ 2311111123(1)22222n n n S n n +=⨯+⨯++⨯++⨯,两式相减得121111111133(1)22222222n n n n n S n +++=+++-+⨯+=-332n nn S +∴=-,假设存在正整数m , 使得(1)(4)190m m m S b +-+<成立,即2160m m +-> 由指数函数与一次函数单调性知:()216m F m m =+- m N +∈为增函数.又因为34(3)231650,(4)241640F F =+-=-<=+-=> 所以当4m ≥时恒有()2160m F m m =+->成立. 故存在正整数m ,使得(1)(4)190m m m S b +-+<成立, 所以m 的最小值为4.【点睛】本题考查根据递推关系证明等差数列以及错位相减法求和,还考查了数列恒等式问题,本题关键在于得到1122n n n a a ++=+,考查分析能力以及计算能力,属中档题.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
A.关于点 对称B.关于点 对称
C.关于直线 对称D.关于直线 对称
二、填空题(每小题5分,共20分)
13. 的值为__________.
14.过点(1,3)且与直线x+2y-1=0垂直的直线的方程是________.
15.化简: =_____
16. 2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.
1.直线 的倾斜角为()
A. ;B. ;C. ;D.
2.如图所示,正方形 的边长为 ,它是水平放置的一个平面图形的直观图,则原图形的周长是()
A. B. C. D.
3.在空间直角坐标系中,点P(3,4,5)关于 平面的对称点的坐标为( )
A.(−3,4,5)B.(−3,−4,5)
C.(3,−4,−5)D.(−3,4,−5)
, ,
故函数的单调增区间为 ,
【点睛】本题考查利用 的部分图象求函数解析式,关键是掌握运用五点作图的某一
点求 ,考查三角函数单调区间的求法,是中档题.
人教版2020--2021学年下学期期末考试卷
高一数学
(满分:150分时间:120分钟)
题号



总分
得分
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
【详解】 角 在第三象限,且 , 且 ,
因此, .
【点睛】本题考查同角三角函数的基本关系,考查知一求二,解决这类问题首先要确定角所在的象限,其次就是要确定所求三角函数值的符号,最后再利用相关公式进行计算,考查计算能力,属于基础题.

人教版高一数学下学期期末考试卷含答案

人教版高一数学下学期期末考试卷含答案

人教版高一数学下学期期末考试卷含答案214人教版高一数学下学期期末考试卷第一卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.1920°转化为弧度数为A。

32π/3B。

16π/3C。

16/3D。

3提示:1°=π/180.2.根据一组数据判断是否线性相关时,应选用A。

散点图B。

茎叶图C。

频率分布直方图D。

频率分布折线图提示:散点图是用来观察变量间的相关性的。

3.函数y=sin(x+π/4)的一个单调增区间是A。

[-π,0]B。

[0,π/4]C。

[π/4,7π/4]D。

[7π/4,2π]提示:函数y=sin(x)的单调增区间是(2kπ-π/2,2kπ+π/2) (k∈Z)。

4.矩形ABCD中,对角线AC与BD交于点O,BC=5e1,DC=3e2,则OC等于A。

(5e1+3e2)/2B。

(5e1-3e2)/2C。

(-5e1+3e2)/2D。

-(5e1+3e2)/2提示:OC=AC=AD+DC=BC+DC=(5e1+3e2)/2.5.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A。

6,12,18B。

7,11,19C。

6,13,17D。

7,12,176.函数y=x/2sin(x)+3cos(x/2)的图像的一条对称轴方程是A。

x=π/2B。

x=-πC。

x=-π/2D。

x=π提示:函数y=sin(x)的对称轴方程是x=kπ+π/2 (k∈Z)。

7.甲乙两人下棋,甲获胜的概率为30%,甲不输的概率为70%,则甲乙两人下一盘棋,最可能出现的情况是A。

甲获胜B。

乙获胜C。

二人和棋D。

无法判断提示:由甲不输的概率为70%可得乙获胜的概率也为30%。

8.如图是计算1/11+1/12+。

+1/30的一个程序框图,其中在判断框内应填入的条件是A。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
(1)求 在区间 的最小值;
(2)将 的图象向左平移 个单位后得到函数 的图象,求 的单调递减区间.
21.(12分)已知圆 ,经过点 的直线 与圆 交于不同的两点 , .
(1)若直线 的斜率为2,求 ;
(2)求 的取值范围.
22.(12分)土豆学名马铃薯,与稻、麦、玉米、高粱一起被称为全球五大农作物.云南人爱吃土豆,在云南土豆也称洋芋,昆明人常说“吃洋芋,长子弟”. 年 月,在全国两会的代表通道里,云南农业大学名誉校长朱有勇院士,举着一个两公斤的土豆,向全国的媒体展示,为来自家乡的“山货”代言,他自豪地说:“北京人吃的醋溜土豆丝, 盘里有 盘是我们澜沧种的!”
综上所述: .
故选:B.
【点睛】本题考查了正弦函数的周期,考查了正弦函数的最值,考查了正弦函数的零点,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分.
13.
【解析】
【分析】
利用任意角的三角函数的定义,求得 ,进而利用诱导公式求出 的值.
【详解】∵ 是角 终边上一点,则
.
故答案为: .
【点睛】本题主要考查任意角的三角函数的定义,涉及到诱导公式,属于基础题.
(1)在菜市上,听到小王叫卖:“洋芋便宜卖了,两元一斤,三元两斤,四元三斤,五元四斤,六元五斤,快来买啊!”结果一群人都在买六元五斤的.由此得到如下结论:一次购买的斤数越多,单价越低,请建立一个函数模型,来说明以上结论;
(2)小王卖洋芋赚到了钱,想进行某个项目的投资,约定如下:①投资金额固定;②投资年数可自由选择,但最短 年,最长不超过 年;③投资年数 与总回报 的关系,可选择下述三种方案中的一种:方案一:当 时, ,以后 每增加 时, 增加 ;方案二: ;方案三: .请你根据以上材料,结合你的分析,为小王提供一个最佳投资方案.

