十年高考试题分类解析-物理-专题10-带电粒子在电场中的运动
高考物理试卷分类汇编物理带电粒子在电场中的运动(及答案)及解析
高考物理试卷分类汇编物理带电粒子在电场中的运动(及答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,OO′为正对放置的水平金属板M 、N 的中线.热灯丝逸出的电子(初速度重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射入两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动.已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e .(1)求板间匀强磁场的磁感应强度的大小B 和方向;(2)若保留两金属板间的匀强磁场不变,使两金属板均不带电,求从小孔O 射入的电子打到N 板上的位置到N 板左端的距离x . 【答案】(1)12mU B L e = 垂直纸面向外;(23L【解析】 【分析】(1)在电场中加速度,在复合场中直线运动,根据动能定理和力的平衡求解即可; (2)洛伦兹力提供向心力同时结合几何关系求解即可; 【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU m v = 由于电子在两板间做匀速运动,则evB eE =,其中2U E L= 联立解得:12mUB L e=根据左手定则可判断磁感应强度方向垂直纸面向外;(2)洛伦兹力提供电子在磁场中做圆周运动所需要的向心力,有:2v evB m r=,其中由(1)得到2eUv m=设电子打在N 板上时的速度方向与N 板的夹角为θ,由几何关系有:2cos L r rθ-=由几何关系有:sin x r θ= 联立解得:3x L =. 【点睛】本题考查了带电粒子的加速问题,主要利用动能定理进行求解;在磁场中圆周运动,主要找出向心力的提供者,根据牛顿第二定律列出方程结合几何关系求解即可.2.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析
高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r '='联立可得所加匀强磁场的磁感应强度大小:4mvB qr '=='T 根据左手定则可知所加磁场方向垂直纸面向外。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN 方向抛出各小球.其中第1个小球恰能通过MN 上的C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:(1)第1个小球的带电量大小; (2)磁场的磁感强度的大小B ;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1) 2012mv q Eh=;(2) 02E B v =;(3)存在,0E B v '= 【解析】 【详解】(1)设第1球的电量为1q ,研究A 到C 的运动:2112q E h t m=02h v t =解得:2012mv q Eh=;(2)研究第1球从A 到C 的运动:12y q Ev h m= 解得:0y v v =tan 1y v v θ==,45o θ=,02v v =;研究第1球从C 作圆周运动到达O 的运动,设磁感应强度为B由21v q vB m R =得1mvR q B = 由几何关系得:22sin R h θ= 解得:02E B v =; (3)后面抛出的小球电量为q ,磁感应强度B '①小球作平抛运动过程02hmx v t v qE==2yqE v h m= ②小球穿过磁场一次能够自行回到A ,满足要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.3.如图所示,在一光滑绝缘水平面上,静止放着两个可视为质点的小球,两小球质量均为m ,相距l ,其中A 球带正电,所带电荷量为q ,小球B 不带电.若在A 球开始向右侧区域加一水平向右的匀强电场,场强为E ,A 球受到电场力的作用向右运动与B 球碰撞.设每次碰撞为弹性碰撞,碰撞前后两球交换速度,且碰撞过程无电荷转移.求:(1)小球A 在电场中的加速度大小和第一次与B 碰撞前的速度;(2)若两小球恰在第二次碰撞时离开电场,求电场在电场线方向上的宽度; (3)若两小球恰在第三次碰撞时离开电场,求电场在电场线方向上的宽度及小球A 从进入电场到离开电场的过程中电势能的变化量. 【答案】(1) a=qE/m 2Eqlm;13Eql 【解析】 【详解】(1)根据牛顿运动定律:qE=ma ,则a=qE/m设第一次碰撞时小球A 的速度为v :根据动能定理:212Eql mv = 解得:2Eqlv m=(2)第一次碰撞前后小球A 的速度为v A1和v A1′,小球B 碰撞前后的速度为v B1和v B1′所以v A1=v v B1=0 v A1′=0 v B1′=vA 球运动的距离为l 第一次碰撞后,小球A 做初速度为零的匀加速直线运动,小球B 做速度为v 的匀速直线运动.设第二次碰撞前后A 球的速度为v A2和v A2′小球B 碰撞前后的速度为v B2和v B2′第一次碰撞后至第二次碰撞前:vt= (0+v A2)t/2 所以:v A2=2v ;碰后v A2′= v而B 球碰前为v ,碰后为2v .从第一次碰撞后到第二次碰撞前的过程中,A 球运动的距离为l 2.()22120? 2Eql m v =- 24l l =电场宽度为:L=l+4l=5l(3)二次碰撞后,A 球做初速度为v 的匀加速直线运动,B 球以速度2v 匀速直线运动.设A 球第三次碰前后的速度为v A3和 v A3′,小球B 碰撞前后的速度为v B3和v B3′ 所以:3223232A A v v t vt v v +==从第二次碰撞到第三次碰撞过程中,A 球运动的距离为l 3 :qEl 3 = 12m ()23v -12m 2v l 3=8l所以:电场的宽度:L=l 1+l 2+l 3=13l A 球减少的电势能 △ε=Eq×13l=13Eql4.在竖直平面内,一根长为L 的绝缘细线,一端固定在O 点,另一端拴着质量为m 、电荷量为+q 的小球。
