成都市届第一次诊断性测试理科数学含答案
四川省成都市成华区初2017届九年级上学期第一次诊断性测试题数学
![四川省成都市成华区初2017届九年级上学期第一次诊断性测试题数学](https://img.taocdn.com/s3/m/f333c64e561252d380eb6efb.png)
成华区初2017届第一次诊断性测试题九年级数学注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.答题前,考生务必先认真核对条形码上的姓名、学籍号和座位号,无误后将本人姓名、学籍号和座位号填写在答题卡相应位置.3.第Ⅰ卷为选择题,必须使用2B 铅笔在答题卡上填涂作答;非选择题请用0.5毫米黑色墨水签字笔书写,字体工整,笔记清楚.注有“▲”的地方,是需要考生在答题卡上作答的内容或问题,请按照题号在答题卡上各题目相对应的答题区域内作答,超出答题区域书写的答案无效.4.保持答题卡面清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算 30tan 的值等于( )A.3B.33C.33 D.23 2.从棱长为a 2的正方体零件的一角,挖去一个棱长为a 的小正方体,得到一个如图所示的零件,则这个零件的俯视图是( ).第2题图A.B.C. D.3.若92=y x ,则=+yy x ( ) A.911 B.97 C.119 D.97-4.在ABC △Rt 中,︒=∠90C ,3=a ,5=c ,则A cos 的值是( ) A.34 B.53 C.43 D.54 5.下列一元二次方程没有实数根的是( )A.0122=++x xB.022=++x xC.012=-xD.0122=--x x6.二次函数2212-=x y 的顶点坐标是( ) A.)2,1(-B.)2,1(C.)2,0(-D.)2,0(7.菱形、矩形、正方形都具有的性质是( ) A.四条边都相等 B.四个角都相等C.对角线互相平分D.对角线相等且互相平分8.已知关于x 的一元二次方程022=--k x x 有两个不相等的实数根,则实数k 的取值范围是( )A.1≥kB.1>kC.1-≥kD.1->k9.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A.()x +1100 B.()21100x +C.()21100x +D.()x 21100+10.在平面直角坐标系中,把一条抛物线先绕它的定点旋转︒180,再向上平移3个单位长度,得到抛物线652++=x x y ,则原抛物线的解析式是( ) A.413252-⎪⎭⎫ ⎝⎛--=x yB.411252-⎪⎭⎫ ⎝⎛--=x yC.413252-⎪⎭⎫ ⎝⎛+-=x yD.411252-⎪⎭⎫ ⎝⎛+-=x y第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填写在答题卡上)11.关于x 的一元二次方程04222=-++a x x 的一个根是0,则a 的值为.12.若函数()221--=mx m y 为反比例函数,则m 的值等于.13.如图在平行四边形ABCD 中,E 在AB 上,BD CE 、交于点F ,若3:4:=BE AE ,且2=BF ,则=DF .第13题图 第14题图14.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,8=AC ,6=BD ,BC OE ⊥,垂足为E ,则=OE .三、解答题(本大题共6个小题,共54分,解答应写出必要的文字说明、证明过程或演算步骤) 15(本小题满分12分,每题6分)(1)计算:()260tan 60sin 220163102-︒+︒+-+⎪⎭⎫⎝⎛--π(2)解方程:1232+=x x16.(本小题满分6分)先化简,再求值:122132++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中x 满足022=-+x x .17.(本小题满分8分)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东︒60的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东︒45方向上,如果海轮不改变方向继续前进有没有触礁的危险?第17题图18.(本小题满分8分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图1、图2),请回答下列问题:第18题图(1)这次被调查的学生共有人?(2)被调查的学生中跳绳项目的学生有多少人?(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).19.(本小题满分10分)如图,在平面直角坐标系中,一次函数b ax y +=的图象与反比例函数xky =的图象交于第二、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是)4,(-m ,连接AO ,5=AO ,53sin =∠AOC . (1)求反比例函数和一次函数的解析式. (2)连接OB ,求AOB △的面积.第19题图20.(本小题满分10分)(1)已知:如图1,点D B A 、、在同一直线上,ABC △和BDE △都是等边三角形,且在AB 同侧,连接CD AE 、.①求证:CD AE =;②如图2,连接CE ,分别取EC DE AD CA 、、、的中点P H G F 、、、,求证:四边形FGHP 是菱形;(2)若(1)中ABC △和BDE △都变成直角三角形,直角顶点重合于点B ,且1≠=DBEBCB AB ,点D B A 、、不在同一直线上,如备用图,其他条件不变,猜想四边形FGHP 的形状(直接写结论,不必证明).图1 图2 备用图第20题图B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.如图,在正方形ABCD 外作等腰直角CDE △,CE DE =,连接BE ,则=∠EBC tan .第21题图 第22题图22.如图,在AOB Rt △中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将AOB △绕点B 逆时针旋转︒90后得到A'O'B △.若反比例函数xky =的图象恰好经过斜边A'B 的中点C ,4=ABO S △,2tan =∠BAO ,则k 的值为.23.若t 为实数,关于x 的方程0242=-+-t x x 有两个非负实数根b a 、,且()()0112=--b a ,则t 的值是.24.如图,矩形ABCD 的边长3=AD ,2=AB ,E 为AB 的中点,F 在边BC 上,且FC BF 2=,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为.25.二次函数)0(2≠++=a c bx ax y 的部分图象如图所示,图象过点)0,1(-,对称轴为直线2=x ,下列结论:①04=+b a ;②b c a 39>+;③0278>++c b a ;④若方程()()351-=-+x x a 的两根为1x 和2x ,且21x x <,则2151x x <<-<(5)若点()1,3y A -、点),21(2y B -、点),27(3y C 在该函数图像上,则231y y y <<.其中正确的结论是.(填番号)第24题图第25题图二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)当增种果树多少棵时,果园的总产量(w千克)最大?最大产量是多少?(3)若果园主人希望总产量不低于6750千克,借助(1)、(2)中函数的图像,请你帮助果园主人确定增种棵树的取值范围,在此情况下,要是单棵树的产量最大,你认为增种棵树应定为多少棵?第27题图27.(本小题满分10分)在ABC △中,ACB ∠为锐角,4=AC ,6=AB ,点D 为边AB 上一点,且ABC ACD ∠≤∠.(1)如图1,当ABC ACD ∠=∠时,求BD 的长;(2)当ABC ACD ∠<∠时,在CD 上取点E ,使ACD ABE ∠=∠.①如图2,若点E 恰好为CD 的中点,求BD 的长;②在①的条件下,若︒=∠30ABC ,如图3,求BCD △的面积.图1 图2 图3第27题图28.(本小题满分12分)已知抛物线c bx x y ++=231经过点()0,1A ,点()0,5-C ,直线n x y +-=经过点A ,交抛物线于点B ,点D 为x 轴下方抛物线上的动点.(1)求抛物线的解析式;(2)如图1,过点D 作y 轴的平行线DE ,与x AB 、轴分别交于点F E 、,当四边形AECD 的面积最大时,求点D 的坐标;(3)如图2,当点D 为抛物线的顶点时,在x 轴上是否存在点Q ,使得以Q D C 、、为顶点的三角形与ABC △相似,若存在,求出点Q 的坐标;若不存在,请说明理由.图1 图2第28题图。
四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析
![四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析](https://img.taocdn.com/s3/m/26695e06e418964bcf84b9d528ea81c758f52e87.png)
四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析(考试时间:120分钟全卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.设集合{}23100,{33}A xx x B x x =+-<=-<<∣∣,则A B ⋂=()A.{32}x x -<<∣B.{52}x x -<<∣C.{33}x x -<<∣D.{53}xx -<<∣2.已知i 为虚数单位,且32i1i z =+,则z =()A.1i- B.1i + C.1i-+ D.1i --3.设函数()()()121log 2(1)31x x x f x x +⎧-<⎪=⎨⎪⎩,则()()32log 8f f -+=()A.8B.9C.22D.264.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()A.560B.35C.-35D.-5605.已知点(,)x y 满足不等式组21400x y y x y ⎧⎪⎨⎪≥≥+--+⎩≤,则2z x y =+的最小值为()A.3- B.1- C.5D.76.华为在过去几年面临了来自美国政府的封锁和限制,但华为并没有放弃,在自主研发和国内供应链的支持下,成功突破了封锁,实现了5G 功能.某手机商城统计了最近5个月华为手机的实际销量,如下表所示:若y 与x 线性相关,且线性回归方程为2ˆ0.4ˆyx a =+,则下列说法不正确的是()A.样本中心点为()3,1.0 B.由表中数据可知,变量y 与x 呈正相关C.ˆ0.28a =D.预测7x =时华为手机销量约为1.86(万部)7.已知n S 是数列{}n a 的前n 项和,若11a =,112n n S a +=,则()A.数列{}n a 是等比数列B.数列{}n a 是等差数列C.数列{}n S 是等比数列D.数列{}n S 是等差数列8.函数24()exx xf x -=的图象大致是()9.将函数()cos()(0)6f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于原点对称,则ω的最小值是()A.23B.32 C.53D.11310.某校举办中学生乒乓球运动会,高一年级初步推选3名女生和4名男生参赛,并从中随机选取3人组成代表队参赛,在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A.12 B.715C.713D.111511.漏刻是中国古代科学家发明的一种计时系统,“漏”是指带孔的壶,“刻”是指附有刻度的浮箭.《说文解字》中记载:“漏以铜壶盛水,刻节,昼夜百刻.”某展览馆根据史书记载,复原唐代四级漏壶计时器.如图,计时器由三个圆台形漏水壶和一个圆柱形受水壶组成,水从最上层的漏壶孔流出,最终全部均匀流入受水壶.当最上层漏水壶盛满水时,漂浮在最底层受水壶中的浮箭刻度为0当最上层漏水壶中水全部漏完时,漂浮在最底层受水壶中的浮箭刻度为100.已知最上层漏水壶口径与底径之比为5:2,则当最上层漏水壶水面下降至其高度的三分之一时,浮箭刻度约为(四舍五入精确到个位)()A.88B.84C.78D.7212.已知函数()(),f x g x 的定义域为()R,g x 的图像关于1x =对称,且()22g x +为奇函数,()()()11,31g f x g x ==-+,则下列说法正确的个数为()①(3)(5)g g -=;②(2024)0g =;③(2)(4)4f f +=-;④20241()2024n f n ==∑.A.1B.2C.3D.4二、填空题:本大题共4个小题,每小题5分,共20分13.若函数()212ln 2f x x ax x =-+-在1x =处的切线平行于x 轴,则a =__________.14.已知(2,1)AC = ,(1,)AB t = ,且3AC AB ⋅=,则t =__________.15.已知等差数列{}n a 的公差为23π,集合{}*sin |n S a n =∈N ,若{},S a b =,则22a b +=__________.16.正方体1111ABCD A B C D -的校长为1,点P 为线段1CC 的中点,则三棱锥1P BDD -外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,且279a a +=,945S =.(1)求数列{}n a 的通项公式;(2)若2nn n b a =,求数列{}n b 的前n 项和n T .18.(12分)如图所示,△ABC 是正三角形,AE ⊥平面ABC ,AE CD ∥,2AE AB ==,1CD =,且F 为BE 的中点.(1)求证:DF ∥平面ABC ;(2)求平面BDE 与平面ABC 所成二面角的正弦值.19.(12分)自1996年起,我国确定每年3月份最后一周的星期一为全国中小学生“安全教育日”.我国设立这一制度是为全面深入地推动中小学生安全教育工作,大力降低各类伤亡事故的发生率,切实做好中小学生的安全保护工作,促进他们健康成长.为了迎接“安全教育日”,某市将组织中学生进行一次安全知识有奖竞赛,竞赛奖励规则如下,得分在[70,80)内的学生获三等奖,得分在[80,90)内的学生获二等奖,得分在[90,100]内的学生获一等奖,其他学生不获奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下:(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获一等奖的概率;(2)若该市所有参赛学生的成绩X 近似服从正态分布(65,100)X N ~,利用所得正态分布模型解决以下问题:(i )若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过85分的学生数(结果四舍五入到整数);(ii )若从所有参赛学生中(参赛学生数大于100000)随机抽取4名学生进行访谈,设其中竞赛成绩在65分以上的学生数为Y ,求随机变量Y 的分布列及数学期望.附参考数据:若随机变量X 服从正态分布()2,N μσ,则:()6827.0≈+<<-σμσμX P ,()9545.022≈+<<-σμσμX P ,()9973.033≈+<<-σμσμX P .20.(12分)已知抛物线()()200:2(0),4,0E y px p P y y =>>为E 上一点,P 到E 的焦点F 的距离为5.(1)求E 的标准方程;(2)设O 为坐标原点,A ,B 为抛物线E 上异于P 的两点,且满足PA PB ⊥.判断直线AB 是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.21.(12分)已知()ln 1f x x x x =--,记()f x 在1ex =处的切线方程为()g x .(1)证明:()()g x f x(2)若方程()f x m =有两个不相等的实根()1212,x x x x <,证明:12122x x m e e->+--.(二)选做题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.22.(10分)[选修44-:坐标系与参数方程]在平面直角坐标系xOy 中,射线l 的方程为(0)y x x =≥,曲线C 的方程为2214x y +=.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求射线l 和曲线C 的极坐标方程;(2)若射线l 与曲线C 交于点P ,将射线OP 绕极点按逆时针方向旋转2π交C 于点Q ,求△POQ 的面积.23.(10分)[选修45-:不等式选讲]已知函数()2121f x x x =-++.(1)求不等式()3f x ≥的解集;(2)记函数()f x 的最小值为m ,若a ,b ,c 均为正实数,且23a b c m ++=,求11a cb c+++的最小值.参考答案一、选择题1.A 解析:∵{}{}2501032<<-=<-+=x x x x x A ,∴{}23<<-=x x B A .2.B解析:由题意:()i i i i i i i z +-=+=+=-=1212122.3.C 解析:()()[]222log 221-=--=-f .∵18log 3>,∴()243338log 24log 3log 8log 18log 33333====++f ,∴()()222428log 23=+-=+-f f .4.D 解析:由题意知712⎪⎭⎫ ⎝⎛-x x 的展开式()()rr r r rr rr xC x x C T 27777712112---+-=⎪⎭⎫ ⎝⎛-=,令127=-r ,得3=r ,∴x 的系数为()5602137373-=--C .5.B解析:作出可行域如图,当目标函数y x z +=2的图象经过点()1,1-A 时,z 有最小值,此时1min -=z .6.D解析:由表格数据可以计算出3554321=++++=x ,0.155.12.10.18.05.0=++++=y ,则样本中心点为()0.1,3,即A 说法正确;从表格数据可得:y 随着x 的增加而增加,∴变量y 与x 正相关,即B 说法正确;将样本中心点为()0.1,3代入a x yˆ24.0ˆ+=,可得28.0ˆ=a ,即C 说法正确;由C 可知线性回归方程为28.024.0ˆ+=x y,将7=x 代入可得96.128.0724.0ˆ=+⨯=y,则D 说法不正确.7.C解析:因121+=n n a S ①可得,当2≥n 时,n n a S 211=-②,①-②得:n n n n a a S S 212111-=-+-,即n n n a a a 21211-=+,可得31=+n n a a ,因11=a ,在121+=n n a S 中,取1=n ,可得2212==S a ,即3212≠=a a ,故数列{}n a 不是等比数列,选项A ,B 错误;又因当*∈N n 时,都有n n n S S a -=++11,代入121+=n n a S 中,可得()n n n S S S -=+121,整理得:31=+nn S S ,故数列{}n S 是等比数列,即选项C 正确,D 错误.8.A解析:令()0>x f ,得4>x 或0<x ;令()0<x f ,得40<<x ,故排除CD,又当+∞→x 时,()042→-=xexx x f ,故排除B.9.A解析:由题意可知:函数()()06cos >⎪⎭⎫ ⎝⎛+=ωπωx x f 的图象关于点⎪⎭⎫⎝⎛02,π对称,则Z k k ∈+=+,262πππωπ,且0322>+=k ω,解得31->k ,即N k k ∈+=,322ω∴当0=k 时,ω取到最小值是32.10.B解析:用A 表示事件“代表队既有男生又有女生”,B 表示事件“女生甲被选中”,则在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A B P .∴()30333437=--=C C C A n ,()1468241412=+=+=C C C AB n ,∴()()()1573014===A n AB n A B P .11.B解析:有题意可知:最上层漏水壶所漏水的体积与浮箭刻度成正比,设最上层漏水壶的口径与底径分别为a a 25,,高为h ,则体积为()()()()h a h a a a a V 2222213252531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,当最上层漏水壶水面下降到高度的三分之一时,设此时浮箭刻度为x ,∵已漏下去的水组成以上下口径为a a 3,5,高为h 32的圆台,体积为()()()()h a h a a a a V 22222199832353531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,可得1001399822x h a ha =ππ,解得84≈x .12.C解析:∵()22+x g 为奇函数,∴()()2222+-=+-x g x g ,则()()22+-=+-x g x g ,∴()x g 对称中心为()0,2,又∵()x g 对的图象关于1=x 对称,则()()x g x g =+-2,∴()()x g x g =+-2,则()()()x g x g x g =+-=+24,∴()x g 的周期4=T ,①()()()5833g g g =+-=-,∴①正确;②∵()11=g ,()()x g x g =+-2,()x g 对称中心为()0,2,∴()()020==g g ,∴()()002024==g g ,∴②正确;③∵()()13+-=x g x f ,∴()()2112=+=g f ,∵()()x g x g =+-2,∴()()11g g -=-,则()()()011114=+-=+-=g g f ,∴()()242=+f f ,∴③错误;④∵()()13+-=x g x f 且()x g 周期4=T ,∴()()()()x f x g x g x f =+-=++-=+131434,则()x f 的周期为4=T ,∵()()1121=+=g f ,()22=f ,()()1103=+=g f ,()04=f ,∴()()()()44321=+++f f f f ,∴()()()()()[]20244506432150620241=⨯=+++=∑=f f f f n f n ,∴④正确.二、选择题13.3解析:∵()x ax x x f ln 2212-+-=,∴()xa x x f 2-+-=',则()0211=-+-='a f ,解得3=a .14.1解析:32=+=⋅t AB AC ,解得1=t .15.45(1.25)解析:∵等差数列{}n a 的公差为32π,∴ππ23233+=⨯+=+n n n a a a ,∴()()n n n a a a sin 2sin sin 3=+=+π,∴数列{}n a sin 是周期为3的数列,又{}b a S ,=,故1sin a ,2sin a ,3sin a 中必有两者相等,不妨设()31sin sin ≤<≤=j i a a j i ,则Z k k a a j i ∈+=,2π(舍)或Z k k a a j i ∈+=+,2ππ,而π32=+-j i a a 或π34=+-j i a a ,若π32=+-j i a a ,则Z k k a i ∈+=,6ππ,Z k k a j ∈+=,65ππ,连续三个中第三数为Z k k a i ∈+=,23ππ或Z k k a i ∈+-=,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .若π34=+-j i a a ,则Z k k a i ∈+-=,6ππ,Z k k a j ∈+=,67ππ,此时这两个数的中间数Z k k ∈+,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .综上,4541122=+=+b a .16.825π解析:以D 为坐标原点,DA ,DC ,1DD 方向分别为z y x ,,轴建立如图所示空间直角坐标系.则()()()⎪⎭⎫ ⎝⎛21101000110001,,,,,,,,,,,P D B D ,M 为线段1BD 的中点,则⎪⎭⎫⎝⎛21,21,21M ,显然点M 为1BDD ∆的外接圆圆心.则()()⎪⎭⎫ ⎝⎛-===0,21,210111001PM DB DD ,,,,,,,∴,,0212101=-=⋅=⋅DB PM DD PM 即PM 为平面1BDD 的一个法向量,即⊥PM 平面1BDD .则三棱锥1BDD P -外接球的球心O 在直线PM 行,连接OD ,则设R OP OD ==.设⎪⎭⎫⎝⎛-==0,2,2λλλPM OP ,即⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=-=21,21,20,2,22110λλλλ,,OP DP DO .=,即222222121222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛λλλλ,解得45-=λ,则⎪⎭⎫ ⎝⎛=21,83,85DO ,∴32252183852222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=R .则三棱锥1BDD P -外接球的表面积为82542ππ=R .三、解答题17.解:(1)设数列{}n a 的公差为d ,则⎩⎨⎧=+=+++4536996111d a d a d a ,解得⎩⎨⎧==111d a ,∴n a n =.(2)由(1)得nn n b 2⋅=,nn n T 2222121⋅++⨯+⨯= ,132222212+⋅++⨯+⨯=n n n T ,两式相减得:()()()2212121222222211132-⋅-=⋅---=⋅-++++=-+++n n n n nn n n n T ∴()2211+-=+nn n T .18.解:(1)证明:取AB 中点M ,连接MF 、MC ,则MF ∥AE ,且CD AE MF ===121.又∵AE ∥CD ,∴MF ∥CD ,即四边形MFDC 为平行四边形,∴DF ∥MC .又有⊄DF 平面ABC ,⊂MC 平面ABC ,∴DF ∥平面ABC .(2)延长ED 、AC 相交于点N ,连接BN ,则BN 为平面BDE 与平面ABC 的交线.∵AE ∥CD ,CD AE 2=,则DC 为ABC ∆的中位线,∴42==AC AN ,即BC CN AC ==,∴BN AB ⊥,∴3222=-=AB AN BN .而5222=+=AN AE EN ,2222=+=AB AE BE ,∴222EN BNBE =+,即BNBE ⊥∴EBA ∠即为平面BDE 与平面ABC 所成二面角的平面角.∴22222sin ===∠BE AE EBA 故平面BDE 与平面ABC 所成二面角的正弦值为22.19.解:(1)从该样本中随机抽取两名学生的竞赛成绩,基本事件总数为2100C ,设抽取的两名学生中恰有一名学生获一等奖为事件A ,则事件A 包含的基本事件的个数为190110C C ,∵每个基本事件出现的可能性都相等,∴()1122100190110==C C C A P 故抽取的两名学生中锋恰有一名学生获一等奖的概率为112.(2)(i )∵852=+σμ,∴()02275.029545.0185=-≈>X P ,∴参赛学生中成绩超过85分的学生数约为22802275.010000≈⨯人.(ii )由65=μ,得()2165=>X P ,即从所有参赛学生中随机抽取1名学生,该生竞赛成绩在65分以上的概率为21,∴随机变量Y 服从二项分布Y ~⎪⎭⎫ ⎝⎛214,B ,∴()161210404=⎪⎭⎫ ⎝⎛==C Y P ;()41211414=⎪⎭⎫ ⎝⎛==C Y P ;()83212424=⎪⎭⎫ ⎝⎛==C Y P ;()41213434=⎪⎭⎫ ⎝⎛==C Y P ;()161214444=⎪⎭⎫ ⎝⎛==C Y P .∴随机变量Y 的分布列为:∴期望为()216144138324111610=⨯+⨯+⨯+⨯+⨯=Y E.20.解:(1)∵()0,4y P 在抛物线E :()022>=p px y 上,且P 到E 的焦点F 的距离为5,即5=PF ,∴524=+p,解得2=p .∴E 的标准方程为x y 42=.(2)由(1)得P 点坐标为()4,4,由题知直线AB 斜率不为0,设直线AB 为b my x +=,联立⎩⎨⎧+==bmy x x y 42,得0442=--b my y ,()()01616424422>+=-⨯⨯--=∆b m b m ,即02>+b m ,m y y 421=+,b y y 421-=,∴()b m b y y m x x 24222121+=++=+,()22212116b y y x x ==,∵()4,411--=y x P A ,()4,422--=y x PB ,()()324421212121++-++-=⋅y y y y x x x x PB P A ()32161216324442442222=+---=+⨯--+-=m b m b m b b m b ∴41616361222++=+-m m b b ,即()()22246+=-m b ,当6-b 与24+m 同号时,246+=-m b ,即84+=m b ,此时()04284222>++=++=+m m m b m ,∴直线AB 的方程()8484++=++=y m m my x 过定点()48-,,当6-b 与24+m 异号时,246+=-m b ,即44+-=m b ,此时()0244222≥-=+-=+m m m b m ,∴直线AB 的方程()4444+-=--=y m m my x 过定点()44,,则此时与点B A P ,,中任意两点不重合矛盾,故直线AB 过定点,定点坐标为()48-,.21.解:(1)证明:()1ln --=x x x x f 的定义域为()∞+,0,∵()()x x x f ln 1ln 1-=+-=',∴11=⎪⎭⎫ ⎝⎛'e f ,121111-=-+=⎪⎭⎫ ⎝⎛ee e ef ,∴()e x e xg 112-=⎪⎭⎫⎝⎛--,即()11-+=e x x g .令()()()()x x ex x e x x f x g x F ln 11ln 11+=----+=-=,()+∞∈,0x ,()x x F ln 1+=',令()0='x F ,解得ex 1=,∴当e x 10<<时,()0<'x F ,()x F 在⎪⎭⎫⎝⎛e 10,单调递减,当e x 1>时,()0>'x F ,()x F 在⎪⎭⎫⎝⎛+∞,1e 单调递增,∴()01min =⎪⎭⎫⎝⎛=e F x F ,∴()0≥x F 恒成立,即()()x f x g ≥.(2)由(1)知()x x f ln -=',令()0='x f ,得1=x .∴当10<<x 时,()0>'x f ,()x f 在()1,0单调递增,当1>x 时,()0<'x f ,()x f 在()∞+,1单调递减,∴()()01max ==f x f ,当0→x 时,()1-→x f ;当e x >时,()()1-=<e f x f ,∵方程()m x f =有两个不相等的实根()2121,x x x x <,∴01<<-m 且e x x <<<<2110,∵()1-='e f ,()1-=e f ,∴函数()x f 在e x =处的切线方程为()()e x y --=--1,即1-+-=e x y .下证:()1-+-≤e x x f 令()()e x x x x f e x x h ++-=--+-=ln 21,()+∞∈,0x ∵()x x x h ln 11ln 2+-=++-=',令()0='x h ,解得e x =,∴当e x <<0时,()0<'x h ,()x h 在()e ,0单调递减,当e x >时,()0>'x h ,()x h 在()∞+,e 单调递增,∴()()0min ==e h x h ∴()0≥x h 恒成立,即()1-+-≤e x x f ,当且仅当e x =时等号成立.∵e x <<21,∴()122-+-<=e x x f m ,即12+->-e m x ,由(1)知,()()11-+=≤e x x g x f ,∵101<<x ,∴()1111-+≤=e x x f m ,即111+-≥em x ,∴ee m x x 12221--+>-.22.解:(1)将θρcos =x ,θρsin =y 代入()0≥=x x y 得θρθρcos sin =,∴1tan =θ,∴射线l 的极坐标方程为04≥=ρπθ,,将θρcos =x ,θρsin =y 代入1422=+y x 得()()1sin 4cos 22=+θρθρ,∴曲线C 的极坐标方程为θρ22sin 314+=(2)由题可知,可以设⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛43,4,21πρπρQ P ,,则584sin 314221=+=πρ,5843sin 314222=+=πρ,∴510221==ρρ,∴542sin 2121==∆πρρPOQ S .23.解:(1)由题意可得()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<--≤-=21,42121,221,4x x x x x x f ,不等式()3≥x f 等价于⎪⎩⎪⎨⎧-≤≥-2134x x 或⎪⎩⎪⎨⎧≥≥2134x x ,解得43-≤x 或43≥x .即不等式()3≥x f 的解集为⎪⎭⎫⎢⎣⎡∞+⎥⎦⎤ ⎝⎛-∞-,,4343 .(2)由(1)可知,函数()x f 在⎥⎦⎤ ⎝⎛-∞-21,上单调递减,在⎪⎭⎫⎢⎣⎡∞+,21上单调递增,且22121=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-f f ,即函数()x f 在最小值2=m ,即232=++c b a .()()c b c b c b c c b c b c a +++-=+++--=+++222211322111()()()[]c b c b c b c b +++-⎥⎦⎤⎢⎣⎡+++-=121121,∵()022>+-=+c b c a ,∴10<+<c b .令()1,0,∈+=t c b t ,则()t t t t c b c a +-⎪⎭⎫⎝⎛+-=+++12112111()()2231212321121321+=⎪⎪⎭⎫ ⎝⎛-⋅-+≥⎪⎭⎫ ⎝⎛-+-+=t t t t t t t t ,当且仅当()t t t t -=-121,即22-=t 时,取等号.即c b c a +++11的最小值为223+.。
中学生标准学术能力诊断性测试2024-2025学年高三上学期10月测试数学试卷
![中学生标准学术能力诊断性测试2024-2025学年高三上学期10月测试数学试卷](https://img.taocdn.com/s3/m/6b0259550a4c2e3f5727a5e9856a561252d321d0.png)
中学生标准学术能力诊断性测试2024-2025学年高三上学期10月测试数学试卷一、单选题1.已知集合1244xA x ⎧⎫=<<⎨⎬⎩⎭,{2,1,0,1,2}B =--,则A B = ()A .{1,0,1}-B .{2,1,0,1,2}--C .{0,1}D .{1,1}-2.若1i 1z z +=-,则||z =()AB.2C .1D .123.已知单位向量a和b ,若()2a a b ⊥+ ,则+= a b ()A .2B .1CD4.已知圆柱的底面半径和球的半径相等,圆柱的高与球的半径相等,则圆柱与球的表面积之比为()A .1:2B .1:1C .3:4D .2:35.已知1sin()3αβ+=,tan 2tan αβ=,则sin()αβ-=()A .13-B .19-C .13D .196.已知函数2,01()1(1),12x x f x f x x ⎧<≤⎪=⎨->⎪⎩,则函数2()()g x f x x=-的零点个数为()A .2B .0C .3D .无穷7.将sin y x =的图象变换为πsin 36y x ⎛⎫=- ⎪⎝⎭的图象,下列变换正确的是()A .将图象上点的横坐标变为原来的13倍,再将图象向右平移π6个单位B .将图象上点的横坐标变为原来的3倍,再将图象向右平移π18个单位C .将图象向右平移π6个单位,再将图象上点的横坐标变为原来的13倍D .将图象向右平移π6个单位,再将图象上点的横坐标变为原来的3倍8.定义在R 上的函数()f x 满足:(1)(1)0f x f x -+---=,且(1)(1)0f x f x ++-=,当[1,1]x ∈-时,()2f x ax =-,则()f x 的最小值为()A .6-B .4-C .3-D .2-二、多选题9.从{1,2,3}中随机取一个数记为a ,从{4,5,6}中随机取一个数记为b ,则下列说法正确的是()A .事件“a b +为偶数”的概率为49B .事件“ab 为偶数”的概率为79C .设X a b =+,则X 的数学期望为()6E X =D .设Y ab =,则在Y 的所有可能的取值中最有可能取到的值是1210.在直棱柱1111ABCD A B C D -中,底面ABCD为正方形,1CD ==P 为线段1B C 上动点,E ,F 分别为11A D 和BC 的中点,则下列说法正确的是()A .若1103CP CB λλ⎛⎫=<< ⎪⎝⎭ ,则经过P ,E ,F 三点的直棱柱的截面为四边形B .直线1BC 与11A CC .三棱锥11P A DC -的体积为定值D .1A P BP +11.一条动直线1l 与圆221x y +=相切,并与圆2225x y +=相交于点A ,B ,点P 为定直线2:100l x y +-=上动点,则下列说法正确的是()A .存在直线1l ,使得以A 为直径的圆与2l 相切B .22||||PA PB +的最小值为150-C .AP PB ⋅的最大值为27-+D .||||PA PB +的最小值为三、填空题12.若m的展开式中存在2x 项,则由满足条件的所有正整数m 从小到大排列构成的数列{}n a 的通项公式为.13.设双曲线2222:1x y C a b-=(0,0a b >>)的右顶点为F ,且F 是抛物线2:4y x Γ=的焦点.过点F 的直线l 与抛物线Γ交于A ,B 两点,满足2AF FB =,若点A 也在双曲线C 上,则双曲线C 的离心率为.14.已知()|ln ln 2||1|af x a x x=--+-,则()f x 的最小值为.四、解答题15.记ABC V 的内角A ,B ,C 的对边分别是a ,b ,c ,满足()2222321a b c ++=.(1)若b c =,3cos 4A =,求ABC V 的面积;(2)记BC 边的中点为D ,AD x =,若A 为钝角,求x 的取值范围.16.如图所示,在四棱锥P ABCD -中,2PA AC ==,1BC =,AB =(1)若AD ⊥平面PAB ,证明://AD 平面PBC ;(2)若PA ⊥底面ABCD ,AD CD ⊥,二面角A CP D --的正弦值为63,求AD 的长.17.已知椭圆2222:1(0)x y C a b a b+=>>,C 的下顶点为B ,左、右焦点分别为1F 和2F ,离心率为12,过2F 的直线l 与椭圆C 相交于D ,E 两点.若直线l 垂直于1BF ,则BDE V 的周长为8.(1)求椭圆C 的方程;(2)若直线l 与坐标轴不垂直,点E 关于x 轴的对称点为G ,试判断直线DG 是否过定点,并说明理由.18.已知函数()sin f x ax x =+,[0,π]x ∈.(1)若1a =-,证明:()0f x ≤;(2)若()0f x ≤,求a 的取值范围;(3)若0a ≠,记1()()ln(1)g x f x x a=-+,讨论函数()g x 的零点个数.19.乒乓球比赛有两种赛制,其中就有“5局3胜制”和“7局4胜制”,“5局3胜制”指5局中胜3局的一方取得胜利,“7局4胜制”指7局中胜4局的一方取得胜利.(1)甲、乙两人进行乒乓球比赛,若采用5局3胜制,比赛结束算一场比赛,甲获胜的概率为0.8;若采用7局4胜制,比赛结束算一场比赛,甲获胜的概率为0.9.已知甲、乙两人共进行了()*m m ∈N 场比赛,请根据小概率值0.010α=的2K 独立性检验,来推断赛制是否对甲获胜的场数有影响.(2)若甲、乙两人采用5局3胜制比赛,设甲每局比赛的胜率均为p ,没有平局.记事件“甲只要取得3局比赛的胜利比赛结束且甲获胜”为A ,事件“两人赛满5局,甲至少取得3局比赛胜利且甲获胜”为B ,试证明:()()P A P B =.(3)甲、乙两人进行乒乓球比赛,每局比赛甲的胜率都是(0.5)p p >,没有平局.若采用“赛满21n -局,胜方至少取得n 局胜利”的赛制,甲获胜的概率记为()P n .若采用“赛满21n +局,胜方至少取得1n +局胜利”的赛制,甲获胜的概率记为(1)P n +,试比较()P n 与(1)P n +的大小.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.0250.0100k 3.8415.0246.635。
四川省成都市2024届高三下学期5月高考适应性考试(一)理科数学试题含答案
![四川省成都市2024届高三下学期5月高考适应性考试(一)理科数学试题含答案](https://img.taocdn.com/s3/m/013a915fbb1aa8114431b90d6c85ec3a86c28b12.png)
成都高2024届高考适应性考试(一)理科数学(答案在最后)(全卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在本试卷和答题卡相应位置上.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,20A B xax =-=+=∣,若B A ⊆,则实数a 的所有可能取值的集合为()A.{}2-B.{}2 C.{}2,2- D.{}2,0,2-2.复数2i1ia z -+=-在复平面上对应的点位于虚轴上,则实数a 的值为()A.1B.2C.-1D.-23.已知,a b 为实数,则使得“0a b >>”成立的一个必要不充分条件为()A.11a b> B.()()ln 1ln 1a b +>+C.330a b >>>4.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法,我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤000艮0011坎0102巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是()A.33B.34C.35D.365.函数()()1ln 1f x x x =+-的大致图象是()A. B.C. D.6.在区间[]2,4-上随机地取一个数x ,使2sin x x 恒成立的概率是()A.13B.12C.23D.347.设抛物线24y x =的焦点为F ,过抛物线上一点P 作其准线的垂线,设垂足为Q ,若30PQF ∠= ,则PQ =()A.23B.233C.438.变量,x y 满足约束条件22,24,41,x y x y x y +⎧⎪+⎨⎪--⎩则目标函数3z x y =+-的取值范围是()A.3,92⎡⎤⎢⎥⎣⎦B.1,52⎡⎤⎢⎥⎣⎦C.1,22⎡⎤⎢⎥⎣⎦D.[]1,69.我们把所有顶点都在两个平行平面内的多面体叫做拟柱体,在这两个平行平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高,过高的中点且平行于底面的平面截拟柱体所得的截面称为中截面.已知拟柱体的体积公式为()0146V h S S S =+'+,其中,S S '分别是上、下底面的面积,0S 是中截面的面积,h 为拟柱体的高.一堆形为拟柱体的建筑材料,其两底面是矩形且对应边平行(如图),下底面长20米、宽10米,堆高1米,上底面的长、宽比下底面的长、宽各少2米.现在要彻底运走这堆建筑材料,若用最大装载量为5吨的卡车装运,则至少需要运()(注:1立方米该建筑材料约重1.5吨)A.51车B.52车C.54车D.56车10.设锐角ABC 的三个内角,,A B C 的对边分别为,,a b c ,且2,2c B C ==,则a b +的取值范围为()A.()2,10 B.()2+ C.(24++ D.()4+11.已知菱形ABCD 中,π3A =,现将菱形ABCD 沿对角线BD 折起,当AC =时,三棱锥A BCD -的体积为92,则此时三棱锥A BCD -外接球的表面积为()A.28πB.7πC.3D.40π12.在同一平面直角坐标系中,,M N 分别是函数()f x =()()e ln xg x ax ax =-图象上的动点,对任意0,a MN >的最小值为()A.2B.12-1 D.1+第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.在612x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为__________.14.若函数()sin cos f x a x x =+的图象关于直线π6x =-对称,则a =__________.15.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,,F F P 为左支上一点,12122π,3PF F PF F ∠=的内切圆圆心为I ,直线PI 与x 轴交于点Q ,若双曲线的离心率为54,则PI IQ=__________.16.已知数列{}n a 满足1ln 1n n a a +=+,函数()ln 1xf x x =+在0x x =处取得最大值,若()420ln 1a a x =+,则12a a +=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)如图,在三棱锥P ABC -中,4,5,3PA BC AC PB AB =====,异面直线PA 与BC 所成角为60 ,点,M N 分别是线段,PA BC 的中点.(1)求线段PC 的长度;(2)求直线PC 与平面BMN 所成角的余弦值.18.(本小题满分12分)《中华人民共和国未成年人保护法》保护未成年人身心健康,保障未成年人合法权益.我校拟选拔一名学生作为领队,带领我校志愿队上街宣传未成年人保护法.现已从全校选拔出甲、乙两人进行比赛,比赛规则是:准备了5个问题让选手回答,选手若答对问题,则自己得1分,该选手继续作答;若答错问题,则对方得1分,换另外选手作答.比赛结束时分数多的一方获胜,甲、乙能确定胜负时比赛就结束,或5个问题回答完比赛也结束.已知甲、乙答对每个问题的概率都是12.竞赛前抽签,甲获得第一个问题的答题权.(1)求甲同学连续回答了三次问题且获胜的概率;(2)已知5个问题回答完后乙获胜,设在前三个问题中乙回答问题的个数为X ,求X 的分布列和期望.19.