最新人教版高一下册数学期末考试含答案

最新人教版高一下册数学期末考试含答案

2022年人教版高一下册期末考试数学试卷一、选择题1. 已知复数z =1−2i ,则z (z +2i )=( ) A.1−2i B.9+2i C.7−4i D.1+2i2. 将圆锥的高缩短到原来的12,底面半径扩大到原来的2倍,则圆锥的体积( ) A.缩小到原来的一半 B.缩小到原来的16 C.不变 D.扩大到原来的2倍3. 若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[−2,−1]即为“同族函数”.下面函数解析式中也能够被用来构造“同族函数”的是( ) A.y =sinx B.y =x 3 C.y =e x −e −xD.y =lnx4. 甲、乙、丙三人独立地去译一个密码,分别译出的概率为12,14,18,则密码能被译出的概率是( ) A.120 B.2132C.2164D.43645. 数据x 1,x 2,…,x 9的平均数为4,标准差为2,则数据3x 1+2,3x 2+2,…,3x 9+2的方差和平均数分别为( ) A.36,14 B.14,36 C.12,19 D.4,126. 设λ为实数,已知向量m →=(2,1−λ),n →=(2,1).若m →⊥n →,则向量m →−n →与n →的夹角的余弦值为( ) A.−√55B.−√1010C.−12D.√557. 若P (AB )=16,P(A)=13,P (B )=14,则事件A 与B 的关系是( ) A.互斥 B.相互独立C.互为对立D.无法判断8. 下图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象,则()A.函数y=f(x)的最小正周期为π2B.直线x=5π12是函数y=f(x)图象的一条对称轴C.点(−π6,0)是函数y=f(x)图象的一个对称中心D.函数y=f(x−π3)为奇函数9. 若定义在R上的奇函数f(x)在(0,+∞)上单调递减,且f(−π2)=0,则下列取值范围中的每个x都能使不等式f(x+π2)⋅cosx≥0成立的是()A.[−2π,−π]B.[−π,0]C.[0,π]D.{x|x=kπ2,k∈Z}10. 如图,在直三棱柱ABC−A1B1C1中,AC=BC,AB=AA1,D是A1B1的中点,点F 在BB1上,记B1F=λBF,若AB1⊥平面C1DF,则实数λ的值为()A.13B.12C.23D.111. 如图所示,在正方体ABCD −A 1B 1C 1D 1 中,点E ,F ,M ,N 分别为棱AB ,BC ,DD 1,D 1C 1上的中点,下列判断正确的是( )A.直线AD//平面MNEB.直线FC 1//平面MNEC.平面A 1BC//平面MNED.平面AB 1D 1//平面MNE12. 矩形ABCD 中,AB =√2,AD =1,M 是矩形ABCD 内(不含边框)的动点,|MA →|=1,则MC →⋅MD →的最小值为( ) A.−√6 B.−√6+1 C.−√6+2 D.3+√62二、填空题1.已知函数f (x )={sin (π4x),x ≤1,lnx,x >1,则f(f (e ))=________.2. 已知在△ABC 中,点D 满足BD →=34BC →,点E 在线段AD (不含端点A ,D )上移动,若AE →=λAB →+μAC →,则μλ=________.3.一组数据共有7个整数,m ,2,2,2,10,5,4,且2<m <10,若这组数据的平均数、中位数、众数中最大与最小数之和是该三数中间数字的两倍,则第三四分位数是________.4. 如图,在正三棱锥A −BCD 中,底面边长为√6,侧面均为等腰直角三角形,现该三棱锥的表面上有一动点O ,且OB =2,则动点O 在三棱锥表面所形成的轨迹曲线的长度为________.三、解答题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知√3bcosC =csinB . (1)求角C ;(2)若b =2,△ABC 的面积为2√3,求c .2.某药厂测试一种新药的疗效,随机选择1200名志愿者服用此药,结果如下:(1)若另一个人服用此药,请估计该病人病情恶化的概率;(2)现拟采用分层抽样的方法从服用此药的1200名志愿者中抽取6人组成样本,并从这抽出的6人中任意选取3人参加药品发布会,求抽取的3人病情都未恶化的概率.3. 已知向量a →=(sinx,1),b →=(1,sin (π3−x)),f (x )=a →⋅b →.(1)求函数f (x )的单调递增区间和最小正周期;(2)若当x ∈[0,π4]时,关于x 的不等式2f (x )−1≤m 有解,求实数m 的取值范围.4.如图,在四棱锥P −ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60∘,PA =AB =BC ,E 是PC 的中点.(1)求二面角P −CD −A 的大小;(2)求证:AE ⊥PD .5.雪豹处于高原生态食物链的顶端,亦被人们称为“高海拔生态系统健康与否的气压计”.而由于非法捕猎等多种人为因素,雪豹的数量正急剧减少,现已成为濒危物种.在中国,雪豹的数量甚至少于大熊猫.某动物研究机构使用红外线触发相机拍摄雪豹的照片,已知红外线触发相机在它控制的区域内拍摄到雪豹的概率为0.2. (1)假定有5个红外线触发相机控制某个区域,求雪豹进入这个区域后未被拍摄到的概率;(2)要使雪豹一旦进入这个区域后有0.9以上的概率被拍摄到,需至少布置几个红外线触发相机(lg2≈0.301).6.如图,已知四棱锥P−ABCD,△ABD为等边三角形,直线PC,DC,BC两两垂直,且PC=CD=BC=2,M为线段PA上的一点.(1)若平面BDM⊥平面ABCD,求AM2;(2)若三棱锥P−MBD的体积为四棱锥P−ABCD体积的1,求点M到平面ABCD的距离.2参考答案与试题解析一、选择题1.【答案】B【解析】无2.【答案】D【解析】无3.【答案】A【解析】无4.【答案】D【解析】无5.【答案】A【解析】无6.【答案】A【解析】无7.【答案】B【解析】无8.【答案】C【解析】无9.【答案】B【解析】无10.【答案】D【解析】无11.【答案】D【解析】无12.【答案】C【解析】无二、填空题【答案】√22【解析】无【答案】3【解析】无【答案】5【解析】此题暂无解析【答案】3π2【解析】无三、解答题【答案】解:(1)由正弦定理可得√3sinBcosC=sinCsinB. 因为sinB≠0,所以√3cosC=sinC,所以tanC =√3.因为C ∈(0,π),所以C =π3.(2)由(1)得C =π3. 因为S △ABC =12absinC =√34ab =2√3,所以ab =8.因为b =2,所以a =4.由余弦定理得,c 2=a 2+b 2−2abcosC =16+4−8=12, 所以c =2√3. 【解析】 此题暂无解析 【答案】解:(1)由统计表可知在1200名志愿者中,服用药出现病情恶化的频率为2001200=16,所以估计另一个人服用此药病情恶化的概率为16.(2)采用分层抽样的方法,从病情好转的志愿者中抽4人,从疗效不明显及病情恶化的志愿者中各抽取1人组成6个人的样本.将6人中病情恶化的1人用符号A 代替,其余5人分别用1,2,3,4,5代替, 则从6人中任意抽取3人的基本事件表示如下: (A,1,2),(A,1,3),(A,1,4),(A,1,5),(A,2,3), (A,2,4),(A,2,5),(A,3,4),(A,3,5),(A,4,5), (2,3,4),(2,3,5),(2,4,5),(3,4,5),(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),共20个基本事件. 其中没有抽到病情恶化的志愿者的基本事件为: (2,3,4),(2,3,5),(2,4,5),(3,4,5),(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),共10个基本事件, 因此,抽取的3人中没有病情恶化的志愿者的概率为1020=12.【解析】 无 无 【答案】解:(1)因为f (x )=a →⋅b →=sinx +sin (π3−x)=12sinx +√32cosx =sin (x +π3),所以函数f (x )的最小正周期T =2π.因为函数y =sinx 的单调增区间为[−π2+2kπ,π2+2kπ],k ∈Z , 所以−π2+2kπ≤x +π3≤π2+2kπ,k ∈Z ,解得−5π6+2kπ≤x ≤π6+2kπ,k ∈Z ,所以函数f (x )的单调增区间为[−5π6+2kπ,π6+2kπ],k ∈Z .(2)不等式2f (x )−1≤m 有解,即m+12≥f (x )min .因为x ∈[0,π4],所以π3≤x +π3≤7π12.又sin 7π12=sin 5π12>sin π3,故当x +π3=π3,即x =0时,f (x )取得最小值,且最小值为f (0)=√32, 所以m ≥√3−1. 【解析】 此题暂无解析 【答案】(1)解:因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以CD ⊥PA .因为CD ⊥AC,PA ∩AC =A , 所以CD ⊥平面PAC , 所以CD ⊥PC . 又AC ⊥CD ,故∠PCA 为二面角P −CD −A 的平面角. 又PA =AB =BC =AC ,故二面角P −CD −A 的大小为45∘. (2)证明:由于AE ⊂平面PAC , 所以AE ⊥CD .因为E 是PC 的中点,所以AE ⊥PC . 又PC ∩CD =C ,所以AE ⊥平面PCD . 又PD ⊂平面PCD ,所以AE ⊥PD . 【解析】 此题暂无解析 【答案】解:(1)雪豹被拍摄到的概率,即至少有1个红外线触发相机拍摄到雪豹的概率. 设雪豹被第k 个红外线触发相机拍摄到的事件为A k (k =1,2,3,4,5), 那么5个红外线触发相机都未拍摄到雪豹的事件为A 1⋅A 2⋅A 3⋅A 4⋅A 5. ∵ 事件A 1,A 2,A 3,A 4,A 5相互独立, ∴ 雪豹未被拍摄到的概率为 P(A 1⋅A 2⋅A 3⋅A 4⋅A 5)=P(A 1)⋅P(A 2)⋅P(A 3)⋅P(A 4)⋅P(A 5) =(1−0.2)5=(45)5,∴ 雪豹未被拍摄到的概率为(45)2.(2)设至少需要布置n 个红外线触发相机才能有0.9以上的概率拍摄到雪豹, 由(1)可知,雪豹被拍摄到的概率为1−(45)n.令1−(45)n≥0.9, ∴ (45)n≤110,两边取常用对数,得n ≥11−3lg2≈10.3.∵ n ∈N ∗, ∴ n =11,∴ 至少需要布置11个红外线触发相机才能有0.9以上的概率拍摄到雪豹. 【解析】 无 无 【答案】解:(1)连接AC 交BD 于点O .易知AC 为线段BD 的垂直平分线,且AC 为AP 在平面ABCD 上的投影, 所以MD =MB .连接MO ,则MO ⊥BD .又因为平面BDM ⊥平面ABCD ,平面BDM ∩平面ABCD =BD ,MO ⊂平面MBD , 所以MO ⊥平面ABCD .又因为AO ⊂平面ABCD ,所以MO ⊥AO .因为CO =√2,AO =√6,AP 2=AC 2+PC 2=12+4√3. 又因为AOAC =AM AP,即AM 2=18−6√3.(2)过点M 作平面ABCD 的垂线,垂足为O ′, V M−ABD =13×12×√6×2√2×MO ′=2√33⋅MO ′,V P−BCD =43,V P−ABCD =13×12×2√2×(√2+√6)×2=4(√3+1)3, 故V P−BCD +V M−ABDV P−ABCD=1−12,解得MO ′=1−√33, 故点M 到平面ABCD 的距离为1−√33. 【解析】 此题暂无解析。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
(2)若 ,求 面积 的最大值.
19.(12分)在平面直角坐标系中, 的顶点坐标分别为 、 、 .
(1)求 外接圆 的标准方程;
(2)过 作直线 交圆 于 , ,若 ,求直线 的方程.
20.(12分)已知等比数列 的各项都为正数, 为其前 项和, , .
(1)求数列 的通项公式;
(2)记 ,求使得 成立的正整数 的最小值.
(2)弦长 的取值范围为_______.
三、解答题:本大题6个小题,共70分.(必须写出必要的文字说明、演算步骤或推理过程).
17.(10分)已知向量 与向量 的夹角为 ,且 , .
(1)求 ;
(2)若 ,求 .
18.(12分)在 中,角 , , 所对的边分别为 , , ,满足 .
(1)求 的大小;
人教版2020--2021学年下学期期末考试卷高一数学(满分:15来自分时间:120分钟)题号



