2018年人教A版高中数学必修4全册教案优化设计精美整理版
高一数学教案:新课标人教A版数学必修4教案完整版
第八课时 同角三角函数关系的应用教学目标:熟练运用同角三角函数化简三角函数式,活用同角三角函数关系证明三角恒等式,明确化简结果的要求,掌握证明恒等的方法;通过化简与证明,使学生提高三角恒等变形的能力,树立化归的思想方法.教学重点:三角函数式的化简,三角恒等式的证明.教学难点:同角三角函数关系的变用、活用.教学过程:[例1]化简1-cos 4α-sin 4α1-cos 6α-sin 6α法一:原式=(sin 2α+cos 2α)-cos 4α-sin 4α(sin 2α+cos 2α)-cos 6α-sin 6α=2cos 2αsin 2α3cos 2αsin 2α(cos 2α+sin 2α) =23法二:原式=(1-cos 2α)(1+cos 2α)-sin 4α (1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α) sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α 1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α 1+cos 2α+cos 2α-sin 2α =2cos 2α3cos 2α =23法三:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2 cos 2αsin 2α] 1-(cos 2α+sin 2α)(cos 4α-cos 2αsin 2α+sin 4α)=1-1+2cos 2αsin 2α 1-[(cos 2α+sin 2α)2-3cos 2αsin 2α] =2cos 2αsin 2α3cos 2αsin 2α =23①以上三种解法虽思路不同,但都应用了公式sin 2α+cos 2α=1,其中生2、3是顺用公式,1是逆用公式,显然1的解法简单明了.②在1的解法中逆用公式sin 2α+cos 2α=1,实质是“1”的一种三角代换“1=sin 2α+cos 2α”.对于利用同角三角函数关系式化简时,其结果一般要求:①函数种类少;②式子项数少;③项的次数低;④尽量使分母或根号内不含三角函数式;⑤尽可能求出数值(不能查表)).[例2]求证cos x 1-sin x=1+sin x cos x 证法一:由cos x ≠0知1+sin x ≠0,于是左=cos x (1+sin x )(1-sin x )(1+sin x ) =cos x (1+sin x )1-sin 2x=cos x (1+sin x ) cos 2x =1+sin x cos x =右证法二:由1-sin x ≠0,cos x ≠0于是右=(1+sin x )(1-sin x )cos x (1-sin x ) =1-sin 2x cos x (1-sin x ) =cos 2x cos x (1-sin x ) =cos x 1-sin x=左 证法三:左-右=cos x 1-sin x -1+sin x cos x =cos 2x -(1+sin x )(1-sin x )cos x (1-sin x )=cos 2x -(1-sin 2x )cos x (1-sin x ) =cos 2x -cos 2x cos x (1-sin x )=0 ∴cos x 1-sin x=1+sin x cos x 证法四:(分析法) 欲证cos x 1-sin x=1+sin x cos x 只须证cos 2x =(1+sin x )(1-sin x )只须证cos 2x =1-sin 2x 只须证sin 2x +cos 2x =1∵上式成立是显然的,∴cos x 1-sin x=1+sin x cos x 成立 分析法证题的思路是“执果索因”:从结论出发,逐步逆推,推出一个真命题或者推出的 与已知一致,从而肯定原式成立.要注意论证格式Ⅲ.课堂练习已知sin θ+cos θ=15,θ∈(0,π),求tan θ的值. 分析:依据已知条件sin θ+cos θ=15,θ∈(0,π),求得2sin θcos θ的值,进而求得sin θ-cos θ的值,结合sin θ、cos θ的值再求得tan θ即可.解:∵sin θ+cos θ=15,(1) 将其平方得,1+2sin θcos θ=125 ∴2sin θcos θ=-2425, ∵θ∈(0,π) ∴cos θ<0<sin θ∵(sin θ-cos θ)2=1-2sin θcos θ=4925 ∴sin θ-cos θ=75(2) 由(1)(2)得sin θ=45 ,cos θ=-35 , ∴tan θ=-43Ⅳ.课时小结本节课我们讨论了同角三角函数关系式的两个方面的应用:化简与证明,与同学们讨论了化简的一般要求,证明恒等的常用方法,对于化简与证明另外还应注意两种技巧:一种是切化弦”,一种是“1”的代换,“1”的代换不要仅限于平方关系的代换,还要注意倒数关系的代换,究竟用哪一种,要由具体问题来决定.Ⅴ.课后作业课本P 24习题 10、11、12.同角三角函数关系的应用1.式子sin 4θ+cos 2θ+sin 2θcos 2θ的结果是 ( )A. 14B. 12C. 32D.12.已知tan θ=2a a 2-1(其中0<a <1,θ是三角形的一个内角),则cos θ的值是 ( ) A. 1-a 2a 2+1 B. 2a a 2+1 C. a 2-1a 2+1 D.±a 2-1a 2+13.若sin α=a -3a +5 ,cos α=4-2a a +5,π2 <α<π,则a 的值满足 ( ) A.a =0 B.a >3或a <-5 C.a =8 D.a =0或a =84.化简1-sin 24 的结果为 ( )A.cos4B.-cos4C.±cos4D.cos 225.已知sin α=45,且α为第二象限角,那么tan α= 6.已知sin αcos α=18 ,且π4 <α<π2,则cos α-sin α的值为 7.若tan α=13 ,π<α<32π,则sin α·cos α= 8.若β∈[0,2π),且1-cos 2β +1-sin 2β =sin β-cos β,求β的取值范围.9.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1.10.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ.同角三角函数关系的应用答案1.D 2.C 3.C 4.B 5.-43 6.-32 7.3108.若β∈[0,2π),且1-cos 2β +1-sin 2β =sin β-cos β,求β的取值范围.分析:依据已知条件得cos β≤0,sin β≥0,利用同角三角函数之间的关系式求解. 解:∵1-cos 2β +1-sin 2β=sin 2β +cos 2β =|sin β|+|cos β|=sin β-cos β∴sin β≥0,cos β≤0∴β是第二象限角或终边在x 轴负半轴和y 轴正半轴上的角∵0≤β≤2π ∴π2≤β≤π 9.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 原式=sin 2x sin x -cos x -(sin x +cos x )cos 2x sin 2x -cos 2x=sin 2x (sin x +cos x )-(sin x +cos x )cos 2x sin 2x -cos 2x=sin x +cos x 10.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ. 左边=tan 2θ-sin 2θ=θθ22cos sin -sin 2θ =sin 2θ·θθ22cos cos 1-=sin 2θ·θθ22cos sin =sin 2θ·tan 2θ=右边。
人教版高中数学a必修4教案
人教版高中数学a必修4教案教学目标:1. 了解直线的概念和性质;2. 掌握直线的方程和相关定理;3. 能够应用直线的知识解决实际问题。
教学重点:1. 直线的方程;2. 直线的性质。
教学难点:1. 解决实际问题时的应用能力提升;2. 掌握直线的各种形式的方程。
教学准备:1. 教材《人教版数学A必修4》;2. 教具:黑板、粉笔、直尺、圆规等。
教学过程:一、导入(5分钟)引导学生回顾直线的概念,概括直线的性质,并提问直线在几何中的重要性。
二、讲解直线的方程(15分钟)1. 带领学生分析直线的一般方程和点斜式方程的意义和应用;2. 指导学生通过实例理解直线方程的求解过程;3. 引导学生掌握直线的各种形式的方程。
三、讲解直线的性质(15分钟)1. 讲解直线的平行和垂直关系;2. 分析平行线和垂直线的性质和定理;3. 引导学生掌握利用直线的性质解决问题的方法。
四、练习与讨论(20分钟)1. 给学生一些实际问题,让他们应用直线的知识解决;2. 引导学生用直线方程和直线性质解决实际问题;3. 鼓励学生积极参与讨论,提高解决问题的能力。
五、总结与反思(5分钟)总结本节课所学内容,检查学生对直线的理解和应用情况,指导学生如何进一步提升应用能力。
六、作业布置(5分钟)布置相应练习题目,要求学生巩固所学知识,找出解题方法和技巧,并留出时间讨论解答。
教学反思:本节课的教学目标是让学生理解直线的概念和性质,并学会应用直线的知识解决实际问题。
通过引导学生分析直线的方程和性质,让他们理解直线在数学中的重要性。
通过实际问题的练习和讨论,培养学生的解决问题能力和应用能力,提升他们的数学思维和学习兴趣。
在教学过程中,要注重引导学生思考和讨论,激发他们的学习兴趣,激励他们提高自己的学习水平。
高中数学:必修4全套教案(新人教A版)
精心整理第一章三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广23角之分重点:难点:行了推广.思考小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒”(即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒210α︒=,负角150,660βγ︒︒=-=-;这样,“角α”或“3.意: 4.[(1)((2)(天后的5. 4.(2)[OB ,而328︒=-设S ,所有与32︒-.{|360,}S k k Z ββα︒==+⋅∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.6.[展示投影]例题讲评 例1.例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤<的元素β写出来.720︒7.[展示投影]练习P第3、4、5题.教材6∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终注意:(1)k Z边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍.8.学习小结(1)你知道角是如何推广的吗?(2)象限角是如何定义的呢?(3)=线y x121(1.23关系.:数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何). B .显然,我们可以由此角度与弧度的换算了. 6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法. 7.填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1)l其中例4.注意:9.教材9.(1)(2)121(12)理2初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.二、教学重、难点重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加数,),它与么它的则线段OMsinα=cossinMPbOPα==;cosOMaOPα==;tanMP bOM aα==.思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y,那么:(1)y叫做α的正弦(sine),记做sinα,即sin yα=;(2)x叫做α的余弦(cossine),记做cosα,即cos xα=;(3)yx叫做α的正切(tangent),记做tanα,即tan(0)yxxα=≠.注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点P在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离7.例题讲评例3.求证:当且仅当不等式组sin0{tan0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然:终边相同的角的同一三角函数值相等.即有公式一:cos(2)cos k απα+=(其中k Z ∈)9.例题讲评例4.确定下列三角函数值的符号,然后用计算器验证: (1)cos250︒;(2)sin()4π-;(3)tan(672)︒-;(4)tan3π例5.求下列三角函数值: (1)'sin148010︒;(2)9cos4π;(3)11tan(6π- 利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0︒到360︒)角的三角函数值.另外可以直接利用10.11.(1)(2)(3)(4)121、 2、 3、 4、 5、 1.,2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x⊥轴交x 轴于点M ,则请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化?3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?