(本题满分12分)已知数列{}n a 满足121,1a a ==,当3n 时,122,,21,.n n n n a a n a a n ---+⎧=⎨+⎩为奇数为偶数(1)求4a 和6a ,并证明当n 为偶数时{}1n a +是等比数列;(2)求13529a a a a ++++ .20.(本小题满分12分)已知抛物线2:2(1)E x py p =>的焦点为F ,过点()1,1P -作抛物线E 的两条切线,切点分别为,,5M N FM FN +=.(1)求抛物线E 的方程;(2)过点P 作两条倾斜角互补的直线12,l l ,直线1l 交抛物线E 于,A B 两点,直线2l 交抛物线E 于,C D 两点,连接,,,AD BC AC BD .①设,,AC AB BD 的斜率分别为,,AC AB BD k k k ,问:AC AB BD AB k k k k +是否为定值?若是,求出定值;若不是,说明理由;②设DBC DAC ∠λ∠=,求λ的值.21.(本小题满分12分)设()()21e sin 3xf x a x =-+-.(1)当a =时,求函数()f x 的零点个数;(2)函数()()2sin 22h x f x x x ax =--++,若对任意0x ,恒有()0h x >,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,那么按所做的第一题计分.22.[选修4-4:坐标系与参数方程](本小题满分10分)在直角坐标系xOy 中,曲线22:1C mx ny +=的渐近线方程为(),3,0y x D =±-,直线l 过点()1,0B ,且倾斜角为60 .以点D 为极点,以从点D 出发与x 轴正方向同方向的射线为极轴,建立极坐标系,点5π6,3A ⎛⎫⎪⎝⎭在曲线C 上.(1)写出曲线C 在第二象限的一个参数方程和直线l 的极坐标方程;(2)曲线C 与直线l 相交于点,M N ,线段MN 的中点为Q ,求DBQ 的面积.23.[选修4-5:不等式选讲](本小题满分10分)设()22123f x x x =---.(1)解不等式:()4f x >-;(2)设()f x 的最大值为M ,已知正数a 和b 满足a b M +=,令2222a bZ a b b a=+++,求Z 的最小值.答案及解析1.【答案】D 【解析】当B =∅时,0a =;当B ≠∅时,2a =±.故选D.2.【答案】D【解析】因为()()()()()2i 1i 22i2i 1i 1i 1i 2a a a a z -++--+--+===--+在复平面上对应的点位于虚轴上,所以20,20,a a --=⎧⎨-≠⎩即2a =-.故选D.3.【答案】B【解析】对于A ,若11a b >,则不能推出0a b >>;若0a b >>,则必定有11a b<,所以既不是充分条件也不是必要条件,故A 错误.对于B ,若()()ln 1ln 1a b +>+,则根据对数函数的单调性可知1101a b a b +>+>⇒>>-,但不能推出0a b >>,但是01a b a b >>⇒>>-,故B 正确.对于C ,因为330a b >>等价于0a b >>,所以是充分必要条件,故C 错误.对于D>,则必有10a b >> ,所以是充分不必要条件,故D 错误.故选B.4.【答案】B【解析】据条件可得,符号为“”表示的二进制数为100010,则其表示的十进制数是01234502120202021234⨯+⨯+⨯+⨯+⨯+⨯=.故选B.5.【答案】B 【解析】因为()()1ln 1f x x x =+-,所以113ln 0222f ⎛⎫-=> ⎪⎝⎭,故排除C ,D ;当2x >时,()()()1ln 10f x x x =+->恒成立,排除A.故选B.6.【答案】A 【解析】设函数()2sin f x x x =-,则()2cos 0f x x =->',所以()f x 为递增函数,且()0f =0,所以当0x >时,()()00f x f >=;当0x 时,()()00f x f = ,所以不等式2sin x x 的解集为(],0∞-.又因为[]2,4x ∈-,所以不等式2sin x x 的解集为[]2,0-.由长度比的几何概型的概率计算可得,使2sin x x 恒成立的概率是()()021423P --==--.故选A.7.【答案】C 【解析】由题易知,PF 的倾斜角为120 ,从而2411cos120312p PQ PF ====-+ .故选C.8.【答案】B 【解析】不等式组22,24,41x y x y x y +⎧⎪+⎨⎪--⎩表示的平面区域如图中阴影部分所示,三个交点的坐标分别为()()10,1,,3,2,02⎛⎫⎪⎝⎭,目标函数33z x y x y =+-=-+,即3y x z =+-,当目标函数过点()2,0时z 取得最大值为5,过点1,32⎛⎫ ⎪⎝⎭时z 取得最小值为12,所以目标函数3z x y =+-的取值范围是1,52⎡⎤⎢⎥⎣⎦.故选B.9.【答案】B 【解析】由条件可知,上底面长18米、宽8米,中截面长19米、宽9米,则上底面面积188144S =⨯=(平方米),中截面面积0199171S =⨯=(平方米),下底面面积2010200S =⨯='(平方米),所以这堆建筑材料的体积()15141144417120063V =⨯⨯+⨯+=(立方米),所以这堆建筑材料约重5141.52573⨯=(吨),需要的卡车次为257551.4÷=,所以至少需要运52车.故选B.10.【答案】C【解析】在ABC 中,由2,ππ3,2B C A B C C c ==--=-=及正弦定理,得()()22sin3sin224cos 2cos 1sin C C a b C C C++==+-.又ABC 为锐角三角形,所以ππ0,022B A <<<<,即ππ02,0π322C C <<<-<,所以ππ64C <<,则(24a b +∈++.故选C.11.【答案】A 【解析】如图1,连接AC 交BD 于点E ,不妨设菱形ABCD 的边长为a ,则32AE CE a ==.将菱形ABCD 沿对角线BD 折起,如图2所示,12,O O 分别为正,ABD CBD 的中心,过点12,O O 分别作平面ABD 和平面CBD 的垂线交于点O ,则121233,63O E O E a AO CO ====.在等腰AEC 中,,2AE CE a AC ===BD ⊥平面AEC ,则11193322A BCDAEC V S BD a -=⋅=⨯⨯= ,所以429360a a --=,即212a =(23a =-舍去),得a =.在AEC 中,由余弦定理,得2π3AEC ∠=,则在直角1OO E 中,1π6O OE ∠=,所以11OO E ==设三棱锥A BCD -外接球的半径为R ,则222117R OO AO =+=,故外接球的表面积为24π28πR =.故选A.12.【答案】B【解析】令()y f x ==,整理得()22(2)10x y y -+= ,即点M 在圆心为()2,0,半径为1的半圆上.()()()ln e1ln 11x ax g x x ax x x +⎡⎤=-+++++⎣⎦ ,当且仅当()ln 0x ax +=时等号成立,所以曲线()g x 的一条切线为1y x =+.通过数形结合可知,当,M N 分别为对应切点,且.MN 与两切线垂直时,MN 取得最小值,即MN 的最小值为圆心()2,0到直线1y x =+的距离减去半径,即MN112=-.过圆心()2,0与1y x =+垂直的直线方程为2y x =-+,与直线1y x =+平行的函数()f x的切线方程为2y x =-+.设()(),,,M M N N M x y N x y,所以当且仅当()2,2ln 021,M M M MN N N N N N y x y x x ax y x y x ⎧⎪⎪=-+⎪⎪=-+⎨⎪+=⎪⎪=-+⎪=+⎩即121,22,32,,2,22eN M N M x x y y a -⎧⎧=⎪⎪⎪⎪=-⎪⎪=⎨⎨⎪⎪=⎪⎪=⎪⎪⎩⎩时,MN 取到最小值.综上所述,12MN - .故选B.13.【答案】-160【解析】二项式612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621661C (2)2C (1)(06kk k k kk k k T x x k x ---+⎛⎫=-=- ⎪⎝⎭且)k ∈N .令620k -=,解得3k =,故常数项为333462C (1)T =⨯⨯-=-160.14.【答案】3-【解析】因为()()sin cos f x a x x x ϕ=+=+的周期2πT =且直线π6x =-为对称轴,所以点π,03⎛⎫⎪⎝⎭为()f x 的对称中心,所以π310322f a ⎛⎫=+= ⎪⎝⎭,解得3a =-.15.【答案】2【解析】设PI IQλ=,则1212PF PF F QF Q λ==,所以1122PF F Q PF F Q λλ⎧=⎪⎨=⎪⎩,又因为21122,2,PF PF a F Q F Q c ⎧-=⎪⎨+=⎪⎩所以12,.PF c a PF c a λλ⎧=-⎪⎨=+⎪⎩在12PF F 中,由余弦定理,得2222112112122cos PF PF F F PF F F PF F ∠=+-⋅⋅,即()2221()()(2)222c a c a c c a c λλλ⎛⎫+=-+--⋅⋅-⎪⎝⎭,所以()()24242e e λλ+=+,即()212e λλ+=+.又因为54e =,所以2λ=.16.【答案】-2【解析】因为()21ln (1)x x x f x x '+-=+,所以令()11ln 1ln x u x x x x x +=-=+-,则()u x 在()0,∞+上单调递减,且()()22312ln20,e 102eu u =->=-<.由零点存在定理可知,存在唯一的()202,e x ∈,使得()00u x =,即0001ln x x x +=,即()0000ln 11x f x x x ==+①,所以()f x 在()00,x 上单调递增,在()0,x ∞+上单调递减.由1ln 1n n a a +=+,得433221ln 1,ln 1,ln 1a a a a a a =+=+=+.又()420ln 1a a x =+,得()323043ln 11ln 1a a f a x a a +===+②.由①②可知,()()0301f x f a x ==,则30a x =,所以2301ln ln a a x +==,即2001ln 1a x x =-=,所以1201ln ln a a x +==-,所以()()2111a a +++=0,即122a a +=-.17.解:(1)如图1,过点A 作AD BC ∥,连接,PD CD .因为AD ∥BC ,异面直线PA 与BC 所成角为60 ,所以60PAD ∠= .又因为4AD BC PA ===,所以PAD 为正三角形,所以4PD =.因为在ABC 中,222AB BC AC +=,所以AB BC ⊥,所以AB AD ⊥.因为在ABP 中,222AB AP BP +=,所以AB AP ⊥.又因为,,AD AP A AD AP ⋂=⊂平面PAD ,所以AB ⊥平面PAD .因为AD BC ∥,所以四边形ABCD 为平行四边形,所以3,CD AB AB ==∥CD ,所以CD ⊥平面PAD ,所以CD PD ⊥,所以222222435PC PD CD =+=+=,所以5PC =.(2)如图2,将三棱锥P ABC -补形到长方体中,以点A 为坐标原点,,AB AD 所在直线为,x y 轴,以过点A 且垂直于平面ABC 的直线为z 轴,建立空间直角坐标系A xyz -,则(()()(0,2,,3,0,0,3,4,0,P B C M ,所以(()(,0,4,0,3,2,BM BC PC =-==-.连接MC ,则平面BMN 即为平面BMC .设平面BMC 的法向量为(),,n x y z =,则0,0,n BM n BC ⎧⋅=⎪⎨⋅=⎪⎩得30,40,x y y ⎧-++=⎪⎨=⎪⎩取z =1,0x y ==,所以(n =.设直线PC 与平面BMN 所成角为θ,易得θ为锐角,所以3sin cos ,10PC n PC n PC n θ⋅=== ,所以直线PC 与平面BMN所成角的余弦值为10=.18.解:(1)设“甲回答问题且得分”为事件A ,“甲回答问题但对方得分”为事件A ,“乙回答问题且得分”为事件B ,“乙回答问题但对方得分”为事件B .记“甲同学连续回答了三次问题且获胜”为事件C ,则()()()()11178163232P C P AAA P AAAB P AAABB =++=++=,即甲同学连续回答了三次问题且获胜的概率为732.(2)X 的所有可能取值为0,1,2.已知5个问题回答完后乙获胜,则由(1)可知,这5个问题回答的情况有六种:,,,,,AAABB AABBA AABAB ABBAA ABAAB ABABA ,其中()()()111,,323232P AAABB P AABBA P AABAB ===,()()()111,,323232P ABBAA P ABAAB P ABABA ===,所以()()()11646212163260,1,2661636323232P X P X P X =========,所以X 的分布列为:X012P 162316则()1210121636E X =⨯+⨯+⨯=.19.解:(1)由已知,得4264213,217a a a a =+==+=.当3n 且n 为偶数时,221n n a a -=+,即()2121n n a a -+=+.又212a +=,所以当n 为偶数时,数列{}1n a +是以2为首项,2为公比的等比数列.(2)由(1)可知,当n 为偶数时,12122n n a -+=⋅,即221nn a =-.当n 为奇数时,设()*21n k k =+∈N,则21221k k k a a a +-=+2121k k a -=-+222321k k k a a --=-++1232121k k k a --=-+-+=111212121k k a -=-+-++-+ ()121212kk a ⋅-=-+-121k k +=--所以当n 为奇数时,12122n n n a ++=-,所以()()()()1231513529212223215a a a a ++++=-+-+-++- ()()1521211515122⨯-+⨯=--162122.=-20.解:(1)设切点221212,,,22x x M x N x p p ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则以M 为切点的切线方程为()21112x x y x x p p-=-.因为切线过点()1,1P -,所以211220x x p --=.同理,222220x x p --=,所以12122,2x x x x p +==-.又因为()2221212122522222x x x x x x p p FM FN p p p p +-+=+++=+=,所以2320p p -+=,即()()120p p --=.又因为1p >,所以2p =,所以抛物线E 的方程为24x y =.(2)①设直线1l 的方程为()11y k x +=-.联立直线1l 和抛物线E 的方程,得()21,4,y kx k x y ⎧=-+⎨=⎩所以()24410x kx k -++=.设()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则4A B x x k +=.同理,4C D x x k +=-,所以C A D B AC BD C A D By y y y k k x x x x --+=+--22224444C A D B C A D Bx x x x x x x x --=+--44C AD B x x x x ++=+()()4A B C D x x x x +++=0=所以()0AC AB RD AB AC BD AB k k k k k k k +=+⋅=,所以AC AB BD AB k k k k +等于定值0.②由①可得,11A B PA PB x ⋅=-⋅-()1A B A B x x x =-++()141k k =+-+=同理,()141PC PD k k ⋅=-+++=,所以PA PB PC PD ⋅=⋅,所以点,,,A B C D 共圆,所以DBC DAC ∠∠=,所以1λ=.21.解:(1)当a =()()e sin 3,e cos x x f x x f x x =+-=+'.①当(),0x ∞∈-时,()[]e 0,1,sin 1,1x x ∈∈-,则()0f x <,所以()f x 在(),0∞-上无零点.②当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()0f x '>,则()f x 在π0,2x ⎡⎤∈⎢⎥⎣⎦上单调递增.又因为()πln 22π020,e 2e 202f f ⎛⎫=-<=->-= ⎪⎝⎭,所以()00π0,,02x f x ⎡⎤∃∈=⎢⎥⎣⎦,所以()f x 在π0,2x ⎡⎤∈⎢⎥⎣⎦上有一个零点.③当π,2x ∞⎛⎫∈+ ⎪⎝⎭时,()πln42e 13e 40f x >-->-=,所以()f x 在π,2∞⎛⎫+ ⎪⎝⎭上无零点.综上所述,当a =()f x 在(),∞∞-+上只有一个零点.(2)对任意0x ,恒有()0h x >,即()221e 210x a x ax --+->恒成立,即22211ex x ax a -+<-恒成立,即()222110e x x ax a -+--<恒成立.设()()[)22211,0,e x x ax g x a x ∞-+=--∈+,则()()()()21212221e e x x x x a x a x a g x '⎡⎤---+-++--⎣⎦==.①当12a - 时,()g x 在()0,1上单调递增,在()1,∞+上单调递减,所以只需()()2max 22()110e a g x g a -==--<,即()()e e 210,a a ++->解得()e 2,1,e a ∞∞+⎛⎫∈--⋃+ ⎪⎝⎭.又因为12a - ,所以e 2,e a ∞+⎛⎫∈-- ⎪⎝⎭.②当102a -<<时,()g x 在()0,21a +上单调递减,在()21,1a +上单调递增,在()1,∞+上单调递减,所以只需()()00,10.g g ⎧<⎪⎨<⎪⎩由()()()2222110,020e a g a g a -=--<=-<,解得)e 2,e a ∞∞+⎛⎫∈--⋃+ ⎪⎝⎭,这与102a -<<矛盾,舍去.③当0a =时,()g x 在()0,∞+上单调递减,所以只需()00g <,得22a >,这与0a =矛盾,舍去.④当0a >时,()g x 在()0,1上单调递减,在()1,21a +上单调递增,在()21,a ∞++上单调递减,所以只需()()210,00.g a g ⎧+<⎪⎨<⎪⎩因为()()()()2222121(21)22112221110e e a a a a a a g a a a +++-++++=--=--<,且10a +>,所以2121e a a +->.又()2020,0g a a <=->,所以a >所以212110.4e a a +->->>,所以)a ∞∈+满足条件.综上所述,实数a的取值范围是)e 2,e ∞∞+⎛⎫--⋃+ ⎪⎝⎭.22.解:(1)设曲线C 的方程为221x y λλ-=.点5π6,3A ⎛⎫ ⎪⎝⎭的直角坐标为(0,-.将点A 的直角坐标代入曲线C的方程,得2201λλ-=,所以27λ=-,所以曲线C 的普通方程为2212727y x -=,所以曲线C在第二象限的一个参数方程为,33,cos x y αα⎧=⎪⎨=⎪⎩参数π,02α⎛⎫∈- ⎪⎝⎭.(参数方程不唯一)设在x 轴上方直线l 上任意一点E 的极坐标为(),ρθ,连接ED .在BED 中,4DB =,由正弦定理,得sin sin DB ED BED EBD∠∠=,即()()4sin 60sin 18060ρθ=-- ,所以()4sin60sin 60ρθ=-,所以()sin 60ρθ-= 经验证,在x 轴上及x 轴下方直线l 上的点也满足上式,所以直线l 的极坐标方程为()sin 60ρθ-=(2)设直线l的参数方程为11,22x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).联立直线l 的参数方程和曲线C 的普通方程,得22560t t --=.设,BM BN 对应的参数为12,t t ,则1212t t +=.,所以1BQ =.在DBQ中,11sin 41sin12022DBQ S DB BQ DBQ ∠=⋅⋅⋅=⨯⨯⨯= .23.解:(1)因为()f x 是偶函数,所以只需针对0x 时()f x 的情况展开讨论.当[)0,1x ∈时,()()2221235f x x x x=---=-,此时不等式化为254x ->-,得21x >,舍去;当x ⎡∈⎣时,()()22212337f x x x x =---=-,此时不等式化为2374x ->-,,所以(;x ∈当)x ∞∈+时,()()2221235f x x x x =---=-+,此时不等式化为254x -+>-,得29x <,所以)x ∈.综上所述,所求不等式的解集为()()1,33,1⋃--.(2)由(1)可知,当[)0,1x ∈时,()f x 的值域为[)5,4--;当(),x f x ⎡∈⎣的值域为[)4,2-;当)(),x f x ∞∈+的值域为(],2∞-.因此,当x ∈R 时,()f x 的值域为(],2∞-,所以()f x 的最大值为2,则2a b +=,所以()()222233222221111()2222a b a b a b a b a b a b a b b a b a b a ⎛⎫⎛⎫+=++=++++=+ ⎪ ⎪⎝⎭⎝⎭ ,即22211()4222a b a b b a ++=⨯= ①,当且仅当1a b ==时等号成立.因为2a b =+ 1ab ,所以222()2422a b a b ab ab +=+-=- ,即222a b + ②,当且仅当1a b ==时等号成立.由①+②,得22224a b a b b a+++ ,当且仅当1a b ==时等号成立,所以Z 的最小值为4.。
四川省2017级高中毕业班诊断性测试理科数学答案
![四川省2017级高中毕业班诊断性测试理科数学答案](https://img.taocdn.com/s3/m/7c681e99360cba1aa811da63.png)
2k
2k
1
1
为定值,此题得证.
(11 分)
(12 分) (1 分) (2 分) (3 分) (4 分)
(5 分) (6 分) (7 分) (9 分)
(10 分) (12 分)
第2页,共5页
20.解:(1)由表格数据得,
x
5
3 15
25
9
,
y 0.13 0.23 0.31 0.41 0.52 0.32 . 5
又因为 a2=b2+c2,所以 a2 1 3a2 ,解得 a=2. 4
故椭圆 E 的方程为 x2 y2 1 . 4
(2)因为直线 BC 过点 P(2,1),且与轨迹 E 有两个不同交点,
所以直线 BC 的斜率一定存在且大于零.
于是可设直线 BC 的方程为 y=k(x-2)+1(k>0).
代入 x2+4y2=4 并整理得(3k2+1)x2-8k(2k-1)x+16k(k-1)=0(Δ>0).
因为 tan A tan B sin A sin B sin Acos B cos A sin B
பைடு நூலகம்
cos A cos B
cos Acos B
sinA B sin C .
cos Acos B cos Acos B
又 tan B sin B ,所以 b sin C 2c sin B ,即 b sin C 2c sin B .
设
B(x1,y1)、C(x2,y2),则
x1
x2
8k2k 1
3k 2 1
,
x1 x2
16kk 1
3k 2 1
.
