火力发电厂废水零排放技术方案

合集下载

火电厂废水零排放改造方案

火电厂废水零排放改造方案
对于地表水, 反渗透的预处理基本上都是采用 混凝澄清、多级过滤工艺, 经预处理后水的污染指数 一般为 3. 5 左右。大同第二发电厂的水塔和煤场的 距离很近, 循环水中的微小煤颗粒较多, 在凝汽器管 中有沉积现象。微小的煤粒在澄清过滤工艺中不易 去除干净, 对澄清过滤工艺的处理效果将有不良影 响。
为了保证反渗透能够稳定运行, 必须拿出一个 出水水质更好、运行更加可靠的预处理方案。经调 查研究, 可供选择的方案有微滤、澄清过滤加超滤 2 个方案。微滤工艺因为占地面积小, 出水水质能够 满足要求, 成为首选方案。由于这项技术在处理这 种水质的水方面还没有应用经验, 我们将做一系列 的试验来论证微滤工艺的可行性。 4. 4 厂区和生活区生活废水
根据水平衡图的数据, 可以计算得到目前电厂 的循环水浓缩倍率约为 4. 2。电厂近期的水分析资 料显示循环水的浓缩倍率为 2. 5~ 4。
循环水的补充水有 2 个水源, 水质 差别较大。 考虑到电厂今后采用册田水库水的可能性较大, 改
造后的循环水的浓缩倍率按 5 考虑。根据循环水系 统的水量计算, 循环水的排水量仍然超过今后的冲 灰、冲渣用水量。经计算, 1~ 4 号冷却塔有 360 t/ h 左右的循环水排水需要收集起来脱盐处理。
( 4) 电厂的冷却水系统、除灰、除渣系统都是用 水大户, 通过技术改造可以大大降低耗水量; 冷却水 系统如果采用闭式循环, 也可以减少水的损失;
( 5) 要采用最合理的水与废水处理工艺, 很多 工艺排放的废水经过处理, 可以回收利用, 采用何种 处理工艺, 要经过技术经济分析, 优化处理工艺;
( 6) 在注意考察处理效果、经济指标的同时, 要 特别重视工艺系统的可靠性、系统运行的灵活性。 3. 2 严格施工
厂区和生活区的生活废水量为 0. 96 万 t/ d, 现 在经过生活污水处理站处理的水量为 0. 22 万 t/ d。 生活废水的特点是有机物含量有较大的增加, 而无 机盐的含量很少。这种废水经过生物处理后, 水质 可与自来水相差不大。

火电厂废水零排放技术及工艺案例

火电厂废水零排放技术及工艺案例

火电厂废水零排放技术及工艺案例随着环境保护意识的增强和环境法规的日益严格,火电厂的环境管理也面临着更大的挑战。

废水是火电厂产生的一种主要污染物,如果不能有效处理和排放,将对周边环境造成严重影响。

因此,实现火电厂废水零排放是当前的一个重要课题。

废水零排放是指通过有效的技术手段,将产生的废水经过处理后全部达到国家废水排放标准,不对环境造成任何污染。

下面将介绍一种常用的火电厂废水零排放技术及工艺案例。

膜分离技术作为一种高效、节能的固液(气)分离技术,在废水处理中得到了广泛应用。

其基本原理是通过选择性渗透和分离作用,将废水中的污染物分离并浓缩,最终得到清洁的水和浓缩的废液。

下面以火电厂烟气脱硫废水处理为例,介绍膜分离技术在火电厂废水零排放中的应用。

火电厂烟气脱硫废水主要是脱硫过程中产生的废水,其中含有高浓度的SO42-和颗粒物等有害物质。

为了实现废水的零排放,可以采用多级反渗透(RO)工艺处理该废水。

具体工艺流程如下:1.预处理:将烟气脱硫废水首先进行过滤和沉淀,去除悬浮物和杂质,以保护后续膜组件的正常运行。

2.一级反渗透:使用一级反渗透膜组件对废水进行处理,通过膜的选择性渗透作用,去除大部分的溶解性污染物和离子。

3.二级反渗透:对一级反渗透处理后的水再次进行反渗透处理,进一步浓缩废水中的溶质和离子,提高水的纯净度。

4.浓缩液处理:根据实际情况,对二级反渗透得到的浓缩液进行处理,可以采取蒸发结晶、离子交换等技术进行处理和回收。

通过以上工艺步骤,火电厂烟气脱硫废水中的有害物质可以被有效去除和浓缩,清洁的水可达到国家的排放标准,实现零排放。

当然,废水零排放的实现需要综合考虑技术、经济和环境等因素。

不同的火电厂废水特性和废水处理目标,可能需要选择不同的技术和工艺组合来实现零排放。

因此,在实际应用中,需要对火电厂废水进行详细的实地调查和实验研究,结合具体情况来确定最佳的处理方法。

总之,火电厂废水零排放是一项具有挑战性的任务,但通过应用膜分离技术等先进工艺,结合工程实践和科学研究,可以有效地实现废水的零排放,为火电厂的可持续发展提供有力保障。