带电粒子在电场中运动题目及答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112m dv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=∙== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+=图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .2.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.3.如图所示,有一比荷qm=2×1010C/kg 的带电粒子,由静止从Q 板 经电场加速后,从M 板的狭缝垂直直线边界a 进入磁感应强度为B =1.2×10-2T 的有界矩形匀强磁场区域后恰好未飞出直线边界b ,匀强磁场方向垂直平面向里,a 、b 间距d =2×10-2m(忽略粒子重力与空气阻力)求:(1)带电粒子射入磁场区域时速度v ; (2)Q 、M 两板间的电势差U QM 。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x 2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y 当322a y y =y =98a 时,H 有最大值由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a2v gh =,45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p v gh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=4.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv emv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin sin 2v e v mθθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+5.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r=0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d=0.2m .质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m6.如图所示,有一比荷qm=2×1010C/kg 的带电粒子,由静止从Q 板 经电场加速后,从M 板的狭缝垂直直线边界a 进入磁感应强度为B =1.2×10-2T 的有界矩形匀强磁场区域后恰好未飞出直线边界b ,匀强磁场方向垂直平面向里,a 、b 间距d =2×10-2m(忽略粒子重力与空气阻力)求:(1)带电粒子射入磁场区域时速度v ; (2)Q 、M 两板间的电势差U QM 。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)及解析
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,OO′为正对放置的水平金属板M 、N 的中线.热灯丝逸出的电子(初速度重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射入两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动.已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e .(1)求板间匀强磁场的磁感应强度的大小B 和方向;(2)若保留两金属板间的匀强磁场不变,使两金属板均不带电,求从小孔O 射入的电子打到N 板上的位置到N 板左端的距离x . 【答案】(1)12mU B L e = 垂直纸面向外;(2)32L【解析】 【分析】(1)在电场中加速度,在复合场中直线运动,根据动能定理和力的平衡求解即可; (2)洛伦兹力提供向心力同时结合几何关系求解即可; 【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU m v = 由于电子在两板间做匀速运动,则evB eE =,其中2U E L= 联立解得:12mUB L e=根据左手定则可判断磁感应强度方向垂直纸面向外;(2)洛伦兹力提供电子在磁场中做圆周运动所需要的向心力,有:2v evB m r=,其中由(1)得到2eUv m=设电子打在N 板上时的速度方向与N 板的夹角为θ,由几何关系有:2cos L r rθ-=由几何关系有:sin x r θ= 联立解得:32x L =. 【点睛】本题考查了带电粒子的加速问题,主要利用动能定理进行求解;在磁场中圆周运动,主要找出向心力的提供者,根据牛顿第二定律列出方程结合几何关系求解即可.2.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W4.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m5.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