设直线 AB 和 AC 的斜率分别为 k1 和 k2,则
四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题(含答案解析)
![四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题(含答案解析)](https://img.taocdn.com/s3/m/e41ea824f68a6529647d27284b73f242326c3144.png)
四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|(3)(1)0}A x x x =-+≤,{}2|1B y y x ==+,则A B ⋃等于()A .(1,)+∞B .[1,)-+∞C .(1,3]D .(1,)-+∞2.在复平面内,复数z 满足(1i)2z +=,则复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A S 和B S ,样本极差分别为A y 和B y ,则()A .>AB x x ,A B S S >,A B y y <B .<A B x x ,A B S S >,A B y y >C .>A B x x ,A B S S <,A B y y >D .<A B x x ,A B S S <,A B y y <4.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .655.若直线():430R l mx y m m --+=∈与曲线()()22231x y -+-=有公共点,则m 的取值范围为()A .⎡⎣B .(C .⎡⎢⎣⎦D .⎛ ⎝⎭6.如图,C ,D 为以AB 的直径的半圆的两个三等分点,E 为线段CD 的中点,F 为BE的中点,设AB a=,AC b = ,则AF = ()A .5182a b+ B .5142a b+C .5184a b+D .5144a b+7.下列命题中,不正确的是()A .“若11a b<,则a b >”的否命题为假命题B .在锐角ABC 中,不等式sin cos A B >恒成立C .在ABC 中,若cos cos a A b B =,则ABC 必是等腰直角三角形D .在ABC 中,若2π,3B b ac ==,则ABC 必是等边三角形8.函数()()()sin 0,0,0f x A x A ωϕωπϕ=+>>-<<,其部分图像如图所示,下列说法正确的有()①2ω=;②56π=-ϕ;③3x π=是函数()f x 的极值点;④函数()f x 在区间7,1212ππ⎛⎫⎪⎝⎭上单调递增;⑤函数()f x 的振幅为1.A .①②④B .②③④C .①②⑤D .③④⑤9.已知n S 为数列{}n a 的前n 项和,且()*1121,2n n S a n N a +=+∈=,则下列式子正确的是()A .20212022202032a =B .20212022202232a =C .202120212019342S =-+D .202020212020312S =+10.设1F ,2F 分别为双曲线22221x ya b-=(a >0,b >0)的左、右焦点,若双曲线上存在一点P使得12PF PF +=,且12PF PF ab ⋅=,则该双曲线的离心率为()A .2BCD11.已知函数()2,1x f x x e =++若正实数,m n 满足(9)(2)2f m f n -+=,则21m n+的最小值为()A .8B .4C .83D .8912.如图,在棱长为2的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点,则下列结论正确的有()①棱AB 上一定存在点Q ,使得1QC D Q ⊥②三棱锥F EPH -的外接球的表面积为8π③过点E F G ,,作正方体的截面,则截面面积为④设点M 在平面11BB C C 内,且1//A M 平面AGH ,则1A M 与AB 所成角的余弦值的最大值为3A .1个B .2个C .3个D .4个二、填空题13.已知实数x ,y 满足01,0,2,x y x y ≤≤⎧⎪≥⎨⎪+≤⎩则32x y +的最大值为_______.14.已知平面向量()2,0a = ,()1,2b =-r ,若向量()c a a b b =+⋅ ,则c = ______.(其中c用坐标形式表示)15.已知△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c .若3A π=,4c =,△ABC的面积为ABC 的外接圆的半径为________.16.已知O 为坐标原点,抛物线C :()220y px p =>上一点A 到焦点F 的距离为4,设点M 为抛物线C 准线l 上的动点,给出以下命题:①若△MAF 为正三角形时,则抛物线C 方程为24y x =;②若AM l ⊥于M ,则抛物线在A 点处的切线平分MAF ∠;③若3MF FA =,则抛物线C 方程为26y x =;④若OM MA +的最小值为C 方程为28y x =.其中所有正确的命题序号是________.三、解答题17.设n S 为数列{}n a 的前n 项和,已知37a =,1222(2)n n a a a n -=+-≥.(1)证明:{}1n a +为等比数列;(2)求{}n a 的通项公式,并判断,,n n n a S 是否成等差数列?18.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.19.如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE V 沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)设F 为1CD 的中点,若M 为线段AB 上的一点,满足14AM AB =.求证:MF ∥平面1D AE ;(2)求点B 到平面1CD E 的距离.20.已知椭圆()2222:10x y C a b a b +=>>,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122B B =,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)当1k =时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.21.已知函数()ln f x x kx =-(R k ∈),()()2xg x x e =-.(1)求函数()f x 的极值点;(2)若()()1g x f x -≥恒成立,求k 的取值范围.22.如图,在平面直角坐标系xOy 中,以坐标原点为极点,极轴所在的直线为x 轴,建立极坐标系,曲线1C 是经过极点且圆心在极轴上直径为2的圆,曲线2C 是著名的笛卡尔心形曲线,它的极坐标方程为[]()1sin 0,2ρθθπ=-∈.(1)求曲线1C 的极坐标方程,并求曲线1C 和曲线2C 交点(异于极点)的极径;(2)曲线3C 的参数方程为cos 3sin3x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩(t为参数).若曲线3C 和曲线2C 相交于除极点以外的M ,N 两点,求线段MN 的长度.23.设函数()45f x x x =-+-的最小值为m .(1)求m ;(2)设123,,x x x R +∈,且123x x x m ++=,求证:22231212311114x x x x x x ++≥+++.参考答案:1.B【分析】根据集合的运算的定义求解.【详解】由(3)(1)0x x -+≤解得13x -≤≤,所以13{|}A x x =-≤≤,又因为211y x =+≥,所以{}|1B y y =≥,所以[1,)A B =-+∞ .故选:B.2.D【分析】先求出复数z ,即可求出答案.【详解】()()()21i 21i 1i 1i 1i z -===-++-,复数z 对应的点为()1,1-则复数z 对应的点位于第四象限故选:D.3.B【分析】观察图形可知,样本A 的数据均在[]2.5,10之间,样本B 的数据均在[]10,15之间,利用平均数,标准差,极差的定义可得解.【详解】观察图形可知,样本A 的数据均在[]2.5,10之间,样本B 的数据均在[]10,15之间,由平均数的计算可知<A B x x ,样本极差A B y y >样本B 的数据波动较小,故A B S S >,故选:B 4.C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.5.C【分析】根据直线与圆相交,结合点到直线的距离公式可得出关于实数m 的不等式,即可解得实数m 的取值范围.【详解】曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,由题意可知,圆心()2,3到直线l 的距离应小于等于半径1,1=≤,解得m ≤≤故选:C.6.A【分析】直接利用向量的线性运算计算即可.【详解】因为C ,D 为以AB 的直径的半圆的两个三等分点则AB //CD ,且2AB CD=又E 为线段CD 的中点,F 为BE 的中点()()1111111122222242AF AE AB AE AB AC CE AB AC CD AB=+=+=++=∴++25111152828182AC AB AB AC AB a b =++==++故选:A.7.C【分析】根据不等式的性质和正弦定理,余弦定理即可判断求解.【详解】对于A ,原命题的否命题为“若11a b≥,则a b ≤”,由11a b ≥得,110b a a b ab--=≥,得0b a ≥>或0a b ≤<或0b a <<,所以该否命题为假命题,故A 正确;对于B ,在锐角ABC 中,因为ππ()2C A B =-+<,所以π2A B >-,因为π,0,2A B ⎛⎫∈ ⎪⎝⎭,所以ππ0,22B ⎛⎫-∈ ⎪⎝⎭,又因为sin y x =在π0,2⎛⎫⎪⎝⎭单调递增,所以π2sin sin A B >-⎛⎫ ⎪⎝⎭,即sin cos A B >,故B 正确;对于C ,在ABC 中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B∴=,(0,π),22A B A B ∈∴= 或2π2A B =-,得A B =或π2A B +=,ABC ∴ 是等腰三角形或直角三角形,故C 错误;对于D ,由余弦定理2222cos b a c ac B =+-得222b a c ac =+-,又因为2b ac =,所以22220,()0a c ac a c +-=-=,所以a c =,又因为π3B =,所以ABC 是等边三角形,故D 正确,故选:C.8.C【分析】根据函数()f x 的部分图像求出函数的解析式,即可判断①②⑤是否正确;若=3x π是函数()f x 的极值点则=03f π⎛⎫⎪⎭'⎝,可判断③是否正确;求出()f x 的单调增、减区间,即可验证④是否正确;【详解】设()f x 的最小正周期为T ,根据函数()f x 的部分图像可知,512π,1112π是函数()f x 的两个相邻的零点,115212122T πππ∴=-=,T π∴=,222T ππωπ∴===,故①正确;根据函数()f x 的部分图像可知,1A =,故⑤正确;1A = ,2ω=,()()sin f x A x =+ωϕ,()()sin 2f x x ϕ∴=+,将5012π⎛⎫⎪⎝⎭,代入()()sin 2f x x ϕ=+中,5sin 2=012πϕ⎛⎫∴⨯+ ⎪⎝⎭,5=26k πϕπ∴+,56=2k πϕπ∴-,0πϕ-<< ,∴当0k =时,56π=-ϕ,故②正确;()5sin 26f x x π⎛⎫∴=- ⎪⎝⎭()562cos 2f x x π⎛⎫∴=- ⎪⎝⎭',若=3x π是函数()f x 的极值点则必有=03f π⎛⎫ ⎪⎭'⎝,而52cos 2=2cos 03636f ππππ⎛⎫⎛⎫⎛⎫=⨯--= ⎪ ⎪ ⎪⎝⎭⎝⎭'⎝⎭,3x π∴=不是函数()f x 的极值点,故③错误;由5222262k x k πππππ-≤-≤+,得263k x k ππππ+≤≤+,()f x \的单调递增区间为2[]63k k ππππ++,,由53222262k x k πππππ+≤-≤+得,2736k x k ππππ+≤≤+,()f x \的单调递减区间为27[]36k k ππππ++,()f x \在126ππ⎛⎫ ⎪⎝⎭,上单调递减,在7612ππ⎛⎫⎪⎝⎭,上单调递增,()f x \在71212ππ⎛⎫⎪⎝⎭,上不单调,故④错误.故选:C 9.D【分析】由已知得()*121n n S a n N +=+∈,+1221n n S a +=+,两式作差得+2132n n a a +=,再求得212a =,2132a a ≠,得数列{}n a 从第2项起构成以32为公比的等比数列,求得2n ≥时,n a ,n S ,代入判断可得选项.【详解】解:因为()*121n n S a n N +=+∈,所以+1221n n S a +=+,两式作差得()()+1+212+121n n n n S S a a +-=-+,即+1+2122n n n a a a +=-,所以+2132n n a a +=,又12a =,1221a a =+,解得212a =,211132242aa ==≠,所以数列{}n a 从第2项起构成以32为公比的等比数列,所以12a =,()22113,32222n n n n n a ---⎛⎫⨯=≥ ⎪⎝⎭=,()2111221333132+1++++2+22312++++1,23122222n n n n n a n S a a ---⎡⎤⎛⎫⎛⎫===⨯⎢⎥ ⎪ ⎝⎭⎝⎭⎢⎥⎣⎛⎫- ⎪⎛⎫⎝⎭=≥ ⎪⎭-⎦⎝ ,所以20222202020222022120213322a --==,故A 不正确,B 不正确;2021120012022+1+13322S -⎛⎫⎛⎫= ⎪ ⎝⎭⎝⎭=,所以202020212020312S =+,故C 不正确,D 正确,故选:D.10.B【分析】由双曲线的定义得到122PF PF a -=,再由题意知12PF PF +=,12PF PF ab ⋅=,三个式子组合即可得到22484ab b a =-,解出ba的值,在由双曲线的离心率为c e a =.【详解】()221212=8PF PF PF PF b+=∴+ ,,即222121228PF PF PF PF b ++⋅=①.根据双曲线的定义可得()2212122=4PF PF a PF PF a-=∴-,,即222121224PF PF PF PF a +-⋅=②,①减去②得2212484PF PF b a ⋅=-.12PF PF ab ⋅= ,故222222484221210bb b b ab b a ab b a aa a a ⎛⎫⎛⎫=-⇒=-⇒-⇒--= ⎪ ⎪⎝⎭⎝⎭,解得1b a =或12b a -=(舍).双曲线的离心率为c e a ==故选:B.11.D【分析】构造函数()()1g x f x =-,由导数结合奇偶性得出()g x 在R 上单调递增,进而得出29m n +=,最后由基本不等式得出答案.【详解】函数()f x 定义域为R ,令()()2111xg x f x x e =-=+-+21()111x x x e h x e e -=-=++,111()()1x x x x e e h x h x e e -----===-++易知y x =和2()11xh x e =-+均奇函数,所以()g x 为奇函数()()22101+xx e g x e +'=>,所以()g x 在R 上单调递增由()()922f m f n -+=得()()91210f m f n --+-=即()()()922g m g n g n -=-=-,所以920m n -+=,即29m n +=则()()211211418222449999m n m n m n m n n m ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当33,2m n ==时,取等号故选:D【点睛】关键点睛:本题考查点较为综合,解决时关键在于利用导数得出29m n +=,进而由基本不等式得出最值.12.C【分析】根据题意,建立空间直角坐标系,设出Q 点坐标,求出满足题意的位置即可,经计算可知Q 点不存在,故①错误;根据三棱锥F EPH -的几何特征,可计算出其外接球半径,所以②正确;由图可知,过点E F G ,,的截面为边长是的正六边形,即可计算其面积,所以③正确;利用空间向量写出1A M 与AB 所成角的余弦值的表达式求其最值即可,所以④正确.【详解】建立如图空间直角坐标系,设(2,,0)Q a ,其中102,(0,2,0),(0,0,2)a C D ≤≤,所以1(2,2,0),(2,,2)QC a D Q a =--=-,若棱AB 上存在点Q ,使得1QC D Q ⊥,则10QC D Q =,整理得2(1)30a -+=,此方程无解,①不正确;设AB 的中点为K ,则四边形PHKE 其外接圆的半径为1r =,又FK ⊥底面ABCD ,所以三棱锥F EPH -的外接球的半径为R ==所以其表面积为8π,②正确;过点E F G ,,作正方体的截面,截面如图中六边形所示,因为边长均为,且对边平行,所以截面六边形为正六边形,其面积为16sin 602S =⨯=③正确;点M 在平面11BB C C 内,设(,2,)M m n ,则1(2,0,2),(2,0,0),(0,2,1),(1,2,0),(2,2,0)A A G H B ,1(2,2,2),(2,2,1),(1,0,1),(0,2,0)A M m n AG GH AB =--=-=-=设()n x y z = ,,是平面AGH 的一个法向量,则·0·0n AG n GH ⎧=⎪⎨=⎪⎩ ,令1z =可得112x y ==,,即1(1,,1)2n = ,因为1//A M 平面AGH ,所以10A M n =,即3m n +=,设1A M 与AB 所成角为θ,则11cos A M ABA M ABθ==,当32m =时,2269y m m =-+取最小值92,所以1A M 与AB所成角的余弦值的最大值为3,故④正确;故选:C.13.5【分析】本题考查简单的线性规划,属基础题,根据约束条件画出可行域,将目标函数看成直线,直线经过可行域内的点,观察可得何时目标值取得要求的最值,进而得解.【详解】解:根据方程组画出可行域如图所示,可以求得B (1,1),当直线32x y z +=经过点B 时取得最大值为5,故答案为:5.14.()4,4-【分析】根据向量的线性坐标运算,以及向量数量积的坐标运算可求得答案.【详解】解:因为平面向量()2,0a = ,()1,2b =-r ,所以()21+022a b ⋅=⨯-⨯=-,所以()()()()()22021244c a a b b a b =+⋅=+-=--=- ,,,,故答案为:()4,4-.15.2【分析】利用三角形面积公式求解2b =,再利用余弦定理求得a =,进而得到外接圆半径.【详解】由14sin 23b π⨯⋅=,解得2b =.22224224cos 123a π∴=+-⨯⨯=.解得a =.24sin3R π∴==,解得2R =.故答案为:2.16.①②③④【分析】根据抛物线的标准方程及抛物线的几何性质依次判断即可.【详解】①若△MAF 为正三角形时,122p AM ==,故①正确;②若AM l ⊥于M ,设()00,A x y ,过A 的切线m 方程为:00x ty ty x =-+,代入22y px =得2002220y pty pty x -+-=,()()20024220pt pty x ∆=---=,又202y px =Q ,()200tp y ∴-=,y t p =,所以过A 点的切线的斜率为0p k y =,因为00022MF y yk p p p -==---,所以过A 的切线m MF ⊥,又AM AF =,故抛物线在A 点处的切线平分MAF ∠,②正确③若3MF FA =,则A M F 、、三点共线,4,12AF MF ==,由三角形的相似比得12,3164pp ==,故③正确;④设(),0B p -则14,2A p ⎛- ⎝,O B 、关于准线l 对称,OM BM =,O M BM MA A M B A =+≥==+1402p ->Q ,解得4p =,故④正确.故答案为:①②③④17.(1)证明见解析(2)21nn a =-,n ,n a ,n S 成等差数列【分析】(1)由已知可得:37a =,3232a a =-,解得23a =,可得1121,21n n n n a a a a -+=+=+,可得()111212n n a n a ++=+ ,即可证明;(2)由(1)知,12nn a +=,可得n S ,n a .只要计算20n n n S a +-=即可.【详解】(1)证明:37a = ,3232a a =-,23a ∴=,1121,21n n n n a a a a -+∴=+=+,11a ∴=,()111121222n n n n a a n a a +++==++ ,112a +=,{1}n a ∴+是首项为2公比为2的等比数列.(2)由(1)知,12n n a +=,∴21nn a =-,∴11222212n n n S n n ++-=-=---,∴12222(21)0n n n n n S a n n ++-=+----=,2n n n S a ∴+=,即n ,n a ,n S 成等差数列.18.(1)男30人,女45人(2)710【分析】(1)根据频率分布直方图求出男、女生优秀人数即可;(2)求出样本中的男生和女生的人数,写出所有的基本事件以及满足条件的基本事件的个数,从而求出满足条件的概率即可.【详解】(1)由题可得,男生优秀人数为()1000.010.021030⨯+⨯=人,女生优秀人数为()1000.0150.031045⨯+⨯=人;(2)因为样本容量与总体中的个体数的比是51304515=+,所以样本中包含男生人数为130215⨯=人,女生人数为145315⨯=人.设两名男生为1A ,2A ,三名女生为1B ,2B 3B .则从5人中任意选取2人构成的所有基本事件为:{}12,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}21,A B ,{}22,A B ,{}23,A B ,{}12,B B ,{}13,B B ,{}23,B B 共10个,记事件C :“选取的2人中至少有一名男生”,则事件C 包含的基本事件有:{}12,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}21,A B ,{}22,A B ,{}23,A B 共7个.所以()710P C =.【点睛】本题考查了频率分布问题,考查了古典概型概率问题,是一道中档题.19.(1)证明见解析(2)d =【分析】(1)取1D E 的中点N ,证明AMFN 是平行四边形,得到AN MF ∥,再利用线面平行的判定定理证明;(2)取AE 的中点O ,BC 的中点Q ,连接EF ,1D O ,由平面1D AE ⊥平面AECB ,得到1D O ⊥平面AECB ,设点B 到平面1CD E 的距离为d ,由11D BCE B CED V V --=求解.【详解】(1)证明:如图所示:取1D E 的中点N ,连AN 、NF ,则12NF EC =,//NF EC ,∵122EC AB ==,当114AM AB ==时,12AM EC =,//AM EC ,是NF AM =且//NF AM ,所以AMFN 是平行四边形,则//AN MF .又MF ⊄平面1D AE ,AN ⊂平面1D AE ,所以//MF 平面1D AE ;(2)如图所示:取AE 的中点O ,BC 的中点Q ,连接EF ,1D O .易知1EF D C ⊥,OQ CB ⊥.因为11D A D E =,AO EO =,所以1D O AE ⊥,平面1D AE 平面AECB AE =,平面1D AE ⊥平面AECB ,1D O ⊂平面1AD E ,所以1D O ⊥平面AECB .设点B 到平面1CD E 的距离为d .在1Rt D OC △中,OC 1D O =,所以1D C ==.在1D EC △中,因为12EC D E ==,1D C =所以1EF ==.由11D BCE B CED V V --=,得1111113232CB CE D O CD EF d ⋅⋅⋅⋅=⋅⋅⋅⋅.即11112213232d ⋅⋅⋅=⋅⋅⋅解得d =20.(1)2212x y +=;(2)面积不存在;(3)证明见解析.【分析】(1)根据题意求出1b =,再由离心率为2和222c a b =-,求出a =1c =,即可得到椭圆方程.(2)把直线与椭圆进行联立,得到Δ0<,直线与椭圆无交点,故OMN 的面积不存在.(3)设直线l 的方程并和椭圆进行联立,由直线和椭圆有两个交点,232k >,再由1B ,T ,M 在同一条直线上,得111111313y kx n k m x x x +++===+;2B ,T ,N 在同一条直线上,222221111y kx n k m x x x -+-===+.化简得12n =,故交点T 的纵坐标为定值12.【详解】(1)因为122B B =,所以22b =,即1b =,因为离心率为2,所以2c a =,设c m =,则a =,0m >,又222c a b =-,即2222m m b =-,解得1m =或1-(舍去),所以a =1b =,1c =,所以椭圆的标准方程为2212x y +=(2)由22122x y y x ⎧+=⎪⎨⎪=+⎩得()222220x x ++-=23860x x ++=,284360∆=-⨯⨯<所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2y kx =+,设()11,M x y ,()22,N x y ,则22212y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2221860k x kx +++=,则()()22122122Δ846120821621k k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210∆=-+>k k ,则232k >,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313y kx n k m x x x +++===+,因为2B ,T ,N 在同一条直线上,则222221111y kx n k m x x x -+-===+,由于()21212283311213440621k x x n n k k k m m x x k ⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+,所以12n =,则交点T 恒在一条直线12y =上,故交点T 的纵坐标为定值12.21.