总分
得分
第Ⅰ卷(选择题共60分)
一、选择题:本大题12个小题,每小题5分,共60分,每小题只有一个选项符合答案.
1.直线 的倾斜角为()
A. B. C. D.
2.数列 是各项都为正数的等比数列, ,则 ()
A. B. C.0D.1
8.已知双曲线 的离心率为 , 为 上的点, 为 的右焦点,且 垂直于 轴.若 ,则 的方程为()
A. B. C. D.
9.正数 , 满足 ,则 的最小值为()
A. B. C. D.2
10.过抛物线 的焦点 的直线 与抛物线交于 , 两点,线段 的中点 在直线 上, 为坐标原点,则 的面积为()
13.等比数列 中, ,其中公比 ,则 ________.
14.2020年初,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常返校开学,不得不在家“停课不停学”.为了解高三学生每天居家学习时长,从某校的调查问卷中,随机抽取 个学生的调查问卷进行分析,得到学生学习时长的频率分布直方图(如图所示).已知学习时长在 的学生人数为25,则 的值为______.

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题一、选择题(每小题5分,共60分)1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元8.方程2x=2-x 的根所在区间是( ). A .(-1,0)B .(2,3)C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ). A .f (x )=x1 B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)12.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .1二、填空题(每小题4分 , 共16分)13.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 14.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 15.函数y =2-log 2x 的定义域是 . 16.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知全集R U =, A =}52{<≤x x ,集合B 是函数lg(9)y x =-的定义域.(1)求集合B ;(2)求)(B C A U .(8分)18.(12分) 已知函数f (x )=lg(3+x )+lg(3-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并说明理由.19.(12分)已知函数(),2c bx x x f ++=且()01=f .(1)若0b =,求函数()x f 在区间[]3,1-上的最大值和最小值;(2)要使函数()x f 在区间[]3,1-上单调递增,求b 的取值范围.(12分)20.(12分)探究函数),0(,4)(+∞∈+=x xx x f 的图像时,.列表如下:⑴ 函数)0(4)(>+=x xx x f 的递减区间是 ,递增区间是 ; ⑵ 若对任意的[]1,3,()1x f x m ∈≥+恒成立,试求实数m 的取值范围.21. (12分)求函数212log (43)y x x =-+的单调增区间.22.(14分) 已知0,1a a >≠且, ()211x x a f x a a a ⎛⎫=- ⎪-⎝⎭.(1)判断()f x 的奇偶性并加以证明; (2)判断()f x 的单调性并用定义加以证明;(3)当()f x 的定义域为(1,1)-时,解关于m 的不等式2(1)(1)0f m f m -+-<.参考答案一、选择题 1.B解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}.2.C 3.C 4.C 5.A 6.B 7.C 8.D 9.D解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫⎝⎛21>1,得b <0,所以选D 项.10.C解析:∵ 4x>0,∴0≤16- 4x<16,∴x 416-∈[0,4).11.A解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确. 12.A 13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x-11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B . 二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞). 18.参考答案:(-8,+∞). 三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3,∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2). 21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)
(2)若 ,向量 = , ,求 的最小值及对应的x值.
开封市五县高一期末联考卷参考答案
一.选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
B
D
C
C
D
C
B
C
B
D
二.填空题
13.12;14.-1;15. ;16.②.
三.解答题
17.解:(1)
(2)
由(1)知
18.(1)
,
(2)设
又 ,且 不共线.
所以由平面向量基本定理知:
②直线 是函数 的一条对称轴;
③点 是函数 的一个对称中心;
④函数 的单调递减区间为
其中正确的结论是(填序号).
三、解答题:本大题共6小题,共70分。解答题写出文字说明、证明过程或演算步骤。
17.(本小题10分)已知角 .求下列各式的值.
(1)求 的值;
(2)先化简 ,再求值.
18.(本小题12分)如图,已知在 中, 是 的中点, 是线段 的靠近点 的三等分点, 和 交于点 ,设 .
14.已知向量 满足 ,则向量 在 方向上的投影为;
15.新冠肺炎疫情爆发后,某市指定医院组织市民进行核糖核酸检测。某个检测点派出了两名医生,四名护士。把这六名医护人员分为两组,每组一名医生,两名护士,则医生甲与护士乙分在一组的概率为;
16.已知函数 ,给出下列四个结论:
①函数 是最小正周期为 的奇函数;
【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.
4. A
【解析】
【分析】

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
A. B. C. D.
二、填空题(共4题,每小题5分,共20分)
13.若下图程序输入 的值为 ,则输出 的值为______.
INPUT x
IF x>=0 THEN
y=x^2-1
ELSE
y=2* x^2-5
END IF
PRINT y
END
14.在 中,内角 , , 所对的边分别是 , , ,若 , ,则 ______.
(1)求 的值;
(2)求 的值.
18.已知圆 过 , 两点,且圆心 在直线 上.
(1)求圆 的方程;
(2)设点 是直线 上的动点, 、 是圆 的两条切线, 、 为切点,求切线长 的最小值及此时四边形 的面积.
19.在 中,内角 , , 的对边分别为 , , , 外接圆的半径为 ,且 .
(1)若 的面积为 ,求 , 的值;
A. B. 4C. 4或 D. 或5
8.已知 满足 ,则目标函数 的最小值为()
A. B. C. D. 1
9.已知 ,则 的最小值为()
A. 1B. 2C. 4D. 8
10.若一个等差数列的前3项和为24,最后3项的和为126,所有项的和为275,则这个数列共有()
A. 13项B. 12项C. 11项D. 10项
题号



总分
得分
第Ⅰ卷(选择题,共60分)
一、选择题:(本大题共12个小题,每小题5分,共60分,在每个小题的4个答案中,只有一个符合要求)
1.若 ,则下列不等式中不正确的是()
A. B. C. D.
2.圆的方程为 ,则圆心坐标为()
A. B. C. D.
3.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的范围是()

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
详解】
,故答案为 .
【点睛】本题主要考查两角差的余弦公式以及特殊角的三角函数,属于基础题.
13. (1). (2). .
【解析】
【分析】
①通过平行关系,直线 与直线 所成角即直线 与直线 所成角,解三角形即可得解;
②根据线面角定义,通过垂直关系找出线面角即可.
【详解】作图:连接 交 于 ,连接
①在正方体中, ,易得 为等边三角形,
【解析】
【分析】
(1)由数量积定义可直接求得结果;
(2)结合数量积的运算律可求得 ,进而得到结果;
(3)根据垂直关系得到 ,由数量积 运算律构造方程求得结果.
【详解】(1) ;
(2) , ;
(3) , ,
即 ,解得: .
【点睛】本题考查平面向量数量积、向量模长的求解、根据向量垂直关系求解参数值的问题,解题关键是熟练应用平面向量数量积的运算律,属于基础题.
所以 .故选:B.
【点睛】本题主要考查平面向量的线性运算,属于基础题型.
7. B
【解析】
【分析】
显然 平面 ,所以 就是平面 与底面ABCD所成的二面角的平面角,再解三角形即可.
【详解】解:在正方体 中, 平面 ,
E、F分别为棱AD、BC的中点,所以 ,所以 平面 ,
所以 ,
所以 就是平面 与底面ABCD所成的二面角的平面角,
根据圆柱表面积的计算公式直接求解即可.
【详解】解:因为圆柱的底面半径为1,高为2,
所以圆柱的表面积 .故选:C.
【点睛】本题考查了圆柱表面积的求法,属基础题.
4. A
【解析】
【分析】
利用同角三角函数关系可求得 ,由两角和差正切公式可求得结果.
【详解】 , , , ,