电厂废水零排放介绍

电厂废水零排放介绍

二.循环水排污零排放工艺介绍
循环水排污水先进入新增的高效澄清池和砂滤池,进行澄清软化, 降低水的质硬度和含盐量,减少排污水对后续浓缩膜的影响。清水 经泵提升进入自清洗过滤器、超滤及反渗透系统,去除水中的绝大 部分盐分。反渗透系统产生的淡水,一部分可做为循环水的补充水, 另一部分进入现有锅炉补给水系统处理,作为现有锅炉补给水系统 进水。反渗透系统产生的浓水作为脱硫系统工艺水使用。
三. 循环水排污零排放经济性分析
相关方案费用对比表
改造方案
废水达标排放
废水零排放方案一 (5倍浓缩倍率)
废水零排放方案二 (7倍浓缩倍率)
废水零排放方案二 (7倍浓缩倍率,合同能
源管理)
建设费用 560万元
4900万元
7020万元
2520万元
运行成本 396万元/年
1929万元/年
1065万元/年
臭氧处理技术的优点: 1.臭氧处理能够去除循环水中的细菌、藻类,有利用超滤系统的稳定运行。 2.臭氧处理技术能够省去中水石灰软化处理步骤,有效降低循环水中的硫酸盐。 3.臭氧处理技术不需向循环水中加入缓蚀阻垢剂,有利于循环水排污零排放预处理 系统的稳定运行。
五. 脱硫废水零排放系统简介
1.脱硫废水零排放工艺简介
脱硫废水水质较为复杂,每个工程根据燃煤煤质不同,工艺水水质不同,采用的石灰石品质 不同,均导致脱硫废水特性不同,处理重点及处理方案也有所不同。基本是一厂一水质,一厂一 方案。总体来说,当前的脱硫废水零排放技术思路如下:
脱硫废水
预处理单元
1、软化 2、除重金属 3、除固体杂质
减量单元 膜法浓缩
1、微滤、超滤 2、电渗析 3、DTRO技术
火力发电厂废水零排放介绍

火电厂废水近零排放技术

火电厂废水近零排放技术

火电厂废水近零排放技术1、实现近零排放的关键火电厂实现近零排放是将所有废水重复利用后,形成终极废水进行处理,即脱硫废水。

火电厂废水按照不同来源,主要分为生产废水、生活污水以及冷却水排水。

其中,生产废水包括化学再生废水、脱硫废水、含油废水、含煤废水、排泥废水、除灰废水及其他工业废水。

各类废水经过重复利用、梯度利用、回用等方式再次利用,最终形成高含盐量的废水,并经脱硫装置使用形成脱硫废水(如循环水排水、各种膜法工艺形成的浓水等都可以作为脱硫工艺水)。

因此,火电厂废水实现近零排放的关键在于处理脱硫废水。

2、脱硫废水常规工艺脱硫废水成分复杂,具有高浊度、高盐分、强腐蚀性及易结垢等特点,其中Cl离子浓度超过10000mg/l,pH为4.5~6.5,含有大量亚硝酸盐、悬浮物、重金属离子等。

由于水质不同于其他的工业废水,处理难度较大,必须对其进行单独处理。

目前大多数老旧电厂采用化学沉淀法处理脱硫废水,主要是通过氧化、中和、沉淀、絮凝等工艺去除脱硫废水中的重金属和悬浮物等污染。

化学沉淀法具有操作简单、运行费用较低的优点,但在实际运行中存在较多问题,如出水中SS和COD指标不达标。

此外,在污泥脱水处理中,也存在板框压滤机故障率高、运行维护困难等问题。

虽然常规脱硫废水处理工艺可以满足达标排放要求,但无法实现废水近零排放。

3、脱硫废水近零排放处理工艺截止目前,火电厂脱硫废水处理大致分为3类。

①经常规处理后,达标排放;②经常规处理后,进行梯级复用,可用于捞渣机(部分电厂干除渣后已经取消)、干灰拌湿和灰场喷洒,不对外排放;③深度处理,实现近零排放:当火电厂灰渣综合利用程度较高,干灰渣和灰场不能容纳全部脱硫废水时,通过对脱硫废水进行深度处理,实现废水不外排。

目前,主流的脱硫废水深度处理工艺由3个模块构成,即预处理、浓缩和结晶。

3.1 预处理过程预处理工程主要对脱硫废水进行软化,降低后续工艺结垢风险,可以去除悬浮物、重金属和浊度,对脱硫废水中有机物和氨氮去除效果较差,此过程对药剂的依赖性较强,并随着脱硫废水水质变化,药剂投加量差异很大,对系统运行费用产生直接影响。

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术火电厂湿法脱硫废水零排放工艺技术是指通过一系列工艺处理,将火电厂湿法脱硫产生的废水中的污染物去除或转化为无害物质,实现废水的零排放。