(1)当0k ≤时,()f x 无极值点,当0k >时,()f x 有极大值点1k,无极小值点,(2)[1,)+∞【分析】(1)先求出函数的定义域,然后求出导函数,通过判断导函数的正负来判断函数的极点;(2)将不等式恒成立转化为1ln 2xx k e x+≥-+对0x >恒成立,构造函数1ln ()2xx m x e x+=-+,利用导数研究函数()m x 的性质,求解()m x 的最值,即可得到k 的取值范围【详解】解:(1)函数的定义域为(0,)+∞,由()ln f x x kx =-,得'11()kx f x k x x-=-=,当0k ≤时,'()0f x >,所以()f x 在(0,)+∞上单调递增,函数无极值点,当0k >时,由'()0f x =,得1x k=,当10x k <<时,'()0f x >,当1x k >时,'()0f x <,所以()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 有极大值点1k,无极小值点,综上,当0k ≤时,()f x 无极值点,当0k >时,()f x 有极大值点1k,无极小值点,(2)因为()()1g x f x -≥恒成立,即(2)(ln )1x x e x kx ---≥恒成立,所以1ln 2xx k e x+≥-+对0x >恒成立,令1ln ()2x x m x e x+=-+,则2'221(1ln )ln ()x x x x x x e x m x e x x ⋅-+--=-=,令2()ln x n x x x e =--,则'22l l ()(2)(2)0(0)x x x n x xe x e e x x x x x=--+=--+<>,所以()n x 在(0,)+∞上单调递减,因为12110,(1)0e n e n e e -⎛⎫=->=-< ⎪⎝⎭,所以由零点存在性定理可知,存在唯一的零点01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00n x =,即0200ln xx x e -=,两边取对数可得000ln(ln )2ln x x x -=+,即0000ln(ln )(ln )ln x x x x -+-=+,因为函数ln y x x =+在(0,)+∞上单调递增,所以00ln x x =-,所以当00x x <<时,()0n x >,当0x x >时,()0n x <,所以()m x 在()00,x 上单调递增,在()0,x +∞上单调递减,所以00000001ln 11()()221x x x m x m x e x x x +-≤=-+=-+=,所以0()1k m x ≥=,所以k 的取值范围为[1,)+∞【点睛】关键点点睛:此题考查导数的应用,考查利用导数解决不等式恒成立问题,解题的关键是()()1g x f x -≥恒成立,转化为1ln 2x x k e x +≥-+对0x >恒成立,然后构造函数1ln ()2x x m x e x+=-+,利用导数求出()m x 的最大值即可,考查数学转化思想和计算能力,属于较难题22.(1)极坐标方程为2cos ρθ=,[)0,2θ∈π,极径为85(2)2【分析】(1)先求出曲线1C 的直角坐标方程,再根据极坐标与直角坐标的互化公式可得曲线1C 的极坐标方程;联立曲线1C 与曲线2C 的极坐标方程,消去θ可得结果;(2)将曲线3C 的参数方程化为直角坐标方程,再化为极坐标方程,联立曲线3C 和曲线2C 的极坐标方程,消去θ得到,M N 两点的极径后相加即可得解.【详解】(1)曲线1C 的直角坐标方程为()2211x y -+=,即2220x y x +-=,将222x y ρ+=,cos x ρθ=代入并化简得1C 的极坐标方程为2cos ρθ=,[)0,2θ∈π.由2cos 1sin ρθρθ=⎧⎨=-⎩消去θ,并整理得2580ρρ-=,∴10ρ=或285ρ=.∴所求异于极点的交点的极径为85ρ=.(2)由cos 3sin 3x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩消去参数t 得曲线3C的普通方程为y =,∴曲线3C 的极坐标方程为()03πθρ=≥和()403πθρ=≥由31sin πθρθ⎧=⎪⎨⎪=-⎩和431sin πθρθ⎧=⎪⎨⎪=-⎩得曲线3C 与曲线2C两交点的极坐标为1,23M π⎛⎫- ⎪ ⎪⎝⎭,413N π⎛⎫ ⎝⎭,∴112MN OM ON ⎛⎛=+=+= ⎝⎭⎝⎭(O 为极点).23.(1)1m =;(2)证明见解析.【解析】(1)利用“零点讨论法”将绝对值函数表示为分段函数的形式,求分段函数的最值即可;(2)由(1)易构造出1231114x x x +++++=,利用柯西不等式即可得结果.【详解】(1)∵()29,41,4529,5x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩,∴4x <时,()1f x >,且5x >时,()1f x >,∴()min 1f x =,∴1m =;(2)由(1)知1231x x x ++=,∴1231114x x x +++++=,∵()()()2222223312121231231234111111111x x x x x x x x x x x x x x x ⎛⎫⎛⎫++⨯=+++++++≥⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭()21231x x x ++=,∴22231212311114x x x x x x ++≥+++,当且仅当12313x x x ===取等号.【点睛】关键点点睛:得出1231114x x x +++++=,构造柯西不等式的形式.。
高三数学诊断性测试(一).doc
![高三数学诊断性测试(一).doc](https://img.taocdn.com/s3/m/685edc0a763231126edb1197.png)
高三数学诊断性测试(一)一、选择题:本大题共8小题;每小题6分,共48分.在每小题给出的四个选项中,只有一个选项符合题目要求。
(1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1=(A )-2i (B )-i (C )i (D )2i (2)若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件 C.冲要条件 C.既不充分又不必要条件 (3)l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是(A )l 1⊥l 2, l 2⊥l 3⇒ l 1∥l 3 (B) l 1⊥l 2, l 2∥l 3⇒ l 1⊥l 3(C )l 1∥l 2 ∥l 3 ⇒ l 1,l 2,l 3 共面 (D) l 1,l 2,l 3 共点⇒ l 1,l 2,l 3 共面 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12(C )23(D )34(5)在A B C ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π (B )[,)6ππ (C )(0,]3π (D )[,)3ππ(6)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x 2(1)x x =-,则5()2f -=(A )12- (B )14- (C )14 (D )12 (7)已知a >0,b >0,a+b=2,则y=14a b+的最小值是(A )72(B )4 (C) 92(D) 5(8)设m ,k 为整数,方程220mx kx -+=在区间(0,1)内有两个不同的根,则m+k 的最小值为(A )-8 (B )8 (C)12 (D) 13二、填空题.本大题共有2个小题,每小题6分,共12分.把正确答案填在答题卡的相应位置.(9)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 。
高三九月诊断数学理试卷及答案
![高三九月诊断数学理试卷及答案](https://img.taocdn.com/s3/m/9eab7eb784254b35effd340e.png)
成都市玉林中学—(上期)九月诊断性评价高三 (理科数学)(时间:120 分钟,总分:150 分)第Ⅰ卷(选择题,共60分)一、选择题:本大题共有12个小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合要求的。
1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则()u M N A.{5} B.{0,3}C.{0,2,3,5}D.{0,1,3,4,5}22=A.1-+B.12+C.12-+D.1 3.=-)320cos(πA .21B .23 C .-21D .-23 4.已知定义域为R 的函数()f x 在),8(+∞上为减函数,且(8)y f x =+函数为偶函数,则 A .(6)(7)f f > B .(6)(9)f f > C. (7)(9)f f > D. (7)(10)f f >5.函数)34(log 1)(22-+-=x x x f 的定义域为 A.(1,2)(2,3) B.(,1)(3,)-∞+∞C.(1,3)D.[1,3] 6.已知直线m 、n ,平面γβα、、,则βα⊥的一个充分不必要条件为 A.γβγα⊥⊥, B.ββα⊂⊥=n m n m ,, C.βα⊥m m ,//D.βα////m m ,7.设0a >,不等式||ax b c +<的解集是{|21}x x -<<,则::a b c 等于 A.1:2:3 B. 2:1:3 C.3:1:2 D.3:2:1 8.等差数列{}n a 中,若1201210864=++++a a a a a ,则10921a a -的值为: A.10 B.11 C.12 D.14 9.2sin 23y x π⎛⎫=+⎪⎝⎭的图象是: A.关于原点成中心对称 B.关于y 轴成轴对称C.关于点,012π⎛⎫⎪⎝⎭成中心对称 D.关于直线12x π=成轴对称10.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则A .11a -<<B .02a <<C .2321<<-a D .2123<<-a11.在重庆召开的“市长峰会”期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A.124414128C A A B.124414128C C C C .12441412833C C C A D.12443141283C C C A 12. 定义在R 上的偶函数)(x f 满足)()2(x f x f =-,且在[-3,-2]上是减函数,βα,是钝角三角形的两个锐角,则下列不等式关系中正确的是 A .(sin )(cos )f f αβ> B.(cos )(cos )f f αβ< C .(cos )(cos )f f αβ> D.(sin )(cos )f f αβ<第Ⅱ卷(非选择题,共 90 分)二、填空题。
2017级成都市高三第一次诊断性检测数学试题(理科)
![2017级成都市高三第一次诊断性检测数学试题(理科)](https://img.taocdn.com/s3/m/9c9d286af01dc281e53af085.png)
成都市2017级高中毕业班第一次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。
第1卷(选择题)1至2页,第lI卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1. 答题前,务必将自己的姓名考籍号填写在答题卡规定的位置上。
2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦千净后,再选涂其它答案标号。
答非选择题时,必须使用05毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
5. 考试结束后,只将答题卡交回。
第1卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若复数Z 1与Zz =-— (i 为虚数单位)在复平面内对应的点关于实轴对称,则Z1=CA)-—i (B)-3+ (C)+i (D)—!2.已知集合A={—1,0,m},B={l ,2}. 若A U B = {-1,0,1,2}, 则实数m的值为(A)-1或0(B)O或1CC)—1或23.若si n e =乔cos(2穴-0),则tan20=石乔瓦CA)——CB) -CC)—一 2 4.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60), [60, 70), [70, 80),[80,90),[90,100], 得到如图所示的频率分布直方图则这100名同学的得分的中位数为CA )72. 50.040 0.030 数学(理科)”一诊“考试题第1页(共4页)CD)l或2CD)-污2 彗0.015 (B )75 0.0100.005 (C)77. 5(D)80。
工丑扫已。
100得分5设等差数列{a ,}的前n项和为S,,,且a ,,-::/:-0.若as =a 3, 则—=s 9 S s 9 5 5 (A)了(B)了(C)了6已知a,/3是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是(A)若m II a ,n II /3, 且a II /3,则m II n (B)若m II a ,n II /3, 且a_l/3,则m II n (C)若m_la ,n II /3, 且a II /3, 则m _l n (D)若m _la,n ll /3,且a_l/3,则m _l n7.(x 2+2)(x ——)6的展开式的常数项为(A)25(B)-25 (C)5(D )—5 8.将函数y =si n (4x -王)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所6 得图象向左平移王个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为6 (A) f(x) =si n (2x +互)6 CA) C —2,0) LJ (2, 十=)穴CB) f(x) =si n (2x —一) 亢(C) f(x) =si n (8x +岊)(D) f(x) =si n (8x —一)9已知抛物线沪=4x 的焦点为F,M,N是抛物线上两个不同的点.若I M Fl+INFl =5,则线段MN的中点到y轴的距离为CA)3 3_2) B ( CC)5 10.巳知a =沪,b=3了,c =l n -2 ,则(A) a> b > c (B) a> c > b (C) b >a> c (D) b > c > a 11已知定义在R上的函数f(x)满足f(2-x)= f(Z +x), 当x冬2时,f(x)= (x —l)e< :--1 若关于x的方程f(x)-kx +zk —e +l=O 有三个不相等的实数根,则实数K的取值范围是(B)(—2,0) LJ (0,2)CC)C —e,O) U (e, 十oo)CD)C —e ,O) U (0, e ) 12.如图,在边长为2的正方形AP 1贮凡中,线段BC的端点B,C分别在边P1P 2,P 2P 3 _t 滑动,且P 2B =P心=x.现将丛AP 1B ,6AP 3C分别沿AB,A C折起使点P1,凡重合,重合后记为点P ,得到三棱锥P-ABC 现有以下结论:(DAP上平面PBC;@当B,C分别为P1P2,P 2凡的中点时,三棱锥P —ABC的外接球的表面积为67(;®x 的取值范圉为(0,4—2迈); 1 @三棱锥P —ABC体积的最大值为—.则正确的结论的个数为P 1 5_2、丿D ( A 27CD)一5 (A)l (B)2CC )3(D )4数学(理科)”一诊“考试题第2页(共4页)。
【解析】四川省成都市2015届高中毕业班第一次诊断性检测数学理试题
![【解析】四川省成都市2015届高中毕业班第一次诊断性检测数学理试题](https://img.taocdn.com/s3/m/c128e6b965ce05087632135a.png)
四川省成都市2015届高中毕业班第一次诊断性检测数学试题(理科)【试卷综述】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、向量、三视图、导数、简单的线性规划、直线与圆、数列、充要条件等;考查学生解决实际问题的综合能力,是份较好的试卷。
【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设全集{|0}=≥U x x ,集合{1}=P ,则U P =ð (A )[0,1)(1,)+∞ (B )(,1)-∞(C )(,1)(1,)-∞+∞ (D )(1,)+∞【知识点】集合的补集 A1【答案】【解析】A 解析:因为{|0}=≥U x x ,{1}=P ,所以U P =ð[0,1)(1,)+∞,故选A.【思路点拨】由补集运算直接计算可得.【题文】2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 【知识点】三视图 G2 【答案】【解析】C 解析:由题意可得,A 是正方体,B 是三棱柱,C 是半个圆柱,D 是圆柱,C 不能满足正视图和侧视图是两个全等的正方形,故选C. 【思路点拨】由三视图的基本概念即可判断.【题文】3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3(C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为5 【知识点】复数运算 L4 【答案】【解析】D 解析:由复数概念可知虚部为-3,其共轭为43i -+,故选D. 【思路点拨】由复数概念直接可得.【题文】4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 【知识点】函数的图像 B6 B8【答案】【解析】A 解析:当0x <时,将3y x =的图像向上平移一个单位即可;当0x ≥时,取1()3xy =的图像即可,故选A.【思路点拨】由基本函数3y x =和1()3xy =的图像即可求得分段函数的图像.【题文】5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是( ) (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”【知识点】四种命题 A2 【答案】【解析】C 解析:“若p 则q ”的逆命题是“若q 则p ”,否命题是“若p ⌝则q ⌝”,故选C. 【思路点拨】将原命题的条件和结论互换位置即可得到逆命题,分别写出条件和结论的否定为否命题. 【题文】6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是( ) (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 【知识点】二次函数 B5【答案】【解析】B 解析:因为240+-=x ax 在区间[2,4]上有实数根,令2(x)4f x ax =+-所以(2)(4)0f f ≤ ,即()21240a x +≤,30a ∴-≤≤ ,故选B.【思路点拨】二次函数在给定区间上根的分布问题,只需找准条件即可,不能丢解.【题文】7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是( ) (A )14 (B )34 (C )12(D【知识点】椭圆的几何性质 H5【答案】【解析】B 解析:Rt PFA 中,222|PF ||FA ||PA |+=,||c FA a =+,2|PF |b a=, 又14=PF AF ,21(c)4b a a =+,得22430c ac a +-=,34c a ∴=,故选B.【思路点拨】Rt PFA 中, ||c FA a =+,2|PF |b a=,且14=PF AF ,得22430c ac a +-=,可求离心率.【题文】8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥ 【知识点】线线关系,线面关系 G4 G5【答案】【解析】D 解析:A 中m ,n 可能异面;B 中α,β可能相交;C 中可能m β⊂或//m β,故选D.【思路点拨】熟悉空间中线线,线面关系的判断,逐一排除即可. 【题文】9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π【知识点】两角和与差的正弦、余弦 C7【答案】【解析】A 解析:()2αββαα+=-+,552sin =α,],4[ππα∈cos 2α∴=[,]42ππα∈,又1010)sin(=-αβ,[,]42ππα∈,]23,[ππβ∈,cos()βα∴-=sin()sin[()2]αββαα+=-+sin()cos 2cos()sin 2βααβαα=-+-((=+=, 又5[,2]4παβπ+∈,所以74παβ+=,故选A. 【思路点拨】利用角的变换()2αββαα+=-+,得sin()sin[()2]αββαα+=-+ sin()cos 2cos()sin 2βααβαα=-+-即可求解.【题文】10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 最小值是( )(A )21 (B )22 (C )23 (D )25 【知识点】点、线、面间的距离计算 G11【答案】【解析】B 解析:点P 到平面11CDD C 距离就是点P 到直线1CC 的距离,所以点P 到点F 的距离等于点P 到直线1CC 的距离,因此点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在面11A ABB 中作1HK BB ⊥于K ,连接KP ,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可,由题意易求得min 2|K |6P =,所以2|HP |最小值为22,故选B.【思路点拨】注意到点P 到点F 的距离等于点P 到直线1CC 的距离,即点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可.【题文】二、填空题:本大题共5小题,每小题5分,共25分.【题文】11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 【知识点】向量的夹角 F3 【答案】【解析】090解析:a b a b +=-22||||a b a b ∴+=-,即0a b =,所以a b ⊥,a ,b 的夹角为090,故答案为090.【思路点拨】由a b a b +=-可得0a b =,所以夹角为090.【题文】12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答) 【知识点】二项式定理 J3【答案】【解析】-20解析:2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,求展开式中含3x 的项的系数,此时3633r r -=∴=,因此系数为6r 366(1)120r C C --=-⨯=-,故答案为-20.【思路点拨】利用通项2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,可求r,即可求出系数.【题文】13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.【知识点】余弦定理,正弦定理 C8【答案】2222cos b a c ac B =+-,得222116444a a a =+-⨯,2,4a c ∴==.面积11sin 2422S ac B ==⨯⨯=【思路点拨】【思路点拨】由余弦定理2222cos b a c ac B =+-可求24a =,再利用1sin 2S ac B =即可. 【题文】14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 【知识点】充分、必要条件 A2【答案】【解析】[2,0]-解析:因为0x ≥时,奇函数3()log (1)=+f x x ,所以函数()f x 在R 上为增函数,2[(2)](22)f x a a f ax x ++≤+,2(2)22x a a ax x ∴++≤+,即()222(2)0x a x a a -+++≤,2a x a ∴≤≤+,{|2}A x a x a =≤≤+,{|22}B x x =-≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,即22022a a a ≥-⎧∴-≤≤⎨+≤⎩,故答案为[2,0]-. 【思路点拨】因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,然后根据题意分别求出集合,A B 即可.【题文】15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54;③当*n ∈N 时,n k <;④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)n S . 其中,正确的结论有 (写出所有正确结论的序号) 【知识点】命题的真假判断A2【答案】【解析】①③④解析:因为曲线C :22y x a =+,所以()2'2'2y yy ==,即1'y k y === ,n k =,点n P ()n (0,a n >∈N )处的切线n l 为)y x n =-,,n n x n a y ∴=--= ,①00|x ||y |=,0,|||1n a a ∴=-=∴= ,正确;②1122n y ===12=112≥⨯=,所以n y 的最小值为1,错误;③012n <≤,∴> <亦即n k <,正确;④n k ==121n n n ++=+,22(2n 1)<+,<,<=,因为n k =,所以122(21321)n n S k k k n n =+++<-+-+++- 1), 故正确.【思路点拨】依题意,分别求出n k =, ,n n x n a y =--=,依次进行判断即可. 【题文】三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.【题文】16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X . 