近三年高考函数小题分析
高考数学最新真题专题解析—函数的图象及性质

高考数学最新真题专题解析—函数的图象及性质考向一 由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A. 3231x x y x -+=+B. 321x x y x -=+C. 22cos 1x x y x =+D.22sin 1x y x =+ 【答案】A【试题解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的周期性,判断图像的循环往复.(5) 从函数的特征点,排除不合要求的图象.考向二 由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.真题汇总及解析1.函数()22cos6x x y x -=-的图像大致是( )A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB , 当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x ,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =( )A .2sin x x -B .cos x x +C .2sin x x -+D .cos x x -【答案】C【解析】【分析】 根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为( ) A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+, 所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+, 所以2cos ()sin ln02cos x f x x x-=⋅<+,排除D. 故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是( ) A . B .C .D .【答案】C【分析】 令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】 当12α=时,()e x x f x =且0x ≥,则12()e x x f x x-'=, 所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =, 所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=, 所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e xf x x =且0x ≠,则21()e x x f x x +'=-, 所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x xx x f x -+=+的部分图象大致是( ) A . B . C . D .【答案】B【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.故选:C7.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=-D .21x y =--【答案】A【解析】【分析】 根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】 由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.【详解】由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确. 故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x )B .y =-|f (x )| )C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】 由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是( )A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=-,∴函数()f x 为奇函数,排除选项D ; 当(0,)2x π∈时,0x >,0cos 1x <<, 0()f x x ∴<<,排除选项BC . 故选:A .12.下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x =>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。
函数模块5年高考真题汇总通用版(含答案)

答案解释考点01函数概念与单调性考点02函数周期性与奇偶性应用又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.(2022·全国·统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.6.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知二、填空题考点03函数图像应用一、单选题-的大致图像,1.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .2y =【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,....A.10π9BC.4π3D【答案】C【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到....【答案】D【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.....【答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x y f x ==+32()22x x x f x -=-=-+,344240,2-⨯>+排除选项D ;考点04函数性质综合应用一、单选题1.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2021·全国·统考高考真题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b>C .2ab a <D .2ab a >【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当a<0时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,a<0,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D933⎝⎦。
高考专题 《函数图像问题》考题归纳及详解