(2)你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定:当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标.这样,无论那种情况都有同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定:当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向时,MP的方向为负向,且有正值y;其中y为P点的横坐标.这样,无论那种情况都有、这种被看作带有方向的线段,叫做有向线段(directlinesegment).4.像MP OM5.角函数线6.(27.例1处理8.9(1)(2)(3)1.(1)21.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1)使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点:1. 从圆的如图:,而且1OP =.2sin α+2. 例sin ,cos ,tan ααα三者知一求二,熟练掌握.3.巩固练习23P 页第1,2,3题4.例题讲评 例7.求证:cos 1sin 1sin cos x xx x+=-.通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题6.学习小结(1)同角三角函数的关系式的前提是“同角”,因此1cos sin22≠+βα,γβαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论. 五、评价设计(1) 作业:习题1.2A 组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.第二章平面向量.1. 2. 3. 能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.1234567、 12.②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.ABCDA(起点)3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②5①.记作a6相等;.有向线段的起点无关..........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有..向线段的起点无关)..........说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例1书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4(5(6(7例下列命题正确的是()共线,则也共线任意两个相等的非零向量的始点与终点是一平行四边形的四顶点向量a与有相同起点的两个非零向量不平行不正确;由于数学中研究的向量是自由不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FE,)DOCB,课堂练习:1①四点必在一直线上;②③任一向量与它的相反向量不相等;④是平行四边形当且仅当AB⑤一个向量方向不确定当且仅当模为0;共线向量即平行向量,只要求方向相同或相反即可,并不要求两③零相同.2.书本88页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题第2课时§2.2.1向量的加法运算及其几何意义教学目标:1、 掌握向量的加法运算,并理解其几何意义;2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;. 学法:教具1、 2、 则两次的位移和:=+(3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+(4)船速为,水速为,则两速度和:AC =+二、探索研究: ABCC1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,=b,则向量叫做a 与b的和,记作a +b,即a +b=+=,规定:a+0-=0+a探究:(1(2向,(3当与|+|=||a +b|=|b (4 5.向量加法的结合律:(a +b )+c =a +(b +c ) 证:如图:使a AB =,b BC =,c CD =则(a +b )+c =AD CD AC =+,a +(b +c )==+∴(+)+=+(+) a从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.三、应用举例:例二(P94—95)略练习:P95四、小结1、向量加法的几何意义;2、交换律和结合律;3、注意:|+|≤||+||,当且仅当方向相同时取等号.h/,求8km,为4,最.第3课时§2.2.2向量的减法运算及其几何意义教学目标:1.了解相反向量的概念;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.教学重点:向量减法的概念和向量减法的作图法.教学难点:减法运算时方向的确定.学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、复习:向量加法的法则:三角形法则与平行四边形法则向量加法的运算定律:二、123作=a则=a?b即a?b可以表示为从向量b的终点指向向量a的终点的向量.注意:1?表示a?b.强调:差向量“箭头”指向被减数2?用“相反向量”定义法作差向量,a?b=a+(?b)显然,此法作图较繁,但最后作图可统一.4.探究:B’ABDC1) 如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b ?a.2)若a ∥b ,如何作出a ?b ? 三、 例题:例一、(P 97例三)已知向量a 、b 、c 、d ,求作向量a ?b 、c ?d .在平面上取一点O ,作=a ,解:OB =b ,OC =c ,OD =d ,A.a +bB.-a +(-b )C.a -bD.b -a2.O 为平行四边形ABCD 平面上的点,设OA =a ,OB =b ,OC =c ,OD =d ,则 A.a +b +c +d =0B.a -b +c -d =0 C.a +b -c -d =0D.a -b -c +d =0 3.如图,在四边形ABCD 中,根据图示填空:a ?bAABBB’Oa ?ba abbO AOBa ?ba ?b BA O?ba +b =,b +c =,c -d =,a +b +c -d =.4、如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =DC ,并画出b -c 和a +d .2.3平面向量的基本定理及坐标表示第4课时§2.3.1平面向量基本定理(1(2) (3教具教学过程一、 复1(1)|λa 23.向量共线定理向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa.二、讲解新课:平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e .探究:第3题(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一.λ1,λ2是被a,1e ,2e 唯一确定的数量三、讲解范例:例1例2MB例3OA 例4(2)(OP OA tOB t +例51212样的实数d a b λμ=+使与c 共线:1.A.e 1、2一定平行B .e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线B .共线C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于()A.3B .-3 C.0D.24.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1=.5.已知a 与e 2五、小结(1(2(3教具:多媒体、实物投影仪 教学过程: 一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一.λ1,λ2是被a,1e ,2e 唯一确定的数量二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a =我们把,(x a 其中x 示.与.a 特别地,i 如图,一确定. 设=A 的坐标),(y x 也就是向量OA .因2(1)若a 设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2)若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =?=(x 2,y 2)?(x 1,y 1)=(x 2?x 1,y 2?y 1)(3)若),(y x a=和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=三、讲解范例:例1已知A(x 1,y 1),B(x 2,y 2),求AB 的坐标.例2已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标. 例3D 的坐例4即:⎩⎨⎧-+431.若M(32.若A(03五、小结六、课后作业(略) 七、板书设计(略) 八、课后记:第6课时§2.3.4平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念; (2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1把),(y x 其中x )0,1(=i 2若a =则a +若,(1y x A a ∥设a=(x 1由a=λb 得,(x 1,y 1)=λ(x 2,y 2)⎩⎨=⇒2121y y λ消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1,y 2有可能为0,∵b?0∴x 2,y 2中至少有一个不为0(2)充要条件不能写成2211x y x y =∵x 1,x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b?)01221=-=⇔y x y x λ三、讲解范例:例1已知a =(4,2),b =(6,y),且a ∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A ,B ,C 三点之间的位置关系. 例3设点P 是线段P 1P 2上的一点,P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1) 当点P 是线段P 1P 2的中点时,求点P 的坐标; (2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.例4若向量a=(-1,x)与b =(-x ,2)共线且方向相同,求x例5∴A 1.2.A.-3B .-1 C.1D.33.若AB =i +2j ,DC =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量).AB 与DC 共线,则x 、y 的值可能分别为() A.1,2B .2,2 C.3,2D.2,44.已知a =(4,2),b =(6,y ),且a ∥b ,则y =.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结(略)六、课后作业(略)七、板书设计(略)1.2.3.4.内容分析:??本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.教学过程:一、复习引入:1.向量共线定理向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 4若(1x a =). 若,(1y x A 5.a ∥b 6P 1,P 2使P 1况:λ7.(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8.点P 的位置与λ的范围的关系:①当λ>0时,P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1-≠λ)时,P 1与2PP 反向共线,这时称点P 为21P P 的外分点.。
人教版高中数学必修4教案
人教版高中数学必修4教案教案标题:人教版高中数学必修4教案教案目标:1. 熟悉人教版高中数学必修4课程的教学内容和教学要求;2. 制定合理的教学目标和教学步骤,提高学生的数学思维能力和解题能力;3. 通过多种教学方法和教学资源,激发学生的学习兴趣和积极性;4. 培养学生的数学学习策略和解题技巧,提高他们的学习效果。
教学内容:本教案以人教版高中数学必修4教材为基础,包括以下内容:1. 第一章三角函数2. 第二章三角恒等变换与解三角形3. 第三章平面向量4. 第四章空间向量5. 第五章矩阵与变换6. 第六章概率初步教学步骤:1. 第一章三角函数a. 学习目标:了解三角函数的定义和性质,能够应用三角函数解决实际问题。
b. 教学重点:正弦函数、余弦函数、正切函数的定义和性质。
c. 教学方法:讲解+示例演练+练习题。
d. 教学资源:教材、课件、练习册。
2. 第二章三角恒等变换与解三角形a. 学习目标:掌握三角恒等变换的基本公式和应用,能够解决三角形的相关问题。