【知识点】古典概型,分布列 K2 K6 【答案】【解析】(Ⅰ)15(Ⅱ)X 的分布列为:X 的数学期望1310121555=⨯+⨯+⨯=EX (Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ………………………………………………………2分122436123(1)205⋅====C C P X C …………………………………………………2分 1(2)()5===P X P A ……………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .………………………………2分【思路点拨】)X 的可能取值为0,1,2,再分别求出(0)P X =,(1)P X =,(2)P X =即可.【题文】17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值.【知识点】线面平行,空间向量解决线面位置关系 G4 G10 【答案】【解析】 (Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图.则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 【思路点拨】(Ⅰ)求证线面平行,可以利用线线平行,本题很容易找出//DF OB ; (Ⅱ)分别求平面DEA 与平面ABC 的法向量1(1,0,1)=n 2(0,0,1)=n ,∴121212,2⋅>===cos <n n n n n n ,即可求出余弦值. 【题文】18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .【知识点】等差数列,等比数列【答案】【解析】(Ⅰ)2n n a =,21n b n =-(Ⅱ)1(23)24+=-+n n T n (Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .…………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n …………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n ……………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n ……………………………………………1分 ∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n …………………………………3分【思路点拨】(Ⅰ)由条件直接求解即可;(Ⅱ)数列(21)2=-nn c n ,为差比数列,利用错位相减法直接求解. 【题文】19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象.(Ⅰ)根据图象,求A ,ω,ϕ,B 的值;(Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:【知识点】函数模型及其应用B10 【答案】【解析】(Ⅰ)1,22A B == ,12T =,6πω=(Ⅱ)11.625时(Ⅰ)由图知12T =,6πω=.………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t .又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分∴应该在11.625时停产.……………………………………………………………1分(也可直接由0)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产).【思路点拨】(Ⅰ)由三角函数图像可直接求)1,22A B == ,12T =,6πω=,代点(0,2.5)可求2πϕ=;(Ⅱ)理解二分法定义即可求解本题.【题文】20.(本小题满分13分) 已知椭圆Γ:12222=+byx (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =0(,2)P x 满足=PA PB,求0x 的值.【知识点】直线与椭圆H8【答案】【解析】(Ⅰ)141222=+yx (Ⅱ)0x 的值为3-或1- (Ⅰ)由已知2=a =a ,又=c∴2224=-=b a c . ∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分 ∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m ,得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321m x x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点.设AB 的中点为),(00y x E ,则432210m x x x -=+=,400m m x y =+=, ①当2m =时,31(,)22E - ∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分②当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-.【思路点拨】联立直线与椭圆,可得2m =±,因为=PA PB ,所以点P 为线段AB 的中垂线与直线2=y 的交点,分情况讨论即可求0x .【题文】21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值; (Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.【知识点】函数综合B14【答案】【解析】(Ⅰ)()2f x me =-极小值(Ⅱ)略(Ⅲ)(,(21)∈-∞-+m e e 解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x m x f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'x f ,得210e x <<,且1≠x .…………………1分∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .……………2分 ∴me e f x f 2)()(-==极小值.……………………………………………………………1分 (Ⅱ)222(2)(),(0)mx mx mx mx mxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点. ∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分由(1)(1)0-=-=-<m m g m me m e . ∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分 综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增. ∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mx mx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m 上单调递减. ∴max 224()()==-g x g m m e m.…………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+. 综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分 【思路点拨】(Ⅰ)2(12ln )()(ln )mx x f x x ⋅-'=,由0)(>'x f 和0)(<'x f ,求得其单调区间,进而可求极值 ;(Ⅱ)(2)(),(0)mx mx mx g x m e -'=>,∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增,得()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得10a b e c -<<<<<.(III )由题意,只需min max ()()>f x g x ,12min ()()2==-f x f e me ,max 224()()==-g x g m m e m,求解即可.。
四川省成都市高2024届2022-2023学年度12月月考-理科数学【含答案】
![四川省成都市高2024届2022-2023学年度12月月考-理科数学【含答案】](https://img.taocdn.com/s3/m/052ac2f26e1aff00bed5b9f3f90f76c661374c30.png)
一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的四川省成都市高2024届2022-2023学年度12月月考理科数学.1. 命题“∃>x 20,−<x x 203200”的否定为( )A .∀>x 2,−≥x x 2032B .∀>x 2,−>x x 2032C .∃<x 20,−≥x x 203200D .∃<x 20,−>x x 203200 2.同时掷3枚硬币,那么互为对立事件的是( )A .至少有1枚正面和最多有1枚正面B .至多1枚正面和恰有2枚正面C .至多1枚正面和至少有2枚正面D .至少有2枚正面和恰有1枚正面 3.已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率e =53,且其虚轴长为8,则双曲线C 的方程为( ) A.x 24−y 23=1 B. x 23−y 24=1 C. x 216−y 29=1 D. x 29−y 216=14. 已知在一次射击预选赛中,甲、乙两人各射击10次,两人成绩的条形统计图如图所示, 则下列四个选项中判断不正确的是( )A .甲成绩的平均数小于乙成绩的平均数B .甲成绩的中位数小于乙成绩的中位数C .甲成绩的方差大于乙成绩的方差D .甲成绩的极差小于乙成绩的极差5.已知△ABC 的三个顶点分别为A 5,3,2)(,−B 1,1,3)(,−−C 1,3,5)(,则BC 边上的中线长为( ) A.B.C. D.6.现从某学校450名同学中用随机数表法随机抽取30人参加一项活动.将这450名同学编号为001,002,…,449,450,要求从下表第2行第5列的数字开始向右读,则第5个被抽到的编号为_________. 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79A.074B.447C.474D. 4767.已知m 为实数,直线l 1:mx +y −1=0,l 2:(3m −2)x +my −2=0,则“m =1”是“l 1//l 2”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件8.已知一组数据x 1,x 2,⋅⋅⋅,x n 的平均数为x ,标准差为s ,则数据2x 1+1,2x 2+1,⋅⋅⋅,2x n +1的平均数和方差分别为( )A. 2x +1,2s +1B. 2x,2sC. 2x +1,4s 2D. 2x,4s 29. 柜子里有红,白,黑三双不同的手套,从中随机选2只,则取出的手套成双的概率为( ) A. 13B. 15C.16D.11010.已知点P 是圆C :x 2+y 2−2x −4y +3=0的动点,直线l :x −y −3=0上存在两点A ,B ,使得∠APB ≥π2恒成立,则线段AB 长度的最小值是( ) A. B. C. D.11.甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为() A .1116B .916C .716D .51612.1F 、2F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,点M 为椭圆E 上一点,点N 在x 轴上,满足1260F MN F MN ∠=∠=︒,若1235MF MF MN λ+=,则椭圆E 的离心率为 ( )A. 89B. 56C. 23D.78二、填空题:本大题共4个小题,每小题5分,共20分.13.2020年是新冠疫苗接种高峰期,接种重点人群是年龄在18−59岁的健康人员.某单位300名职工的年龄分布情况如图所示,现要从中抽取30名职工作为样本了解新冠疫苗的接种情况,则40岁以下年龄段应抽取____________人14.已知抛物线y 2=2px(p >0)上一点M(1,m)(m >0)到其焦点的距离为5,则实数m 的值是____15.已知点(2,2)P −,直线:(2)(1)460l x y λλλ+−+−−=,则点P 到直线l 的距离的取值范围为__________.16.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :x 2+y 2=1和点1,02A ⎛⎫−⎪⎝⎭,点B (4,2),M 为圆O 上的动点,则2|MA|+|MB|的最小值为_______ 三、解答题:本大题共6个小题,第一题10分,其余各题12分17. 已知命题:p 方程: x 22m +y 21−m =1表示焦点在y 轴上的椭圆,命题:q 双曲线e ∈(1,2),若“p q ∧”为假命题,“p q ∨”为真命题,求m 的取值范围.公众号高中僧试题下载18. 双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的一条渐近线为y =√3x ,且一个焦点到渐近线的距离为√3.(1)求双曲线方程;(2)过点(0,1)的直线l 与双曲线交于异支两点P,Q,OM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ ,求点M 的轨迹方程.19.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生按学生的课外阅读时间(单位:小时)各分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],得其频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10个小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定:初中学生平均每人每天课外阅读时间不小于半小时,若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间.根据以上抽样调查数据,该校是否需要增加初中学生课外阅读时间?20、现代物流成为继劳动力、自然资源外影响企业生产成本及利润的重要因素。
四川省成都市2021届高三一诊考试试卷 理科数学 Word版含答案
![四川省成都市2021届高三一诊考试试卷 理科数学 Word版含答案](https://img.taocdn.com/s3/m/73931a4dc950ad02de80d4d8d15abe23482f0368.png)
成都市2022级高中毕业班第一次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。
第1卷(选择题)1至2页,第Ⅱ卷(非选择题)2至4页,共4页,满分150分,考试时间120分钟。
第I卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合U=R,A={x|x2-x-2>0).则(A)(-∞,-1) ⋃(2,+∞) (B)[-1,2](C)(-∞,-1] ⋃[2,+∞)(D)(-1,2)(2)命题“若a>b,则a+c>b+c"的否命题是(A)若a≤6,则a+c≤b+c(B)若a+c≤b+c,则a≤6(C)若a+c>b+c,则a>b(D)若a>b,则a+c≤b+c(3)执行如图所示的程序框图,假如输出的结果为0,那么输入的x为(A)19(B) -1或1 (C)l (D)一1(4)已知双曲线2222-1(0x ya ba b=>>)的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,则该双曲线的离心率为(A) 1312(B)125(C)32(D)3(5)已知α为其次象限角,且sin2α=2425,则cosα-sinα的值为(A)75(B) 一75(C)15(D) 一15(6)(x+1)5(x-2)的开放式中x2的系数为(A) 25 (B)5 (C) - 15 (D) - 20(7)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为(A) 136π (B) 34π (C) 25π (D) 18π(8)将函数f(x)=sin2x+3cos2x图象上全部点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上全部点向右平移6π个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是(A)x=一6π(B)x=6π(C)x=2425π(D)x= 3π(9)在直三棱柱ABC-A1BlC1中,平面口与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面d.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α上平面BCFE.其中正确的命题有(A)①②(B)②③(C)①③(D)①②③(10)已知A,B是圆O:x2+y2=4上的两个动点,若M是线段AB的中点,则的值为(A)3 (B) 23(C)2 (D) -3(11)已知函数f(x)是定义在R上的偶函数,且f(-x-1)=f(x-1),当x∈[-1,0]时,f(x)= 一x3.则关于x的方程f(x ) =|cosπx|在[一52,12]上的全部实数解之和为(A) -7 (B) -6 (C) -3 (D) -1(12)已知曲线C1:y2 =tx (y>0,t>0)在点M(4t,2)处的切线与曲线C2:y=e x+l—1也相切,则tln24et的值为(A) 4e2 (B) 8e (C)2 (D)8第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.(13)若复数z=1aii+(其中a∈R,i为虚数单位)的虚部为-1,则a= .(14)我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势’’即是高,“幂”是面积.意思是:假如两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个外形不规章的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为.(15)若实数x,y满足约束条件,则的最小值为(16)已知△ABC中,AC=2,BC=6,△ABC的面积为32,若线段BA的延长线上存在点D,使∠BDC=4π,则CD = .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知数列{a n }满足a l = -2,a n+1 =2a n +4. (I)证明数列{a n +4)是等比数列; (Ⅱ)求数列{|a n |}的前n 项和S n . (18)(本小题满分12分)某省2022年高中数学学业水平测试的原始成果采 用百分制,发布成果使用等级制.各等级划分标准为:85 分及以上,记为A 等;分数在[70,85)内,记为B 等;分数 在[60,70)内,记为C 等;60分以下,记为D 等.同时认 定A ,B ,C 为合格,D 为不合格,已知甲,乙两所学校同学 的原始成果均分布在[50,100]内,为了比较两校同学的 成果,分别抽取50名同学的原始成果作为样本进行统 计,依据[50,60), [60,70), [70,80), [80,90),[90 ,100]的分组作出甲校的样本频率分布直方图如图1所示,乙 校的样本中等级为C ,D 的全部数据的茎叶图如图2所示. (I)求图中x 的值,并依据样本数据比较甲乙两校的合 格率;(II)在选取的样本中,从甲,乙两校C 等级的同学中随 机抽取3名同学进行调研,用X 表示所抽取的3名同学中 甲校的同学人数,求随机变量X 的分布列和数学期望.(19)(本小题满分12分)如图1,在正方形ABCD 中,点E ,F 分别是 AB ,BC 的中点,BD 与EF 交于点H ,G 为BD 中点,点R 在线段BH 上,且BRRH =λ(λ>0).现将△AED ,△CFD ,△DEF 分别沿DE ,DF ,EF 折起,使点A ,C 重合于点B (该点记为P ),如图2所示. (I)若λ=2,求证:GR ⊥平面PEF ;(Ⅱ)是否存在正实数λ,使得直线FR 与平面DEF 所成角的正弦值为225?若存在,求出λ的值;若不存在,请说明理由.(20)(本小题满分12分)已知椭圆22:154x y E +=的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(I)若直线l 1的倾斜角为4π,求△ABM 的面积S 的值;(Ⅱ)过点B 作直线BN ⊥l 于点N ,证明:A ,M ,N 三点共线 (21)(本小题满分12分)已知函数f(x)=xln(x+1)+(12一a )x+2一a ,a ∈R . (I)当x>0时,求函数g(x)=f(x)+ln(x+1)+ 12x 的单调区间;(Ⅱ)当a ∈Z 时,若存在x ≥0,使不等式f(x)<0成立,求a 的最小值. 请考生在第(22)、(23)题中任选一题作答,假如多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,倾斜角为α(α≠2π)的直线l 的参数方程为1cos ,sin ,x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcosx θ - 4sin θ=0.(I)写出直线l 的一般方程和曲线C 的直角坐标方程;(Ⅱ)已知点P(1,0).若点M 的极坐标为(1,2π),直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ|的值.(23)(本小题满分10分)选修4-5:不等式选讲 已知函数f(x )=x +1+ |3 -x|,x ≥-1. (I)求不等式f(x )≤6的解集;(Ⅱ)若f(x )的最小值为n ,正数a ,b 满足2nab =a+2b ,求2a+b 的最小值.。
成都市青羊区九年级第一次诊断性考试数学试题及答案
![成都市青羊区九年级第一次诊断性考试数学试题及答案](https://img.taocdn.com/s3/m/8e2b9b1491c69ec3d5bbfd0a79563c1ec5dad7f6.png)
成都市青羊区初级第一次诊断性测试题数学A卷(共100分)第I卷(选择题,共30分)注意事项:第Ⅰ卷各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
一、选择题(本大题共10个小题,每小题3分,共30分)1.计算:-(-2)的结果是(▲)A.-2 B.2 C .-12D.122.成都地铁4号线一期工程起于公平站,止于沙河站,基本为东西走向,线路长22.4km,估算总约125亿元,其中125亿用科学记数法表示为(▲)A.0.125×1011 B.1.25×1010 C.1.25×109 D.1.25×1083.函数1xyx+=的自变量x的取值范围是(▲)A.x≥-1且x≠0 B.x>-1且x≠0 C.x≥0且x≠-1 D.x>0且x≠-14.不等式组103412xxx->⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为(▲)5.如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是(▲) A.22B.32C.5D.356.下面四个几何体中,主视图与其它几何体的主视图不同的是(▲)第5题1 / 122 / 12A. B. C. D.7.某市为治理污水,需要辅设一段全长为300 m 的污水排放管道,铺设120 m 后,为了尽量减少施工对城市交通所造成的影响.后来每天的工效比原计划增加20%,结果共用30天完成这一任务.如果设原计划每天铺设x m 管道,那么根据题意,可得方程( ▲ )A .120300302x x += B .120180302x x += C .120300301.2x x += D .120180301.2x x+=8.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是( ▲ ) A .16 B .13C .12D .239.如图,在△ABC 中,∠AED=∠B ,则下列等式成立的是( ▲ )A .DB AD BC DE = B. BD ADBC AE =C .AB AE CB DE = D. AC AE AB AD =10.抛物线y =x 2+x +p(p≠0)的图象与x 轴一个交点的横坐标是p ,那么该抛物线的顶点坐标是( ▲ ) A .(0,-2)B .(12,94-)C .(-12,94) D .(-12,94-)第9题3 / 12第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11.数据2,0,2,1,3的众数为 ▲ 。
四川省成都市2023 2024学年高三下学期入学考试理科数学试卷含答案
![四川省成都市2023 2024学年高三下学期入学考试理科数学试卷含答案](https://img.taocdn.com/s3/m/ab4f1e2d1fd9ad51f01dc281e53a580216fc5095.png)