高考专题《函数图像问题》考题归纳及详解一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A. B.C.D.4.函数y=xln|x|的大致图象是()A.B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C. D.10.函数的图象大致为()A. B. C. D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A.. B..C..D..19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.31.函数y=的一段大致图象是()A. B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A. B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A.B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C. D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A. B. C. D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A.. B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y 轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A. B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a ﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d 的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.。
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由. 【解析】(1)对32()2f x x ax b =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;当0a =时,(,)-¥+¥区间上单调递增;当0a >时,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a+¥区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以,若0a <,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;此时在区间[0,1]上单调递增,所以(0)1f =-,(1)1f =代入解得1b =-,0a =,与0a <矛盾,所以0a <不成立. 若0a =,(,)-¥+¥区间上单调递增;在区间[0,1].所以(0)1f =-,(1)1f =代入解得1a b =ìí=-î. 若02a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af 而(0),(1)2(0)f b f a b f ==-+³,故所以区间[0,1]上最大值为(1)f . 即322()()13321a a ab a b ì-+=-ïíï-+=î相减得32227a a -+=,即(33)(33)0a a a -+=,又因为02a <£,所以无解. 若23a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af而(0),(1)2(0)f b f a b f ==-+£,故所以区间[0,1]上最大值为(0)f . 即322()()1331a a a b b ì-+=-ïíï=î相减得3227a=,解得332x =,又因为23a <£,所以无解. 若3a >,(,0)-¥区间上单调递增,(0,)3a区间上单调递减,(,)3a+¥区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =ìí-+=-î解得41a b =ìí=î.综上得01a b =ìí=-î或41a b =ìí=î. 【小结】这是一道常规的利用函数导研究函数单调性、极值、【小结】这是一道常规的利用函数导研究函数单调性、极值、最值问题,最值问题,最值问题,此类问题一般住现此类问题一般住现在第一问,在第一问,但但2019年高考3卷把该题放到第20题位置,难度也相应降低,因此,该题的第二问仍然这类问题,只不过多出一个参数。
高考数学之三角函数压轴小题的解法

教海探索摘要:纵观这几年的高考数学题目,经常在三角函数这块出一些比较难的压轴小题,这类题目深度考查三角函数的图象与性质,然而学生对于这类压轴小题的得分却很低,所以本文详细介绍这一类三角函数压轴小题的解法,旨在帮助学生攻克这类三角函数压轴小题。
关键词:三角函数;压轴小题;取值范围;整体换元本文中笔者将讲解这类压轴小题的具体考法以及“正面解法”,正面解法是指在小题里,特别是选择题里,不采用特值检验选项的方法,完全依据题目给的条件推出正确选项.在平时做练习题的时候,训练正面解法有助于提升我们的数学思维,加深对三角函数图象与性质的理解。
一、从单调性方面考查w 的取值范围这种题目会给出正余弦型函数在某区间上是单调递增或单调递减或者直接说是单调的,只要题目中提到正余弦型函数在某区间上是单调的,那这个单调区间的长度一定小于等于T2(T 是正余弦型函数的最小正周期),这时再结合最小正周期公式T =2πw,可以初步确定w 的一个大范围。
确定了w 的一个大范围,接下来我们用整体换元法来推出w 的具体范围:题目中给出了单调区间,等于给出了x 的范围,我们可以推出wx +φ的范围,这时我们将wx +φ视为一个整体,令t =wx +φ,此时正余弦型函数就变成了我们熟悉的正余弦函数。
这时我们一定要明白wx +φ的范围是由题目中给的单调区间推过来的,而正余弦函数的单调区间公式是一个总的单调区间。
所以wx +φ的范围一定是包含于(⊆)正余弦函数的单调区间公式,这时就可以解出w 的范围,再联立一开始利用单调区间的长度一定小于等于T2求得的w 的大范围,从而求出w的具体范围。
接下来以一道高考题为例:2012年高考新课标卷理科第9题:已知w >0,函数f (x )=sin(wx +π4)在区间(π2,π)上单调递减,求w 的取值范围。
解析:在(π2,π)上单调递减,可以得出π-π2≤T2,结合最小正周期公式T =2πw ,可以得出π2≤πw 。
2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-, ∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-. 作出()f x 的函数图象如图所示:25()()()f x mf x m Re -=∈,25()()0f x mf x e∴--=,△2200m e=+>, 令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e<<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e-=有三个不同的实数解. 故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1) B.(0 C .1(1,1)e+D.,1)【解析】解:化简可得0()0x f x x =<,当0x >时,()0f x,12()x x e x f x e '===, 当102x <<时,()0f x'>,当12x>时,()0fx '<, 故当12x=时,函数()f x有极大值21()2f e====; 当0x <时,2()0x xxe x e x xf x x e --'==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f ;设()t f x =, 当t >()tf x =有1个解, 当t =()t f x =有2个解, 当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根, 则1t m =-∈,即01m <-<11m <<+,则m的取值范围是1)+ 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩. 故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =,当1a >时,1a >,(0,1)a .满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2-,11e + )B .(2-,0 )(⋃ 0,11e + )C .2321(,)2e e e+-+D .