2018年高考数学真题较难题汇编
高考数学选择题倒数难题
2018年7月22日 - 高考数学选择题难题突破训练(含解析) - 高考数学选择题难题突破训练一.选择题(共 30 小题) 1.已知集合 M={(xy)|y=f(x)}若对于任意实数对(x1y1)...-•4.5分 15页2018年高考数学真题较难题汇编_ 高三数学_数学_高中...(x)在x=x1x2(x1≠x2)处导...•11页 2018年12月22日数学高考导数难题导数零点问题导数整理 - 含参导函数零点问题的几种处理方法方...•6页 2019年08月18日上述两题主要考查了学生应用导数研究函数单调性的方法以及分类讨论及转化与化归...2018年8月22日 - 前虽然全国高考使用试卷有所差异但高考压轴题目题型基本都是一致的几乎没有差异如果有差异只能是难度上的差异高考导数压轴题考察的是一种综合能力其考察内容方...-2018年6月12日 - 接下来我们来看一下今年高考数学题的难易程度。
首先看选择题第一二两题这两道题按高考的出题套路来讲都是最基本的题型今年高考也是一样题出的很简...-2019年3月7日 - 1984年理科数学题号称高考史上最难。
总分120分附加...值得一提的是: 选择题不选、选错、选多都倒扣1分...87特别是理科压轴题的难度系数为0.11属于超难题...-2018年11月13日 - 高考数学零点问题高考导数大题典型套路绝对值得一学。
函数零点问题是高考数学...(2)更简单这样的情况一般出现在选择或填空题中如果是大题一般不大可能出现...-2019年5月6日 - 但是往往做高考数学题的时候你会发现一个问题无论再难的题型只要解到后面都是非常基础的知识点不知道同学们是否发现过。
其实难题都是基于基础之... -2018年3月31日 - 高中数学是高考三大主科中的最难科目是大多数同学...今天师姐为大家整理了十个高中数学选择题解题实用又...帮助大家解决高中数学各大题型难题还有更多的超实用...2016年3月30日 - 因为数学选择题A、B、C、D的分布比例为一般相同数学最后一道难题解不出来可以... 倒数第二到大题的后两问选择题的后两道紧抓基础竭尽全力把前十道甚至前...-2019年3月15日 - 高考冲刺倒计时要想高考取得高分压轴题是必须攻克的难点。
最新-2018年高考数学真题汇编 18:统计 理 精品
2018高考真题分类汇编:统计1.【2018高考真题上海理17】设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关【答案】A2.【2018高考真题陕西理6】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ) A. x x <甲乙,m甲>m 乙 B. x x <甲乙,m 甲<m 乙 C. x x >甲乙,m 甲>m 乙 D. x x >甲乙,m 甲<m 乙【答案】B.3.【2018高考真题山东理4】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15【答案】C4.【2018高考真题江西理9】样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n,m 的大小关系为 A .n m < B .n m > C .n m = D .不能确定【答案】A5.【2018高考真题湖南理4】设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg【答案】D6.【2018高考真题安徽理5】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A甲的成绩的平均数小于乙的成绩的平均数()B甲的成绩的中位数等于乙的成绩的中位数C甲的成绩的方差小于乙的成绩的方差()D甲的成绩的极差小于乙的成绩的极差()【答案】C【命题立意】本题考查统计学中的数字特征与统计图。
2018年高考数学真题较难题汇编
2018年高考数学真题较难题汇编上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ . 14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}na .记n S 为数列{}na 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为. (1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P . ①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且0()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S点”.%网(1)证明:函数()f x x =与2()22g x xx =+-不存在“S 点”;(2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x xa=-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}na 是首项为1a ,公差为d 的等差数列,{}nb 是首项为,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||nn a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,2]ma b m q =>∈∈N ,证明:存在d ∈R ,使得1||nna b b -≤对2,3,,1n m =+均成立,并求的取值范围(用1,,b m q 表示). 2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三⋅个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
(2018年)全国各地高考数学试题及解答分类汇编大全(14 算法初步、框图)
2018年全国各地高考数学试题及解答分类汇编大全( 14 算法初步、框图 )一、选择题1.(2018北京文、理)执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7121.【答案】B【解析】初始化数值1k =,1s = 循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立,循环结束,输出56s =,故选B .2 (2018天津文、理)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )(A )1 (B )2 (C )3 (D )4 4.【答案】B【解析】结合流程图运行程序如下:首先初始化数据:20N =,2i =,0T =, 20102N i ==,结果为整数,执行11T T =+=,13i i =+=, 此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=, 此时满足5i ≥;跳出循环,输出2T =.故选B .3.(2018全国新课标Ⅱ文、理)为计算11111123499100S =-+-++-,设计了如图的程序框图, 则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+ 3.【答案】B【解析】由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减. 因此在空白框中应填入2i i =+,选B .二、填空1.(2018江苏)一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .1.【答案】8【解析】由伪代码可得3I =,2S =;5I =,4S =;7I =,8S =;因为76>,所以结束循环,输出8S =.三、解答题。
2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)