b. 教学重点:三角恒等变换的基本公式和解三角形的方法。
c. 教学方法:讲解+示例演练+练习题。
d. 教学资源:教材、课件、练习册。
3. 第三章平面向量a. 学习目标:了解平面向量的定义和性质,能够进行平面向量的运算和应用。
b. 教学重点:平面向量的定义、平面向量的线性运算和数量积。
c. 教学方法:讲解+示例演练+练习题。
d. 教学资源:教材、课件、练习册。
4. 第四章空间向量a. 学习目标:了解空间向量的定义和性质,能够进行空间向量的运算和应用。
b. 教学重点:空间向量的定义、空间向量的线性运算和数量积。
c. 教学方法:讲解+示例演练+练习题。
d. 教学资源:教材、课件、练习册。
5. 第五章矩阵与变换a. 学习目标:了解矩阵的定义和性质,能够进行矩阵的运算和应用。
b. 教学重点:矩阵的定义、矩阵的运算和矩阵的应用。
c. 教学方法:讲解+示例演练+练习题。
高中数学必修四全册学案人教课标版(精美教案),推荐文档
°=
°=Leabharlann °==°≈°. 角的概念推广后 , 在弧度制下 , 与之间建立起一一对应的关系 : 每个角都有唯一的一个实数
( 即 ) 与它对应 ; 反过来 , 每一个实数也都有 ( 即 ) 与它对应。 . 弧度制下的弧长公式和扇形面积公式:
角 的弧度数的绝对值 | | ( l 为弧长, r 为半径)
弧长公式: 扇形面积公式:
. 终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个,即任一与角α终边相同的角,都可 以表示成。
.象限角、轴线角的概念 我们常在 直角坐标系 内讨论角。为了讨论问题的方便,使角的与重合,角的与重合。那 么,角的 ( 除端点外 ) 落在第几象限,我们就说这个角是。 如果角的终边落在坐标轴上,则称这个角为。 象限角的集合
目录
第一章 三角函数
1.1.1 任意角……………………………………………………………………………… 1.1.2 弧度角 ……………………………………………………………………………… 1.2.1 任意角的三角函数 () ……………………………………………………………… 1.2.1 任意角的三角函数 () ……………………………………………………………… 1.2.2 同角三角函数的关系 () …………………………………………………………… 1.2.2 同角三角函数的关系 () …………………………………………………………… 1.2.3 三角函数的诱导公式 () …………………………………………………………… 1.2.3 三角函数的诱导公式 () …………………………………………………………… 1.2.3 三角函数的诱导公式 () …………………………………………………………… 1.3.1 三角函数的周期性 ………………………………………………………………… 1.3.2 三角函数的图象和性质 () ………………………………………………………… 1.3.2 三角函数的图象和性质 () ………………………………………………………… 1.3.2 三角函数的图象和性质 () …………………………………………………………
2017-2018学年高中数学人教A版必修四全册教学案含答案
2017-2018学年高中数学人教A版必修四全册教学案目录1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+φ)的图象1.6 三角函数模型的简单应用第一章章末小结与测评2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的基数量积2.5 平面向量应用举例第二章章末小结与测评3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换第三章章末小结与测评第1课时任意角[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P5的内容,回答下列问题.(1)阅读教材P2“思考”的内容,你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25个小时,你应当如何将它校准?在你调整的过程中,分针转动的方向有什么区别?提示:当手表慢了5分钟时,通常将分针顺时针旋转进行调整;当手表快了1.25小时时,通常将分针逆时针旋转进行调整.故在调整的过程中两种情形分针的转动方向相反.(2)体操中有“转体720°”(即“转体2周”),“转体1 080°”(即“转体3周”)这样的动作名称,而旋转的方向也有顺时针与逆时针的不同;又如图是两个齿轮旋转的示意图,被动轮随着主动轮的旋转而旋转,而且被动轮与主动轮有相反的旋转方向.这样,OA绕O旋转所成的角与O′B绕O′旋转所成的角就会有不同的方向.利用我们以前学过的0°~360°范围的角,还能描述以上现象吗?提示:要准确地描述这些现象,不仅要知道角形成的结果,而且要知道角形成的过程,即必须既要知道旋转量,又要知道旋转方向.故利用0°~360°范围的角,无法描述以上现象.(3)阅读教材P3“探究”的内容,请思考:对于直角坐标系内任一条射线OB,以它为终边的角是否唯一?如果不唯一,那么这些终边相同的角有什么关系?提示:不唯一.它们之间相差360°的整数倍,即相差k·360°(k∈Z).2.归纳总结,核心必记(1)角的有关概念其中O为顶点,OA为始边,OB为终边角α或∠α,或简记为α(2)①②按角的终边位置(ⅰ)角的终边在第几象限,则此角称为第几象限角;(ⅱ)角的终边在坐标轴上,则此角不属于任何一个象限.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[问题思考](1)你能说出角的三要素吗?提示:角的三要素是顶点、终边、始边.(2)如果一个角的终边与其始边重合,这个角一定是零角吗?提示:不一定,零角的终边与始边重合,但终边与始边重合的角不一定是零角,如360°,-360°等.(3)一条射线绕端点旋转,旋转的圈数越多,则这个角越大,这样说对吗?提示:不对,如果一条射线绕端点按顺时针方向旋转,则它形成负角,旋转的圈数越多,则这个角越小.(4)在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°,这种说法是否正确?提示:不正确,在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转的,故它形成的角为-90°.(5)当角的始边和终边确定后,这个角就被确定了吗?提示:不是的.虽然始、终边确定了,但旋转的方向和旋转量的大小并没有确定,所以角也就不能确定.(6)初中我们学过对顶角相等.依据现在的知识试判断一下图中角α,β是否相等?提示:不相等.角α为逆时针方向形成的角,α为正角;角β为顺时针方向形成的角,β为负角.[课前反思](1)角的概念:;(2)角的分类:;(3)终边相同的角:.[思考1]终边相同的角一定是相等的角吗?它们之间有什么关系?如何把这一类角表示出来?名师指津:不一定.相等的角的终边一定相同,但终边相同的角不一定相等,它们相差360°的整数倍.可以用集合{β|β=α+k·360°,k∈Z}表示.[思考2]区域角是指终边落在坐标系的某个区域的角,区域角如何表示?名师指津:区域角可以看作是某一范围内的终边相同角的集合.故可把区域的起始、终止边界表示出来,然后组成集合即可.讲一讲1.(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[尝试解答](1)与角α=-1 910°终边相同的角的集合为{β|β=-1 910°+k·360°,k∈Z}.∵-720°≤β<360°,∴-720°≤-1 910°+k·360°<360°,31136≤k<61136.故k=4,5,6,k=4时,β=-1 910°+4³360°=-470°.k=5时,β=-1 910°+5³360°=-110°.k=6时,β=-1 910°+6³360°=250°.(2)①在0°~360°范围内,终边在直线y=0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S1={β|β=0°+k·360°,k∈Z},而所有与180°角终边相同的角构成集合S2={β|β=180°+k·360°,k∈Z},于是,终边在直线y=0上的角的集合为S=S1∪S2={β|β=k·180°,k∈Z}.②由图形易知,在0°~360°范围内,终边在直线y=-x上的角有两个,即135°和315°,因此,终边在直线y=-x上的角的集合为S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360°,k∈Z}={β|β=135°+k·180°,k∈Z}.③终边在直线y=x上的角的集合为{β|β=45°+k·180°,k∈Z},结合②知所求角的集合为S={β|β=45°+k·180°,k∈Z}∪{β|β=135°+k·180°,k∈Z}={β|β=45°+2k·90°,k∈Z}∪{β|β=45°+(2k+1)·90°,k∈Z}={β|β=45°+k·90°,k∈Z}.(3)终边落在OA位臵上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位臵上的角的集合为{β|β=-30°+k·360°,k∈Z}.故阴影部分角的集合可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.(1)在0°~360°范围内找与给定角终边相同的角的方法①把任意角化为α+k·360°(k∈Z且0°≤α<360°)的形式,关键是确定k.可以用观察法(α的绝对值较小),也可用除法.②要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.(2)区域角的写法可分三步①按逆时针方向找到区域的起始和终止边界;②由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;③用不等式表示区域内的角,组成集合.练一练1.在与角1 030°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角.解:1 030°÷360°=2……310°,所以1 030°=2³360°+310°,所以与角1 030°终边相同的角的集合为{α|α=k·360°+310°,k∈Z}.(1)所求的最小正角为310°.(2)取k=-1得所求的最大负角为-50°.[思考1]若α为第一象限角,则α的顶点、始边、终边各有什么特点?提示:若α为第一象限角,则α的顶点为坐标原点、始边与x轴的正半轴重合,终边处在第一象限.[思考2]如何判定象限角?提示:(1)根据图形判定;(2)根据终边相同的角的概念判定.讲一讲2.已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[尝试解答]作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.给定角α所处象限的判定方法法一:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式.第二步,判断β的终边所在的象限.第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.法二:在坐标系中画出相应的角,观察终边的位臵,角的终边落在第几象限,此角就是第几象限角.练一练2.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.解:终边在30°角的终边所在直线上的角的集合为S 1={α|α=30°+k ·180°,k ∈Z },终边在180°-75°=105°角的终边所在直线上的角的集合为S 2={α|α=105°+k ·180°,k ∈Z },因此终边在图中阴影部分的角α的取值范围为{α|30°+k ·180°≤α<105°+k · 180°,k ∈Z }.讲一讲3.若α是第二象限角,则2α,α2分别是第几象限的角? [尝试解答] (1)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴180°+k ·720°<2α<360°+k ·720°,∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z ). 法一:①当k =2n (n ∈Z )时,45°+n ·360°<α2<90°+n ·360°(n ∈Z ),即α2是第一象限角;②当k =2n +1(n ∈Z )时,225°+n ·360°<α2<270°+n ·360°(n ∈Z ),即α2是第三象限角.故α2是第一或第三象限角. 法二:∵45°+k ·180°表示终边为一、三象限角平分线的角,90°+k ·180°(k ∈Z )表示终边为y 轴的角,∴45°+k ·180°<α2<90°+k ·180°(k ∈Z )表示如图中阴影部分图形.即α2是第一或第三象限角.(1)nα所在象限的判断方法确定nα终边所在的象限,先求出nα的范围,再直接转化为终边相同的角即可. (2)αn所在象限的判断方法 已知角α所在象限,要确定角αn所在象限,有两种方法: ①用不等式表示出角αn的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.K 练一练3.在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角.(1)360°;(2)720°;(3)2 016°;(4)-120°.解:如图所示,分别作出各角.可以发现(1)360°=0°+360°,(2)720°=0°+2³360°,因此,在0°~360°范围内,这两个角均与0°角终边相同.