( 32-,0 )(⋃ 0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+, 令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=, △240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <, 关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C .6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4 B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -=,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解. 6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是() A .21(1,2]e + B .221[2,2]e e +-C .2221[2,]e e e-+ D .221(2,]e e+ 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++, 可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a , 由切线与直线610x y ++=垂直,可得36a =, 解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-, 导数为222(1)(1)()2x x f x x x x -+'=-=, 当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减. 即有1x =处()f x 取得最小值1. 则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1) 可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解, 设为1t ,2t ,12t t b +=, 可得11t =,22112t e<+, 即21112b e <-+, 解得2123b e <+,① 又212122t e e+<-, 22112t e <+, 则21222113t t b e e e+<+=+,② 由①②求并可得2212b e e <+, 故选:D .9.已知函数()1xf x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2-,0)B .3(2-,4)3-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根, ①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时, 设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e-C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e-'=, 当02x <<时,()0f x '>,()f x 递增; 当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象, 设()t f x =,关于x 的方程2()()10f x mf x m ++-=, 即为210t mt m ++-=, 解得1t =-或1t m =-, 当1t =-时,()1f x =-无实根; 由题意可得当241(0,)t m e=-∈, 解得241m e-=或1m =, 所以24(1m e ∈-,1) 故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是( )A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x xf x e-'==,解得1x =; 且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=. 假设2m =,则2210t t ++=.解得1t =-,即()1f x =-. 根据()f x 图象,很明显此时只有一个解, 故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-. 即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解, 故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e =-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根, 故12m e=-不符合题意,由此排除D故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e<<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根 【解析】解:当0x 时,||||()111x x x x xf x xe e e--=+=+=-+, 因为g (1)0=, 所以120a -+=, 所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立, ()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的, 故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的. 令()m g x t =-,则()10g m -=, 解得:0m =或2m =, 当0m =即()0g x t -=时, ()g x t =,当2t <-时,()2g x <-,无解, 当2m =即()2g x t -=时, ()2g x t =+,当2t <-时,()0g x <,无解, 故方程(())10g g x t --=没有相异实根, 故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =, 当110t e -+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =-时取得极大值为1(1)1g e-=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点, 故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点, 若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根, 故C 错误; 当111t e -<<-+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根, 当01t <时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 故此时方程(())10g g x t --=共有9个不等实根, 故D 错误. 故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+, 当1x <时,1112x -+>,则(()1)(2)2xf f x ln +=-. (1),1()(()1)(2),12ln lnx x g x f f x xln x +⎧⎪∴=+=⎨-<⎪⎩, 令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x xln <⎧⎪⎨-=⎪⎩, 解得1x =.故函数()(()1)g x f f x =+的零点是1; 由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则 2lnx t =,2t x e =,112x t -=,122x t =-, ∴1222t x x e t +=+-,12t >, 设()22t t e t ϕ=+-,12t >, 则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>, 则()t ϕ的最小值为(2)422ln ln ϕ=-. 