带电粒子在电场中运动题目及标准答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
带电粒子在电场中运动题目及答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112m dv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=∙== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+=图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
2004-2013十年高考物理大全分类解析专题10带电粒子在电场中的运动
2003~2012十年高考大全分类解析(十)带电粒子在电场中的运动一.2013年高考题1.(2013高考重庆理综第3题)如题3图所示,高速运动的α粒子被位于O点的重原子核散射,实线表示α粒子运动的轨迹,M、N和Q为轨迹上的三点,N点离核最近,Q点比M点离核更远,则A.α粒子在M点的速率比在Q点的大B.三点中,α粒子在N点的电势能最大C.在重核产生的电场中,M点的电势比Q点的低D.α粒子从M点运动到Q点,电场力对它做的总功为负功2.(2013高考天津理综物理第6题)两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。
一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动.取无限远处的电势为零,则A.q由A向O的运动是匀加速直线运动1 B.q 由A 向O 运动的过程电势能逐渐减小运动的过程电势能逐渐减小C.q 运动到O 点时的动能最大点时的动能最大o.q 运动到O 点时电势能为零点时电势能为零3. 3. ((2013高考广东理综第15题)喷墨打印机的简化模型如图4所示,重力可忽略的墨汁微滴,经带电室带负电后忽略的墨汁微滴,经带电室带负电后 ,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中终打在纸上,则微滴在极板间电场中A .向负极板偏转.向负极板偏转B.B.电势能逐渐增大电势能逐渐增大电势能逐渐增大C.C.运动轨迹是抛物线运动轨迹是抛物线运动轨迹是抛物线D.D.运动轨迹与带电量无关运动轨迹与带电量无关运动轨迹与带电量无关4. .(2013高考北京理综第18题)某原子电离后其核外只有一个电子,某原子电离后其核外只有一个电子,若该电子在若该电子在核的库仑力作用下绕核做匀速圆周运动,那么电子运动核的库仑力作用下绕核做匀速圆周运动,那么电子运动图4 A.半径越大,加速度越大半径越大,加速度越大B.半径越小,周期越大半径越小,周期越大C.半径越大,角速度越小半径越大,角速度越小D.半径越小,线速度越小半径越小,线速度越小二.2012年高考题1.(2012·新课标理综)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析
高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)把R =mv qB 、v =1v sin α、12qEdv m=代入解得12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m= 代入解得 0221221L qE n E v n md n B=-⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=代入解得02(1)21221L qE n E v n md n B+=-⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。
【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析
【答案】(1) E mg q
(2) xCN 7L
(3)
t总=(3
3 4
)
2L g
【解析】
(1)小物体无初速释放后在重力、电场力的作用下做匀加速直线运动,小物体刚好沿切线 无碰撞地进入圆管内,故小物体刚好沿 PA 连线运动,重力与电场力的合力沿 PA 方向;又
PA AC L ,故 tan 450 qE ,解得: E mg
6.如图所示,一根光滑绝缘细杆与水平面成 α=30°角倾斜固定.细杆的一部分处在场强 方向水平向右的匀强电场中,场强 E=2 3 ×104N/C.在细杆上套有一个带负电的小球, 带电量为 q=1×10﹣5C、质量为 m=3×10﹣2kg.现使小球从细杆的顶端 A 由静止开始沿杆 滑下,并从 B 点进入电场,小球在电场中滑至最远处的 C 点.已知 AB 间距离 x1=0.4m,g =10m/s2.求: (1)小球通过 B 点时的速度大小 VB; (2)小球进入电场后滑行的最大距离 x2; (3)试画出小球从 A 点运动到 C 点过程中的 v﹣t 图象.