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题ABCDB'D'DCBA人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.)1.圆1)2()2(:221=-++y x C 与圆16)5()2(22:2=-+-y x C 的位置关系是( )A .外离B .外切C . 相交D .内切 2.设a 、b 是两条不同的直线,αβ、是两个不同的平面,则下列四个命题:正确的是( )A .若,a b a α⊥⊥则//b α;B .若//,,a ααβ⊥则a β⊥;C .若,,a αββ⊥⊥则//a αD .若,,a b a b αβ⊥⊥⊥,则αβ⊥ 3.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =( ) A .-3B .31-C .31 D .34.若函数y =f(x)的图像与函数y =3-2x 的图像关于坐标原点对称,则y =f(x)的表达式为( ) A .y =-2x -3 B .y =2x +3C .y =-2x +3D .y =2x -35.已知等差数列的前项和为,,420S ,则( )A .B .C .D . 6.已知△ABC 的三边长为a ,b ,c ,且满足直线ax +by +2c =0与圆x 2+y 2=4相离,则△ABC 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .以上情况都有可能7.如图:正三棱锥A BCD -中,40BAD ∠=︒,侧棱2AB =,BD 平行于过点C 的截面α,则平面α与正三棱锥侧面交线的周长的最小值为( )A .2B .23C .4D .438.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( ) A .)0,02a b ab a b +≥>>B .()2220,0+≥>>a b ab a b{}n a n n S 37a =10a =25323540密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题C .)20,0abab a b a b>>+D .)220,022a b a b a b ++≤>> 9.已知A(-3, 0),B(0, 4),M 是圆C : x 2+y 2-4x=0上一个动点,则△MAB 的面积的最小值为( )A .4B .5C .10D .15 10.如图所示,某学习小组进行课外研究性学习,隔河可以看到对岸两目标A 、B ,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km. 85 B 415C .215 D .511.如图,在四棱锥中,底面为菱形,,侧面为正三角形,且平面平面,则下列说法正确的是( )A .平面平面B .异面直线与所成的角为C .二面角的大小为D .在棱上存在点使得平面12.如图,M 、N 分别是边长为1的正方形ABCD 的边BC 、CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,有以下结论: ①异面直线AC 与BD 所成的角为定值. ②存在某个位置,使得直线AD 与直线BC 垂直.③存在某个位置,使得直线MN 与平面ABC 所成的角为45°. ④三棱锥体积的最大值为.以上所有正确结论的有( )个. A .1 B .2 C .3 D .4二、填空题(共4个小题,每小题5分,共20分,请将答案填在答题卡上)13.某学习小组,调查鲜花市场价格得知,购买2支玫瑰与1支康乃馨所需费用之和大于8元,而购买4支玫瑰与5支康乃馨所需费用之和小于22元.设购买2支玫瑰花所需费用为A 元,购买3支康乃馨所需费用为B 元,则A,B 的大小关系是 .14.已知圆的方程为,若过点的直线与此圆交于两点,圆心为,则当最小时,直线的一般方程为 .P ABCD -ABCD 60DAB ∠=︒PAD PAD ⊥ABCD PAB ⊥PBC AD PB 60︒P BC A --60︒AD M AD ⊥PMB M ACN -248()2214x y +-=11,2P ⎛⎫⎪⎝⎭l ,A B C ACB ∠l密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题15.已知球O 是正三棱锥(底面为正三角形,顶点A 在底面的射影为底面△BCD 的中心)A BCD -的外接球, 3BC =,23AB =点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是 .16.圆C :x 2+y 2=16,过点M (2,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),在x 轴正半轴上存在定点N ,使得x 轴平分∠ANB,求出点N 的坐标 .三、解答题(本大题共6小题,共70分.请将答案填在答题卡上,解答应写出文字说明、证明过程或演算步骤.) 17.(本题共10分)已知直线l 在y 轴上的截距为2-,且垂直于直线210x y --=.(1)求直线l 的方程;(2)设直线l 与两坐标轴分别交于A 、B 两点,OAB 内接于圆C ,求圆C 的方程.18.(本题共12分)已知在数列中,为其前项和,且,数列为等比数列,公比,,且,,成等差数列.(1)求与的通项公式;(2)令,求的前项和.20.(本题共12分)如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,PA=AB=3,AD=1,点F 是PB 的中点,点E 在边BC上移动.(1)当点E 为BC 的中点时, 证明EF//平面PAC ; (2)证明:无论点E 在边BC 的何处,都有PE ⊥AF .21.(本题共12分)如图,在Rt ABC ∆中,4AB BC ==,点E 在线段AB 上,过点E 作//EF BC 交AC 于点F ,将AEF ∆沿EF 折起到PEF ∆的位置(点A与P重合),使得060PEB ∠=.(1)求证:⊥平面CB 平面EF PBE ;(2)试问:当点E 在何处时,四棱锥P EFCB -的侧面PEB 的面积最大?并求此时四棱锥P EFCB -的体积及直线PC 与平面EFCB 所成角的正切值.22.(本题共12分)已知圆C :22:(3)(4)4C x y -+-=,直线1l 过定点(1,0)A .(1)若1l 与圆相切,求1l 的方程;(2)若1l 与圆相交于,P Q 两点,线段PQ 的中点为M ,又1l 与2:220l x y ++=的交点为N,判断•AM AN 是否为定值.若是,求出定值;若不是,请说明理由.参考答案1-5 BDAAC 6-10 ABDBB 11-12 DC{}n a n S n 2()n S n n *=∈N {}n b 1q >11b a =22b 4b 33b {}n a {}n b nn na cb ={}n c n T密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题13. A>B 14.15. []24π,π 16. (8,0).17.解:(1)设直线l 的方程为2y kx =-.∵直线210x y --=的斜率为12,所以直线l 的斜率2k =-.则直线l 的方程为22y x =--.(2)设圆C 的一般方程为220xy Dx Ey F ++++=.由于OAB 是直角三角形,所以圆C 的圆心C 是线段AB 的中点,半径为12AB ;由(1,0)A -,(0,2)B -得1,12C ⎛⎫-- ⎪⎝⎭,5AB =2212212114522DED E F ⎧-=-⎪⎪⎪-=-⎨⎪+-=,解得1D =,2E =,0F =.则圆C 的一般方程为:2220x y x y +++=. 18.解:(1)∵,,∴,…3分,,由于,∴,∴…6分(2)由(1)得,,① ∴,② ①②得,∴…12分20.解:(1)证明: 连结AC ,EF, ∵点E 、F 分别是边BC 、PB 的中点∴PBC ∆中,PC EF // ……3分. 又,平面PAC EF ⊄PAC PC 平面⊂ ……4分 ∴当点E是BC的中点时,EF//平面PAC ……6分(2)∵AB PA ⊥,PA=AB=3,点F 是PB 的中点∴等腰PAB ∆中,PB AF ⊥,又BC PA ⊥,BC AB ⊥且PA 和AB 是平面PAB 上两相交直线∴BC ⊥平面PAB 又PAB AF 平面⊂.∴BC AF ⊥ …… 9分 又PB 和BC 是平面PBC 上两相交直线.∴PBC AF 面⊥ … 11分 又PBC PE 平面⊂ ∴PE AF ⊥∴无论点E 在边BC 的何处,都有PE ⊥AF 成立. ……12分 21.解:(1)证明:∵//EF BC 且BC AB ⊥, ∴EF AB ⊥,即,EF BE EF PE ⊥⊥.又BEPE E =,∴EF ⊥平面PBE ,又⊂EF 平面CBEF ,⊥平面CB 平面EF PBE …4分0324=--y x 111a S ==221(1)n n S S nn --=--21()n a n n *=-∈N 234232b b b +=23232q q q +=1q >2q =12()n n b n -*=∈N 1212n n n c --=0121135212222n n n T --=++++123111352321222222n n n n n T ---=+++++-1211222212313222222n n n nn n T --+=++++-=-123662n n n T -+=-<密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)设,BE x PE y ==,则4x y +=.∴2133sin ()322PEB x y S BE PE PEB xy ∆+=⋅⋅∠=≤= 当且仅当2x y ==时,PEB S ∆的面积最大,此时,2BE PE ==. (6)分由(1)知EF ⊥平面PBE ,平面EFCB ⊥平面PBE .在平面PBE 中,作PO BE ⊥于O ,则PO ⊥平面EFCB .即PO 为四棱锥P EFCB -的高.又031sin 6023,(24)2622EFCB PO PE S =⋅=⨯==⨯+⨯=. ∴163233P BCFE V -=⨯= (9)分∵01cos 60212OE PE =⋅=⨯=,∴1BO =,在Rt OBC ∆中,2221417OC BO BC =++=∵PO ⊥平面EFCB ,∴PCO ∠就是PC 与平面EFCB 所成角.∴351tan 17PO PCO OC ∠===故直线PC与平面EFCB所成角的正切值为51……12分22.解:(1)①若直线1l 的斜率不存在,即直线是1x =,符合题意 ……2分②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即kx y k 0--=.由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,即:23421k kk --=+,解之得34k =.所求直线方程是1x =,3430x y --=. ……5分(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx y k 0--=由220{0x y kx y k ++=--=得223(,)2121k kN k k --++.又直线CM 与1l 垂直,由{14(3)y kx k y x k=--=--(也可以通过直线与圆联立消去y,得到 22221(286)8210.+-+++++=()x k k k x k k 2122286+=1+++k k x x k 而求出M 坐标).得22224342(,)11+++++k k k k M k k222222224342223(1)()(1)()112121k k k k k k AM AN k k k k +++-⋅=-+-+-++++2222213116121k k k k k ++=+=++为定值.故AM AN ⋅是定值,且为6.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 四 总分 得分第Ⅰ卷一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 用符号表示“点A 在平面α外,直线l 在平面α内”,正确的是( ) A.A α⊄,l α∈ B. A α⊄,l α⊂ C. A α∉,l α⊂ D. A α∉,l α∈2. 若0a b >>,c R ∈,则( ) A.a cbc +>+B. a c b c -<-C.11a b> D. 22a b <3. 已知向量(),2a t =,()2,1b =,若a b ⊥,则t 的值为( ) A. -4B. -1C. 1D. 44. 在ABC △中,角A ,B ,C 所对各边分别为a ,b ,c ,且2222a b c bc =+,则A =()A. 135︒B. 120︒C.60︒D. 45︒5. 已知等比数列{}n a 的前n 项和为n S ,公比为2,若415S =,则6a 的值为( )A. 16B. 32C. 48D. 646. 在ABC △中,已知sin sin A B =,则ABC △的形状一定是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形7. 