12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞ .【解析】解:当1x 时,()0f x lnx =,则()11f x +, (()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-, ∴121(22),2t x x e t t =->, 设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25xexx e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为 12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =, 所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减, 当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=, ()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e >⎧⎪⎨<⎪⎩,解得245a e <, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意. 综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是 (2,0)- .【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩, 若()()0f x f x +-=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231ay x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310alnx x x x-+-+=有两个解, 即23263a xlnx x x x =-++,0x >, 可设23()263g x xlnx x x x =-++,0x >, 2()32129g x lnx x x '=+-+, 22()1812218120g x x x x x''=+-=,可得()g x '在(0,)+∞递增, 由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增, 即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310alnx x x x-+-+=有两个解, 故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =; ()0f x =有两个不同的解,故()f x a =有三个不同的解, 故(0,1)a ∈; 故答案为:(0,1).18.已知函数()|1|33f x x x x =--+. (1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍); ②当1x 时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8); 解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos 3sin()4684646442443f x x x x x x x x ππππππππππππ=--+=----⋯(3分) ∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分) 11442t t t +=当且仅当时取等号,4m ∴,⋯(8分) 故实数m 的取值范围是[4,)+∞.⋯(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅰ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅰ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅰ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立, 综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为: 2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解, ∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >, 或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。
高三数学函数试题答案及解析

高三数学函数试题答案及解析1.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.【答案】3、6、3【解析】观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A对应的数为3,点B对应的数为6.故应填3、6、3.2.对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数【答案】C【解析】f(5)=5-[5]=0,故A错误;因为f()=-[]=,f()=-[]=,所以B错误;函数f(x)不是减函数,D错误;故C正确.3. [2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】通过值域求a,b的关系是关键.由题意知f(x)=x2+ax+b=(x+)2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=(x+)2.又∵f(x)<c,∴(x+)2<c,即--<x<-+.∴②-①,得2=6,∴c=9.4.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【答案】C【解析】若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x);若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x);若f(x)=-x,则f(2x)=-2x=2f(x);若f(x)=x+1,则f(2x)=2x+1,不满足f(2x)=2f(x).5.(3分)(2011•重庆)已知,则a=()A.1B.2C.3D.6【答案】D【解析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.6.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.7.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.8.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.9.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【答案】D【解析】对A选项,存在满足条件,故是“保序同构”. 对B选项,存在满足条件,故是“保序同构”.对C选项,存在满足条件,故是“保序同构”.选D.【考点】1、新定义;2、函数.10.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=.【答案】-9【解析】f(a)+f(-a)=a3cosa+1+(-a)3cos(-a)+1=2,而f(a)=11,故f(-a)=2-f(a)=2-11=-9.11.