解得:小球抛出时的初速度
v0
23 3
m
s
(2)在
B
点时, sin60
vy vB
,则 vB
43 3
m s
小球在
A
点时, FN
qE
mg
m
vA2 R
,解得: vA
3ms
小球从 B 到 A 过程,由动能定理得: (mg qE)(R Rcos ) Wf
1 2
mvA2
1 2
mvB2
解得:小球从 B 到 A 的过程中克服摩擦所做的功Wf
mg qE ma ,解得:小球的加速度
a mg qE 210 1103 104 m / s2 5m / s2
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)及解析
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
【物理】高考必刷题物理带电粒子在电场中的运动题含解析
tan vy 1, 45o , v v0
2v0 ;
研究第 1 球从 C 作圆周运动到达 O 的运动,设磁感应强度为 B
由 q1vB
m
v2 R
得
R
mv q1B
由几何关系得: 2Rsin h2
解得: B 2E ; v0
(3)后面抛出的小球电量为 q ,磁感应强度 B
①小球作平抛运动过程
x v0t v0
;
根据(1)可知,粒子恰好能够垂直于 OL 进入匀强磁场,速度 v 就是初速度 v0 在 X 方向上
的分量,即
;
粒子在电场中运动,在 Y 方向上的位移
,所以,粒子进入磁
场的位置在 OL 上距离 O 点
;根据几何关系,
可得
,即
;
所以
;
所以,粒子从 M 点出发到第二次经过 OL 所需要的最长时间
.
5.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线 MN、PQ,其交点为 O.MN 一侧有电场强度为 E 的匀强电场(垂直于 MN),另一侧有匀强磁场(垂直纸面向 里).宇航员(视为质点)固定在 PQ 线上距 O 点为 h 的 A 点处,身边有多个质量均为 m、电量不等的带负电小球.他先后以相同速度 v0、沿平行于 MN 方向抛出各小球.其中 第 1 个小球恰能通过 MN 上的 C 点第一次进入磁场,通过 O 点第一次离开磁场, OC=2h.求: (1)第 1 个小球的带电量大小; (2)磁场的磁感强度的大小 B; (3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到 宇航员的手中?如有,则磁感强度应调为多大.
在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:
高考物理试卷分类汇编物理带电粒子在电场中的运动(及答案)及解析
高考物理试卷分类汇编物理带电粒子在电场中的运动(及答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析
高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)含解析
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.2012年高考题1.(2012·新课标理综)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子A..所受重力与电场力平衡B..电势能逐渐增加C..动能逐渐增加D..做匀变速直线运动1.【答案】:BD识。
2(2012·山东理综)图中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷。
一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a、b、c 三点是实线与虚线的交点。
则该粒子A.带负电B.在c点受力最大C.在b点的电势能大于在c点的电势能D.由a点到b点的动能变化大于由b点到c点的动能变化【答案】CD【解析】由粒子仅在电场力作用下的运动轨迹可知,该粒子受到圆心处正点电荷的排斥,该粒子带正电,在a点受力最大,选项AB错误;该粒子在b点的电势能大于在c点的电势能,选项C正确;该电场等距等势面ab之间电势差大于bc之间的电势差,由动能定理可知,该粒子由a点到b点的动能变化大于由b点到c点的动能变化,选项D正确。
【考点定位】此题考查带电粒子在点电荷电场中的运动及其相关知识。