所以这两个角不属于任何一个象限.(3)2 016°=216°+5³360°,所以在0°~360°范围内,与2 016°角终边相同的角是216°,所以2 016°是第三象限角.(4)-120°=240°-360°,所以在0°~360°范围内,与-120°角终边相同的角是240°,所以-120°是第三象限角.4.已知角α为第三象限角,试确定角2α,α2是第几象限角.解:∵α为第三象限角,∴k ·360°+180°<α<k ·360°+270°(k ∈Z ).(1)(2k +1)·360°<2α<(2k +1)·360°+180°(k ∈Z ),则2α可能是第一象限角、第二象限角或终边在y 轴非负半轴上的角.(2)k ·180°+90°<α2<k ·180°+135°(k ∈Z ), 当k =2n (n ∈Z )时,n ·360°+90°<α2<n ·360°+135°(n ∈Z ), 此时α2为第二象限角; 当k =2n +1(n ∈Z )时,n ·360°+270°<α2<n ·360°+315°(n ∈Z ), 此时α2为第四象限角. 综上所述,α2可能是第二象限角或第四象限角. ———————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是nα及αn所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示,见讲1;(2)象限角及nα、αn所处象限的判断,见讲2和讲3. 3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k ,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k ·360°,得到所求.课下能力提升(一)[学业水平达标练]题组1终边相同的角及区域角的表示1.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k²360°,k∈Z}解析:选C由于-457°=-1³360°-97°=-2³360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.2.终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}解析:选D因为直线过原点,它有两个部分,一部分出现在第二象限,一部分出现在第四象限,所以排除A、B.又C项中的角出现在第一、三象限,故选D.3.与角-1 560°终边相同的角的集合中,最小正角是________,最大负角是________.解析:-1 560°=(-5)³360°+240°,而240°=360°-120°,故最小正角为240°,而最大负角为-120°.答案:240°-120°4.已知-990°<α<-630°,且α与120°角的终边相同,则α=________.解析:∵α与120°角终边相同,故有α=k·360°+120°,k∈Z.又-990°<α<-630°,∴-990°<k·360°+120°<-630°,即-1 110°<k·360°<-750°.当k=-3时,α=(-3)·360°+120°=-960°.答案:-960°5.(1)写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α<720°的元素α写出来:①60°;②-21°.(2)试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:(1)①S={α|α=60°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-300°,60°,420°;②S ={α|α=-21°+k ·360°,k ∈Z },其中适合不等式-360°≤α<720°的元素α为:-21°,339°,699°.(2)终边在直线y =-3x 上的角的集合S ={α|α=k ·360°+120°,k ∈Z }∪{α|α=k · 360°+300°,k ∈Z }={α|α=k ·180°+120°,k ∈Z },其中适合不等式-180°≤α< 180°的元素α为:-60°,120°.题组2 象限角的判断6.-1 120°角所在象限是( ) A .第一象限B .第二象限 C .第三象限D .第四象限解析:选D 由题意,得-1 120°=-4³360°+320°,而320°在第四象限,所以-1 120°角也在第四象限.7.下列叙述正确的是( )A .三角形的内角必是第一、二象限角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:选B 90°的角是三角形的内角,它不是第一、二象限角,故A 错;280°的角是第四象限角,它是正角,故C 错;-100°的角是第三象限角,它比钝角小,故D 错.8.若α是第四象限角,则180°+α一定是( ) A .第一象限角B .第二象限角 C .第三象限角D .第四象限角 解析:选B ∵α是第四象限角, ∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°. ∴180°+α在第二象限,故选B. 题组3 nα或αn所在象限的判定9.已知角2α的终边在x 轴上方,那么α是( ) A .第一象限角B .第一或第二象限角 C .第一或第三象限角D .第一或第四象限角解析:选C 由条件知k ·360°<2α<k ·360°+180°,(k ∈Z ), ∴k ·180°<α<k ·180°+90°(k ∈Z ),当k 为偶数时,α在第一象限,当k 为奇数时,α在第三象限.[能力提升综合练]1.已知集合A={α|α小于90°},B={α|α为第一象限角},则A∩B=()A.{α|α为锐角}B.{α|α小于90°}C.{α|α为第一象限角}D.以上都不对解析:选D小于90°的角包括锐角及所有负角,第一象限角指终边落在第一象限的角,所以A∩B是指锐角及第一象限的所有负角的集合,故选D.2.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.3.若集合M={x|x=45°+k·90°,k∈Z},N={x|x=90°+k·45°,k∈Z},则() A.M=N B.M NC.M N D.M∩N=∅解析:选C M={x|x=45°+k·90°,k∈Z}={x|x=(2k+1)·45°,k∈Z},N={x|x=90°+k·45°,k∈Z}={x|x=(k+2)·45°,k∈Z}.∵k∈Z,∴k+2∈Z,且2k+1为奇数,∴M N.4.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z解析:选B法一:特殊值法:令α=30°,β=150°,则α+β=180°.法二:直接法:∵角α与角β的终边关于y轴对称,∴β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.5.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.解析:将钟表拨快10分钟,则时针按顺时针方向转了10³360°12³60=5°,所转成的角度是-5°;分针按顺时针方向转了10³360°60=60°,所转成的角度是-60°.答案:-5 -606.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=________.解析:∵角5α与α具有相同的始边与终边, ∴5α=k ·360°+α,k ∈Z .得 4α=k ·360°, 当k =3时,α=270°. 答案:270°7.写出终边在如下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得 (1){α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }; (2){α|150°+k ·360°≤α≤390°+k ·360°,k ∈Z }.8.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与 670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k ·360°,k ∈Z . ∵α,β都是锐角,∴0°<α+β<180°. 取k =1,得α+β=80°.①∵α-β=670°+k ·360°,k ∈Z ,α,β都是锐角,∴-90°<α-β<90°. 取k =-2,得α-β=-50°.② 由①②,得α=15°,β=65°.第2课时 弧 度 制[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 6~P 9的内容,回答下列问题.(1)我们知道,角可以用度为单位进行度量,1度的角是如何定义的?提示:1度的角等于周角的1 360.(2)为了使用方便,数学上还采用弧度制来度量角,1弧度的角是如何定义的?提示:把长度等于半径长的弧所对的圆心角叫做1弧度的角.(3)阅读教材P6“探究”的内容,思考:①如果一个半径为r的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是多少?提示:|α|=l r.②既然角度制、弧度制都是角的度量制,那么它们之间是如何换算的?提示:π=180°.2.归纳总结,核心必记(1)度量角的两种制度(3)角度制与弧度制的换算(4)一些特殊角的度数与弧度数的对应表(5)设扇形的半径为R ,弧长为l ,α为其圆心角,则(1)在大小不同的圆中,长为1的弧所对的圆心角相等吗?提示:不相等.这是因为长为1的弧是指弧的长度为1,在大小不同的圆中,由于半径不同,所以圆心角也不同.(2)比值lr 与所取的圆的半径大小是否有关?提示:无关.(3)在具体的运算中,“弧度”二字和单位符号“rad ”可以略去不写,但“度”作单位时“°”能省略吗?提示:不能省略.(4)你认为式子“α=k ·360°+π3,k ∈Z ”正确吗?提示:不正确,在同一个式子中不能同时出现角度制与弧度制.[课前反思](1)角度制的定义: ;(2)弧度制的定义: (3)任意角的弧度数与实数的对应关系: ;(4)角的弧度数的计算公式: ;(5)角度与弧度的互化: ;(6)扇形的弧长及面积公式: .讲一讲1.有关角的度量给出以下说法:①1°的角是周角的1360,1 rad 的角是周角的12π;②1 rad 的角等于1度的角; ③180°的角一定等于π rad 的角;④“度”和“弧度”是度量角的两种不同的度量单位. 其中正确的说法是________.[尝试解答]由弧度制的定义、弧度与角度的关系知,①③④均正确;因为1 rad =⎝⎛⎭⎫180π°≈57.30°≠1°,故②不正确.答案:①③④(1)解决概念辨析问题的关键是准确理解概念.如本题中要准确理解1弧度角的概念,知道角度制与弧度制的关系.(2)角度制和弧度制的比较:①弧度制是以“弧度”为单位来度量角的单位制,而角度制是以“度”为单位来度量角的单位制.②1弧度的角是指等于半径长的弧所对的圆心角,而1度的角是指圆周角的1360的角,大小显然不同.③无论是以“弧度”还是以“度”为单位来度量角,角的大小都是一个与“半径”大小无关的值.④用“度”作为单位度量角时,“度”(即“°”)不能省略,而用“弧度”作为单位度量角时,“弧度”二字或“rad ”通常省略不写.但两者不能混用,即在同一表达式中不能出现两种度量方法.练一练1.下列说法正确的是( )A .在弧度制下,角的集合与正实数集之间建立了一一对应关系B .每个弧度制的角,都有唯一的角度制的角与之对应C .用角度制和弧度制度量任一角,单位不同,数量也不同D .-120°的弧度数是2π3答案:B讲一讲2.把下列角度化成弧度或弧度化成角度: (1)72°;(2)-300°;(3)2;(4)-2π9.[尝试解答] (1)72°=72³π180=2π5;(2)-300°=-300³π180=-5π3;(3)2=2³⎝⎛⎭⎫180π°=⎝⎛⎭⎫360π°;(4)-2π9=-⎝⎛⎭⎪⎫2π9³180π°=-40°.角度与弧度互化技巧在进行角度与弧度的换算时,抓住关系式π rad =180°是关键,由它可以得到:度数³π180=弧度数,弧度数³⎝⎛⎭⎫180π°=度数.练一练2.已知α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度表示出来,并指出它们是第几象限角;(2)将β1,β2用角度表示出来,并在-720°~0°范围内,找出与它们有相同终边的所有角.解:(1)α1=-570°=-570π180=-19π6,α2=750°=750π180=25π6.∵α1=-19π6=-2³2π+5π6,α2=25π6=2³2π+π6,∴α1是第二象限角,α2是第一象限角.(2)β1=3π5=35³180°=108°,设θ=k ·360°+108°(k ∈Z ), 则由-720°≤θ<0°,得-720°≤k ·360°+108°<0°(k ∈Z ), 解得k =-2或k =-1,∴在-720°~0°范围内,与β1有相同终边的角是-612°和-252°;β2=-π3=-13³180°=-60°,设γ=k ·360°-60°(k ∈Z ),则由-720°≤k ·360°-60°<0(k ∈Z ), 得k =-1或k =0,∴在-720°~0°范围内,与β2有相同终边的角是-60°和-420°.讲一讲3.(1)已知扇形的周长为8 cm ,圆心角为2,则扇形的面积为________cm 2.(2)已知一半径为R 的扇形,它的周长等于所在圆的周长,那么扇形的圆心角是多少弧度?面积是多少?[尝试解答] (1)设扇形的半径为r cm ,弧长为l cm ,由圆心角为2 rad ,依据弧长公式可得l =2r ,从而扇形的周长为l +2r =4r =8,解得r =2,则l =4.