2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)2018 年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题1.(2018北京文、理)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C . 3D .41.【答案】C【解析】由三视图可得四棱锥P ABCD -, 在四棱锥P ABCD -中,2PD =,2AD =, 2CD =,1AB =,由勾股定理可知,22PA =,22PC =,3PB =,5BC =,则在四棱锥中,直角三角形有, PAD △,PCD △,PAB △共三个,故选C .2.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A .2 B .4 C .6 D .83.答案:C解答:该几何体的立体图形为四棱柱, (12)2262V +⨯=⨯=.3 (2018上海)《九章算术》中,称底侧视图俯视图正视图2211所以231θθθ≤≤.5.(2018全国新课标Ⅰ文)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .25. 答案:B解答:三视图还原几何体为一圆柱,如图, 将侧面展开,最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.6.(2018全国新课标Ⅰ文)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62 C .82 D .836. 答案:C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30,∴130AC B ∠=,∴11tan 30,23ABBC BC ==,∴122CC =,∴222282V =⨯⨯=,∴选C.7.(2018全国新课标Ⅰ理)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33 B .23 C .324 D .327. 答案:A解答:由于截面与每条棱所成的角都相等,所以平 面α中存在平面与平面11AB D 平行(如图),而在与 平面11AB D 平行的所有平面中,面积最大的为由各 棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积12233362S =⨯⨯⨯⨯=.8.(2018全国新课标Ⅰ文)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π8. 答案:B解答:截面面积为8,所以高22h =,底面半径2r =,所以表面积为2(2)2222212S πππ=⋅⋅+⋅⋅=.9.(2018全国新课标Ⅰ理)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .29. 答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开, 最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.10.(2018全国新课标Ⅱ文)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A .2B .3C .5D .710.【答案】C【解析】在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan BE a EAB AB ∠===.故选C .11.(2018全国新课标Ⅱ理)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为()A .15B .5C .5D .211.【答案】C【解析】以D 为坐标原点,DA ,DC ,1DD 为x ,y ,z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()11,1,3B ,()10,0,3D ,()11,0,3AD ∴=-,()11,1,3DB =,1111115cos<,>25AD DB AD DB AD DB ⋅===⨯,∴异面直线1AD 与1DB 所成角的余弦值为5,故选C .12.(2018全国新课标Ⅲ文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )12.答案:A解答:根据题意,A 选项符号题意;13.(2018全国新课标Ⅲ文、理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54313.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由93ABCS ∆=,得6AB =,取BC 的中点H ,∴sin 6033AH AB =⋅︒=,∴2233AG AH ==,∴球心O 到面ABC 的距离为224(23)2d =-=,∴三棱锥D ABC -体积最大值193(24)1833D ABCV -=⨯⨯+=.二、填空1.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .1.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为()21421233⨯⨯⨯=.2.(2018天津文)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.2.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且2211111211222A O A C ==+=,111212BDD B S BD DD =⨯四边形,结合四棱锥体积公式可得其体积为11212333V Sh ===.3. (2018天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .3.【答案】112【解析】由题意可得,底面四边形EFGH 为边长为22的正方形, 其面积2212EFGHS ==⎝⎭,顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得111132212M EFGHV-=⨯⨯=.4.(2018全国新课标Ⅱ文)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.4.【答案】8π【解析】如下图所示,30SAO ∠=︒,90ASB ∠=︒,又211822SABS SA SB SA =⋅==△, 解得4SA =,所以122SO SA ==,2223AO SA SO =-=,所以该圆锥的体积为2183V OA SO =⋅π⋅⋅=π.5.(2018全国新课标Ⅱ理)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________. 5.【答案】402π【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 15,因为SAB △的面积为515,设母线长为l ,所以21155152l⨯=,280l ∴=,因SA 与圆锥底面所成角为45︒,所以底面半径为2cos 4l π=,因此圆锥的侧面积为22402rl l π=π.三、解答题1.(2018北京文)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点. (1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .1.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)PA PD =,且E 为AD 的中点, PE AD ∴⊥,底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥. (2)底面ABCD 为矩形,AB AD ∴⊥, 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接FG ,GD .F ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =, ED FG∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD , EF ∴∥平面PCD . 2. (2018北京理)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.2.【答案】(1)证明见解析(2)1B CDC --的余弦值为21-;(3)证明过程见解析. 【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, AC EF ∴⊥,AB BC =,AC BE ∴⊥, AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥. 又1CC ⊥平面ABC ,EF ∴⊥平面ABC . BE ⊂平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G , ()=2,01CD ∴,,()=1,2,0CB ,设平面BCD 的法向量为(),a b c =,n , 0CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩n n ,20 20a c ab +=⎧∴⎨+=⎩, 令2a =,则1b =-,4c =-,∴平面BCD 的法向量(),又平面1CDC 的法向量为()=0,2,0EB ,21cos =EB EB EB⋅∴<⋅>=-n n n .由图可得二面角1B CDC --为钝角,所以二面角1B CDC --的余弦值为21-.