已知圆锥SO 被平行于底面的平面所截,形成的圆台的两个底面面积之比为4:9,母线与底面的夹角是60︒,圆台轴截面的面积为203,则圆锥SO 的体积为()A.483πB. 723πC. 1443πD.2163π8. 已知{}n a 是公比为整数的等比数列,设212n n n na ab a -+=,n N +∈,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A. 11B. 10C. 9D. 8二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9. 设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( ) A.2n S n =B.223n S n n =-C.21n a n =-D.35n a n =-10. 在ABC △中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,2b =30A =︒,则B =()A. 30︒B. 45︒C. 135︒D. 150︒密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11. 若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A.1ab B.11ab ≥C.222a b +≥D.112a b+≥ 12. 设a ,b 为两条直线,α,β为两个平面,下列说法正确的是( )A. 若//a b ,a α⊥,则b α⊥B. 若a b ⊥,//b α,则//a αC. 若//a b ,//a α,则//b αD. 若αβ⊥,a α⊂,b αβ=,a b ⊥,则a β⊥三、填空题:本大题共4题,每小题5分,共20分. 13.已知变量x ,y 满足约束条件010x y x y ≥⎧⎪≥⎨⎪+-≤⎩,则z x y =-的最大值为______.14. 已知数列{}n a 满足21n n n a a a ++=-,n N +∈,11a =,22a =,则5a =______. 15.ABC △为等腰直角三角形,且2A π∠=,4AB =,若点E 为BC 的中点,则AE AB ⋅=______.16. 正四面体P BDE -和边长为1的正方体1111ABCD A BC D -有公共顶点B ,D ,则该正四面体P BDE -的外接球的体积为______,线段AP 长度的取值范围为_______.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 已知向量a 与b 的夹角为3π,且1a=,2b =.(1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 18. 已知球O 的半径为5. (1)求球O 的表面积;(2)若球O 有两个半径分别为3和4的平行截面,求这两个截面之间的距离.19. 已知数列{}n a 的前n 项和为n S ,且2n S n n =+,n N +∈. (1)求{}n a 的通项公式; (2)记11n n n c a a +=⋅,求数列{}n c 的前n 项和n T .20. 在ABC △中,角A ,B ,C 所对各边分别为a ,b ,c ,且()2cos cos b c A a C -=.(1)求A ; (2)若3a =1c =,求ABC △的面积.21. 如图所示,四边形ABCD 是菱形,DE ⊥平面ABCD ,AF ⊥平面ABCD .密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)求证:AC ⊥平面BDE ;(2)求证:平面//ABF 平面CDE ;(3)若2DE DB ==,3BCD π∠=,求点D 到平面BCE 的距离.22. 在①5CA CB ⋅=-,②ABC △的面积为33一个,补充在下面问题中,并解决该问题: 在ABC △中,角A ,B ,C 所对各边分别为a ,b ,c ,已知sin sin 1sin sin sin sin B CA C A B+=++,______,且1b =.(1)求ABC △的周长;(2)已知数列{}n a 为公差不为0的等差数列,数列{}n b 为等比数列,1cos 1a A =,且11b a =,23b a =,37b a =.若数列{}n c 的前n 项和为n S ,且113c =,111n n nn n a c b a a -+=-,2n ≥.证明:116n S <.注:在横线上填上所选条件的序号,如果选择多个条件分别解答,按第一个解答计分.高一数学参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数.选择题和填空题不给中间分.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1-5:CABDB6-8:ABB二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9. AC 10. BC 11. BCD 12. AD 三、填空题:本大题共4题,每小题5分,共20分. 13. 1 14. -2 15.8 16.3,6262-+⎣⎦四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 解:(1)因为向量a 与b 的夹角为3π,所以cos ,a b ab a b⋅=112cos12132π=⨯⨯=⨯⨯=, 所以()2a b a b+=+密线学校班级姓名学号密封线内不得答题2221427a b a b=++⋅=++=(2)设向量a b+与向量a的夹角为θ,所以()cosa b aa b aθ+⋅=+⋅22a a ba a ba b a a b a+⋅+⋅==+⋅+⋅2771==⨯18. 解:(1)因为球O的半径为5R=,所以球O的表面积为24100S Rππ==.(2)设两个半径分别为13r=和24r=的平行截面的圆心分别为1O和2O,所以22153164OO=-==,所以2225493OO=-==,所以1212347O OO OOO=+=+=,或1122431OOO OO O=-=-=,所以两个截面之间的距离为1或7.19. 解:(1)当2n≥时,21nS n n-=-,所以()2212n n na S S n n n n n-=-=+--=,因为当1n=时,112a S==,适合上式,所以2na n=,n N+∈.(2)由(1)可得()121na n+=+,所以11122(1)nn nca a n n+==⋅+11141n n⎛⎫=-⎪+⎝⎭,所以11111111141242341nTn n⎛⎫⎛⎫⎛⎫=-+-++-⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111414(1)nn n⎛⎫=-=⎪++⎝⎭,n N+∈.20. 解法一:(1)因为ABC△中,()2cos cosb c A a C-=,由正弦定理可得,(2sin sin)cos sin cosB C A A C-=⋅,得2sin cos sin cos cos sinB A AC A C⋅=⋅+⋅,得2sin cos sinB A B⋅=,因为sin0B>,所以1cos2A=,因为0Aπ<<,所以3Aπ=.(2)由余弦定理得222222cosa b c bc A b c bc=+-=+-,因为3a=1c=,所以220b b--=,即()()120b b+-=,所以1b=-或2b=,因为0b>,所以2b=,所以ABC△的面积为1133sin2122bc A=⨯⨯=.解法二:(1)同解法一.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)由正弦定理得sin sin c aC A=, 因为3sin sin 3A π==3a =1c =,所以sin 1sin 2c A C a ==,因为a c >,所以A C >,即3C π<,所以6C π=,所以2B AC ππ=--=,所以ABC △为直角三角形,所以ABC △的面积为11331222ABC S ac ===△.21. 证明:(1)因为四边形ABCD 是菱形,所以AC BD ⊥, 因为DE ⊥平面ABCD ,AC ⊂平面ABCD , 所以AC DE ⊥, 因为BDDE D =,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE .(2)因为DE ⊥平面ABCD ,AF ⊥平面ABCD , 所以//DE AF ,因为DE ⊂平面CDE ,AF ⊄平面CDE , 所以//AF 平面CDE ; 因为四边形ABCD 是菱形, 所以//AB CD ,因为CD ⊂平面CDE ,AB ⊄平面CDE , 所以//AB 平面CDE ; 因为ABAF A =,AB ⊂平面ABF ,AF ⊂平面ABF ,所以平面//ABF 平面CDE .(3)因为CD BC =,3BCD π∠=,所以BCD △为等边三角形,因为2DB =,所以BCD △的面积为343BCD S ==△ 因为DE ⊥平面ABCD ,所以三棱锥E BCD -的体积为11232333E BCD BCD V DE S -=⋅=⨯=△ 因为DE ⊥平面ABCD ,BD ⊂平面BCD ,CD ⊂平面BCD , 所以DE BD ⊥,DE CD ⊥,因为2DE BD CD ===,所以22BE CE ==所以BCE △的面积为()21222172BCES =⨯-=△设点D 到平面BCE 的距离为d , 所以1723333E BCD D BCE BCE V V d S --==⋅==△, 所以2217d =,所以点D 到平面BCE 的距离为2217. 22. 解:(1)选择条件①,过程如下: 因为sin sin 1sin sin sin sin B C A C A B +=++,所以1b ca c a b+=++,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===, 又因为0A π<<,所以3A π=.因为5CA CB ⋅=-,所以cos 5ab C =-,所以22252a b c ab ab +-⋅=-, 所以22210a b c +-=-,因为1b =,代入222b c a bc +-=和22210a b c +-=-, 得221a c c -+=和2211a c -=-,联立解得133a =12c =,所以ABC △的周长为13133(1)选择条件②,过程如下: 因为sin sin 1sin sin sin sin B C A C A B +=++,所以1b ca c a b+=++,所以222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===, 又因为0A π<<,所以3A π=.因为ABC △的面积为33113sin sin 332234bc A c c π=== 所以12c =,把1b =,12c =代入222b c a bc +-=得133a =所以ABC △的周长为13133(2)因为1cos 2A =,所以12a =,所以12b =,设数列{}n a 的公差为d ,数列{}n b 的公比为q , 因为23b a =,37b a =,所以222q d =+,2226q d =+, 联立以上两式消d 得2320q q -+=,所以1q =或2q =,因为数列{}n a 为公差不为0,所以0d ≠,所以1q ≠,所以2q =,1d =. 所以()111n a a n d n =+-=+,112n n n b b q -==, 当2n ≥时,11111212n n n n n n a nc b a a n n -+⎛⎫=-=-- ⎪++⎝⎭, 又因为113c =适合上式,所以11212n nn c n n ⎛⎫=-- ⎪++⎝⎭,n N +∈. 故212111111222233412n n n S n n ⎛⎫⎛⎫=+++--+-++- ⎪ ⎪++⎝⎭⎝⎭, 令212222n nn T =+++, 则2311122222n n n T +=+++, 作差得23111111222222n n n n T +=++++-,所以222nnn T +=-, 设111111233412n K n n =-+-++-++1122n =-+,所以321222n n n n n S T K n +=-=-++,因为n N +∈,所以202n n +>,所以3122n S n <++,因为1123n ≤+,所以3111226n +≤+,所以116n S <.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数2(2)(2)()1a a z a a i a R a ++++∈=-为纯虚数,则a 的值为( )A .1a ≠B .0a =C .0a =或2a =-D .2a =- 2.如果α的终边过点(2sin,2cos )66ππ-,则sin α的值等于( )A .12B .12-C .3D .33.若向量()1,1a =,()2,5b =,()3,c x =,满足条件()824a b c -⋅=,则x 等于( )A .6B .2C .4D .34.关于直线m ﹑n 与平面α﹑β,有下列四个命题,其中真命题的序号是( )①//m α,//n β且//αβ,则//m n ;②m a ⊥,n β⊥且αβ⊥,则m n ⊥;③m a ⊥,//n β且//αβ,则m n ⊥;④//m α,n β⊥且αβ⊥,则//m n .A .①②B .