故扇形的面积S =12lr =12³4³2=4 cm 2.(2)设扇形的弧长为l ,由题意得2πR =2R +l ,所以l =2(π-1)R ,所以扇形的圆心角是l R =2(π-1),扇形的面积是12lR =(π-1)R 2. 答案:(1)4弧度制下涉及扇形问题的解题策略(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,r 是扇形的半径,α(0<α<2π)是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.注意:运用弧度制下的弧长公式及扇形面积公式的前提是α为弧度. 练一练3.已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形的圆心角为α(0<α<2π),半径为r ,面积为S ,弧长为l , 则l +2r =30, 故l =30-2r , 从而S =12lr =12(30-2r )r=-r 2+15r=-⎝⎛⎭⎫r -1522+2254⎝⎛⎭⎫15π+1<r <15, 所以,当r =152cm 时,α=2,扇形面积最大,最大面积为2254cm 2.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是弧度与角度的换算、扇形的弧长公式和面积公式,难点是对弧度制概念的理解.2.本节要牢记弧度制与角度制的转化公式 (1)π=180°;(2)1°=π180 rad ;(3)1 rad =⎝⎛⎭⎫180π°.3.本节课要重点掌握以下规律方法 (1)弧度制的概念辨析,见讲1; (2)角度与弧度的换算,见讲2;(3)扇形的弧长公式和面积公式的应用,见讲3. 4.本节课的易错点表示终边相同角的集合时,角度与弧度不能混用.课下能力提升(二) [学业水平达标练]题组1 弧度的概念1.下列叙述中正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 解析:选D 由弧度的定义知,选项D 正确. 2.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3解析:选C 与角-π6终边相同的角的集合为{α|α=-π6+2k π,k ∈Z },当k =1时,α=-π6+2π=11π6,故选C.3.角-2912π的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D -2912π=-4π+1912π,1912π的终边位于第四象限,故选D.题组2 角度与弧度的换算 4.下列转化结果错误的是( ) A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-76πD.π12化成度是15° 解析:选C 对于A ,60°=60³π180=π3;对于B ,-10π3=-103³180°=-600°;对于C ,-150°=-150³π180=-56π;对于D ,π12=112³180°=15°.5.把角-690°化为2k π+α(0≤α<2π,k ∈Z )的形式为________. 解析:法一:-690°=-⎝⎛⎭⎫690³π180=-236π.∵-236π=-4π+π6,∴-690°=-4π+π6.法二:-690°=-2³360°+30°,则-690°=-4π+π6.答案:-4π+π66.已知角α=2 010°.(1)将α改写成θ+2k π(k ∈Z ,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角. 解析:(1)2 010°=2 010³π180=67π6=5³2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为β=7π6+2k π(k ∈Z ).又-5π≤β<0,∴k =-3,-2,-1.当k =-3时,β=-29π6;当k =-2时,β=-17π6;当k =-1时,β=-5π6.(3)与α终边相同的角可以写为γ=7π6+2k π(k ∈Z ).又0≤γ<5π,∴k =0,1.当k =0时,γ=7π6;当k =1时,γ=19π6.题组3 扇形的弧长公式和面积公式的应用7.在半径为10的圆中,240°的圆心角所对的弧长为( ) A.403π B.203π C.2003D.4003π 解析:选A 240°=240180π=43π,∴弧长l =43π³10=403π,选A.8.若扇形的面积为3π8,半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π16解析:选B S 扇形=12lR =12(αR )·R =12αR 2,由题中条件可知S 扇形=3π8,R =1,从而α=2S 扇形R 2=3π41=3π4,故选B. 9.一个扇形的面积为1,周长为4,则圆心角的弧度数为________. 解析:设扇形的半径为R ,弧长为l ,则2R +l =4. 根据扇形面积公式S =12lR ,得1=12l ·R .联立⎩⎪⎨⎪⎧2R +l =4,12l ·R =1.解得R =1,l =2,∴α=l R =21=2.答案:210.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.解:∵120°=120180π=23π,∴l =6³23π=4π,∴AB ︵的长为4π.∵S 扇形OAB =12lr =12³4π³6=12π,如图所示,有S △OAB =12³AB ³OD (D 为AB 中点)=12³2³6cos 30°³3=9 3. ∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.[能力提升综合练]1.角α的终边落在区间⎝⎛⎭⎫-3π,-5π2内,则角α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C -3π的终边在x 轴的非正半轴上,-5π2的终边在y 轴的非正半轴上,故角α为第三象限角.2.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( ) A.1sin 0.5B .sin 0.5C .2sin 0.5D .tan 0.5解析:选A 连接圆心与弦的中点,则弦心距、弦长的一半、半径构成一个直角三角形.弦长的一半为1,弦所对的圆心角也为1,所以圆的半径为1sin 0.5,所以该圆心角所对的弧长为1³1sin 0.5=1sin 0.5,故选A.3.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.π3 B.2π3C.3D .2 解析:选C 如图,设圆的半径为R ,则圆的内接正三角形的边长为3R ,所以圆弧长度为3R 的圆心角的弧度数α=3RR= 3.4.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z },Q ={α|-4≤α≤4},则P ∩Q =( ) A .∅B .{α|-4≤α≤-π,或0≤α≤π}C .{α|-4≤α≤4}D .{α|0≤α≤π}解析:选B 如图,在k ≥1或k ≤-2时,[2k π,(2k +1)π]∩[-4,4]为空集,分别取k =-1,0,于是A ∩B ={α|-4≤α≤-π,或0≤α≤π}.5.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为________. 解析:A +B +C =π,又A ∶B ∶C =3∶5∶7,所以A =π5,B =π3,C =7π15.答案:π5,π3,7π156.若角α的终边与8π5角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是________.解析:由题意,得α=8π5+2k π,∴α4=2π5+k π2(k ∈Z ). 令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10.答案:2π5,9π10,7π5,19π107.已知α=-800°.(1)把α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限角;(2)求γ,使γ与α的终边相同,且γ∈⎝⎛⎭⎫-π2,π2.解:(1)∵-800°=-3³360°+280°,280°=14π9,∴α=-800°=14π9+(-3)³2π.∵α与14π9角终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z .又γ∈⎝⎛⎭⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z ,解得k =-1,∴γ=-2π+14π9=-4π9.8.如图所示,已知一长为3dm ,宽为1 dm 的长方体木块在桌面上做无滑动的翻滚,翻滚到第四次时被一小木板挡住,使木块底面与桌面成30°的角.求点A 走过的路径长及走过的弧所在扇形的总面积.解:AA 1︵所在的圆半径是2 dm ,圆心角为π2;A 1A 2︵所在的圆半径是1 dm ,圆心角为π2;A 2A 3所在的圆半径是3dm ,圆心角为π3,所以点A 走过的路径长是三段圆弧之和,即2³π2+1³π2+3³π3=(9+23)π6(dm).三段圆弧所在扇形的总面积是12³π³2+12³π2³1+12³3π3³3=7π4(dm 2).第1课时 三角函数的定义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 11~P 15的内容,回答下列问题.如图,设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它的终边在第一象限.在α的终边上任取一点P (a ,b ),它与原点的距离r =a 2+b 2>0.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .(1)根据初中学过的三角函数定义,你能表示出sin α,cos α,tan α的值吗?提示:sin_α=MP OP =b r ,cos_α=OM OP =a r ,tan_α=MP OM =ba.(2)根据相似三角形的知识,对于确定的角α,请问(1)的结果会随点P 在α终边上的位置的改变而改变吗?提示:不会随P 点在终边上的位臵的改变而改变.(3)若将点P 取在使线段OP 的长r =1的特殊位置上,如图所示,则sin α,cos α,tan α各为何值?提示:sin_α=b ,cos_α=a ,tan_α=ba.(4)以上3个问题中的角α为锐角,若α是一个任意角,上述结论还成立吗? 提示:上述结论仍然成立.(5)一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α,cos α,tan α为何值?提示:sin_α=y r ,cos_α=x r ,tan_α=yx .2.归纳总结,核心必记 (1)任意角的三角函数的定义α=y ; (3)规律:一全正、二正弦、三正切、四余弦. (4)公式一①终边相同的角的同一三角函数的值相等. ②公式:sin(α+k ·2π)=sin_α, cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .[问题思考]。
人版高中数学A版必修四优秀教学案[完整版]
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考
新课标人教 A 版高中数学必修 4 优秀教案完整版
WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
范文.范例.参考 WORD 格式整理版
2017-2018学年高中数学必修4全册学案含解析人教A版287P