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G ,()0,0,2F , ()=02,1GF ∴-,,2GF ∴⋅=-n ,∴n 与GF 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交.3.(2018上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积; (2)设PO =4,OA ,OB 是底面半径, 且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.4.(2018江苏)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.4.【答案】(1)见解析;(2)见解析. 【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .5.(2018江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.5.【答案】(1)310;(2)5.【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,()3,0,0B ,()0,1,0C ,()10,1,2A -,()13,0,2B ,()10,1,2C .(1)因为P 为11A B 的中点,所以31,,222P ⎛⎫- ⎪ ⎪⎝⎭,从而31,,222BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =, 故11114310cos ,522BP AC BP AC BP AC ⋅-+<>===⨯⋅. 因此,异面直线BP 与1AC 所成角的余弦值为31020. (2)因为Q 为BC 的中点,所以31,,022Q ⎛⎫ ⎪⎪⎝⎭, 因此33,,02AQ ⎛⎫= ⎪ ⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n 即33022220x y y z ⎧+=+=⎪⎨⎪⎩,不妨取()3,1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则1115sin cos ,52CC CC CC θ⋅=<>===⨯⋅n n n, 所以直线1CC 与平面1AQC 所成角的正弦值为55.6.(2018浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.6.答案:(1)略;(2)3913 解答:(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴122AB =.同理,222211(23)113AC AC C C =+=+=.过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC == 且11B G =,∴115B C =.在11AB C ∆中,2221111AB B C AC +=, ∴111AB B C ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴1122A B =. 在11A B A ∆中,2221111AA AB A B =+,∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C ,∴1AB ⊥平面111A B C . (2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B ,1(1,3,1)C , 设平面1ABB 的一个法向量(,,)n a b c =, 则102020n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =, 又∵1(3,3,1)AC =,1339cos ,13113n AC <>==⨯.由图形可知,直线1AC 与平面1ABB 所成角为锐角, 设1AC 与平面1ABB 夹角为α.∴39sin 13α=.7.(2018天津文)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.7.【答案】(1)证明见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD , 平面ABC 平面ABD AB =,AD AB ⊥, 可得AD ⊥平面ABC ,故AD BC ⊥. (2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN BC ∥.所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角. 在Rt DAM △中,1AM =,故2213DM AD AM =+=. 因为AD ⊥平面ABC ,故AD AC ⊥.在Rt DAN △中,1AN =,故2213DN AD AN =+=.在等腰三角形DMN中,1MN=,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为13.(3)连接CM,因为ABC△为等边三角形,M为边AB的中点,故CM AB⊥,3CM=.又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,CDM∠为直线CD与平面ABD所成的角.在Rt CAD△中,224CD AC AD=+=.在Rt CMD△中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为3.8.(2018天津理)如图,AD BC∥且AD=2BC,AD CD⊥,EG AD∥且EG=AD,CD FG∥且CD=2FG,DG ABCD⊥平面,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:MN CDE∥平面;(II)求二面角E BC F--的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.8.【答案】(1)证明见解析;(210;(33.【解析】依题意,可以建立以D为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N . (1)依题意()0,2,0DC =,()2,0,2DE =.设()0,,x y z =n 为平面CDE 的法向量,则000DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20220y x z =+=⎧⎨⎩, 不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫=⎪⎝⎭-,可得00MN ⋅=n , 又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC =,()1,2,2BE =-,()0,1,2CF =-.设(),,x y z =n 为平面BCE 的法向量,则0BC BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则0BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,2,1=m .因此有310cos ,⋅<>==m n m n m n ,于是10sin ,m n <>=. 所以,二面角––E BC F 10.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =--.易知,()0,2,0DC =为平面ADGE 的一个法向量,故2cos 5BP DC BP DC BP DCh ⋅<⋅>==+ 23sin 605h =︒=+,解得[]30,2h .所以线段DP 3.9.(2018全国新课标Ⅰ文)如图,在平行四边形ABCM中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.9. 答案:(1)见解析(2)1 解答:(1)证明:∵ABCM 为平行四边形且90ACM ∠=,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD . (2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD ,∴AB CD ⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵32,32BC BC AM AD ====,∴22BP =,又∵ABC ∆为等腰直角三角形,∴12322322ABP S ∆=⋅⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=.10.(2018全国新课标Ⅰ理)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.10.