这种技术在环保领域具有重要意义,既可以保护水资源,又可以减少排放对环境的影响。

火电厂湿法脱硫废水主要含有浓度较高的硫酸盐、氯离子、氟离子等物质,如果直接排放到江河湖海中,会对水体生态系统造成严重污染。

因此,通过零排放工艺技术处理火电厂湿法脱硫废水,才能实现环保要求。

火电厂湿法脱硫废水零排放工艺技术大致包括以下几个步骤:预处理、中水回用、深度脱水和污泥处理。

首先,预处理是指对废水进行初步处理,主要是去除废水中的悬浮物、颜色及重金属等杂质。

这一步骤通常采用物理化学方法,如沉淀、过滤、絮凝等过程。

然后,通过中水回用技术将预处理后的废水中的水分回收利用。

利用一系列处理工艺,如过滤、反渗透、蒸发浓缩等方式,将回收的水分重新用于火力发电过程中的冷却等环节。

这种方法能够减少水的消耗,降低用水成本。

接下来,深度脱水是指对回收利用后的水进行进一步处理,将其中的废物浓缩成为固体,以便后续处理。

通常采用的方法有压滤、离心等技术,将水分脱除,得到固体废物。

最后,对产生的固体废物进行处理。

焚烧、填埋、消纳等处理方法可以有效地处理固体废物,并确保固体废物不会对环境造成二次污染。

通过以上几个步骤的综合运用,火电厂湿法脱硫废水零排放工艺技术能够实现废水的零排放。

这一技术的应用不仅可以保护水环境,减少对生态系统的影响,同时也达到了节约水资源的效果,符合可持续发展的要求。

火电厂湿法脱硫废水零排放工艺技术是当前环保领域研究的热点之一,其重要性不言而喻。

随着环保意识的提高和环境监管的加强,火电厂湿法脱硫废水零排放工艺技术的研究和应用已成为国内外研究学者和环保专家关注的焦点,大量的研究和实践表明,火电厂湿法脱硫废水零排放工艺技术在减少污染物排放、提高资源利用率等方面具有巨大的潜力和优势。

火力发电厂废水零排放技术方案

火力发电厂废水零排放技术方案

火力发电厂废水零排放技术方案为实现火力发电厂废水零排放的目标,对脱硫废水预处理工艺、脱硫废水浓缩处理工艺以及末端浓盐水的蒸发结屏,处理工艺进行技术对比,选取适合电厂实际情况的技术方案。

处理后的冷凝水可以作为工业水,使电厂水处理系统实现闭式循环,没有任何外排水,真正实现废水零排放。

1脱硫废水处理的意义我国属于水资源严重短缺且分布不均衡的国家,只有全面综合利用才是解决缺水和排污对环境污染的有效途径。

国家及社会对环保要求越来越高,同时也对火力发电厂提出了更高的要求,全厂废水必须做到零排放。

火力发电厂主要污水有生活污水、含油废水、含煤废水、工业废水、循环水冷却塔排污水以及脱硫废水,这些废水一般经过简单物化、生化处理后直接排放或部分回收利用。

火力发电厂废水回收基本上是将各部分废水用于脱硫用水,所以脱硫废水处理是全厂废水零排放的关键。

目前,国内对脱硫废水的处置方式主要是初步处理后排放。

一般是通过系列氧化还原反应将废水中的重金属污染物转化为胺化物,再通过絮凝反应沉淀除去重金属及悬浮物固体,最后调节pH值使其达到DL/T997-2006《火电厂石灰石一石膏湿法脱硫废水控制指标》的要求,但处理之后依然为高氯根、高含盐且含有微量重金属的废水。

因此,电厂湿法脱硫废水回收利用是电厂实现零排放的最大难点和关键。

2脱硫废水预处理脱硫废水中含有重金属、氟离子、化学需氧量(COD)等污染物,产生的污泥需要进行专业处理。

为减少污泥处理量,并保证后续装置运行的稳定性,脱硫废水经现有脱硫废水处理系统处理后,再进入高盐废水浓缩处理系统。

脱硫废水总硬度达到100~200mmol/L,需要进行软化处理,以避免后续浓缩处理系统以及蒸发设备结垢。

脱硫废水软化处理主要有以下2种方案。

(1)方案1:石灰一碳酸钠软化一沉淀池一过滤器处理工艺。

首先,化学加药使Ca2+,Mg2+以及硅产生沉降,然后用沉淀池做固液分离,沉淀池的上清液自流至重力滤池进行过滤除浊,出水作为高含盐废水浓缩处理系统进水。

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放〞处理技术随着中国水环保政策趋于严控,火力发电厂脱硫废水"零排放";理念不断升温。

脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与本钱。

本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。

一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置〔FGD〕当中浆液循环系统的平衡度,防止离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。

从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。

经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。

二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。

为保证脱硫系统的平安运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。

国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即"三联箱";技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。

该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。

排入自然水系后还会影响环境,潜在环境风险高。

随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。

燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。

火力发电厂废水零排放 北京污水零排放 技术方案

火力发电厂废水零排放 北京污水零排放 技术方案

火力发电厂废水零排放北京污水零排放
技术方案
在环保理念的影响下,越来越多的企业和机构重视污染造成的危害,因此会增加污水处理强度。

莱特莱德公司生产废水零排放设备十余年,回收率高,大大降低企业成本,下面小编详细介绍这个设备,您再仔细了解。

优势
1.不受污水量的限制,机动灵活,可单个使用,也可多个联合使用。

2.系统内置AI芯片实现智能调节,时刻保证良好的运行状态。

3.能耗减少约30%,化学清洗恢复性提升50%。

维护保养
1、对设备易损零件进行定期检查保养,包括清洁、润滑、高低压开关检查、拆卸调整等;
2、对设备整体定期进行严格检查和维修,包括更换耗材、零部件及设备精度调整等;
3、根据设备情况及厂区安排,可以对设备进行日常保养、年度维修等。

零排放设备应用范围
湖泊、河道污水快速净化;富磷工业污水处理。

莱特莱德公司售后服务:
工程竣工后经建设单位及检测中心检查验收,确定合格后,交付建设单位使用,工程交付建设单位使用后,将进入工程正式运行和质量保修阶段,我方承诺:
1) 我公司在设备使用前,对贵公司操作人员进行技术培训,免费提供有关技术资料;
2) 设备在正常运行中每三个月进行技术信息交流,实行产品的质量跟踪服务,使生产正常运转提高经济效益;
3) 国内做到1小时响应,24 小时内现场服务。