3. (2012·天津理综)两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中A.做直线运动,电势能先变小后变大B.做直线运动,电势能先变大后变小C.做曲线运动,电势能先变小后变大D.做曲线运动,电势能先变大后变小4(2012·四川理综)如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ=37°,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×105N/C、方向垂直于斜轨向下的匀强电场。
质量m=5×10-2kg、电荷量q=+1×10-6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v 0=3m/s冲上斜轨。
以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。
已知斜轨与小物体间的动摩擦因数μ=0.25。
设小物体的电荷量保持不变,取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求弹簧枪对小物体所做的功;(2)在斜轨上小物体能到达的最高点为P,示CP的长度。
【解析】(1)设弹簧枪对小物体做功为W f,由动能定理得:W f-mgr(1-cosθ)=12mv02.①代入数据得,W f=0.475J。
②(2)取沿平直斜轨道向上为正方向。
设小物块通过C点进入电场后的加速度为a1,0= v1+ a2 t2,s1= v1 t2+12a2t22。
设CP的长度为s,有s= s1 +s2。
联立相关方程,代入数据解得:s=0.57m。
【考点定位】此题考查动能定理、牛顿运动定律、匀变速直线运动规律及其相关知识。
二.2011年高考题1.(2011江苏物理第8题)一粒子从A点射入电场,从B点射出,电场的等势面和粒子的运动轨迹如图所示,图中左侧前三个等势面平行,不计粒子的重力。
下列说法正确的有A.粒子带负电荷B.粒子的加速度先不变,后变小C.粒子的速度不断增大D.粒子的电势能先减小,后增大【答案】AB 【点评】题中给出的等势面是等差(相邻等势面之间的电势差相等0等势面。
2(2011广东理综第21题.)图8为静电除尘器除尘机理的示意图。
尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘目的。
下列表述正确的是 A.到达集尘极的尘埃带正电荷 B.电场方向由集尘极指向放电极 C.带电尘埃所受电场力的方向与电场方向相同D.同一位置带电荷量越多的尘埃所受电场力越大 【解析】:由于集尘机与电源正极相连,到达集尘极的尘埃带负电荷,电场方向由集尘极指向放电极,带电尘埃所受电场力的方向与电场方向相反,由F=qE 可知,同一位置带电荷量越多的尘埃所受电场力越大,选项BD 正确AC 错误。
【答案】:BD【点评】此题考查静电除尘器除尘机理。
3.(2011福建理综卷第20题)反射式速调管是常用的微波器械之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似。
如图所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动。
已知电场强度的大小分别是31 2.010E =⨯N/C和32 4.010E =⨯N/C ,方向如图所示,带电微粒质量201.010m kg -=⨯,带电量91.010q C -=-⨯,A 点距虚线MN 的距离1 1.0d cm =,不计带电微粒的重力,忽略相对论效应。
求: (1) B 点到虚线MN 的距离2d ;(2) 带电微粒从A 点运动到B 点所经历的时间t 。
【解析】:(1)带电微粒由A 运动到B 的过程中,由动能定理有│q │E 1d 1-│q │E 2d 2=0, 解得d 2=12E E d 2=0.50cm. (2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律有 │q │E 1=m a 1,│q │E 2=m a 2,设微粒在虚线MN两侧运动的时间分别为t1、t2,由运动学公式有d1=12a1t12,d2=12a2t22,t= t1+t2,联立解得t=1.5×10-8s。
【点评】此题考查电场力、动能定理、牛顿运动定律、匀变速直线运动规律等知识点。
三.2010年高考题1(2011安徽理综卷第18题)图(a)为示波管的原理图。
如果在电极YY’之间所加的电压按图(b)所示的规律变化,在电极XX’之间所加的电压按图(c)所示的规律变化,则在荧光屏上会看到的图形是解析:此题考查示波管。
带电粒子在电场中的运动等知识点。