答案:(1)略;(2)34. 解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥, 又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴23PE =, 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴2323PH ⋅==,而4PD =,∴3sin PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值3.11.(2018全国新课标Ⅱ文)P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.11.【答案】(1)见解析;(2)455.【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且23OP =.连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知,OP OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)作CH OM ⊥,垂足为H .又由(1)可得OP CH ⊥,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知122OC AC ==,2423BC CM ==,45ACB ∠=︒. 所以25OM =sin 45C OC MC A M H CB O ⋅⋅∠==.所以点C 到平面POM 的45. 12.(2018全国新课标Ⅱ理)如图,在三棱锥P ABC -22AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.12.【答案】(1)见解析;(234. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点, 所以OP AC ⊥,且23OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰 直角三角形,且OB AC ⊥,122OB AC ==, 由222OPOB PB +=知PO OB ⊥, 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .PA OCBM(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C ,()0,0,23P ,()0,2,23AP =,取平面PAC 的法向量()2,0,0OB =,设()(),2,002M a a a -<≤,则(),4,0AM a a =-,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=n ,0AM ⋅=n , 得()223040y z ax a y ⎧+=⎪⎨+-=⎪⎩,可取()()34,3,a a a =--n , ()()222234cos ,2343a OB a a a -∴<>=-++n ,由已知得3cos ,OB <>=n ,()22223432343a a a a -∴=-++,解得4a =-(舍去),43a =, 83434,,3⎛⎫∴=-- ⎪ ⎪⎝⎭n ,又()0,2,23PC =-,所以3cos ,PC <>=n .所以PC 与平面PAM 所成角的正弦值为3.13.(2018全国新课标Ⅲ文)如图,矩形所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.13.答案:见解答 解答:(1)∵正方形ABCD ⊥半圆面CMD ,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D =,∴CM⊥平面ADM,∵CM在平面BCM内,∴平面BCM⊥平面ADM.(2)线段AM上存在点P且P为AM中点,证明如下:连接,BD AC交于点O,连接,,PD PB PO;在矩形ABCD中,O是AC中点,P是AM的中点;∴//OP MC,∵OP在平面PDB内,MC不在平面PDB内,∴//.MC平面PDB14.(2018全国新课标Ⅲ理)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.14.答案:见解答解答:(1)∵正方形ABCD⊥半圆面CMD,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D=,∴CM⊥平面ADM,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)如图建立坐标系: ∵ABCS ∆面积恒定, ∴MO CD ⊥,M ABCV -最大.(0,0,1)M ,(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,(0,1,0)D -,设面MAB 的法向量为111(,,)m x y z =,设面MCD 的法向量为222(,,)n x y z =,(2,1,1)MA =--,(2,1,1)MB =-, (0,1,1)MC =-,(0,1,1)MD =--, 11111120(1,0,2)20x y z m x y z --=⎧⇒=⎨+-=⎩, 同理(1,0,0)n =,,∴5cos 5θ==,∴ 25sin θ=.。
2018全国各地高考数学试题与解答分类汇编大全(06数列)
2018年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )A B C . D .1.【答案】D【解析】因为每一个单音与前一个单音频率比为()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( )A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>2..答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( )A .12-B .10-C .10D .123. 答案:B 解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________.1.【答案】63n a n =- 【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .2.【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k kk k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3 (2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
2018高考数学真题较难题汇编
2018年普通高等学校招生全国统一考试1. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ1 2. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 π3,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A . √3−1 B . √3+1 C . 2 D . 2−√3 3. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 44. 已知λ∈R ,函数f (x )={x −4,x ≥λ x 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________5. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)6. 已知点P (0,1),椭圆 x 24+y 2=m (m >1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m =____________________时,点B 横坐标的绝对值最大7. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上 (1) 设AB 中点为M ,证明:PM 垂直于y 轴(2)若P 是半椭圆x 2+y24=1(x <0)上的动点,求△P AB 面积的取值范围8. (15分)已知函数f (x )=√x −lnx(1) 若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln 2(2) 若a ≤3−4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点2018年普通高等学校招生全国统一考试(江苏卷)9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线lPMBA Oy x交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求的取值范围(用1,,b m q 表示).2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