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-1)⊗(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是()A.(-∞,-1)∪(-,0)B.{-1,-}C.(-1,-)D.(-∞,-1)∪[-,0)【答案】A【解析】由x2-1≤x-x2得-≤x≤1,∴f(x)=函数f(x)的图象如图所示,由图象知,当c<-1或-<c<0时,函数y=f(x)-c恰有两个不同的零点.12.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.【答案】2【解析】设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=+1,∴f′(1)=2.14.是R上以2为周期的奇函数,当时,则在时是()A.减函数且B.减函数且C.增函数且D.增函数且【答案】D【解析】因为是R上的奇函数,故,由复合函数单调性知,当时为增函数,故此时;当时,为增函数,又因为是以2为周期的,故在上函数性质和取值完全一样,即时,为增函数,选D.【考点】函数奇偶性、函数单调性.15.直线是函数的切线,则实数.【答案】1【解析】先对函数求导,即,由于切线方程为,所以,,解得:,因此,切点为(2,)或(-2,-),代入切线方程,可得= 1.【考点】函数的导数求法,函数导数的几何意义.16.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点17.设函数.(1)若x=时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围;(3)设,当=-1时,证明在其定义域内恒成立,并证明().【答案】(1).(2).(3)转化成.所以.通过“放缩”,“裂项求和”。
历年高考三角函数真题解析精选

三角函数和平面向量(2011广东文)16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求(0)f 的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值. (2011北京文)15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. (2011四川文)18.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=.(2011福建文)21.(本小题满分12分)设函数f (θ)cos θθ+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0θπ≤≤。
(1)若点P 的坐标为1(2,求f ()θ的值; (II )若0.2πθ≤≤,求函数()f θ的最小值和最大值。
(2010上海文数19).(本题满分12分)已知02x π<<,化简:2lg(cos tan 12sin))]lg(1sin 2)22x x x x x π⋅+-+--+.(2010浙江文数18) (本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24C =- (I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.(2010北京文数15)(本小题共13分)在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长. (2010重庆文数18) (本小题满分13分), (Ⅰ)小问5分,(Ⅱ)小问8分.)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a bc .(Ⅰ) 求sinA 的值; (Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.(2010浙江文数18)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足222()4S a b c =+-。
(版)高考文科数学函数专题讲解及高考真题(含答案)

函数【】函数的概念〔1〕函数的概念①设A、B是两个非空的数集,如果按照某种对应法那么f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法那么.③只有定义域相同,且对应法那么也相同的两个函数才是同一函数.〔2〕区间的概念及表示法①设a,b 是两个实数,且a b,满足ax b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a xb,或ax b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须b.3〕求函数的定义域时,一般遵循以下原那么:f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k(k Z).2⑥零〔负〕指数幂的底数不能为零.⑦假设f(x)是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:假设f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4〕求函数的值域或最值求函数最值的常用方法和求函数值域的方法根本上是相同的.事实上,如果在函数的值域中存在一个最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比拟简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:假设函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y)0,那么在a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用根本不等式确定函数的值域或最值.⑤换元法:通过变量代换到达化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法5〕函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.〔6〕映射的概念①设A、B是两个集合,如果按照某种对应法那么f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且aA,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〗函数的根本性质】单调性与最大〔小〕值1〕函数的单调性①定义及判定方法函数的定义图象判定方法性质(版)高考文科数学函数专题讲解及高考真题(含答案)如果对于属于定义域 I 内〔1〕利用定义某个区间上的任意两个1yy=f(X)f(x 2)〔2〕利用函数 12<的单调性自变量的值x、x ,当x..函数的单调性x 2时,都有 f(x 1)<f(x2),.. .........那么就说 f(x) 在这个区间上是增函数. ...如果对于属于定义域 I 内某个区间上的任意两个 自变量的值 x 1、x 2,当x 1< .. x 2时,都有 f(x 1)>f(x2),.. .........那么就说 f(x) 在这个区 间上是减函数.... f(x 1)o x 1x 2xy y=f(X)f(x 1)f(x 2)o x 1 x 2x〔3〕利用函数图象〔在某个区间图象上升为增〕4〕利用复合函数1〕利用定义2〕利用函数的单调性3〕利用函数图象〔在某个区间图象下降为减〕〔4〕利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数yf [g(x)],令ug(x),假设yf(u)为增,u g(x)为增,那么y f[g(x)]为增;假设y f(u)为减,ug(x)为减,那么yf[g(x)]为增;假设y f(u)为增,ug(x)为减,那么yf[g(x)]为减;假设yf(u)为减,u g(x)为增,那么 y f[g(x)]为减. 