2017~2018学年人教A版高中数学必修4全册学案解析目录✧第一章三角函数1.1.1任意角✧第一章三角函数1.1.2蝗制✧第一章三角函数1.2.1任意角的三角函数第一课时三角函数的定义✧第一章三角函数1.2.1任意角的三角函数第二课时三角函数线及其应用✧第一章三角函数1.2.2同角三角函数的基本关系✧第一章三角函数1.3三角函数的诱导公式一✧第一章三角函数1.3三角函数的诱导公式二✧第一章三角函数1.4.1正弦函数余弦函数的图象✧第一章三角函数1.4.2正弦函数余弦函数的性质一✧第一章三角函数1.4.2正弦函数余弦函数的性质二✧第一章三角函数1.4.3正切函数的性质与图象✧第一章三角函数1.5函数y=Asinωx+φ的图象一✧第一章三角函数1.5函数y=Asinωx+φ的图象二✧第一章三角函数1.6三角函数模型的简单应用✧第二章平面向量2.1平面向量的实际背景及基本概念✧第二章平面向量2.2.1向量加法运算及其几何意义✧第二章平面向量2.2.2向量减法运算及其几何意义✧第二章平面向量2.2.3向量数乘运算及其几何意义✧第二章平面向量2.3.1平面向量基本定理✧第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算✧第二章平面向量2.3.4平面向量共线的坐标表示✧第二章平面向量2.4.1平面向量数量积的物理背景及其含义✧第二章平面向量2.4.2平面向量数量积的坐标表示模夹角✧第二章平面向量2.5平面向量应用举例✧第三章三角恒等变换3.1.1两角差的余弦公式✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式1 ✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式2 ✧第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式✧第三章三角恒等变换3.2简单的三角恒等变换1.1.1任意角[提出问题]问题1:当钟表慢了(或快了),我们会将分针按某个方向转动,把时间调整准确.在调整的过程中,分针转动的角度有什么不同?提示:旋转方向不同.问题2:在体操或跳水比赛中,运动员会做出“转体两周”“向前翻腾两周半”等动作,做上述动作时,运动员分别转体多少度?提示:顺时针方向旋转了720°或逆时针方向旋转了720°,顺时针方向旋转了900°.[导入新知]角的分类1.按旋转方向2.(1)角的终边在第几象限,则称此角为第几象限角;(2)角的终边在坐标轴上,则此角不属于任何一个象限.[化解疑难]1.任意角的概念认识任意角的概念应注意三个要素:顶点、始边、终边.(1)用旋转的观点来定义角,就可以把角的概念推广到任意角,包括任意大小的正角、负角和零角.(2)对角的概念的认识关键是抓住“旋转”二字.①要明确旋转方向;②要明确旋转角度的大小;③要明确射线未作任何旋转时的位置.2.象限角的前提条件角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.[提出问题]在条件“角的顶点与坐标原点重合,始边与x轴非负半轴重合”下,研究下列角:30°,390°,-330°.问题1:这三个角的终边位置相同吗?提示:相同.问题2:如何用含30°的式子表示390°和-330°?提示:390°=1×360°+30°,-330°=-1×360°+30°.问题3:确定一条射线OB,以它为终边的角是否唯一?提示:不唯一.[导入新知]终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={}β|β=α+k·360°,k∈Z,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[化解疑难]所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下几点.(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°,k∈Z与α之间用“+”连接,如k·360°-30°,k∈Z应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,终边相同的角有无数个,它们相差周角的整数倍;相等的角终边一定相同.[例1] 已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[解] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.[类题通法]象限角的判断方法(1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.(2)根据终边相同的角的概念把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.[活学活用]在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角.(1)360°;(2)720°;(3)2 012°;(4)-120°.解:如图所示,分别作出各角,可以发现:(1)360°=0°+360°,(2)720°=0°+2×360°,因此,在0°~360°范围内,这两个角均与0°角终边相同.所以这两个角不属于任何一个象限.(3)2 012°=212°+5×360°,所以在0°~360°范围内,与2 012°角终边相同的角是212°,所以2 012°是第三象限角.(4)-120°=240°-360°,所以在0°~360°范围内,与-120°角终边相同的角是240°,所以-120°是第三象限角.[例2] (1)720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[解] (1)与角α=- 1 910°终边相同的角的集合为{}β|β=-1 910°+k ·360°,k ∈Z .∵-720°≤β<360°,∴-720°≤-1 910°+k ·360°<360°,∴31136≤k <61136, 故k =4,5,6.k =4时,β=-1 910°+4×360°=-470°.k =5时,β=-1 910°+5×360°=-110°.k =6时,β=-1 910°+6×360°=250°.(2)①在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k ·360°,k ∈Z},而所有与180°角终边相同的角构成集合S 2={β|β=180°+k ·360°,k ∈Z},于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k ·180°,k ∈Z}.②由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k ·360°,k ∈Z}∪{β|β=315°+k ·360°,k ∈Z}={β|β=135°+k ·180°,k ∈Z}.③终边在直线y =x 上的角的集合为{β|β=45°+k ·180°,k ∈Z},结合②知所求角的集合为S ={β|β=45°+k ·180°,k ∈Z}∪{β|β=135°+k ·180°,k ∈Z}={β|β=45°+2k ·90°,k ∈Z}∪{β|β=45°+(2k +1)·90°,k ∈Z}={β|β=45°+k ·90°,k ∈Z}.(3)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z},终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z},故阴影部分角的集合可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.[类题通法]1.常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.2.区域角是指终边落在坐标系的某个区域的角,其写法可分三步(1)先按逆时针方向找到区域的起始和终止边界;(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;(3)用不等式表示区域内的角,组成集合.[活学活用]1.将下列各角表示为α+k·360°(k∈Z,0°≤α<360°)的形式,并指出是第几象限角.(1)420°;(2)-495°;(3)1 020°.答案:(1)420°=60°+360°第一象限角(2)-495°=225°-2×360°第三象限角(3)1 020°=300°+2×360°第四象限角2.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.答案:{α|30°+k·180°≤α<105°+k·180°,k∈Z}分别是第几象限角?[例3] 若α是第二象限角,则2α,2[解] (1)∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴180°+k·720°<2α<360°+k·720°(k∈Z),∴2α是第三或第四象限的角,或角的终边在y轴的非正半轴上.(2)∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z). ①当k =2n (n ∈Z)时,45°+n ·360°<α2<90°+n ·360°(n ∈Z), 即α2是第一象限角; ②当k =2n +1(n ∈Z)时,225°+n ·360°<α2<270°+n ·360°(n ∈Z), 即α2是第三象限角. 故α2是第一或第三象限角. [类题通法]1.n α所在象限的判断方法确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可. 2.αn 所在象限的判断方法已知角α所在象限,要确定角αn所在象限,有两种方法: (1)用不等式表示出角αn的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;……;被n 除余n -1.从而得出结论.(2)作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.标号为几的区域,就是根据α终边所在的象限确定αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.[活学活用]已知角α为第三象限角,试确定角2α,α2分别是第几象限角. 答案:2α可能是第一象限角、第二象限角或终边在y 轴非负半轴上的角α2可能是第二象限角或第四象限角1.角的概念的易错点[典例] 下列说法中正确的是( )A.三角形的内角必是第一、二象限角B.第一象限角必是锐角C.不相等的角终边一定不相同D.若β=α+k·360°(k∈Z),则α和β终边相同[解析] 90°角可以是三角形的内角,但它不是第一、二象限角;390°角是第一象限角,但它不是锐角;390°角和30°角不相等,但终边相同,故A、B、C均不正确.对于D,由终边相同的角的概念可知正确.[答案] D[易错防范]1.若三角形是直角三角形,则有一个角为直角,且直角的终边在y轴的非负半轴上,不属于任何象限.若忽视此点,则易错选A.2.锐角是第一象限角,但第一象限角不一定是锐角,如380°角为第一象限角,但它不是锐角.若混淆这两个概念,则易误选B.3.当角的范围扩充后,相差k·360°(k∈Z)的角的终边相同.若忽视此点,易错选C.4.解决好此类问题应注意以下三点:(1)弄清直角和象限角的区别,把握好概念的实质内容.(2)弄清锐角和象限角的区别.(3)对角的认识不能仅仅局限于0°~360°.[成功破障]下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角大于第一象限角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角.其中正确命题的序号为________.答案:①[随堂即时演练]1.把一条射线绕着端点按顺时针方向旋转240°所形成的角的大小是( )A.120°B.-120°C.240° D.-240°答案:D2.与-457°角的终边相同的角的集合是( )A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}答案:C3.下列说法中正确的序号有________.①-65°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.答案:①②③④4.在0°~360°范围内与-1 050°终边相同的角是________,它是第________象限角.答案:30°一5.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.答案:S={α|α=120°+k·180°,k∈Z} 适合不等式-180°≤α<180°的元素α为-60°,120°[课时达标检测]一、选择题1.-435°角的终边所在的象限是( )A.第一象限B.第二象限C.第三象限 D.第四象限答案:D2.终边在第二象限的角的集合可以表示为( )A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}答案:D3.若α是第四象限角,则-α一定是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角答案:A4.集合M={α|α=k·90°,k∈Z}中各角的终边都在( )A.x轴非负半轴上B.y轴非负半轴上C.x轴或y轴上D.x轴非负半轴或y轴非负半轴上答案:C5.角α与角β的终边关于y轴对称,则α与β的关系为( )A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z答案:B二、填空题6.已知角α=-3 000°,则与角α终边相同的最小正角是________.答案:240°7.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案:-5 -608.已知角2α的终边在x轴的上方,那么α是第________象限角.答案:一或三三、解答题9.如果θ为小于360°的正角,这个角θ的4倍角的终边与这个角的终边重合,求θ的值.解:由题意得4θ=θ+k·360°,k∈Z,∴3θ=k·360°,θ=k·120°,又0°<θ<360°,∴θ=120°或θ=240°.10.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①α-β=670°+k·360°,k∈Z,∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.11.写出终边在下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得(1){α|30°+k·360°≤α≤150°+k·360°,k∈Z};(2){α|150°+k·360°≤α≤390°+k·360°,k∈Z}.1.1.2 弧 度 制[提出问题]问题1:在角度制中,把圆周等分成360份,其中的一份是多少度? 提示:1°.问题2:半径为1的圆的周长是2π,即周长为2π时,对应的圆心角是360°,那么弧长为π时,对应的圆心角是多少?提示:180°.问题3:在给定半径的圆中,弧长一定时,圆心角确定吗? 提示:确定. [导入新知] 1.角度制与弧度制 (1)角度制①定义:用度作为单位来度量角的单位制. ②1度的角:周角的1360作为一个单位. (2)弧度制①定义:以弧度作为单位来度量角的单位制. ②1弧度的角:长度等于半径长的弧所对的圆心角. 2.任意角的弧度数与实数的对应关系正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=l r.