2018年高考数学真题较难题汇编(精品资料).doc
2018年普通高等学校招生全国统一考试1. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ1 2. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 π3,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A . √3−1 B . √3+1 C . 2 D . 2−√3 3. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 44. 已知λ∈R ,函数f (x )={x −4,x ≥λ x 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________5. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)6. 已知点P (0,1),椭圆 x 24+y 2=m (m >1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m =____________________时,点B 横坐标的绝对值最大7. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上 (1) 设AB 中点为M ,证明:PM 垂直于y 轴(2)若P 是半椭圆x 2+y24=1(x <0)上的动点,求△P AB 面积的取值范围8. (15分)已知函数f (x )=√x −lnx(1) 若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln 2(2) 若a ≤3−4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点2018年普通高等学校招生全国统一考试(江苏卷)9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .PMBA Oy x13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求的取值范围(用1,,b m q 表示).2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
2018年全国各地高考数学试题及解答分类汇编大全(15 概率、统计、统计案例、推理与证明)
2018年全国各地高考数学试题及解答分类汇编大全 (15概率、统计、统计案例、推理与证明)一、选择题1.(2018全国新课标Ⅰ文、理)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半1。
答案:A解答:由图可得,A 选项,设建设前经济收入为x ,种植收入为0.6x .建设后经济收入则为2x ,种植收入则为0.3720.74x x ⨯=,种植收入较之前增加.另解:假设建设前收入为a ,则建设后收入为2a ,所以种植收入在新农村建设前为60%a ,新农村建设后为37%2a ⋅;其他收入在新农村建设前为4%a ⋅,新农村建设后为5%2a ⋅,养殖收入在新农村建设前为30%a ⋅,新农村建设后为30%2a ⋅ 故不正确的是A.2.(2018全国新课标Ⅱ文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A .0.6B .0.5C .0.4D .0.32.【答案】D【解析】设2名男同学为1A ,2A ,3名女同学为1B ,2B ,3B ,从以上5名同学中任选2人总共有12A A ,11A B ,12A B ,13A B ,21A B ,22A B ,23A B ,12B B ,13B B ,23B B 共10种可能,选中的2人都是女同学的情况共有共12B B ,13B B ,23B B 三种可能则选中的2人都是女同学的概率为30.310P ==,故选D .3.(2018全国新课标Ⅲ文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.73.答案:B解答:由题意10.450.150.4P =--=.故选B.二、填空1.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .1.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.2.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .2.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.3. (2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)4.(2018全国新课标Ⅲ文)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 14.答案:分层抽样解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.三、解答题1.(好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加01.,哪类电影的好评率减少01.,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)1.【答案】(1)0025.;(2)0814.;(3)增加第五类电影的好评率,减少第二类电影的好评率. 【解析】(1)由题意知,样本中电影的总部数是140503002008005102000+++++=.第四类电影中获得好评的电影部数是20002550⨯=.,故所求概率为5000252000=..(2)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有14006500830008520007580008510091628⨯+⨯+⨯+⨯+⨯+⨯=......部.由古典概型概率公式得()162808142000P B ==..(3)增加第五类电影的好评率,减少第二类电影的好评率.2.(2018北京理)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.2(共14分)解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M (α,α)=12 [(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M (α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x 1,x 2,x 3,x 4)∈B ,则M (α,α)= x 1+x 2+x 3+x 4. 由题意知x 1,x 2,x 3,x 4∈{0,1},且M (α,α)为奇数, 所以x 1,x 2,x 3,x 4中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}. 将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M (α,β)=1. 所以每组中的两个元素不可能同时是集合B 的元素. 所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(Ⅲ)设S k =( x 1,x 2,…,x n )|( x 1,x 2,…,x n )∈A ,x k =1,x 1=x 2=…=x k –1=0)(k =1,2,…,n ),S n +1={( x 1,x 2,…,x n )| x 1=x 2=…=x n =0}, 则A =S 1∪S 1∪…∪S n +1.对于S k (k =1,2,…,n –1)中的不同元素α,β,经验证,M (α,β)≥1. 所以S k (k =1,2 ,…,n –1)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过n +1.取e k =( x 1,x 2,…,x n )∈S k 且x k +1=…=x n =0(k =1,2,…,n –1).令B =(e 1,e 2,…,e n –1)∪S n ∪S n +1,则集合B 的元素个数为n +1,且满足条件. 故B 是一个满足条件且元素个数最多的集合.3.(2018江苏)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).3.