由电极YY’之间所加的电压按图(b)所示的规律变化可知,在y方向图形从y=0开始且向+y方向运动;由在电极XX’之间所加的电压按图(c)所示的规律变化可知,在x方向图形从-x半个周期开始,所以在荧光屏上会看到的图形是B。
答案:B2.(2010全国新课标理综).静电除尘器是目前普遍采用的一种高效除尘器。
.某除尘器模型的收尘板是很长的条形金属板,图中直线ab为该收尘板的横截面。
.工作时收尘板带正电,其左侧的电场线分布如图所示;粉尘带负电,在电场力作用下向收尘板运动,最后落在收尘板上。
.若用粗黑曲线表示原来静止于P点的带电粉尘颗粒的运动轨迹,下列4幅图中可能正确的是(忽略重力和空气阻力)【解析】根据电场线的切线方向表示电场强度方向,带负电的粉尘所受电场力的方向为电场线的切线的反方向。
原来静止于P点的带电粉尘颗粒的运动轨迹,只可能是图A所示。
【答案】A【点评】只有当电场线为直线,初速度为零的带电粒子运动轨迹才与电场线重合。
若带电粒子初速度不为零,则带电粒子一定向所受力的方向偏转;若电场线为曲线,带电粒子初速度为零,则带电粒子在电场力方向加速后一定向所受力的方向偏转。
3.(2010·四川省理综)如图所示,圆弧虚线表示正点电荷电场的等势面,相邻两等势面间的电势差相等。
光滑绝缘直杆沿电场方向水平放置并固定不动,杆上套有一带正电的小滑块(可视为质点),滑块通过绝缘轻弹簧与固定点O相连,并以某一初速度从M点运动到N点,OM<ON。
若滑块在M、N时弹簧的弹力大小相等,弹簧始终在弹性限度内,则A、滑块从M到N的过程中,速度可能一直增大B、滑块从位置1到2的过程中,电场力做的功比从位置3到4的小C、在M、N之间的范围内,可能存在滑块速度相同的两个位置D、在M、N之间可能存在只由电场力确定滑块加速度大小的三个位置3.【答案】ACD错误。
4(2010·江苏物理)制备纳米薄膜装置的工作电极可简化为真空中间距为d的两平行极板,如图甲所示,加在极板A、B间的电压U AB作周期性变化,其正向电压为U0,反向电压为-kU0(k>1)。
电压变化的周期为2τ,如图乙所示。
在t=0时,极板B附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动。
若整个运动过程中,电子未碰到极板A ,且不考虑重力作用。
(1)若54k,电子在0—2r 时间内不能到达极板A ,求d 应满足的条件; (2)若电子在0—2r 时间未碰到极板B ,求此运动过程中电子速度v 随时间t 变化的关系; (3)若电子在第N 个周期内的位移为零,求k 的值。
解析:.(1)电子在0~τ时间内做匀加速直线运动,加速度大小a 1=0eU md,① 位移x 1=12a 1τ2。
② 在τ~2τ时间内先做匀减速直线运动,后反向做匀加速直线运动,加速度大小a 2=54eU md,③加速度的大小 a 2′=0ekU md速度增量△v 2=-a 2′τ⑧(a)当0≤t-2n τ<τ时 电子的运动速度 v=n △v 1+n △v 2+a 1(t-2n τ)⑨解得 v=[t-(k+1)n τ]ekU md,(n=0,1,2, ……,99) ⑩(b)当0≤t-(2n+1) τ<τ时 电子的运动速度 v=(n+1) △v 1+n △v 2-a 2′ [t-(2n+1) τ]○11 解得v=[(n+1)(k+1) τ-k τ]0eU dm,(n=0,1,2, (99)○12(3)电子在2(N-1) τ~(2N-1) τ时间内的位移x 2N-1=v 2N-2τ+12a 1τ2电子在(2N-1) τ~2N τ时间内的位移x 2N =v 2N-1τ-12a 2′τ2由○10式可知 v 2N-2=(N-1)(1-k) τ0eUdm。
由○12式可知,v 2N-1=(N-Nk+k) τ0eU md。
依据题意,x 2N-1+ x 2N =0, 解得 k=4143N N --。
四.2009年高考题1. (2009广东理科基础)如图1,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。
M 和N 是轨迹上的两点,其中M 点在轨迹的最右点。
不计重力,下列表述正确的是 A .粒子在M 点的速率最大 B .粒子所受电场力沿电场方向 C .粒子在电场中的加速度不变 D .粒子在电场中的电势能始终在增加 【解析】根据做曲线运动物体的受力特点可知合力(电场力)指向轨迹的凹侧, 即受到的电场力方向与电场线方向相反,选项B 错误;粒子从N 到M ,电场力方向与位移夹角大于90°,电场力做负功,速度减小,电势能增加;当达到M 点后继续运动,电场力方向与位移夹角小于90°,电场力做正功,速度增大,电势能减小;由此可知,粒子在M 点的速率最小,选项AD 错误。