[化解疑难]角度制和弧度制的比较(1)弧度制与角度制是以不同单位来度量角的单位制. (2)1弧度的角与1度的角所指含义不同,大小更不同.(3)无论是以“弧度”还是以“度”为单位来度量角,角的大小都是一个与“半径”大小无关的值.(4)用“度”作为单位度量角时,“度”(即“°”)不能省略,而用“弧度”作为单位度量角时,“弧度”二字或“rad”通常省略不写.[提出问题]问题1:周角是多少度?是多少弧度? 提示:360°,2π.问题2:半圆所对的圆心角是多少度?是多少弧度? 提示:180°,π.问题3:既然角度与弧度都是角的度量单位制,那么它们之间如何换算? 提示:π=180°. [导入新知]1.弧度与角度的换算[化解疑难]角度与弧度互化的原则和方法 (1)原则:牢记180°=π rad , 充分利用1°=π180 rad ,1 rad =⎝⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n , 则α rad =⎝⎛⎭⎪⎫α·180π°;n °=n ·π180 rad.[扇形的弧长及面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则扇形的弧长及面积公式的记忆(1)扇形的弧长公式的实质是角的弧度数的计算公式的变形:|α|=l r⇔l =r |α|. (2)扇形的面积公式S =12lR 与三角形的面积公式极为相似(把弧长看作底,把半径看作高),可以类比记忆.[例1] (1)72°;(2)-300°;(3)2;(4)-2π9.[解] (1)72°=72×π180=2π5;(2)-300°=-300×π180=-5π3;(3)2=2×⎝⎛⎭⎪⎫180π°=⎝ ⎛⎭⎪⎫360π°;(4)-2π9=-⎝ ⎛⎭⎪⎫2π9×180π°=-40°.[类题通法] 角度与弧度互化技巧在进行角度与弧度的换算时,抓住关系式π rad =180°是关键,由它可以得到:度数×π180=弧度数,弧度数×180π=度数. [活学活用]已知α=15°,β=π10,γ=1,θ=105°,φ=7π12,试比较α,β,γ,θ,φ的大小.答案:α<β<γ<θ=φ[例2] 2. (2)已知一半径为R 的扇形,它的周长等于所在圆的周长,那么扇形的圆心角是多少弧度?面积是多少?[解] (1)4(2)设扇形的弧长为l ,由题意得2πR =2R +l ,所以l =2(π-1)R ,所以扇形的圆心角是lR=2(π-1),扇形的面积是12Rl =(π-1)R 2.[类题通法]弧度制下涉及扇形问题的攻略(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,r 是扇形的半径,α是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.注意:运用弧度制下的弧长公式及扇形面积公式的前提是α为弧度. [活学活用]已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?答案:r =152 cm 时,α=2,扇形面积最大,最大面积为2254cm 2.[例3] 的角的集合.[解] (1)如题图①,∵330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6, 而75°=75×π180=5π12,∴终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6<θ<2k π+5π12,k ∈Z .(2)如题图②,∵30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z . [类题通法]用弧度制表示角应关注的三点(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时需进行角度与弧度的换算.注意单位要统一.(2)在表示角的集合时,可以先写出一周范围(如-π~π,0~2π)内的角,再加上2k π,k ∈Z.(3)终边在同一直线上的角的集合可以合并为{x |x =α+k π,k ∈Z};终边在相互垂直的两直线上的角的集合可以合并为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =α+k ·π2,k ∈Z. 在进行区间合并时,一定要做到准确无误. [活学活用]以弧度为单位,写出终边落在直线y =-x 上的角的集合. 答案:αα=34π+k π,k ∈Z1.弧度制下的对称关系[典例] 若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________.[解析] 如图所示,设角π6的终边为OA ,OA 关于直线y =x 对称的射线为OB ,则以OB 为终边且在0到2π之间的角为π3,故以OB 为终边的角的集合为αα=π3+2k π,k ∈Z.∵α∈(-4π,4π), ∴-4π<π3+2k π<4π(k ∈Z),∴-136<k <116(k ∈Z).∵k ∈Z ,∴k =-2,-1,0,1,∴α=-11π3,-5π3,π3,7π3.[答案] -11π3,-5π3,π3,7π3[多维探究]在弧度制下,常见的对称关系如下(1)若α与β的终边关于x 轴对称,则α+β=2k π(k ∈Z); (2)若α与β的终边关于y 轴对称,则α+β=(2k +1)π(k ∈Z); (3)若α与β的终边关于原点对称,则α-β=(2k +1)π(k ∈Z); (4)若α与β的终边在一条直线上,则α-β=k π(k ∈Z). [活学活用]1.若α和β的终边关于x 轴对称,则α可以用β表示为( ) A .2k π+β (k ∈Z) B .2k π-β (k ∈Z) C .k π+β (k ∈Z) D .k π-β (k ∈Z) 答案:B2.在平面直角坐标系中,α=-2π3,β的终边与α的终边分别有如下关系时,求β.(1)若α,β的终边关于x 轴对称; (2)若α,β的终边关于y 轴对称; (3)若α,β的终边关于原点对称; (4)若α,β的终边关于直线x +y =0对称. 答案:(1)β=2π3+2k π,k ∈Z(2)β=-π3+2k π,k ∈Z(3)β=π3+2k π,k ∈Z(4)β=π6+2k π,k ∈Z[随堂即时演练]1.下列命题中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用弧度制度量角时,角的大小与圆的半径有关 答案:D2.若α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:C3.-135°化为弧度为______,11π3化为角度为______.答案:-34π 660°4.已知半径为12 cm ,弧长为8π cm 的弧,其所对的圆心角为α,则与角α终边相同的角的集合为______________.答案:⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=2π3+2k π,k ∈Z5.设角α=-570°,β=3π5.(1)将α用弧度制表示出来,并指出它所在的象限;(2)将β用角度制表示出来,并在-720°~0°之间找出与它有相同终边的所有角. 答案:(1)α=-19π6;α在第二象限;(2)β=108°;在-720°~0°之间与β有相同终边的角的大小为-612°和-252°.[课时达标检测]一、选择题1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径长的弧 C .1弧度是1度的弧与1度的角之和 D .1弧度是长度等于半径长的弧所对的圆心角 答案:D2.1 920°化为弧度数为( ) A.163 B.323 C.16π3D.32π3答案:D 3.29π6是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案:B4.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.π3B.2π3C. 3 D .2答案:C5.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z},Q ={α|-4≤α≤4},则P ∩Q 等于( ) A .∅B .{α|-4≤α≤-π,或0≤α≤π}C .{α|-4≤α≤4}D .{α|0≤α≤π} 答案:B二、填空题6.用弧度制表示终边落在x 轴上方的角的集合为________. 答案:{α|2k π<α<2k π+π,k ∈Z}7.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.答案:38.若角α的终边与85π的终边相同,则在[0,2π]上,终边与α4的终边相同的角有________.答案:2π5,9π10,7π5,19π10三、解答题9.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角;(2)求γ,使γ与α的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=14π9+(-3)×2π.∵α与角14π9终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z.又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.10.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t ,则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π, 所以t =4(s),即P ,Q 第一次相遇时所用的时间为4 s.P 点走过的弧长为4π3×4=16π3,Q 点走过的弧长为2π3×4=8π3.11.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.解:∵120°=120180π=23π,∴l =6×23π=4π,∴AB 的长为4π.∵S 扇形OAB =12lr =12×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =12×AB ×OD =12×2×6cos 30°×3=9 3.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.1.2.1 任意角的三角函数第一课时 三角函数的定义[提出问题使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .问题1:角α的正弦、余弦、正切分别等于什么? 提示:sin α=yr ,cos α=x r ,tan α=y x.问题2:对于确定的角α,sin α,cos α,tan α是否随P 点在终边上的位置的改变而改变?提示:否.问题3:若|OP |=1,则P 点的轨迹是什么?这样表示sin α,cos α,tan α有何优点?提示:P 点的轨迹是以原点O 为圆心,以1为半径的单位圆,即P 点是单位圆与角α终边的交点,在单位圆中定义sin α,cos α,tan α更简便.[导入新知]1.任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cosα,即cos α=x ;yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.[化解疑难]对三角函数定义的理解(1)三角函数是一种函数,它满足函数的定义,可以看成是从角的集合(弧度制)到一个比值的集合的对应.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.(3)三角函数是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关.[提出问题]问题1:若角α是第二象限角,则它的正弦、余弦和正切值的符号分别怎样?提示:若角α为第二象限角,则x<0,y>0, sin α>0,cos α<0,tan α<0.问题2:当角α是第四象限角时,它的正弦、余弦和正切值的符号分别怎样?提示:sin α<0,cos α>0,tan α<0.问题3:取角α分别为30°,390°,-330°,它们的三角函数值是什么关系?为什么?提示:相等.因为它们的终边重合.问题4:取α=90°,-90°时,它们的正切值存在吗?提示:不存在.[导入新知]1.三角函数的定义域2.三角函数值的符号[化解疑难]巧记三角函数值的符号三角函数值的符号变化规律可概括为“一全正、二正弦、三正切、四余弦”.即第一象限各三角函数值均为正,第二象限只有正弦值为正,第三象限只有正切值为正,第四象限只有余弦值为正.[提出问题]问题:若角α与β的终边相同,根据三角函数的定义,你认为sin α与sin β,cos α与cos β,tan α与tan β之间有什么关系?提示:sin α=sin β,cos α=cos β,tan α=tan β. [导入新知]终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等. (2)公式:sin(α+k ·2π)=sin_α, cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z. [化解疑难]诱导公式一的结构特点(1)其结构特点是函数名相同,左边角为α+k ·2π,右边角为α.(2)由公式一可知,三角函数值有“周而复始”的变化规律,即角的终边每绕原点旋转一周,函数值将重复出现.(3)此公式也可以记为:sin(α+k ·360°)=sin α,cos(α+k ·360°)=cos α,tan(α+k ·360°)=tan α,其中k ∈Z.