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.4.(2018天津文)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 4.【答案】(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(2)①答案见解析;②521.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.②由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种. 所以,事件M 发生的概率为()521P M =.5.(2018全国新课标Ⅰ文)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:((2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)5.答案:略 解答:(1)(2)由题可知用水量在[0.3,0.4]的频数为10,所以可估计在[0.3,0.35)的频数为5,故用水量小于30.35m 的频数为1513524+++=,其概率为240.4850P ==.(3)未使用节水龙头时,50天中平均每日用水量为: 31(0.0510.1530.2520.3540.4590.55260.657)0.50650m ⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.506365184.69m ⨯=. 使用节水龙头后,50天中平均每日用水量为: 31(0.0510.1550.25130.35100.45160.555)0.3550m ⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.35365127.75m ⨯=, ∴一年能节省3184.69127.7556.94m -=.6.(2018全国新课标Ⅱ文、理) 下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.6.【答案】(1)模型①226.1亿元,模型②2565.亿元;(2)模型②,见解析. 【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 30.413.5192ˆ26.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ˆ9917592565y =+⨯=..(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ99175y t =+.可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.(2018全国新课标Ⅲ文、理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m(3附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.7.答案:见解析解答:(1)第一种生产方式的平均数为184x =,第二种生产方式平均数为274.7x =,∴12x x >,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.(2)由茎叶图数据得到80m =,∴列联表为(3)222()40(151555)10 6.635()()()()20202020n ad bc K a b c d a c b d -⨯-⨯===>++++⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异.。
2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)
2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
2018年全国各地高考数学试题及解答分类汇编大全(09-解三角形)
2018年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题1. (2018全国新课标I 理) 下图来自古希腊数学家希波克拉底所研究的几何图形•此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB , AC . △ ABC 的三边所围成的区域记为I,黑色部分记为H,其余部分记为川•在整个图形中随机取一点,此点取自 i,n,m 的概率分别记为 p i , p 2, P 3,则( ) A . p i = p 2 B . p i =p 3 C . P 2=P 3 D . p i =p 2+p 31.答案:A解答:取 AB = AC =2,则 BC =2;2 ,•••区域I 的面积为S,」2 2=2,区域川的面积为S 3二E (、.2)2-2F -2 ,2 2区域U 的面积为S 2二二12 - S 3 = 2,故P 1 = P 2 .C J 52.( 2018 全国新课标 H 文、理) 在厶ABC 中,cos ' , BC =1 , AC =5,则 AB =()2 5 A . 42 B .,30 C .29 D . 2.52.【答案】A【解析】因为 cosC =2cos 2 C -1 =2| 1 = 3 ,2 l 5丿 5 所以 c 2 二a 2 b 2 -2abcosC =1 25 -2 1 5 -- =32 , c =4./2,选 A .I 5丿 3. (2018全国新课标川文、理) △ ABC 的内角A , B ,2 +b? _ 2 面积为-一,则C =(. nA .-23.答案:CC 的对边分别为a , b , c .若△ ABC 的解答: S .A iBCa 2b 2 -c 22ab cosC 1abcosC ,又 21S ABC abG C ,故 tan C 1 ,31…C .故选C.4二、填空1. (2018北京文)若△ ABC的面积为—a2c^b2,且• C为钝角,则• B二取值范围是TT TT f t/3 ^B 为,…。
2018年高考数学真题较难题汇编
2018年普通高等学校招生全国统一考试1.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1C . θ1≤θ3≤θ2D . θ2≤θ3≤θ12.已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A . −1B . +1C . 2D . 2−3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 44.已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________5.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)6.已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m =____________________时,点B 横坐标的绝对值最大7.(15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上PMBAOyx(1)设AB 中点为M ,证明:PM 垂直于y 轴 (2)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围8.(15分)已知函数f (x )=−lnx(1)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln 2(2)若a ≤3−4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点2018年普通高等学校招生全国统一考试(江苏卷) 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f xg x ''分别为函数(),()f xg x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”;(2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求的取值范围(用1,,b m q 表示).2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则BF AE ⋅的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)
则曲线 y 2ln x 在点 1,0 处的切线的斜率为 k f 1 2 , 则所求切线方程为 y 0 2 x 1 ,即 y 2x 2 .
4.(2018 全国新课标Ⅱ理)曲线 y 2 ln(x 1) 在点 (0, 0) 处的切线方程为__________.