燃煤火力发电厂工业废水零排放方案探讨

燃煤火力发电厂工业废水零排放方案探讨

燃煤火力发电厂工业废水零排放方案探讨摘要为了寻找适合燃煤火力发电厂工业废水处理的设备、系统,我们与国内外的水处理公司进行了广泛的交流,对现有高含盐废水和脱硫废水终端处理技术有了初步了解,在此基础上我们将有选择性进行小型试验和中型试验。

本文主要对目前所接触的废水处理技术进行简要介绍和适用性比较,为实现火力发电厂全厂废水零排放做技术储备。

关键词火力发电厂;工业废水;零排放0 引言近年来我国北方城市出现大规模的雾霾天气让大家触目惊心,治理环境污染的紧迫性也愈加强烈。

目前国华公司正在实施绿色发电计划对环保设施进行升级改造以解决人们的“心肺之患”。

随着治理大气污染物的逐渐推进,“工业三废”的废水治理工作也已经提到了议事日程,国华公司超前策划、提前准备,与国内外很多的水处理公司开展技术交流,为后续实施的废水零排放积累了丰富的经验和技术储备。

本文主要针对现阶段进行的各类交流和国内两个脱硫废水零排放装置进行的实地调研,对现有的工业废水中最难处理的脱硫废水处理设备、系统、方案从技术特点方面进行比较,为后续进行小型试验、中型试验提供参考。

1 脱硫废水排放现状1.1 脱硫废水特点脱硫系统在不断运行过程中,会富集重金属离子和Cl-离子等:一方面影响脱硫效率,另一方面加速脱硫设备的腐蚀,另外还将影响石膏的品质。

因此,脱硫系统要排放一定量的废水,排放的废水具有如下特性:1)呈弱酸性,pH一般在4~6之间;2)悬浮物含量高,主要为石膏颗粒、二氧化硅及铁、铝的氢氧化物;3)废水中的主要阳离子为钙、镁等硬度离子,铁、铝等含量也较高,其它重金属离子含量不高,但远远高于GB8978-1996《污水综合排放标准》中排放标准;4)废水中阴离子主要有Cl-,SO42-、SO32-、F-等,这些离子主要来源于煤。

1.2 脱硫废水回用情况目前国内火力发电厂脱硫大多采用石灰石湿法烟气脱硫技术,所产生的废水量及可以消耗的用水点分析如下:目前火力发电厂可接收脱硫预处理后的高含盐废水的用水点主要有灰库干灰伴湿、灰场抑尘喷洒、输煤系统冲洗、除渣系统用水等。

火电厂典型废水零排放技术

火电厂典型废水零排放技术

火电厂典型废水零排放——卷式膜+CS-RO+蒸发结晶组合工艺一、某火电厂典型废水1.锅炉补给水系统:反渗透浓水2.脱硫系统:脱硫废水二、废水回收思路1、北方多省市明确废水排放含盐量,要求严格,传统工艺无法满足处理要求。

2、对废水进行资源回收、综合利用,实施深度节水措施,势在必行;3、通过反渗透设备浓缩到极致,浓液再蒸发,可减少蒸发量,彻底降低蒸发一次投资及运行费用,技术经济均可行。

三、反渗透浓水实现资源回收与零排放1.反渗透废水水质锅炉补给水选用地下水或自来水进行反渗透处理制取,其浓水水质检测如下:以上水质经过预处理,完全可已达到抗污染卷式膜的进水要求,但是抗污染卷式膜产生的浓水水质较差,水质如下:2.工艺流程四、脱硫高盐废水实现资源回收与零排放1.石灰石-石膏脱硫废水水质由上表分析,脱硫废水无法使用卷式膜做预处理2.工艺流程Ca(OH)2TMT15 FeClSO4 /Na2CO3产水回用结晶盐五、选择CS-RO膜思路1.CS-RO技术源于德国DTRO技术众所周知,反渗透膜技术是一种常用的脱盐技术。

目前,适用于工业规模的反渗透膜,主要包括乙酸纤维素和聚酰胺膜,其盐截留率为99%以上。

废水通过物化、生物等方法使废水达到排放标准。

碟管式反渗透(DTRO)技术是一种高新反渗透技术,最早始于德国,相对于卷式反渗透其耐高压、抗污染特点更加明显,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行,更加适应高盐废水的处理。