③④C .①④D .②③ 5.在ABC 中,2()||BC BA AC AC +⋅=,则ABC 的形状一定是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形6.设函数6cos y x =与5tan y x =的图像在y 轴右侧的第一个交点为A ,过点A 作y 轴的平行线交函数sin 2y x =的图像于点B ,则线段AB 的长度为( ) A 5B 35C 145D .257.已知ABC 的三个内角为A ,B ,C ,向量sin (3,sin )A m B =,co s ()s 3B n A =.若1cos m n ⋅=+()A B +,则C =( ) A .6πB .3πC .23π D .56π8.《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h =丈.问它的体积是多少立方丈?( )密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .75B .3053C .3203D .40039.已知复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,则p q +的值为( )A .4B .2C .0D .2-10.已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c .ABC的外接圆的面积为3π,且2cos A 22cos cos 13sin sin B C A C -+=,则ABC 的最大边长为()A .2B .3C 3D .2311.在四面体P -ABC 中,三角形ABC 为等边三角形,边长为3,3PA =,4PB =,5PC =,则四面体P -ABC 外接球表面积为( ) A .12πB .25πC .809πD .32411π12.如图,已知OPQ 是半径为1,圆心角为75︒的扇形.点A ,B ,C 分别是半径OP ,OQ 及扇形弧上的三个动点(不同于O ,P ,Q 三点),则ABC 周长的最小值是()A 61+B 62+C 261+D 262+第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分) 13.若z C ∈,且221z i --=,则22z i +-的最小值为_________. 14.如图.在ABC 中,AD AB ⊥,3BC BD =,||1AD =,则AC AD ⋅=_________.15.已知ABC 中,D是BC 上的点,AD 平分BAC ∠,且2ABD ADC S S =,1AD =,12DC =,则AC =_________. 16.已知:平面l αβ⋂=,A l ∈,B l ∈,4AB =,C β∈,CA l ⊥,3AC =,D α∈,DB l ⊥, 3.DB =直线AC 与BD 的夹角是60︒,则线段CD 的长为_________.三、解答题:(本大题共6小题,满分70分,写出必要文字说明和演算步骤) 17.(本小题满分10分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题已知函数()3sin()(0,||)2f x x πωϕωϕ=+>≤的图像关于直线3x π=对称,且图像上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)若32()()263f αππα=<<,求sin()3a π+的值.18.(本小题满分12分)如图.甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于1A 处时,乙船位于甲船的北偏西105︒方向的1B 处,此时两船相距20海里.当甲船航行20min 到达2A 处时,乙船航行到甲船的北偏西120︒方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?19.(本小题满分12分)已知a ,b ,c 是同一平面内的三个向量,其中,1)(2a =. (1)若25c=,且//c a ,求c 的坐标;(2)若5||2b =,且()(2)a b a b +⊥-,求a 与b 的夹角θ.20.(本小题满分12分)如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,12AB BC AD ==,E ,F 分别为线段AD ,PC 的中点.(1)求证://AP 平面BEF ; (2)求证:BE ⊥平面P AC . 21.(本小题满分12分)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知3cos sin 3b A C a =+. (I )求A 的值:(Ⅱ)若3a =,点D 在边BC 上.且2BD DC =,求AD 的最大值.22.(本小题满分12分)如图所示的圆锥,顶点为O ,底面半径是5cm ,用一与底面平行的平面截得一圆台,圆台的上底半径为2.5cm ,这个平面与母线OA 交于点B ,线段AB 的长为10cm .(提示:本题的数据有长度单位) (1)求圆台的体积和圆台的侧面积;(2)把一根绳从线段AB 的中点M 开始到点A ,沿着侧密线学校 班级 姓名 学号密 封 线 内 不 得 答 题面卷绕.使它成为最短时候,求这根绳的长度;(3)在(2)的条件下,这根绳上的点和圆台上底面上的点的距离中,最短的距离是多少?数学参考答案及评分标准一、选择题:BCBDD CCBCC DB二、填空题:13.3 14.3 15.3216.543三、解答题:17.解析:(1)因为()f x 的图像上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又()f x 的图像关于直线3x π=对称, 所以2,32k k Z ππϕπ+=+∈⨯. 因为22ππϕ-≤<,所以0k =. 所以2236πππϕ=-=-.(2)由(1)得3()3sin(2)226f ααπ=⋅-=, 所以1sin()64πα-= 由263ππα<<,得062ππα<-<, 所以22115cos 1sin 1664ππαα⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,15sin sin cos 36264ππππααα⎛⎫⎛⎫⎛⎫+=-+=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.【解析】解法一:如图,连接12A B ,由已知,22102A B =1220210260A A == ∴1222A A AB =,12218012060A A B ∠=︒-︒=︒ 又12218012060A A B ∠=︒-︒=︒. ∴122A A B 是等边三角形,1212102AB A A ==.由已知,1120A B =.1211056045B A B ∠=︒-︒=︒在121A B B 中,由余弦定理,得:33212121111122cos45B B AB AB AB AB =+-⋅⋅︒,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题22220(102)220102200=+-⨯⨯=.∴12102B B =10260302=/h ). 答:乙船每小时航行302海里.解法二:如图,连结2A B .由已知1220A B =.12202260A A ==112105B A A ∠=︒, ()cos105cos 4560cos45cos60sin 45sin 60︒︒︒︒︒︒︒=+=-2(13)4-=()sin105sin 4560sin 45cos60cos45sin 60︒︒︒︒︒︒︒=+=+2(13)4=在211A A B 中,由余弦定理,得22221111211122cos105A B AB A A AB A A ︒=+-⋅⋅222(13)(102)202102204-=+-⨯⨯100(423)=+.∴2110(13)A B =+.由正弦定理,得1112111221sin sin A B A A B B A A A B ∠=⋅∠ 2(13)210(13)+==+.∴12145A A B ∠=︒,即122604515B A B ︒︒︒∠=-=.2(13)cos15sin105︒︒+==. 在122B A B 中,由已知,22102A B =由余弦定理,得22212212221222cos15B B A B A B A B A B ︒=+-⋅⋅. ∴12102B B =,2222(13)10(13)(102)210(13)1022004=++-⨯⨯=乙船速度的大小为1026030220⨯=/h . 答:乙船每小时航行302海里.19.解:(1)由于a ,b ,c 是同一平面内的三个向量,其中()2,1a =,若||25c =,且//c a ,可设()2,c a λλλ=⋅=.则由22||(2)2c λλ=+=,可得2λ=±,∴()4,2c =,或()4,2c =--.(2)∵5||2b =,且2a b +与a b -垂直, ∴()()22220a b a b a a b b +-=+⋅-⋅=,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题化简可得52b a ⋅=-,即55cos 5θ⨯=-, ∴cos 1θ=-,故a 与b 的夹角θπ=.20.证明:(1)设AC BE O ⋂=,连结OF ,EC ,由已知可得://AE BC ,AE AB BC ==, 四边形ABCE 是菱形,O 为AC 中点, 因为F 为PC 中点,所以//OF AP ,//AP 平面BEF ,OF ⊂平面BEF所以AP ∥平面BEF .(2)由题意知,//ED BC ,ED BC =, 所以四边形BCDE 为平行四边形. 因此//BE CD .又AP ⊥平面PCD .所以AP CD ⊥,因此AP BE ⊥. 因为四边形ABCE 为菱形. 所以BE AC ⊥.又AP AC A ⋂=,AP ,AC ⊂平面P AC , 所以BE ⊥平面P AC .21.(1)由已知及正弦定理得sin cos 3s s n n i i A C C A B =+. 又()sin sin sin cos cos sin B A C A C A C =+=+,且sin 0C ≠, ∴tan 3A =0A π<<,即3A π=.(2)解法一:设ABC 外接圆的圆心为O ,半径为R ,则由正弦定理得3322sin sin 3a A R π===⨯ 如图所示,取BC 的中点M ,在RtBOM 中,322BC BM ==, 222233(3)()2OM OB BM =-=-=在RtDOM中,12OM BD BM=-=, 222231()()122OD OM DM =+=-=. 31AD OD OD O R A +=+=≤,当且仅当圆心O 在AD 上时取等号,所以AD 31.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解法二:在ABC 中,由正弦定理得:sin sin 3sin cos A B B A =,因为sin 0B ≠,所以tan 3A =又因为0A π<<,所以3A π=;由正弦定理得:in 23s b B =,in 23s c C =,在ABD 中,222224cos 24BA BD AD c AD B BA BD c +-+-==⨯在ABC 中,2222292c 6os BA B BC BC AC c b BA c+-+-==⨯所以222244946c D c b c c+-+-=, 整理得22221233AD b c =+-, 所以22221(23)3)233AD B C =+- 228sin 4sin 2B C =+- 44cos22cos2B C =--144cos22cos(2)3B B π=-+-43sin23cos2B =+- 43sin(2)3B π=+-,当sin(2)13B π-=, 即512B π=时,2AD 取得最大值423+所以AD 31.22.(1)作出圆锥的轴截面和侧面展开图,如下图由底面半径是5cm ,上底半径为2.5cm ,可得:10OB= 所以,圆锥的高为:515387515c 8m V =,侧面积为:275cm S π=. (2)由圆锥的底面周长可得侧面展开图的弧长为10π,所以,侧面展开图的圆心角为2π,在直角三角形MOA 中可得25cm MA =,所以最短时候,绳长为25cm(3)由侧面展开图可知,距离最短时,就是O 到直线AM 的距离减OB 长.解得:2cm .。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
乙:4,5,7,9,9.
若甲的中位数为a,乙的众数为b,则 __________.
14.若 ,且 ,则 的值是____________.
15.为实现“两个一百年”的奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,某高校积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:
年份
2016
2017
所以 ,
所以 ,
所以点P在 边所在直线上.故选:B
【点睛】本题主要考查平面向量共线定理,属于基础题.
10. A
【解析】
【分析】先根据平均数的计算方法分别求出两位同学成绩的平均数 和 ,再利用方差的计算公式求得 和 ,而方差越大,成绩越不稳定.
【详解】 ,