4.【答案】 y 2x
x
,1
1
1,1a
f x
0
f x
Z
极大值
]
f x 在 x 1处取得极大值,不合题意. ③当 x1 x2 ,即 a 1时, f x , f x 随 x 的变化情况如下表:
x
,1 a
1 a
1 a
,1
f x
0
1 a 0 极小值
1 0
1 a
,
Z
1,
f x
Z
极大值
]
极小值
Z
f x 在 x 1处取得极小值,即 a 1满足题意.
1 x
1)2 k 1
4
16
0 ,得 h(x) 有两个极值点 x1, x2 (x1 x2 ) ,
∴
1 x1
1 4
,∴ 0
x1
16 .
可知 h(x) 在 (0, x1) 递增, (x1, x2 ) 递减, (x2 , ) 递增,
∴ h(x1) kx1
x1
ln x1
a
( 2
1 x1
1) x1
(1)证明:函数 f (x) x 与 g(x) x2 2x 2 不存在“S 点”;
(2)若函数 f (x) ax2 1与 g(x) ln x 存在“S 点”,求实数 a 的值; (3)已知函数 f (x) x2 a ,g(x) bex .对任意 a 0 ,判断是否存在 b 0 ,使函数 f (x) 与 g(x)
2018年高考数学真题专题汇编----向量
2018年高考数学真题专题汇编----向量一、填空题1.(北京理6改)设a ,b 均为单位向量,则“33a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择)1.充分必要2.(北京文9)设向量a =(1,0),b =(-1,m ),若()m aa b ,则m=_________. 2.-13.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB _________. (用,AB AC 表示)3.3144AB AC 4.(全国卷II 理4)已知向量a ,b 满足||1a ,1a b,则(2)a a b _________. 4.35.(全国卷III 理13.已知向量=1,2a ,=2,2b ,=1,λc .若2∥c a +b ,则________.5.126.(天津理8)如图,在平面四边形ABCD 中,AB BC ,AD CD ,120BAD ,1AB AD . 若点E 为边CD 上的动点,则AE BE uu u r uu u r 的最小值为_________.6. 21167.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ,2,2,BM MA CN NA 则·BC OM 的值为_________.7.68.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是_________.8.3-19.(上海8).在平面直角坐标系中,已知点(1,0)A ,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF ,则AE BF 的最小值为_________.9.-3。
2018高考数学真题较难题汇编
2018年普通高等学校招生全国统一考试1. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ1 2. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 π3,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A . √3−1 B . √3+1 C . 2 D . 2−√3 3. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 44. 已知λ∈R ,函数f (x )={x −4,x ≥λ x 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________5. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)6. 已知点P (0,1),椭圆 x 24+y 2=m (m >1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m =____________________时,点B 横坐标的绝对值最大7. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上 (1) 设AB 中点为M ,证明:PM 垂直于y 轴(2)若P 是半椭圆x 2+y24=1(x <0)上的动点,求△P AB 面积的取值范围8. (15分)已知函数f (x )=√x −lnx(1) 若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln 2(2) 若a ≤3−4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点2018年普通高等学校招生全国统一考试(江苏卷)9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .PMBA Oy x13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求的取值范围(用1,,b m q 表示).2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试1. 已知四棱锥SABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角SABC 的平面角为θ3,则( ) A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1C . θ1≤θ3≤θ2D . θ2≤θ3≤θ12. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为,向量b 满足b 24eb +3=0,则|ab |的最小值是( ) A .1B .+1C . 2D . 23. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 44. 已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________5. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)6. 已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m =____________________时,点B 横坐标的绝对值最大7. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上 (1) 设AB 中点为M ,证明:PM 垂直于y 轴(2)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围8. (15分)已知函数f (x )=lnx(1) 若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>88ln 2(2) 若a ≤34ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点2018年普通高等学校招生全国统一考试(江苏卷)PMB AOyx9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”;(2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求的取值范围(用1,,b m q 表示).2018年普通高等学校招生全国统一考试(上海卷)8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则BF AE ⋅的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q +1(n ∈N*),前n 项和为S n 。
若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x 、x 、y 、y 满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,的最大值为__________16.设D 是含数1的有限实数集,是定义在D 上的函数,若的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,的可能取值只能是( )(A ) (B2 (C3(D )0 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分) 设常数t >2,在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线τ:²8y x =00x t y (≦≦,≧),l 与x 轴交于点A ,与τ交于点B ,P 、Q 分别是曲线τ与线段AB 上的动点。
(1)用t 为表示点B 到点F 的距离;(2)设t =3,2FQ =∣∣,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上若存在,求点P 的坐标;若不存在,说明理由。
21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{a n },若无穷数列{b n }满足:对任意*n N ∈,都有1||n n b a -≤,则称{}{}n n b a 与 “接近”。
(1)设{a n }是首项为1,公比为的等比数列,11n n b a +=+,*n N ∈,判断数列是否与接近,并说明理由;(2)设数列{a n }的前四项为:a =1,a =2,a =4,=8,{b n }是一个与{a n }接近的数列,记集合M={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b -b ,b -b ,…b 201-b 200中至少有100个为正数,求d 的取值范围。