山东百川集大环境工程有限公司引进德国一流DTRO设备及技术,自主研发以CS-RO为主的组合工艺,使该技术得以在国内广泛推广。

在CS-RO中,化学超级膜元件CS-Module,是平板膜组件技术的革新性变形,属于第三代碟管式反渗透。

采用特殊改性的专用膜片,优化的流体在膜柱内部流动形态和压力补偿结构设计,确保系统的安全性和高效性,增强对高浓度物料的适应性和稳定性。

CS-MODULE主要由过滤膜片、导流盘、中心拉杆、高压容器、两端法兰、各种密封件及联接螺栓等组成。

火力发电厂废水“零排放”节水技改分析

火力发电厂废水“零排放”节水技改分析

火力发电厂废水“零排放”节水技改分析火力发电厂是目前主要的能源供应方式之一,然而火力发电厂在发电过程中产生大量的废水,给环境带来了严重污染。

为了减少对环境的负面影响,火力发电厂需要进行废水“零排放”的节水技改。

下面将对废水“零排放”的技改方案进行详细分析。

首先,需要对火力发电厂的废水处理系统进行改造和升级。

传统的废水处理系统主要采用化学药剂和物理处理方法,如混凝沉淀、过滤和氧化等。

这些方法虽然能够减少废水的污染物浓度,但却无法完全去除有害物质,且处理废水需要大量的水和药剂。

因此,需要引入先进的废水处理技术,如膜分离、活性炭吸附和电化学氧化等,以实现废水的高效处理和净化。

同时,可以利用生物技术,例如利用厌氧菌和好氧菌进行废水处理,这样可以降低能耗并提高废水处理效果。

其次,废水处理后的产生的净水还可以被回收和再利用。

废水中可能含有大量的水分和有价值的物质,如水中的盐分和金属离子可以通过逆渗透和蒸发结晶等技术进行回收。

这样不仅可以节约水资源,还可以减少废水对环境的排放。

此外,废水中的有机物质也可以通过生物发酵和生物降解等方法进行回收利用,用于生产生物质能源或者制备化学品。

再次,可以对火力发电厂的用水系统进行优化。

火力发电厂在使用过程中需要大量的冷却水和循环水。

传统的冷却水系统通常采用开回路或者半开回路冷却系统,这种系统存在水耗大、水质容易受到污染以及水温升高等问题。

可以采用封闭回路冷却系统,将冷却水进行循环使用,减少用水量的同时也能够提高能源利用效率。

另外,可以采用循环冷却水进行再生澄清,再使用在锅炉补给水系统或者排放到外部环境。

最后,需要加强对火力发电厂的废水管理和监测。

对火力发电厂的废水排放进行严格的监管,确保达到国家和地方的废水排放标准。

建立完善的监测系统,对废水中的主要污染物进行实时在线监测,及时发现和处理异常情况。

此外,加强废水处理厂的运行和管理,定期进行系统的检修和维护,确保废水处理系统的正常运行。

火力发电厂深度节水与废水零排放

火力发电厂深度节水与废水零排放

火力发电厂深度节水与废水零排放综合系统暨某电厂节水初步方案各位领导:本文中的方案实例是针对某厂的具体情况,各个厂会有不同状况杭州凌浦环保科技有限公司2015年1 现状和目标1.1 现状我国是一个水资源短缺的国家。

虽然我国水资源的总量为28124亿立方米,居世界第六位,但人均占有量只有2300立方米,人均水资源占有量不足世界平均水平的四分之一。

近年来随着水环境污染日益严重,水质污染型缺水越来越普遍,这更加剧了水资源的短缺。

电力工业是国民经济的支柱产业。

改革开放以来,我国的电力得到了迅速发展。

截至2014年底,全国发电装机容量13.6亿千瓦,其中,水电3亿千瓦,占全部装机容量的22.2%;火电9.16亿千瓦,占全部装机容量的67.4%;核电1988万千瓦,并网风电9581万千瓦,并网太阳能发电2652万千瓦。

火力发电厂是用水的大户,它的用水量约占工业用水的40%以上,仅次于农业用水。

一个1000MW的火电厂耗水量相当于一个中小城市的用水量。

与国外电厂先进的用水水平相比,我国火力发电厂用水量、排水量大的问题很严重。

随着国家《节约能源法》、《环境保护法》和相应的用水、排水收费政策(水资源费、排水费、超标费)的颁布,以及《电力工业节水规划》等规定的逐步实施,对火电厂用、排水量和水质都有严格的指标限制。

2012年,国务院颁布了《关于最严格水资源管理制度的意见》。

我国火力发电厂装机平均水耗为国外的8-10倍,发电用水水平与国外相比有较大差距,节水潜力大,开展火力发电厂节水工作具有极大的现实意义,带来很大的经济效益和环境效益。

同时火电厂也是排水大户。

以国内现在常见的2台600MW机组为例,每天约有10000立方米的冷却塔排水需要外排;另外还有150立方米的工业废水、生活废水等需处理后外排或回用。

1.2 零排放所谓零排放,是指不向外界排出对环境有任何不良影响的水,进入电厂的水最终只以蒸汽的形式蒸发到大气中,或以适当的形式封闭、填埋处置。

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术火电厂是目前主要的电力生产方式之一,但由于其燃烧过程中释放的大量烟尘和气体污染物,对环境造成了严重的影响。