2023—2024学年度下期高2024届入学考试理科数学试卷(答案在最后)考试时间:120分钟满分:150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2Z 2150A x x x =∈--<,{}R 10B x x =∈-≤,则()A B Rð的真子集的个数为()A.9B.8C.7D.6【答案】C 【解析】【分析】解不等式求出集合A ,求出集合B 的补集,即可确定()A B R ð的元素,根据元素的个数,即可求得()A B R ð的真子集的个数.【详解】由题意{}{}2Z 2150Z (3)(5)0A x x x x x x =∈--<=∈+-<{}Z 35{2,1,0,1,2,3,4}x x =∈-<<=--,{}R 10{|1}B x x x x =∈-≤=≤,故R {|1}B x x =>ð,故{2,3,()4}A B =R ð,则()A B R ð的真子集的个数为3217-=,故选:C2.若函数()21f x x ax =++是定义在(,22)b b --上的偶函数,则2b f ⎛⎫=⎪⎝⎭()A.14B.54C.74D.2【答案】D 【解析】【分析】利用偶函数的定义可计算,a b 的值,再根据解析式计算函数值即可.【详解】因为函数2()1=++f x x ax 是定义在(,22)b b --上的偶函数,所以220b b -+-=且()()2211f x x ax x ax f x -=-+=++=,则02a b =⎧⎨=⎩,所以2()1f x x =+,则2(1)1122b f f ⎛⎫==+=⎪⎝⎭.故选:D .3.已知复数z 满足1i 1iz -=+,则z z +=()A.i - B.iC.1D.1-【答案】C 【解析】【分析】利用复数的四则运算求出复数z 即可得出答案.【详解】由题意,复数z 满足1i 1iz -=+,可得()()11i 11i i i 1i 1i 1i 22z -=+=+=+++-,所以1122z i =-.则z z +=1,故选:C .4.已知()()()()626012621111x a a x a x a x -=+-+-++- ,则2a =()A.60- B.30- C.30D.60【答案】D 【解析】【分析】设1t x =-,则1x t =+,变换()()662121x t -=+,利用二项式定理计算得到答案.【详解】设1t x =-,则1x t =+,所以()()662601262121x t a a t a t a t -=+=++++ .()621t +的展开式的通项()666166C 21C 2rrr r r rr T t t ---+=⨯=,取4r =得4226C 260a =⨯=.故选:D .5.已知正项等差数列{}n a 的前n 项和为n S ,且()23341S a =+,()24441S a =+.则()A.1020a =B.550S =C.5758a S +=D.2nna S ≥【答案】C 【解析】【分析】由等差数列,n n a S 的关系结合已知等式化简,可得2d =,结合()23341S a =+,求出首项,即可得等差数列的通项公式以及前n 项和公式,由此一一判断各选项,即可得解.【详解】设正项等差数列{}n a 的公差为d ,因为()23341S a =+,()24441S a =+,所以两式相减得()()22443411a a a =+-+,可得()4434a a a =-()432a a ++,即()143a d d +=()1252a d ++,所以()()12250d a d -+=,因为{}n a 是正项等差数列,则0,0n a d >≥,则1250a d +>,所以2d =,由()23341S a +=,得()212314()21a a a a d ++=++,得()2114(33)21a d a d +=++,即()2114(36)5a a +=+,所以11a =,所以21n a n =-,2(121)2n n n S n +-==,得1019a =,525S =,A ,B 错误;5794958a S +=+=,C 正确;22211111n n a n S n n -⎛⎫==--+≤ ⎪⎝⎭,D 错误,故选:C.6.已知π0,4θ⎛⎫∈ ⎪⎝⎭,4417sin cos 25θθ+=,则πtan 4θ⎛⎫+= ⎪⎝⎭()A.13B.12C.2D.3【答案】D 【解析】【分析】由同角三角函数的基本关系可得出关于sin θ、cos θ的方程组,解出这两个量的值,可得出tan θ的值,再利用两角和的正切公式可求得πtan 4θ⎛⎫+⎪⎝⎭的值.【详解】由已知可得442217sin cos 25sin cos 10sin 22cos 12θθθθθθ⎧+=⎪⎪+=⎪⎪⎨<<⎪<<⎩,解得sin 525cos 5θθ⎧=⎪⎪⎨⎪=⎪⎩,所以,sin 1tan cos 52θθθ==⋅=,故π1tan tan1π42tan 3π141tan tan 1142θθθ++⎛⎫+=== ⎪⎝⎭--⨯.故选:D.7.对于数列{}n a ,若满足:12321111333n n n nR a a a a -=+++⋅⋅⋅+,则称n R 为数列{}n a 的“优值”,现已知数列{}n a 的“优值”13n nR =,记数列83n a ⎧⎫+⎨⎬⎩⎭的前n 项和为n S ,则n S 的最大值为()A.223B.233C.243D.253【答案】D 【解析】【分析】将1231221111133333n n n n n n a a a a a ---=+++⋅⋅⋅++中的n 变为n 1-后两式相减可得数列{}n a 的通项公式,然后令830n a +>即可求出n S 的最大值.【详解】由已知得1231221111133333n n n n n n a a a a a ---=+++⋅⋅⋅++①,则当2n ≥时,123112211113333n n n n a a a a ----=+++⋅⋅⋅+②所以①-②得1111333n n n n n n a ----=,即()21133n n a n n =--=-+,又当1n =时,113a =,符合213n a n =-+,故213n a n =-+,所以2113383n a n ++=-令21103833n a n =+-+>,得5n ≤,所以n S 的最大值为513525323S ⎛⎫+⨯ ⎪⎝⎭==.故选:D.8.在平面直角坐标系xOy 中,已知圆22:(1)(2)2C x y ++-=,若圆22:()(1)2D x a y -+-=上存在点P ,由点P 向圆C 引一条切线,切点为M,且满足||||PM PO =,则实数a 的取值范围为()A.[1]-B.[4,2]- C.[3,3]- D.[2,4]-【答案】D【解析】【分析】根据PM =可求出点P 的轨迹方程,根据点P 的轨迹与圆D 有交点列出不等式求解.【详解】设点P 的坐标为(),x y ,如图所示:由PM =可知:222PM PO =,而222PM PC CM =-,∴2222PC CM PO-=∴()()()22221222x y x y++--=+,整理得222430x y x y +-+-=,即()()22128x y -++=.∴点P 的轨迹为以点()1,2E -为圆心,P 在圆D 上,∴所以点P 为圆D 与圆E 的交点,即要想满足题意,只要让圆D 和圆E ≤≤,解得24a -≤≤.故选:D9.设函数π()2sin(),(0),6f x x ωω=+>若存在12ππ,[,33x x ω∈-且12x x ≠,使得()()121f x f x ==,则ω的取值范围是()A.[)4,∞+B.(]4,6C.[)6,∞+ D.(]6,10【答案】A 【解析】【分析】根据题意,需将π6x ω+看成整体角X ,由x 范围ππ[,33ω-求得X 范围πππ[,]362ω-+,结合函数2sin y X =的图象,求得使1sin 2X =的两个解,由题只需使π7π66x ω+≤-即可,计算即得.【详解】不妨取π6X x ω=+,由ππ[,33x ω∈-可得:ππππ[,]6362X x ωω=+∈-+,由2sin 1X =可得1sin 2X =,由图可取12π7π,,66X X ==-要使存在12ππ,[,33x x ω∈-且12x x ≠,使得()()121f x f x ==,需使,ππ7π366ω-+≤-,解得4ω≥.故选:A.【点睛】关键点点睛:本题主要考查与正弦型函数图象有关的等高线问题.解决的关键在于将π6x ω+看成整体角,作出正弦函数的图象,结合求得的整体角的范围求得最近的符合要求的角,从而界定参数范围.10.在四面体ABCD 中,AB =,1AD BC CD ===,,且2πBAD ABC ∠==∠,则该四面体的外接球表面积为()A.7π2B.7πC.8πD.10π【答案】B 【解析】【分析】根据题设条件作出四面体的高DH ,通过相关条件推理计算分别求出,AH DH ,最后在直角梯形HEOD ,利用勾股定理列出方程即可求得外接球半径.【详解】如图,作DH ⊥平面ABC ,连接,,AH HB HC ,易得,DH AB ⊥因AB AD ⊥,,,AD DH D AD DH ⋂=⊂平面DAH ,所以AB ⊥平面DAH ,AH ⊂平面DAH ,故AB AH ⊥,由题可得30BAC ∠= ,2AC =,则120HAC ∠= .不妨设,AH x DH h ==,则有221x h +=①,在HAC △中,由余弦定理,222422cos12024HC x x x x =+-⨯=++ ,在HDC △中,22246h x x +++=②,将两式相减化简即得:12x =,32h =.取线段AC 中点E ,过点E 作OE ⊥平面ABC ,其中点O 为外接球的球心,设外接球半径为R ,由余弦定理求得211712cos120424HE =+-⨯= ,在直角梯形HEOD 中,221OE R =-,由223724R =-+计算可得:274R =,则该四面体的外接球表面积为7π.故选:B .【点睛】方法点睛:本题主要考查四面体的外接球的表面积,属于中档题.求解多面体的外接球的主要方法有:(1)构造模型法:即寻找适合题意的长方体,正方体,圆柱等几何体,借助于这些几何体迅速求得外接球半径;(2)建立直角梯形或直角三角形法:即先找到底面多边形的外心,作出外接球球心,借助于题设中的条件得到多面体的高,构成直角梯形或直角三角形来求解.11.从0,1,2,3,4,5,6,7,8,9这十个数字中任意取出三个不同的数,若这三个数的和为不小于9的奇数,则不同的取法有()种.A.54B.53C.47D.46【答案】B 【解析】【分析】将10个数分为2组,一组为奇数:1、3、5、7、9,一组为偶数:0、2、4、6、8,然后分2种情况讨论:①取出的3个数全部为奇数,②取出的3个数有1个奇数,2个偶数,再由加法原理计算可得答案.【详解】根据题意,将10个数分为2组,一组为奇数:1、3、5、7、9,一组为偶数0、2、4、6、8,若取出的3个数和为奇数,分2种情况讨论:①取出的3个数全部为奇数,有25C 10=种情况,都符合题意,②取出的3个数有1个奇数,2个偶数,若奇数取9,有25C 10=种情况;若奇数取7,有25C 10=种情况;若奇数取5,有25C 19-=种情况;若奇数取3,有25C 28-=种情况;若奇数取1,有25C 46-=种情况;综上,三个数的和为不小于9的奇数,不同的取法有10101098653+++++=种.故选:B.12.定义在R 上的可导函数()f x 满足()()e e xx x f x f x x --=+,当0x <时,1()0e xx f x -'+>,若实数a 满足222(2)(2)2e e 2e 0a a a f a f a a a ------+-++≤,则a 的取值范围为()A.2,23⎡⎤-⎢⎥⎣⎦B.[2,)+∞C.2,[2,)3⎛⎤-∞-⋃+∞ ⎥⎝⎦D.(,2]-∞【答案】C 【解析】【分析】根据已知条件构造函数()g x ,利用偶函数的定义及导数的正负与函数的单调性的关系,结合偶函数的性质及函数的单调性即可求解.【详解】由()()e e xx xf x f x x --=+,得()()e e x xx x f x f x ---=--.令()()ex xg x f x =-,则()()g x g x =-,即()g x 为偶函数.当0x <时,1()()0ex x g x f x -''=+>,所以()g x 在(),0∞-上单调递增;所以()g x 在()0,∞+上单调递减.由()()222222ee 2e 0aa a f a f a a a ------+-++≤,得()()222222e e a a a a f a f a +≤+-+-,即()()22g a g a ≤+.又()g x 为偶函数,所以()()22g a g a ≤+,因为()g x 在()0,∞+上单调递减,所以22a a ≥+,即22444a a a ≥++,解得23a ≤-,或2a ≥,所以a 的取值范围为2,[2,)3⎛⎤-∞-⋃+∞ ⎥⎝⎦.故选:C.【点睛】关键点睛:解决此题的关键是构造函数()g x ,利用偶函数定义和导数法求出函数的单调性,再利用偶函数和单调性即可解决抽象不等式.二、填空题:本题共4小题,每小题5分,共20分.13.若双曲线2221(0)y x b b-=>的一条渐近线与直线240x y +-=平行,则双曲线的右焦点到一条渐近线的距离为__________.【答案】12##0.5【解析】【分析】根据已知条件求得b ,再求焦点到渐近线距离即可.【详解】根据题意可得12b -=-,故可得12b =,则2c ==,则右焦点坐标为,02⎛⎫ ⎪ ⎪⎝⎭,一条渐近线为12y x =,右焦点到一条渐近线的距离5142d ==.故答案为:12.14.在正方体1111ABCD A B C D -中,2AB =,点E ∈平面11ABB A ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC 的面积取得最小值时,1D E =_____________.【答案】##322【解析】【分析】建立空间直角坐标系,求出相关点坐标,设(2,,)E y z ,根据1D E CF ⊥,结合数量积运算,求得22z y =-,进而表示出EBC 的面积,结合面积有最小值即可求得,z y ,即可求得答案.【详解】以点D 为坐标原点,以1,,DA DC DD 所在直线为,,x y z轴,建立空间直角坐标系,则1(0,2,0),(2,2,0),(2,0,1),(0,0,2)C B F D ,设(2,,)E y z ,则()12,2,1,(2,,2)CF D E y z =-=-,因为1D E CF ⊥,故14220D E CF y z ⋅=-+-=,即22z y =-,由于BC ⊥平面11ABB A ,EB ⊂平面11ABB A ,故BC EB ⊥,所以EBC 的面积为222BE BC BE S BE ⋅⨯===,而BE ===故S =65y =时,25128y y -+取最小值,即S 最小,此时62,55y z ==,则1682,,55D E ⎛⎫=- ⎪⎝⎭,故1D E =,即1DE =,故答案为:【点睛】方法点睛:由于是在正方体中求解线段的长,因此可以建立空间直角坐标系,根据空间向量的数量积运算结合EBC 面积最小,求出参数,即E 点的坐标,从而解决问题.15.设数列{}n a 满足11a =,22a =,()*21,N 2,n n n a n a n a n ++⎧=∈⎨⎩为奇数为偶数,令()22221πlog sin 2n n n b a a -⎛⎫=⋅⋅⎪⎝⎭,则数列{}n b 的前100项和为___________.【答案】5000-【解析】【分析】根据给定的递推公式,求出数列{}n a 的通项公式,进而求出n b ,再利用分组求和法求解即得.【详解】数列{}n a 满足11a =,22a =,()*21,N 2,n n n a n a n a n ++⎧=∈⎨⎩为奇数为偶数,∴数列{}21n a -是以1为首项,1为公差的等差数列,即21n a n -=,数列{}2n a 是以2为首项,2为公比的等比数列,即22nn a =,因此()222ππlog 2sinsin 22nn n n b n =⋅=,显然πsin 2n ⎧⎫⎨⎬⎩⎭的周期为4,则4342414k k k kb b b b ---+++()()()()()()()222243π42π41π4π43sin42sin41sin4sin2222k k k k k k k k ---=-+-+-+()()()224341821k k k =---=--,令4342414n n n n n c b b b b ---+++=,则有()821n c n =--,()()1821182116n n c c n n +⎡⎤⎡⎤=-+----=-⎣⎣⎦-⎦,∴数列{}n c 是等差数列,数列{}n b 的前100项和,即数列{}n c 的前25项和()()2588122550002⎡⎤⨯-+-⨯⎣⎦=-.故答案为:5000-.16.已知函数()21ln ,04,0x x f x xx x x ⎧+>⎪=⎨⎪--+≤⎩,()g x x a =-+,若函数()()()F x f x g x =-有三个零点123,,x x x ,则123x x x ⋅⋅的取值范围是__________.【答案】(⎤⎦【解析】【分析】由题意首先得(]2,4a ∈,212233222321111124ln ln ln 41a x x x x x x x x x x <=-+=-++=++=++≤,进一步有231x x =,由此即可顺利得解.【详解】由题意设()()h x f x x =+,则函数()()()F x f x g x =-的零点即为方程()h x a =的根,在同一平面直角坐标系中分别画出函数()h x 的图象以及直线y a =如图所示:若函数()()()F x f x g x =-有三个零点123,,x x x ,(不妨设为123x x x <<),则方程()h x a =的根有三个根123,,x x x ,且12301x x x ≤<<<,所以(]2,4a ∈,且212233222321111124ln ln ln 41a x x x x x x x x x x <=-+=-++=++=++≤,因为1ln y x x x =++在()1,∞+单调递增,所以321x x =,即231x x =,所以1231x x x x ⋅⋅=,令224a x ==-+,0x ≤,解得x =,令244a x ==-+,0x ≤,解得0x =,所以(1231x x x x ⎤⋅⋅=∈⎦.故答案为:(⎤⎦.【点睛】关键点睛:关键是根据函数单调性得到231x x =,由此即可顺利得解.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.2023年12月25日,由科技日报社主办,部分两院院士和媒体人共同评选出的2023年国内十大科技新闻揭晓.某高校一学生社团随机调查了本校100名学生对这十大科技的了解情况,按照性别和了解情况分组,得到如下列联表:不太了解比较了解合计男生204060女生202040合计4060100(1)判断是否有95%的把握认为对这十大科技的了解存在性别差异;(2)若把这100名学生按照性别进行分层随机抽样,从中抽取5人,再从这5人中随机抽取2人,记抽取的2人中女生数为X ,求X 的分布列及()E X .附:①()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++;②当2 3.841χ>时有95%的把握认为两变量有关联.【答案】(1)没有(2)分布列见解析,()45E X =【解析】【分析】(1)根据题意和公式求出2χ,然后根据附②即可得出结论;(2)由题得出X 的取值依次为0,1,2,依次求出各种取值的概率,然后写出分布列求出期望.【小问1详解】根据列联表中的数据,得()2210020202040252.7783.841406040609χ⨯⨯-⨯==≈<⨯⨯⨯,所以没有95%的把握认为对这十大科技的了解存在性别差异.【小问2详解】这100名学生中男生60人,女生40人,按照性别进行分层随机抽样,从中抽取5人,则抽取的男生有3人,女生在2人,所以X 的取值依次为0,1,2,()2325C 30C 10P X ===,()112325C C 31C 5P X ===,()2225C 12C 10P X ===,所以X 的分布列为X012P31035110()3314012105105E X =⨯+⨯+⨯=.18.在锐角ABC 中,角,,A B C 所对应的边分别为,,a b c ,已知sin Ca b =+.(1)求B 的值;(2)若2b =,求ABC 面积的取值范围.【答案】(1)π6B =(2)(S ∈+【解析】【分析】(1)由正弦定理、余弦定理进行边角转换即可.(2)由正弦定理、三角形面积公式结合三角恒等变换得5π2cos 26SA ⎛⎫=-+ ⎪⎝⎭解.【小问1详解】sin C a b =+ca b =+,即222a cb +-=,由余弦定理得222cos 222a cb B ac ac +-===,因为()0,πB ∈,所以π6B =.【小问2详解】在锐角ABC 中,π2,6b B ==,记ABC 的面积为S .由正弦定理得2πsin sin sin 6a c AC ==,即4sin ,4sin a A c C ==.所以()()15πsin 4sin sin 2cos cos 2cos 226S ac B A C A C A C A ⎛⎫⎡⎤===--+=-+ ⎪⎣⎦⎝⎭因为在锐角ABC 中,π6B =,所以πππ0,,π0,262A C A ⎛⎫⎛⎫∈=--∈ ⎪ ⎪⎝⎭⎝⎭,解得ππ5πππ,,2,32666A A ⎛⎫⎛⎫∈-∈-⎪ ⎪⎝⎭⎝⎭,则5πcos 2,162A ⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦,故(S ∈+.19.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,且11,.2BD CD BD CD DE ==⊥⊥平面ABCD ,且12DE BF DE == BF .点,H G 分别为线段,DC EF 上的动点,满足(02)DH EG λλ==<<.(1)证明:直线GH 平面BCF ;(2)是否存在λ,使得直线GH 与平面AEF 所成角的正弦值为14?请说明理由.【答案】(1)证明见解析(2)存在,理由见解析【解析】【分析】(1)以D 为原点,分别以,,DC DB DE 方向为,,x y z 轴建立如图所示空间直角坐标系,证明GH与平面BCF 的法向量垂直即可证;(2)由线面角的向量法求线面角后可得结论.【小问1详解】如图,以D 为原点,分别以,,DC DB DE 方向为,,x y z 轴建立坐标系.()()()((2,0,0,0,1,0,2,1,0,0,0,,0,1,C B A E F -.()(((2,1,0,0,0,,2,1,,0,1,BC BF AE EF =-==-=.设平面BCF 的法向量为()1111,,n x y z =,则由11111200,0,0x y BC n BF n -=⎧⎪⋅=⋅=⎨=⎪⎩,取11x =得()11,2,0n = .因为2,DC EF EG DH λ====,所以,22DH DC EG EFλλ==解得(),0,0,0,,,,2222H G GH λλλλλλ⎛⎫⎛⎫+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.所以10n GH ⋅=,且GH ⊄平面BCF ,所以GH 平面BCF【小问2详解】设平面AEF 的法向量为()2222,,n x y z =则由2222222200,0,0x y AE n EF n y ⎧-+=⎪⋅=⋅=⎨+=⎪⎩,解得)21n =- .所以242sin cos ,14n GH θ===,解得1λ=.20.设点P 是椭圆221:14x C y +=上任意一点,过点P 作椭圆的切线,与椭圆()22222:114x y C t t t +=>交于A B ,两点.(1)求证:PA PB =;(2)OAB 的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)见解析(2)是定值,定值为【解析】【分析】(1)直线AB 与椭圆方程联立,证明AB 的中点坐标,即切点P 的坐标;(2)首先讨论直线AB 的斜率不存在的情况,以及直线AB 的斜率存在时与椭圆方程联立,并利用韦达定理表示弦长AB ,并表示OAB 的面积.【小问1详解】设直线AB 斜率不存在,则点P 在x 轴上,由对称性可知,PA PB =,若直线AB 的斜率存在,设:AB y kx m =+,()11,A x y ,()22,B x y ,()00,P x y ,联立()2204y kx mx y λλ=+⎧⎪⎨+=>⎪⎩,可得()222418440k x kmx m λ+++-=,当1λ=时,直线AB 与椭圆切于点P ,()()2222Δ64164110k m k m =-+-=,解得:2241m k =+,02441kmx k -=+,当2t λ=时,线段AB 中点的横坐标12024241x x kmx k +-==+,所以点P 为线段AB 的中点,PA PB =,综上,PA PB =;【小问2详解】若直线AB 斜率不存在,则:2AB x =±,与椭圆2C方程联立可得,(2,A ±,(B ±,故OAB S = 若直线AB 的斜率存在,由(1)可得122841km x x k -+=+,221224441m t x x k -=+,2241m k =+AB ==点O 到直线AB的距离d ==所以12OAB S AB d =⋅= 综上OAB 的面积为定值.【点睛】关键点点睛:本题第一问的关键是转化为直线AB 与椭圆相交和相切的问题,转化为证明AB 的中点,即切点P .21.设函数()()2e axf x x =-.(1)若曲线()y f x =在点()()0,0f 处的切线方程为30y x b -+=,求a ,b 的值;(2)若当0x >时,恒有()2f x x >--,求实数a 的取值范围;(3)设*n ∈N 时,求证:()()2222223521ln 112231n n n n +++⋅⋅⋅+<+++++.【答案】(1)1,2a b =-=(2)(],1-∞(3)证明见解析【解析】【分析】(1)求导,根据题意结合导数的几何意义列式求解;(2)构建()()2g x f x x =++,由题意可知:当0x >时,恒有()0g x >,且()00g =,结合端点效应分析求解;(3)由(2)可知:当1,0a x ≤>时,()2e 20axx x -++>,令1a =,12e x t =,可得221ln 1t t t -<+,再令1n t n +=,可得()()2221ln 1ln 1n n n n n +<+-++,利用累加法分析证明.【小问1详解】因为()()2e axf x x =-,则()()e 2e axaxf x a x =+-',则()02f =-,()012f a '=-,即切点坐标为()0,2-,斜率12k a =-,由题意可得:2300123b a --⨯+=⎧⎨-=⎩,解得1,2a b =-=.【小问2详解】令()()()22e 2axg x f x x x x =++=-++,则()()()e 2e 121e 1axaxaxg x a x ax a =+-+=-++',由题意可知:当0x >时,恒有()0g x >,且()00g =,则()01210g a =+'-≥,解得1a ≤,若1a ≤,则有:①当a<0时,()()()()242e 22e e 2e 1e 22ax ax ax ax ax x g x x x x x x x ---⎛⎫⎛⎫=-++=++=+-+ ⎪ ⎪++⎝⎭⎝⎭,因为0x >,可知()2e 0axx +>,令()41e 2ax h x x -=-++,因为41,e 2ax y y x -=-=+在()0,∞+内单调递增,可得()h x 在()0,∞+内单调递增,则()()00h x h >=,即()()()2e 0axg x x h x =+>,符合题意;②当0a =时,则()2220g x x x x =-++=>在()0,∞+内恒成立,符合题意;③当01a <≤时,令()()x g x ϕ=',则()()()e 21e22e axaxax x a a ax a a ax a ϕ=+-+=-+',因为0x >,则22220ax a a -+>-+≥,e 0ax >,可知()()22e0axx a ax a ϕ+'=->在()0,∞+内恒成立,则()x ϕ在()0,∞+内单调递增,可得()()0220x a ϕϕ>=-≥,则()g x 在()0,∞+内单调递增,可得()()00g x ϕ>=,符合题意;综上所述:实数a 的取值范围为(],1-∞.