2018年普通高等学校招生全国统一考试(北京卷)(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率122.若第一个单音的频率为f ,则第八个单音的频率为 (A 32(B 322(C 1252 (D 1272(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ (13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. (18)(本小题13分)设函数()f x =[2(41)43ax a x a -+++]e x .(Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ;(Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.(20)(本小题14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--L .(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.2018年普通高等学校招生全国统一考试(北京卷)w(7)在平面坐标系中,»»»¼,,,AB CDEF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD(C )»EF (D )¼GH (8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ (14)若ABC △的面积为2223()a c b +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.(19)(本小题13分)设函数2()[(31)32]e xf x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ;(Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. (20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为6,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .2018年普通高等学校招生全国统一考试(天津卷)(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >> (C) c b a >> (D) c a b >>(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -= (B) 221124x y -= (C) 22139x y -= (D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116 (B) 32 (C) 2516(D) 3(12)已知圆2220x y x +-=的圆心为C ,直线21,2232⎧=-+⎪⎪⎨⎪=-⎪⎩x t y t (t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为 .(13)已知,R a b ∈,且360a b -+=,则128ab+的最小值为 .(14)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .(17)(本小题满分13分)如图,//AD BC 且AD =2BC ,AD CD ⊥,//EG AD 且EG =AD ,//CD FG 且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ⊥平面; (II )求二面角E BC F --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.(18)(本小题满分13分)设{}n a 是等比数列,公比大于0,其前n 项和为()n S n N *∈,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+.(I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()*∈n T n N ,(i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n N k k n +*+=+=-∈+++∑. (19)(本小题满分14分)设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为5,点A 的坐标为(,0)b ,且62FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若52sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值. (20)(本小题满分14分)已知函数()xf x a =,()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线.2018年普通高等学校招生全国统一考试(天津卷)w(8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u r u u u r u u u r u u u r则·BC OM u u u r u u u u r 的值为(A )15- (B )9- (C )6-(D )0(13)已知a ,b ∈R ,且a –3b +6=0,则2a +18b的最小值为__________. (14)已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.(17)(本小题满分13分)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.(18)(本小题满分13分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. (19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>> 的右顶点为A ,上顶点为B .已知椭圆的离心率为5,||13AB =.(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值. (20)(本小题满分14分)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列. (I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线12()63y x t =---有三个互异的公共点,求d 的取值范围.2018年普通高等学校招生全国统一考试1l8.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=u u u u r u u u rA .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .316.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________. 18.(12分)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.19.(12分)设椭圆2212x C y +=:的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为()20,.(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB =∠∠. 20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验 21.(12分)已知函数()1ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.2018年普通高等学校招生全国统一考试1w11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= A .15B .55C .255D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________. 18.(12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积. 20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 21.(12分)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1 ea≥时,()0f x≥.2018年普通高等学校招生全国统一考试2l3.函数2e e()x xf xx--=的图象大致为10.若()cos sinf x x x=-在[,]a a-是减函数,则a的最大值是A.π4B.π2C.3π4D.π11.已知()f x是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x-=+.若(1)2f=,则(1)(2)(3)(50)f f f f++++=LA.50-B.0 C.2 D.5012.已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左,右焦点,A是C的左顶点,点P在过A3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为A.23B.12C.13D.1416.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.19.(12分)设抛物线24C y x=:的焦点为F,过F且斜率为(0)k k>的直线l与C交于A,B两点,||8AB=.POM(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 20.(12分)如图,在三棱锥P ABC -中,AB BC == 4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值. 21.(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .2018年普通高等学校招生全国统一考试2w11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=LA .50-B .0C .2D .5016.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.19.(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.20.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 21.(12分)已知函数321()(1)3f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.2018年普通高等学校招生全国统一考试3l6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为9.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .2018年普通高等学校招生全国统一考试3w6.函数()2tan 1tan xf x x=+的最小正周期为 A .π4B .π2C .πD .2π12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .16.已知函数())ln 1f x x =-+,()4f a =,则()f a -=________.21.(12分)已知函数()21e xax x f x +-=.(1)求由线()y f x =在点()01-,处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.。