其中,二氧化硫(SO2)是主要的气态污染物之一,对人们的健康和大气环境造成了严重威胁。

为了减少火电厂尾气中的二氧化硫含量,湿法脱硫技术成为了一种常用的方式。

然而,湿法脱硫技术产生的脱硫废水问题却引起了人们的关注。

脱硫废水中含有大量的二氧化硫、氧化剂及其产物、颗粒物以及酸性废水等。

这些废水如果直接排放到环境中,会对水体造成严重的污染,对环境和生态系统造成长期的危害。

为了解决脱硫废水排放问题,研究人员提出了一种零排放的工艺技术。

该技术主要包括废水预处理、二氧化硫氧化脱硫、废水再生处理以及废水处理后的回用等步骤。

首先,废水预处理是将脱硫废水预处理并进行沉淀和澄清,去除其中的固体颗粒物和悬浮物。

然后,将预处理后的废水通过二氧化硫氧化脱硫系统进行脱硫处理。

该系统通过将二氧化硫氧化为硫酸,然后和废水中的钙、镁等金属离子反应生成二氧化硫固体颗粒物的形式,减少废水中的二氧化硫含量。

接下来,经过脱硫处理后的废水进入再生处理系统。

再生处理主要包括高效沉淀、过滤和脱钠等过程。

通过沉淀和过滤,将残留在废水中的沉淀物和悬浮物进一步去除,同时去除水中的钠离子。

最后,经过再生处理后的废水可以进行回用。

回用部分废水可以用于再生吸收剂液环路中,并循环使用。

这不仅可以减少废水的排放,降低对环境的影响,还可以减少燃煤量和化学品的消耗。

通过以上工艺技术的应用,火电厂湿法脱硫废水的排放可以实现零排放。

这在一定程度上减轻了对环境的污染,保护了水源和生态系统的安全。

同时,该工艺技术的应用也促进了资源的循环利用和能源的可持续发展,为火电厂的持续运营提供了技术保障。

火电厂湿法脱硫废水零排放工艺技术是一种全面解决脱硫废水问题的综合性方案。

下面我将详细介绍工艺的实施步骤和主要特点。

1. 废水预处理:废水预处理是整个工艺的第一步。

火力发电厂工业废水零排放工艺技术

火力发电厂工业废水零排放工艺技术

火力发电厂工业废水零排放工艺技术当前我国社会主义现代化建设中面临着较为严峻的水资源短缺问题,为了能最大程度节省水资源,国家对各企业工业废水处理提出了更多更高的要求,在此进展背景下,各企业逐步开头提出和实施工业废水零排放管理理念,旨在促进企业合理利用和安排水资源,对各用水环节进行管理和优化,提高用水效率,削减水资源铺张。

在工业废水处理中全面践行零排放管理理念,能有效优化传统废水处理中粗放式的用水模式,实现废水资源高效化治理和合理利用。

随着这一理念在各个企业不断的推广和应用,将对我国环境爱护进展具有较大的推动作用。

一、零排放理念相关概述零排放理念诞生对我国废水处理技术全面进展具有良好的指导作用,零排放即应用先进的技术手段对企业生产过程中产生的诸多废水进行进一步处理,促使处理以后的资源能再次用于到其他工业生产环节中。

比如发电厂在生产过程中,可能会产生高盐度的浓水、高浊度的废水、低盐度低浊度的锅炉排污水等,实际排放量较大,许多废水进行简洁处理达标后就直接进行排放,不能进行重复利用,水资源铺张严峻。

虽然现阶段国家对工业废水零排放没有强制性的要求,各企业的排污口也没有在线监测仪表,对企业工业废水排放状况进行监督和管理,惩罚和监管力度较低,但随着国家环保政策的日益严格,如何在满意国家环保政策的前提下,合理利用和优化水资源,使工业废水能够达标排放和零排放,将渐渐成为企业进展中的重要组成部分。

二、基于零排放理念的火电厂工业废水处理技术进展探析(1)电厂各种工业废水的来源①为了保证热力系统中饱和蒸汽和过热蒸汽、炉水的品质,需要对锅炉炉水进行定期和连续排污,定期排污排污率约为锅炉额定蒸发量的2%,连续排污排污率约为锅炉额定蒸发量的2%,此部分废水为低含盐量,低浊度的优质废水。

②为了满意锅炉运行需求,需要制备高品质的除盐水作为锅炉的补给水,在制备锅炉补给水的过程中,会产生浊度特别高的过滤器反洗水、产生酸碱废水、产生高浓度盐水,此部分水水质较差,约占电厂制备除盐水量的30%-40%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火力发电厂废水零排放技术方案为实现火力发电厂废水零排放的目标,对脱硫废水预处理工艺、脱硫废水浓缩处理工艺以及末端浓盐水的蒸发结屏,处理工艺进行技术对比,选取适合电厂实际情况的技术方案。

处理后的冷凝水可以作为工业水,使电厂水处理系统实现闭式循环,没有任何外排水,真正实现废水零排放。

1脱硫废水处理的意义我国属于水资源严重短缺且分布不均衡的国家,只有全面综合利用才是解决缺水和排污对环境污染的有效途径。

国家及社会对环保要求越来越高,同时也对火力发电厂提出了更高的要求,全厂废水必须做到零排放。

火力发电厂主要污水有生活污水、含油废水、含煤废水、工业废水、循环水冷却塔排污水以及脱硫废水,这些废水一般经过简单物化、生化处理后直接排放或部分回收利用。

火力发电厂废水回收基本上是将各部分废水用于脱硫用水,所以脱硫废水处理是全厂废水零排放的关键。

目前,国内对脱硫废水的处置方式主要是初步处理后排放。

一般是通过系列氧化还原反应将废水中的重金属污染物转化为胺化物,再通过絮凝反应沉淀除去重金属及悬浮物固体,最后调节pH值使其达到DL/T997-2006《火电厂石灰石一石膏湿法脱硫废水控制指标》的要求,但处理之后依然为高氯根、高含盐且含有微量重金属的废水。