因为 ,所以成绩不太稳定的是乙同学,其标准差为 .
所以 ,
所以 ,
所以 ,
(2)若 ,得 ,
解得 ,故实数k的值为7.
【点睛】本题考查平面向量的数量积公式的应用、向量求模,需熟记常用公式,考查计算化简的能力,属基础题.
19.(1)10.1分;(2)10.3.
【解析】
【分析】(1)由频率直方图,根据平均数计算方法可得答案;
(2)根据中位数的计算方法可得答案.
人教版2020--2021学年下学期期末考试卷
高一数学
(满分:150分时间:120分钟)
题号



总分
得分
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若45°角的终边上有一点 ,则 ()
A.2B.4C. D.
2.下列给变量赋值的语句正确的是()
3个白球与事件A不能同时发生,是对立事件.故选:C.

人教A版新教材高一上学期期末考试数学试卷(共五套)

人教A版新教材高一上学期期末考试数学试卷(共五套)

人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一

高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一

的值可以是(

A.3
B.4
C.5
D. 16 3
【答案】BC
【解析】作出函数 f x 的图象,如图所示,
设 f x1 f x2 f x3 f x4 t , 由图可知,当 0 t 1时,直线 y t 与函数 f x 的图象有四个交点,
交点的横坐标分别为 x1, x2 , x3, x4 ,且 x1 x2 x3 x4 ,
因为
x
0,
π 3
,
2x
π 6
π, 6
5π 6
,函数
y
sint

π 6
,
5π 6
上不单调,故
D
错误.
故选:ABC.
10.(2023 秋·江苏南通 )下列命题中,真命题的是( )
A. x R ,都有 x2 x x 1
B.
x 1,
,使得
x
x
4
1
6
.
C.任意非零实数 a,b ,都有 b a 2 ab
f x 在 , 上不具单调性,故 B 错误;
f x 图象与 x 轴只一个交点,即有且只有一个零点,故 C 正确;

yቤተ መጻሕፍቲ ባይዱ
0
,解得
x
3 2
,从图象看,
f
(x)
关于
3 2
,
0
对称,下面证明:
由 f x x 1 x 2 ,

f
3 2
x
x
1 2
x1 2

f
3 2
x
x
1 2
x 1 2
x 1 2
x 1, 2

f
3 2

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)
(2)由余弦定理可得 ,
即 ,
所以 ,所以 ,
因为 ,
所以 ,
因为 ,所以 ,当且仅当 时取等号,
所以 ,
所以 面积的最大值为 .
【点睛】此题考查三角函数的二倍角公式、诱导公式,考查了正余弦定理,利用了基本不等式求三角形面积的最大值,考查了计算能力,属于中档题.
21.(1)2;(2) .
【解析】
【分析】
【详解】依题意可知 .
由于 满足 ,则 ,所以数列 为等比数列,设公比 , 对应的频率为 ,题目所求半音与 的频率之比为 ,所以所求半音对应的频率为 .即对应的半音为 .
故选:B
【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.
9.B
【解析】
【分析】由 ,化简 , ,得到 ,再用基本不等式求解.
人教版2020--2021学年下学期期末考试卷
高一数学
(满分:150分时间:120分钟)
题号



总分
得分
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).
1.设 ,集合 ,则 ( )
A. B. C. D.
2.已知一个几何体 三视图如图所示,则此几何体的组成方式为()
根据题意得
解得 , ,
所以
.
故答案为:120.
【点睛】本题考查了等差数列通项公式与前 项和公式的简单应用,属于基础题.
14.
【解析】
【分析】
作出可行域,平移目标函数 ,其截距最大时, 有最大值.
【详解】解:作出可行域如图:
由 解得 ,由 得 ,
平移直线 ,结合图像知,直线过点A时, ,