[例1] ,cos α=________,tan α=________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值. [解] (1)-1213 513 -125(2)直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =-2+32=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+-32=2,所以sin α=-32,cos α=12,tan α=- 3.[类题通法]利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种: ①先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值.②注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=a a 2+b2,正切值tan α=ba. (2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]已知角α终边上一点P 的坐标为(4a ,-3a )(a ≠0),求2sin α+cos α的值. 答案:2sin α+cos α=⎩⎪⎨⎪⎧-25,a >0,25,a <0[例2] (1)若sin αtan α<0,且tan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°;②cos 3·tan ⎝ ⎛⎭⎪⎫-2π3. [解] (1)C(2)①∵105°,230°分别为第二、第三象限角,∴sin 105°>0,cos 230°<0.于是sin 105°·cos 230°<0. ②∵π2<3<π,∴3是第二象限角,∴cos 3<0.又∵-2π3是第三象限角,∴tan ⎝ ⎛⎭⎪⎫-2π3>0,∴cos 3·tan ⎝ ⎛⎭⎪⎫-2π3<0. [类题通法]三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立;(2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立;(3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立;(4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.[活学活用]已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B[例3] (1)sin(-1 395°)cos 1 110°+cos(-1 020°)·sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.[类题通法]诱导公式一的应用策略应用诱导公式一时,先将角转化为0~2π范围内的角,再求值.对于特殊角的三角函数值一定要熟记.[活学活用]求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎪⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°. 答案:(1)32+1 (2)11.应用三角函数定义求值[典例] (12分)已知角α的终边过点P (-3m ,m )(m ≠0),求α的正弦、余弦、正切值.[解题流程][规范解答] 由题意可得: 由|OP |=-3m 2+m 2=分)(1)当m >0时,|OP |=10|m |=10m ,(4分)则sin α=m10m=1010,cos α=-3m10m=-3 1010,tan α=m-3m =-13.(7分)[名师批注]由于题目条件中只告诉m ≠0,不知道m 的符|OP |=\r(10)|m |.此处极易忽视此点,误认为|OP |=\r(10)m ,从而导致解题不完整而失分.(2)当m <0时,|OP |=10|m |分)则sin α=-1010,cos α=3 1010,tan α=-13.(12分)根据正切函数的定义tan α=yx,本题中tan α的取值与m 的符号无关,即无论m >0还是m <0,tan α都是m -3m =-13.[活学活用]已知角α的终边上一点P (-3,y )(y ≠0),且sin α=24y ,求cos α,tan α的值.解:当y =5时,cos α=-64,tan α=-153; 当y =-5时,cos α=-64,tan α=153.[随堂即时演练]1.已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45答案:D2.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能 答案:B3.计算:sin ⎝ ⎛⎭⎪⎫-196π=________. 答案:124.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上。
高中数学人教版必修4全套教案
OA aa ab b b 2.2.1 向量的加法运算及其几何意义教学目标:1、 掌握向量的加法运算,并理解其几何意义;2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 教学思路: 一、设置情景:1、 复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置2、 情景设置:(1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:AC BC AB =+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+ (4)船速为AB ,水速为BC ,则两速度和:AC BC AB =+二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=, 规定: a + 0-= 0 + a探究:(1)两向量的和与两个数的和有什么关系? 两向量的和仍是一个向量;(2)当向量a 与b 不共线时, |a +b |<|a |+|b |;什么时候|a +b |=|a |+|b |,什么时候|a +b |=|a |-|b |,当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; 当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |; 若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(3)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加.3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:a +b =b +a5.你能证明:向量加法的结合律:(a +b ) +c =a + (b +c ) 吗? 6.由以上证明你能得到什么结论? 多个向量的加法运算可以按照任意的次序、任意的组合来进行. 三、应用举例: 例二(P83—84)略变式1、一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为h km /4,求水流的速度.变式2、一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船的实际航行的速度的大小为h km /4,方向与水流间的夹角是60︒,求1v 和2v .练习:P84面1、2、3、4题 四、小结1、向量加法的几何意义;2、交换律和结合律;3、|a +b | ≤ |a | + |b |,当且仅当方向相同时取等号.五、课后作业:《优化设计》作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生:逆时针旋转300;顺时针旋转300.
师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。本节课将在已掌握 ~ 角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.
2.角的概念的推广:
(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角α。其中射线OA叫角α的始边,射线OB叫角α的终边,O叫角α的顶点。
3.正角、负角、零角概念
师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它等于300与7500;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?
师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。
师生讨论:好,按照象限角定义,图中的300,3900,-3300角,都是第一象限角;3000,-600角,都是第四象限角;5850角是第三象限角。
师:很好,不过老师还有几事不明,要请教大家:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?
6.例题讲评
例1设 , ,那么有(D).
A. B. C. ( )D.
例2用集合表示:
(1)各象限的角组成的集合. (2)终边落在 轴右侧的角的集合.
解:(1)第一象限角:{α|k360oπ<α<k360o+90o,k∈Z}
1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?
2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?
3.是不是任意角都可以归结为是象限角,为什么?
处理:学生思考片刻后回答,教师适时予以纠正。
答:1.不行,始边包括端点(原点);2.端点在原点上;
3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。
教学过程:
一、引入
同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
二、新课
1.回忆:初中是任何定义角的?
生:图中发现3900,-3300与300相差3600的整数倍,例如,3900=3600+300,-3300=-3600+300;与300角同终边的角还有7500,-6900等。
师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差3600的整数倍。例如:7500=2×3600+300;-6900=-2×3600+300。那么除了这些角之外,与300角终边相同的角还有:
生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。
师:如图3,以OA为始边的角α=-1500,β=-6600。特别地,当一条射线没有作任何旋转时,我们也认为这是形成了一个角,并把这个角称为零角。
师:好,角的概念经过这样的推广之后,就应该包括正角、负角、零角。这里还有一点要说明:为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可简记为α.
(1)4200;(2)-750;(3)8550;(4)-5100.
答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.
5.终边相同的角的表示法
师:观察下列角你有什么发现? 3903303014701770
生:终边重合.
师:请同学们思考为什么?能否再举三个与300角同终边的角?
新课标高中数学必修4教案
第一章
4-1.1.1
教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义
教学难点:“旋转”定义角
课标要求:了解任意角的概念
4.象限角
师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。同学们已经经过预习,请一位同学回答什么叫:象限角?
生:角的顶点与原点重合,Байду номын сангаас的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。下面请大家将书上象限角的定义划好,同时思考这么三个问题:
生:锐角是第一象限角,第一象限角不一定是锐角;
师:(2)锐角就是小于900的角吗?
生:小于900的角可能是零角或负角,故它不一定是锐角;
师:(3)锐角就是00~900的角吗?
生:锐角:{θ|00<θ<900};00~900的角:{θ|00≤θ<900}.
学生练习(口答)已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?
(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?
生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
3×3600+300-3×3600+300
4×3600+300-4×3600+300
……,……,
由此,我们可以用S={β|β=k×3600+300,k∈Z}来表示所有与300角终边相同的角的集合。
师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示?
生:S={β|β=α+k×3600,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。