因此,电厂湿法脱硫废水回收利用是电厂实现零排放的最大难点和关键。

2脱硫废水预处理脱硫废水中含有重金属、氟离子、化学需氧量(COD)等污染物,产生的污泥需要进行专业处理。

为减少污泥处理量,并保证后续装置运行的稳定性,脱硫废水经现有脱硫废水处理系统处理后,再进入高盐废水浓缩处理系统。

脱硫废水总硬度达到100~200mmol/L,需要进行软化处理,以避免后续浓缩处理系统以及蒸发设备结垢。

脱硫废水软化处理主要有以下2种方案。

(1)方案1:石灰一碳酸钠软化一沉淀池一过滤器处理工艺。

首先,化学加药使Ca2+,Mg2+以及硅产生沉降,然后用沉淀池做固液分离,沉淀池的上清液自流至重力滤池进行过滤除浊,出水作为高含盐废水浓缩处理系统进水。

(2)方案2:石灰一碳酸钠软化一管式微滤膜(TMF)处理工艺。

首先,化学加药使Ca2+,Mg2+及硅产生沉降,然后采用错流式管式微滤工艺代替传统的澄清工艺,利用微孔膜对废水中的沉淀物进行分离,达到较好的出水水质,出水进入高含盐废水浓缩处理系统进一步处理。

2种脱硫废水预处理方案的技术对比见表1。

表1 2种脱硫废水预处理方案技术对比方案1己在广东河源电厂得到成功应用,系统运行稳定;浙江浙能技术研究院有限公司在浙江浙能兰溪发电有限公司脱硫废水处理以及北京热电厂脱硫废水的中试试验中均采用了方案2,由于脱硫废水有机物含量高,造成微滤膜污堵(浙江浙能兰溪发电有限公司脱硫废水ρCOD=390mg/L,华能北京热电厂脱硫废水ρCOD=480mg/L),微滤膜膜通量衰减严重,系统运行稳定性较差。

3脱硫废水浓缩处理3.1方案1方案1采用高盐废水浓缩处理系统,处理系统工艺如图1所示(图中:EDR为电渗析;RO为反渗透。

)图1高盐废水浓缩处理系统工艺(方案1)方案1包括以下内容。

(1)脱硫废水来水(15m3/h)进入软化处理单元,加石灰调节pH 值,并加碳酸钠去除钙硬和镁硬。

(2)软化处理单元产水(14m3/h)以及循环水排污水回用处理系统RO浓排水(30m3/h)经过精密过滤器过滤后,进入EDR装置,系统设计回收率为55%,脱盐率为75%,产水(24m3/h)作为脱硫工艺用水,浓水(20m3/h)进入蒸发结晶系统。

(3)反应池和沉淀池污泥主要成分为碳酸钙,作为脱硫系统制浆用水。

3.2方案2方案2采用纳滤一海水反渗透(NF-SWRO)工艺,通过纳滤去除废水中的有机物和部分盐分,纳滤产水进高压反渗透,浓水进蒸发结晶,处理系统工艺如图2所示(图中:SWRO为海水反渗透;NF为纳滤)。

图2纳滤一海水反渗透处理系统工艺(方案2)混合后的末端废水中ρCOD、含盐量、氯离子质量浓度、硬度等均很高,这些物质在浓缩过程中易造成反渗透膜结垢及微生物污堵等故障,故必须先进行去除或降低这些物质含量。

通过两级软化可以将硬度离子去除,但混凝澄清对有机物的去除率只有30%左右,混合后的末端废水ρCOD较高,只有进一步降低ρCOD,才能有效减缓反渗透膜污堵。

由于NF装置对COD有较高的耐受性和去除率,因此在软化工艺后增加NF处理。

纳滤膜孔径约为1nm,能有效截留二价及高价离子、分子量高于200的有机分子,使大部分一价盐透过。

纳滤膜相对截留分子量介于反渗透膜和超滤膜之间,对无机盐有一定的脱除率;对单价离子截留率低,对二价和多价离子截留率达到90%以上;对疏水型胶体、油、蛋白质和其他有机物有较强的抗污染性。

相比于反渗透工艺,纳滤具有操作压力低、水通量大的特点,纳滤膜操作压力一般低于1MPa,操作压力低使得分离过程动力消耗低,对于降低设备的投资费用和运行费用是有利的。

方案2包括以下内容。

(1)脱硫废水(15m3/h)进入软化处理单元,加石灰调节pH值,并加碳酸钠去硬度。

(2)软化处理单元产水(14m3/h)以及循环水排污水回用处理系统RO浓排水(30m3/h)混合后,经过砂率过滤进入NF装置,NF装置回收率设计为75%}NF产水(33m3/h)到SWRO装置,NF浓水(11m3/h)进入高压反渗透装置,回收率为50%5.5m3/h的浓水进入蒸发结晶站2。

NF浓水中含有大量的高价离子(主要是硫酸盐),同时含有部分一价离子,为了使产品盐达到二级工业盐的要求,需要利用硫酸钠和氯化钠结晶温度的不同来实现盐的分离。

(3)SWRO装置设计回收率为75%,脱盐率为98%,SWRO淡水(24m3/h)作为冷却塔补水,SWRO浓水(9m3/h)进入高压反渗透装置,回收率为50%,4.5m3/h的浓水进入蒸发结晶站1。

由于NF装置将90%以上的高价离子截留,所以SWRO装置进水中的高价离子含量很低。

SWRO浓水中的主要离子为氯化钠,蒸发结晶站1的产品盐可以达到二级工业盐的要求,结晶2主要是硫酸钠盐,分别设置2个结晶器实现盐的资源化利用。

2种高含盐废水浓缩处理方案对比见表2。

表2 2种高盐废水浓缩处理方案对比4末端浓盐水最终处理在经过节水(用水流程优化)及深度节水(高盐废水浓缩)后,末端废水还有(4.5+5.5)m3/h,这部分废水受水质影响,不能继续回用,必须进行进一步处理后才能真正实现全厂废水零排放。