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.设集合{}2{1,2,3},|1A B x x ===,则A B =() A .{}1- B .{1}C .{1,1}-D .{1,2,3}2.sin 20cos70cos20sin 70+=() A .0B .1-C .1D .12 3.下列函数中,在(0,)+∞上存在最小值的是( ) A .2(1)y x =-B .y x =C .2x y =D .ln y x =4.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =( ) A .3-B .1-C .1D .35.在ABC ∆中,D 是BC 上一点,且13BD BC =,则AD =( )A .13AB AC +B .13AB AC -C .2133AB AC + D .1233AB AC + 6.在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) A .5B .8C .10D .147.等比数列{}n a 的各项均为正数,且675818a a a a +=,则3132312log log log a a a ++⋅⋅⋅=()A .12B .10C .8D .32log 5+8.已知等差数列5,247,437,…,的前n 项和为n S ,则使得n S 最大的序号n 的值为( ) A .7B .8C .7或8D .99.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1000km/h ,飞行员先看到山顶的俯角为30︒,经过1 min 后又看到山顶的俯角为75︒,则山顶的海拔高度为(精确到0.1 km 3 1.732≈)A .11.4 kmB .6.6 kmC .6.5 kmD .5.6 km10.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( ) A .12B 21C .14D .22111.如图,网格纸上小正方形的边长为1,粗实线画出的是某密线学校 班级 姓名 学号密 封 线 内 不 得 答 题多面体的三视图,则此几何体的表面积为( )A .(6223+B .6225+ C .10 D .1212.对任意实数x ,[]x 表示不超过x 的最大整数,如[3.6]3=,[ 3.4]4-=-,关于函数1()33x x f x ⎡+⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦,有下列命题:①()f x 是周期函数;②()f x 是偶函数;③函数()f x 的值域为{0,1};④函数()()cos g x f x x π=-在区间(0,)π内有两个不同的零点,其中正确的命题为( ) A .①③B .②④C .①②③D .①②④第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期末测试本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,用时120分钟。

第Ⅰ卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.) 1.下列命题中正确的是 ( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同 2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( )A .1或-1B .52或52- C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→cD .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] (k ∈Z) B .[k π-83π,k π+8π](k ∈Z)C .[2k π+8π,2k π+85π] (k ∈Z)D .[2k π-83π,2k π+8π](k ∈Z)6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos02Cx x A B --=有一根为1,则△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为 ( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos5 9.函数f(x)=sin2x ·cos2x 是 ( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|=a ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正 方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D . -257二、填空题(本大题共4小题,每小题4分,共16分。

请把正确答案填在题中的横线上) 13.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 . 14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数;③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。

三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知434παπ<<,40π<β<,53)4cos(-=+απ,135)43sin(=β+π,求()βα+sin 的值.18.(本小题满分12分)已知函数x x x f cos 3sin )(+=。

(I )求)(x f 的周期和振幅;(II )用五点作图法作出)(x f 在一个周期内的图象; (III )写出函数)(x f 的递减区间.已知关于x 的方程0)13(22=++-m x x 的两根为θsin 和θcos ,θ∈(0,π). 求:(I )m 的值;(II )θθθθθtan 1cos 1tan sin tan -+-的值;(III )方程的两根及此时θ的值.20.(本小题满分12分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cos α,sin α),α∈(2π,23π). (I )若|AC |=|BC |,求角α的值;(II )若·=-1,求αααtan 12sin sin 22++的值.某港口海水的深度y (米)是时间t (时)(240≤≤t )的函数,记为:)(t f y = 已知某日海水深度的数据如下:经长期观察,)(t f y =的曲线可近似地看成函数b t A y +=ωsin 的图象(I )试根据以上数据,求出函数b t A t f y +==ωsin )(的振幅、最小正周期和表达式; (II )一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。

某船吃水深度(船底离水面的距离)为5.6米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)? 22.(本小题满分14分)已知向量()())90sin(),90cos(,)sin(2),cos(2θθθθ--=--=b a(I )求证:b a⊥;(II )若存在不等于0的实数k 和t ,使b t a k y b t a x +-=-+=,)3(2满足y x ⊥。

试求此时tt k 2+的最小值。

参考答案一、选择题:(本大题共12小题,每小题5分,共60分。

)1.C2.B3.B4.C5.B6.B7.B8.A9.D 10.B 11.D 12.D 二、填空题(本大题共4小题,每小题4分,共16分) 13.1)42sin(3++=πx y 14.7259-15.-8 16.③ 三、解答题: 17.(本小题满分12分)解:∵434π<α<π ∴π<α+π<π42 ---------------1分 又53)4cos(-=α+π ∴54)4sin(=α+π ---------------3分∵40π<β< ∴π<β+π<π4343 -------------4分 又135)43sin(=β+π ∴1312)43cos(-=β+π ----------6分 ∴sin(α + β) = -sin[π + (α + β)] ----------------8分 = )]43()4sin[(β+π+α+π- )]43sin()4cos()43cos()4[sin(β+πα+π+β+πα+π-= ------10分6563]13553)1312(54[=⨯--⨯-= -----------12分18.(本小题满分12分)解:(I ))cos 23sin 21(2x x y +==)3sin cos 3cos (sin 2ππx x +=)3sin(2π+x -----------2分函数)(x f 的周期为T =π2,振幅为2。

----------------4分(II )列表:-----------------7分图象如上。

----------------9分 (III )由)(232322Z k k x k ∈+≤+≤+πππππ解得: ---------10分 )(67262Z k k x k ∈+≤≤+ππππ所以函数的递减区间为)(],672,62[Z k k k ∈++ππππ -------12分 19.(本小题满分12分)(I )由韦达定理得:213cos sin +=+θθ ----------1分 ∴4432cos sin 21+=+θθ ∴23cos sin 2=θθ ---------2分 由韦达定理得2cos sin m =⋅θθ=43∴23=m --------3分 (II )∵2)231(cos sin 21-=-θθ ∴213cos sin -±=-θθ ---4分 ∵θθθθθtan 1cos 1tan sin tan -+-=θθθθθθsin cos cos cos sin sin 22-+-=θθθθθθcos sin cos sin cos sin 22+=-- ---------6分 ∴原式=213cos sin +=+θθ -----------------------7分 (III )23cos sin 2=θθ>0 ∵θsin 与θcos 同号,又∵θθcos sin +>0∴θsin 与θcos 同正号 -------------------------8分 ∵θ∈(0,π) ∴θ∈(0,2π) ------------------9分 ∵213cos sin +=+θθ ,且213cos sin -±=-θθ∴θsin =23,θcos =21;或θsin =21,θcos =23 --------11分∴θ=6π或θ=3π. ---------------------------12分 20.(本小题满分12分)解:(I )∵=(cos α-3,sin α),=(cos α,sin α-3), --2分 ∴||=αααcos 610sin )3(cos 22-=+-,||=αααsin 610)3(sin cos 22-=-+. --------------4分 由||=||得sin α=cos α. 又∵α∈(2π,23π),∴α=45π. ----------------------6分(II )由·=-1,得(cos α-3)cos α+sin α(sin α-3)=-1.∴sin α+cos α=32---8分 由上式两边平方得1+2sin αcos α=94, ∴2sin αcos α=95-. ----------------------------10分 又ααααααααcos sin 1)cos (sin sin 2tan 12sin sin 22++=++=2sin αcos α. ∴95tan 12sin sin 22-=++ααα. -------------------------12分21.(本小题满分12分)解:(I )依题意有:最小正周期为: T=12 --------1分振幅:A=3,b=10, 62ππω==T ---------2分 10)6sin(3)(+⋅==t t f y π----------------------4分(II )该船安全进出港,需满足:55.6+≥y即:5.1110)6sin(3≥+⋅t π21)6sin(≥⋅t π---------6分 ∴Z k k t k ∈+≤⋅≤+652662πππππZ k k t k ∈+≤≤+512112 -----------------------8分又 240≤≤t 51≤≤∴t 或1713≤≤t ------------10分 依题意:该船至多能在港内停留:16117=-(小时) ----12分 22.(本小题满分14分)解:由诱导公式得: ()())cos ,sin ,sin 2,cos 2θθθθ=-=b a-------2分12==b a-------------------------3分(I )0cos )sin 2(sin cos 2=⋅-+⋅=⋅θθθθb a则 b a ⊥ ---------5分(II )b t a k y b t a x +-=-+=,)3(2y x⊥ 0=⋅∴y x-------------------------6分即:0][])3([2=+-⋅-+b t a k b t a0)3()])(3([2222=-+⋅--++-b t t b a k t t a k∴4)3(0)3(422tt k t t k -==-+- -----------------------9分 ∴47)2(41]7)2[(41434)(2222-+=-+=-+=+=t t t t t t k t f ------12分即当2-=t 时,tt k 2+的最小值为47-. ---------------14分。

相关文档
最新文档