【小问3详解】由(2)可知:当1,0a x ≤>时,()2e 20axx x -++>,令1a =,可得()2e 20xx x -++>,令12e1x t =>,则2e ,2ln xt x t ==,则()22ln 22ln 20t t t -++>,整理得221ln 1t t t -<+,令*11,n t n n +=>∈N ,则22111ln 11n n n n n n +⎛⎫- ⎪+⎝⎭<+⎛⎫+ ⎪⎝⎭,整理得()()2221ln 1ln 1n n n n n +<+-++,则()()2222223521ln 2ln1,ln 3ln 2,,ln 1ln 12231n n n n n +<-<-⋅⋅⋅<+-++++,所以()()()2222223521ln 1ln1ln 112231n n n n n +++⋅⋅⋅+<+-=+++++.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.(二)选考题:共10分.请考生在第22、23题中选一题作答.如果多选,则按所做的第一题记分.【选修4-4:坐标系与参数方程】22.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos 1sin x y θθ=+⎧⎨=-+⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()sin cos 3ρθθ+=.(1)写出曲线1C 的极坐标方程,曲线2C 的直角坐标方程;(2)曲线1C 与曲线2C ,如有公共点,求出公共点坐标;如无公共点,设,A B 分别为曲线1C 与曲线2C 上的动点,求线段AB 的最小值.【答案】(1)曲线1C 极坐标方程()22cos sin 10ρρθθ--+=,曲线2C 的直角坐标方程为30x y +-=(2)无公共点,3212-【解析】【分析】(1)由参数方程,直角坐标方程及极坐标方程互化求解;(2)由直线与圆的位置关系求解即可.【小问1详解】曲线1C 的普通方程()()22111x y -++=,极坐标方程()()22cos 1sin 11ρθρθ-++=,()22cos sin 10ρρθθ∴--+=,曲线2C 的极坐标方程为()sin cos 3ρθθ+=.化为直角坐标方程为30x y +-=;【小问2详解】曲线1C 的普通方程()()22111x y -++=,圆心为()11,1O -,到直线30x y +-=的距离为12d =>,故曲线1C 与曲线2C 的无公共点,即直线与圆相离,得线段AB 的最小值为3212-.【选修4-5:不等式选讲】23.已知函数()223f x x x =--.(1)求不等式()5f x ≥的解集;(2)设函数()()12g x f x x =+++的最小值为m ,若0,0a b >>且2a b m +=,求证:2242a b +≥.【答案】(1)][(),24,-∞-⋃+∞(2)证明见解析【解析】【分析】(1)解绝对值不等式时,一般考虑分类讨论法求解,最后再合并;(2)分类讨论()g x 的单调性,判断其在不同区间上的最小值,最后确定m 的值,利用基本不等式即可证明.【小问1详解】不等式()5f x ≥可化为2235x x --≥或2235x x --≤-,由2235x x --≥,可得2280x x --≥,解得4x ≥或2x ≤-;由2235x x --≤-,可得2220x x -+≤,解得x ∈∅,所以不等式()5f x ≥的解集为][(),24,∞∞--⋃+.【小问2详解】由题意,知()()()()123112g x f x x x x x =+++=-++++,当1x ≤-时,()(3)(1)(1)2g x x x x =-+-++2317(24x =--,因()g x 在(,1]-∞-上单调递减,则min ()(1)2g x g =-=;当13x -<<时,()(3)(1)(1)2g x x x x =--++++=233324x ⎛⎫--+ ⎪⎝⎭,因()g x 在3(1,)2-上单调递增,在3(,3)2上单调递减,故()g x 在(1,3)-无最小值,但是()2g x >;当3x ≥时,()(3)(1)(1)2g x x x x =-++++211(24x =--,因()g x 在[3,)+∞上单调递增,则min ()(3)6g x g ==.综上,当=1x -时,函数()g x 取得最小值2,即2m =,所以22a b +=,因0,0a b >>,所以()()2222224222a b a b a b ++=+≥=,当且仅当1,12a b ==时等号成立,故2242a b +≥.。
2019届中学生标准学术能力诊断性测试(一) 文理数学(一卷)试卷THUSSAT9月测试
![2019届中学生标准学术能力诊断性测试(一) 文理数学(一卷)试卷THUSSAT9月测试](https://img.taocdn.com/s3/m/90cab384102de2bd9705886d.png)
中学生标准学术能力诊断性测试2018年9月测试理科数学试卷本试卷共150分,考试时间120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数z 满足()()2110-i z i i +−+=,则z =( )A .1122i + B .1122i −C .1122i −+ D .1122i −−2.已知集合21{|log 2},{|28}2x A x x B x =<=≤≤,则A B =( )A .[1,3]−B .(0,3]C .[1,4)−D .(0,4)3.将420名工人编号为:001,002,…,420,采用系统抽样的方法抽取一个容量为60的样本,且随机抽得的号码为005.这420名工人来自三个工厂,从001到200为A 工厂,从201到355为B 工厂,从356到420为C 工厂,则三个工厂被抽中的工人数依次为( ) A .28,23,9B .27,23,10C .27,22,11D .28,22,104.已知公差不为0的等差数列{}n a 的首项13a =,若236a ,a ,a 成等比数列,则{}n a 的前5项之和为( )A .23−B .25−C .43−D .45−5.设曲线2ln y ax b x =−在1x =处的切线方程为52y x =−,则a,b 的值分别为( )A .2,1B .2,1C .3,1D .3,16.在平行四边形ABCD 中,O 为AC 与BD 的交点,若2AE ED =,则=OE ( )A .1126BA BC +B .1126BA BC −C .1126BA BC −+D .1126BA BC −−7.已知一个棱锥的三视图如图所示,则该棱锥的表面积为( )cm 2A .929+B .9218+C .18D .278.设抛物线C :x y 42=的焦点为F ,直线l 过F 且与抛物线C 交于,A B 两点.若163AB,且AF BF >,则AF BF=( )A.3B.25C.2D.49.若实数x,y满足⎪⎩⎪⎨⎧≥≤−−≤−+1142xyxyx,则2212x y⎛⎫+−⎪⎝⎭的取值范围是()A.[]2,1B.⎥⎦⎤⎢⎣⎡2,45C.⎥⎦⎤⎢⎣⎡417,45D.⎥⎦⎤⎢⎣⎡417,110.在[]4,4−上随机地取一个数m,则事件“直线0=+−myx与圆()2122=+yx-有公共点”发生的概率为()A.41B.31C.21D.3211.已知P为双曲线2222:1x yCa b(00>>,ba)右支上一点,A为其左顶点,F(43,0)为其右焦点,满足,60AF PF PFA,则点F到P A的距离为()A.53B.72C.73D.15212.在三棱锥A-BCD中,10BC BD AC AD====,6AB=,16CD=,点P在平面ACD内,且30BP=,设异面直线BP与CD所成角为α,则sinα的最小值为()A.31010B.1010C.25D.5二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数22,0()26ln,0x xf xx x x,则()y f x x=−的零点个数为________.14.已知数列{}n a满足21=a,1(1)(1)(2)n nn a na n n n−−=+−≥,则{}na的通项公式为________.15.某校开设A类选修课4门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有________种.16.已知函数()ln(1)(0)f x x x=+>与()2xg x a=−的图像上存在关于y轴对称的点,则a的取值范围是______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分.17.(12分)在ABC ∆中,3AB =,1AC =,60A ∠=. (1)求sin ACB ∠;(2)若D 为BC 的中点,求AD 的长度.18.(12分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD为矩形,E 是PD 的中点,M 是EC 的中点,点Q 在线段PC 上且PQ =3QC . (1)证明QM //平面P AB ;(2)当PBA ∠为多大时,在线段PC 上存在点F 使得EF ⊥平面P AD 且EF与平面PBC 所成角为45°同时成立?19.(12分)设盒子中装有6个红球,4个白球,2个黑球,且规定:取出一个红球得a 分,取出一个白球得b 分,取出一个黑球得c 分,其中a ,b ,c 都为正整数.(1)当1a =,2b =,3c =时,从该盒子中依次任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)当1a =时,从该盒子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若53E η=,59D η=,求b 和c .20.(12分)设椭圆22:14x C y +=的右焦点为F ,过点(,0)m (||1m ≥)作直线l 与椭圆C 交于,A B 两点,且坐标原点O (0,0)到直线l 的距离为1. (1)当1m =时,求直线AF 的方程; (2)求ABF ∆面积的最大值.21.(12分)已知函数23()ln(1)2ln 222ax f x ax x =+−−++(0a >,a 为常数,0x >) (1)讨论()f x 的单调性; (2)当302a <≤时,求证:()0f x ≥.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 的参数方程为222242x t y t ⎧=−+⎪⎪⎨⎪=−+⎪⎩(t 为参数),点(2,4)M −−.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0 (0)a a ρθθ−=>. (1)当1a =时,求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于点,A B ,若2||||||AB MA MB =⋅,求a 的值.23.[选修4−5:不等式选讲](10分)已知()|2||3|f x x ax =+−−.(1)当2a =时,求不等式()2f x >的解集;(2)当03a <≤时,若(0,2)x ∈,求证:()1f x x >−.第18题中学生标准学术能力诊断性测试2018年9月测试理科数学试卷 参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 2.B 3.A 4.D 5.C 6.B 7.B 8.A 9.D 10.C 11.D 12.A 二、填空题:本大题共4小题,每小题5分,共20分. 13.2 14.n 2+n 15.3016.()1,∞−三、解答题:共70分,解答应写出文字说明.证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22,23题为选考题,考生根据要求作答. (一)必考题:60分。
中学生标准学术能力诊断性测试2019年9月理科数学试题含答案
![中学生标准学术能力诊断性测试2019年9月理科数学试题含答案](https://img.taocdn.com/s3/m/2323e434a6c30c2259019e76.png)
0,
3 2
B.−1 2, Nhomakorabea0
0,
3 4
C.
−
1 4
,
0
0,
3 2
D.
−
1 4
,
0
0,
3 4
10.设 Fn 是斐波那契数列,则 F1 = F2 = 1,Fn = Fn−1 + Fn−2 ,右图是
1+ ex
7.将函数 f (x) = 3 sin 2x − 2cos2 x 图像上各点的横坐标伸长到原来的 3 倍(纵坐标不变),再向右平移 π 个单位长 4
度,则所得函数图像的一个对称中心为
A. (2 , -1)
B. (−2 , −1)
C. (−2 , 0)
D. (2 , 0)
8.某几何体的三视图如图所示,则该几何体的体积是
第1页 共4页
2
A. 2
B. 4
2
3
3
C. 8 3
D. 16 3
正视图
侧视图
2
(第 8 题图)
9.设函数
f
(x)
=
cos
x
, g(x)
=
t
2x
−
cos
π
(t
0)
俯视图
,若存在(第m6,题n图) 0,1 ,使得
f
(m)
=
g(n)
成立,则实
3
数 t 的取值范围是
A.
−
1 2
,
0
第3页 共4页
2023届四川省成都市高中毕业班第一次诊断性考试数学(文科)试题
![2023届四川省成都市高中毕业班第一次诊断性考试数学(文科)试题](https://img.taocdn.com/s3/m/1f74fbffb04e852458fb770bf78a6529647d3583.png)
成都市高2020级第一次诊断测试 数学文科满分: 150分 时间:120分钟一、单项选择题(本题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 设集合 , 则 ( )A ={x ∣‒1<x ⩽2},B ={x ∣ x 2‒4 x +3 ⩽0}A ∩B =A. B.{x ∣‒1<x ⩽3}{x ∣‒1<x ⩽1}C. D.{x ∣1 ⩽x ⩽2}{x ∣1 ⩽x ⩽3}2. 满足 为虚数单位 的复数 ()(1+i ) z =3+i (i )z =A. B. C. D.2‒i 2+i 1+2 i 1‒2 i 3. 抛物线 的焦点坐标为( ) x 2=2 y A. B. C. D.(0,1)(0, 12)(14, 0)(18, 0)4. 下图为2012年一2021年我国电子信息制造业企业和工业企业利润总额增速情况折线图,根据该图,下列结论正确的是()A.2012年一2021年电子信息制造业企业利润总额逐年递增B.2012年一2021年工业企业利润总额逐年递增C.2012年一2017年电子信息制造业企业利润总额均较上一年实现增长,且其增速均快于当年工业企业利润总额增速D.2012年一2021年工业企业利润总额增速的均值大于电子信息制造业企业利润总额增速的均值5. 若实数 满足约束条件 则 的最大值是( )x , y {x +y ‒4 ⩽0 y ⩾0x ‒y ⩾0z =x +2 y A.2 B.4 C.6 D.86. 若圆锥的侧面展开图为一个半圆面,则它的底面面积与侧面面积之比是()A. B. C. D. 2: 12: 11: 21: 27. 下列命题中错误的是( )A.在回归分析中,相关系数 的绝对值越大,两个变量的线性相关性越强rB.对分类变量 与 , 它们的随机变量 的观测值 越小, 说明 “ 与 有关系” 的把握越大X Y K 2k X YC.线性回归直线 恒过样本中心y =b x +a (x , y )D.在回归分析中, 残差平方和越小, 模型的拟合效果越好8. 若函数 在 处有极大值, 则实数 的值为( )f (x ) =x 3+ 2 a x 2+ a 2 x x =1a A.1 B. 或 C. D.‒1‒3‒1‒39. 已知直线 和平面 . 若 , 则 “ ” 是 “ ”的( )l , m α, βα⊥β, l ⊥αl ⊥m m ⊥βA.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件10. 已知数列 的前 项和为 . 若 , 则 ( ){ a n }n S n a 1= 2, a n +1= S n S 8=A.512B.510C.256D.25411. 日光射入海水后, 一部分被海水吸收 (变为热能), 同时, 另一部分被海水中的有机物和无机物有选择性地吸收与散射. 因而海水中的光照强度随着深度增加而减弱, 可用 表示其总衰减规律,I D = I 0 e ‒K D 其中 是平均消光系数(也称衰减系数), (单位: 米) 是海水深度, (单位: 坎德拉) 和 (单位: 坎德拉) K D I D I 0分别表示在深度 处和海面的光强. 已知某海区 10 米 深处的光强是海面光强的 , 则该海区消光系D 30 %数 的值约为 (参考数据: , )( )K ln 2 ≈0.7ln 3 ≈1.1, ln 5 ≈1.6A. B. C. D.0.120.110.070.0112. 已知侧棱长为 的正四棱锥各顶点都在同一球面上. 若该球的表面积为 , 则该正四棱锥的体2 336 π积为()A. B.C. D. 1638 2383323二、填空题(本题共4道小题,每小题5分,共20分)13.在公差为 的等差数列 中, 已知 , 则 ______。
四川省成都市新都区2022届高三上学期毕业班摸底诊断性测试 数学(理) Word版含答案
![四川省成都市新都区2022届高三上学期毕业班摸底诊断性测试 数学(理) Word版含答案](https://img.taocdn.com/s3/m/db0a432884254b35eefd34f8.png)
新都区2022届高三毕业班摸底测试数学试题(理)本试卷分选择题和非选择题两部分,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条形码粘贴在规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题(本大题共12小题,每小题5分,共60分,每小题有且只有一个正确选项。
)1.已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B)=A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}2.设函数f(x)=x 14x ,x 12a x 1⎧-<⎪⎨⎪≥⎩,,若f(f(78))=8,则a = A.12 B.34C.1D.2 3.等差数列{a n }中,a 5+a 10+a 15=30,则a 22-2a 16的值为A.-10B.-20C.10D.204.若tanθ=13,则cos(π-2θ)的值为 A.-45 B.-15 C.15 D.45 5.数列{a n }满足a n +1=1-n1a ,且a 1=2,则a 2022的值为 A.2023 B.2 C.12D.-1 6.下列命题中正确的是 A.函数f(x)满足f(2-x)+f(x)=0,则f(x)的图像关于直线x =1对称5.的数f(x)满足f(2-x)+f(x)=0,则f(x)是以4为周期的周期函数若函数f(x)=+bx)为奇函数,则a =e(e 为自然对数的底数)D.若函数f(x)=x 131-+m 为奇函数,则m =12 7.设函数f(x)为定义在R 上的函数,对∀x ∈R 都有:f(x)=f(-x),f(x)=f(2-x);又函数f(x)对∀x 1,x 2∈[0,1],x 1≠x 2,有()1212f x f (x )x x -->0成立,设a =f(20212),b =f(log 43),c =f(-14),则下列结论正确的是 A.c<b<a B.b<c<a C.c<a<b D.b<a<c8.等腰直角三角形ABC 中,AB =AC =2,点D 为斜边BC 上的三等分点,且AM 2AD =,则MC MB ⋅=A.49 B.-89或89 C.89 D.-89 9.在△ABC 中,∠B =3π,AB =2,BC 边上的中线AD 的长度为23,则△ABC 的外接圆的面积为A.2393B.523π C.4393 D.2083π 10.已知函数f(x)=e |x|,g(x)=sinx ,则图象为如图的函数可能是A.y =f(x)+g(x)B.y =f(x)-g(x)C.y =()()g x f x D.y =f(x)g(x) 11.函数f(x)=3sin(2x +26°)+10cos 2(x +28°)的值域为A.[1919B.[519519C.[3434D.[53453412.已知函数f(x)=2log x x 01x x 02>⎧⎪⎨-≤⎪⎩,,,函数g(x)满足以下三点条件:①定义域为R ;②对任意x ∈R ,有g(x +π)=2g(x);③当x ∈[0,π]时,g(x)=sinx 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市届第一次诊断性测试理科数学含答案
Newly compiled on November 23, 2020
成都市2012届一诊数学含答案
一、选择题:(本大题共12小题,每小题5分,共60分)在每小题给出的四个选项中,有且只有一项是符合题目要求的.
(1) 某小区有125户高收入家庭、280户中等收入家庭、95户低收人家庭.现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为
(A)70 户(B)17 户(C)56 户(D)25户
(2) 复数z=(1-2i)i(i为虚数单位)在复平面内对应的点位于
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
(3) 若首项为1的等比数列的前3项和为13,则公比q为
(A) 3(B)–4(C)3或—4 (D)—3或 4
(4) 已知向量i与j不共线,且,若A、B、D三点共线,则实数m、n应该满足的条件是
(A) m+n=1 (B)m+n=-1 (C) mn = 1 (D)mn =- 1
(5) “0<m<l”是“关于x的方程有两个异号实数根”的(
A)充分不必要条件(B)必要不充分条件
(C)充要条件(D)既不充分也不必要条件
(6) 若展开式的各项系数和为,则展开式中常数项是
(A)-7 (B)7 (C) (D)
(7) 在用数学归纳法证明的过程中:假设
当时,不等式成立,则需证当n=k+1时,也成立.若.,则g(k) =
(A) (B)
(C) (D)
(8) 设电流强度I(安)随时间t(秒)变化的函数
的图象如图所示,则
(A) (B)
(C) (D)
(9) 已知函数,,当x=a时,取得最小值b,则函数
的图象为
(10) 设正方体的棱长为2,动点E,F在棱A1B1上,动点P、Q分别在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),则下列结论中错误的是
(A) EF中真命题的个数有
(A)1个(B)2个(C)3个(D)4个
(12) 设集合S={1,2,3,4,5,6},定义集合对(A,B)::,A中含有3个元素,B 中至少含有2个元素,且B中最小的元素不小于A中最大的元素.记满足的集
合对(A,B)的总个数为m,满足的集合对(A,B)的总个数为n,则的值为
(A) (B) (C) (D)
第II卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题4分,共16分.答案填在答题卡上.
(13) 的值为.____________
(14) 若函数在点处连续,则实数a=_________.
(15) 已知点A、B、C、D在同一个球面上,AB丄平面BCD,BC丄CD,若AB= 6,
AC=,CD=,则B、C两点在此球面上的球面距离是____________.
(16) 已知函数在[a,b]上连续,定义;其中
表示f()在D上的最小值,表示f(x)在D上的最大值.若
存在最小正整数k使得对任意的成立,则称函数f(x)
为[a,b]上的“k阶收缩函数”.有下列命题:
①若,则;
②若,则
③为[1,2]上的1阶收缩函数;
④为[1,4]上的5阶收缩函数
.其中你认为正确的所有命题的序号为__________________.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
(17) (本小题满分12分)
已知函数的周期为,其中.
(I)求的值及函数f(x)的单调递增区间;
(I I)在中,设内角A、B、C所对边的长分别为a、b,c若a=,c=2,f(A)=,求b的值.
(18) (本小题满分12分)
如图甲,是边长为6的等边三角形,,点G为BC边的中点,线段AG交线段ED于点F.将沿ED翻折,使平面AED丄平面BCDE,连结AB,AC ,AG,形成如图乙的几何体.
(I)求证:BC丄平面ATG
(II)求二面角B—AE—D的大小.
19 (本小题满分12分)
某社区为丰富居民的业余文化生活,准备召开一次趣味运动会.在“射击气球”这项比赛活动中,制定的比赛规则如下:每人只参加一场比赛,每场比赛每人都依次射击完编号为①、②、③、④、⑤的5个气球,每次射击一个气球;若这5次射击中,④、⑤号气球都被击中,且①、②、③号气球至少有1个被击中,则此人获奖;否则不获奖.已知甲每次射击击中气球的概率都为,且各次射击结果互不影响.
(I)求甲在比赛中获奖的概率;
(I I)设甲在5次射击中击中气球的总个数为随机变量,求的分布列及数学期望
(20) (本小题满分12分)
已知函数.
(I)若不等式在R上恒成立,求实数m的取值范围;
(II)记,且,求实数m的最大值.
(21) (本小题满分12分)
巳知各项均为正数的等差数列前三项的和为27,且满足.数列{b n}的前n项和为S n,且对一切正整数n,点(n,S n)都在函数的图象上.
(I) 求数列和的通项公式;
(II)设,求数列的前n项和;
(III)设,若对恒成立,试证明:(22) (本小题满分14分)
已知函数.
(I)当m =-1时,求函数的单调区间;
(II)已知(其中e是自然对数的底数),若存在实数,使成立,证明:2m+e+l<0;
(III)证明:.。