4.1末端废水可选择的处置方式(1)灰场喷洒。

将减量后的末端废水输送至灰场,采用雾化喷洒技术,利用灰场环境温度进行自然蒸发。

灰场喷洒需要需考虑当地环保政策,考察对周边环境造成的影响。

(2)烟道喷雾干燥。

将末端废水雾化喷淋至烟道内,或将部分烟气引出后在单独的喷雾干燥器中实现废水的干燥,利用烟温对末端废水进行蒸发。

烟道喷雾干燥需根据烟气流量、热量计算烟道喷雾量,并根据喷头的性能试验数据,结合烟道内流场变化特点,优化布置喷头。

末端废水的烟道喷雾干燥应用很少,具有不确定性,存在一定风险。

己有案例显示,末端废水喷入烟道造成严重的结垢和烟道部分堵塞。

此外,喷入烟道的末端废水可能使烟气和烟尘的性质发生变化,对除尘器运行有一定影响。

因此,末端废水喷入烟道,必须解决废水蒸发干燥后的盐分固体随烟气流动在烟道内沉降、积聚的问题,还需解决喷雾系统的结垢等问题,应通过可行性研究,确定合理的喷雾干燥方式及参数。

(3)蒸发结晶。

在高温条件下对废水进行蒸发,除结晶水外所有水分均以蒸气形式排出系统,经冷凝后形成非常纯净的蒸馏水,而污染物质以固体的形式经脱水后排出系统。

蒸发结晶系统主要包括两部分:前半部分为热浓缩器,将废水进行蒸发浓缩,95%的废水可转化为高纯度蒸馏水,可用作锅炉补水、冷却塔补水、其他工业用水等;后半部分为结晶器,主要是将剩余的5%高质量浓度浆液在结晶器或喷雾干燥器内处理成固体颗粒,固体废弃物根据其成分可回收利用或掩埋。

目前,欧洲、北美地区蒸发结晶处理工艺己成功应用于脱硫废水处理,实现了废水零排放,如美国拉斯维加斯的木兰电厂、美国密苏里州的亚坦电厂、意大利Enel电厂等。

国内火电厂对末端废水采用蒸发结晶深度处理工艺的较少,目前广东河源电厂对脱硫废水进行蒸发结晶处理,采用“预处理+蒸发+结晶”处理工艺,是国内第1家实现了废水零排放的火电厂。

综上所述,末端废水采用灰场喷洒以及蒸发塘蒸发处理方式会对周边环境造成影响,还存在污染地下水的风险。

烟道喷雾干燥技术目前尚不成熟,末端废水导致的烟道结垢和堵塞等问题还处于研究阶段,没有良好的解决措施。

末端废水蒸发结晶处理工艺在国内外己经有大量成功案例。

4.2蒸发结晶处理工艺目前,蒸发结晶成熟应用的技术主要有多效蒸发(MED),蒸汽机械再压缩(MVR)和自然蒸发(NED)。

4.2.1MED技术单效蒸发时,单位加热蒸汽消耗量大于1,即蒸发1kg水需消耗1kg以上的加热蒸汽。

因此,蒸发量很大时,如果采用单效操作必然消耗大量的加热蒸汽,这在经济上是不合理的,工业上多采用多效蒸发。

多效蒸发中效数的排序是以生蒸汽进入的那一效作为第1效,第1效出来的二次蒸汽作为加热蒸汽进入第2效,依次类推。

在多效蒸发中,为了保证每一效都有一定的传热推动力,各效的操作压强必须依次降低,各效的沸点和二次蒸汽压强也相应依次降低。

因此,只有当提供的新鲜加热蒸汽的压强较高和末效采用真空时,才能使多效蒸发得以实现。

多效蒸发技术将蒸汽热能进行循环并多次重复利用,以减少热能消耗,降低运行成本。

通过多效蒸发后达到结晶程度的盐水进入结晶器产生晶体,通过分离器实现固液分离,淡水回收利用,固体盐外售。

4.2.2MVR技术MVR技术是目前世界上处理高盐分废水可靠、有效的解决方案之一。

采用机械压缩再循环蒸发技术处理废水时,除了初次启动需要外部蒸汽外,正常运行时,蒸发废水所需的热能主要由蒸汽冷凝和冷凝水冷却时释放或交换的热能提供,运行过程中没有潜热流失。

运行过程中消耗的仅是驱动蒸发器内废水、蒸汽、冷凝水循环和流动的水泵、蒸汽压缩机和控制系统所消耗的电能。

利用蒸汽作为热能时,蒸发1kg水需消耗热能2319kJ。

采用机械压缩蒸发技术时,蒸发1kg水仅需117kJ或更少的热能。

即单一的机械压缩蒸发器的效率,理论上相当于20效的多效蒸发系统。

采用多效蒸发技术,可提高效率,但是多效蒸发增加了设备投资和操作的复杂性。

4.2.3NED技术NED技术在一密闭环境内模拟自然降雨的现象:当气体在设备内循环时,气流在蒸发室内加热并吸收水分,然后在冷凝室内凝结成纯水。

废水首先经过换热器被加热至一定温度(40一800C),然后进入蒸发室,从蒸发室顶部喷洒而下,液滴表面的水分被蒸发形成水蒸气,在风的作用下被移至冷凝系统,含有饱和水蒸气的热空气与冷凝系统内从顶部喷洒下来的冷水相遇,重新凝结成水滴,产生净水送至系统外。

相关文档
最新文档