〔2〕打“√〞函数 f(x) x a(a0)的图象与性质xf(x)分别在( , a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.〔3〕最大〔小〕值定义①一般地,设函数 y f(x)的定义域为I ,如果存在实数 M 满足:〔1〕对于任意yox的xI ,都有 f(x) M ;〔2〕存在x 0I ,使得f(x 0)M.那么,我们称M 是函数f(x)的最大值,记 作f max (x) M .②一般地,设函数yf(x)的定义域为I ,如果存在实数m 满足:〔1〕对于任意的xI ,都有f(x) m ;〔2〕存在x 0I ,使得f(x 0)m .那么,我们称m 是函数f(x)的最小值,记作f max (x)m .】奇偶性4〕函数的奇偶性①定义及判定方法函数的 定义图象 判定方法性质如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数...........f(x)叫做奇函数....函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数..........f(x)叫做偶函数....②假设函数f(x)为奇函数,且在x 0处有定义,那么f(0)0.1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于原点对称〕1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于y轴对称〕③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数〔或奇函数〕的和〔或差〕仍是偶函数〔或奇函数〕,两个偶函数〔或奇函数〕的积〔或商〕是偶函数,一个偶函数与一个奇函数的积〔或商〕是奇函数.〖补充知识〗函数的图象1〕作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质〔奇偶性、单调性〕;④画出函数的图象.利用根本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种根本初等函数的图象.①平移变换y f(x)②伸缩变换y f(x)y f(x)③对称变换h0,左移h个单位yf(xh)yf(x)k0,上移k个单位yf(x)k h0,右移|h|个单位k0,下移|k|个单位01,伸y f(x)1,缩0A1,缩y Af(x)A1,伸y f(x)y f(x)y f(x)yf(x) x轴f(x)y f()y轴y f() y x x原点f(x)y f(x)直线yxy f1(x) y去掉y轴左边图象y f(|x|)保存y轴右边图象,并作其关于y轴对称图象保存x轴上方图象y|f(x)|将x轴下方图象翻折上去2〕识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.3〕用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形〞的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 根本初等函数 (Ⅰ)〗指数函数】指数与指数幂的运算〔1〕根式的概念①如果x na,a R,xR,n1,且n N ,那么x 叫做a 的n 次方根.当n 是奇数时,a 的 n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号 n a 表示,负的n 次方根用符号 na表示;0的n 次方根是 0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,a 0 .③根式的性质:(n a)na ;当n 为奇数时,n a na ;当n 为偶数时,n a n|a|a(a0).a(a0)〔2〕分数指数幂的概念mn a m(a①正数的正分数指数幂的意义是:a n0,m,n N,且n 1).0的正分数指数幂等于0.mmn (1)m (a②正数的负分数指数幂的意义是:an(1)n 0,m,nN,且n1).0的负分数指数幂没aa有意义. 注意口诀:底数取倒数,指数取相反数.〔3〕分数指数幂的运算性质①a r a s a rs (a 0,r,sR)②(a r )s a rs (a0,r,sR)③(ab )r rb r (a 0,b 0,r )aR【】指数函数及其性质〔4〕指数函数函数名称指数函数定义函数ya x (a0且a1)叫做指数函数图象a 10 a1yya xyya xy1y1(0,1)(0,1)Ox Ox 定域R域(0,)定点象定点(0,1),即当x0,y1.奇偶性非奇非偶性在R上是增函数在R上是减函数a x1(x0)a x1(x0)函数的a x1(x0)a x1(x0)化情况a x a x1(x0)1(x0) a化象的影响在第一象限内,a越大象越高;在第二象限内,a越大象越低.〖〗数函数【】数与数运算〔1〕数的定①假设a x N(a0,且a 1),x叫做以a底N的数,作x log a N,其中a叫做底数,N叫做真数.②数和零没有数.③数式与指数式的互化:xlog a N a x N(a0,a1,N0).〔2〕几个重要的数恒等式log a10,log a a1,log a a b b.〔3〕常用数与自然数常用数:lgN,即log10N;自然数:lnN,即log e N〔其中e⋯〕.〔4〕数的运算性如果a0,a1,M0,N0,那么①加法:log a M log a N log a(MN)②减法:log a M log a Nlog a MN③数乘:nlog a M log a M n(n R)④a log a N N⑤log bM n nlogaM(b0,n)log a Nlog b N且b1)ab R⑥换底公式:(b0,log b a【】对数函数及其性质5〕对数函数函数名称对数函数定义函数ylog a x(a0且a1)叫做对数函数a10a1x1x1y ylog a x y ylog a x图象(1,0)O(1,0)x O x 定义域(0,)值域R过定点图象过定点(1,0),即当x1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数log a x0(x1)log a x0(x1)函数值的log a x0(x1)log a x0(x1)变化情况log a x0(0x1)log a x0(0x1) a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数y f(x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子x(y)表示x是y的函数,函数x(y)叫做函数y f(x)的反函数,记作x f1(y),习惯上改写成yf1(x).〔7〕反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f1(y);③将x f1(y)改写成y f1(x),并注明反函数的定义域.〔8〕反函数的性质①原函数y f(x)与反函数y f1(x)的图象关于直线yx对称.②函数y f(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.③假设P(a,b)在原函数y f(x)的图象上,那么P'(b,a)在反函数y f1(x)的图象上.④一般地,函数yf(x)要有反函数那么它必须为单调函数.〖〗幂函数〔1〕幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.〔2〕幂函数的图象〔3〕幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,那么幂函数的图象过原点,并且在[0,)上为增函数.如果0,那么幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q〔其中p,q互pq q质,p和q Z〕,假设p为奇数q为奇数时,那么yx p是奇函数,假设p为奇数q为偶数时,那么yx p是偶q函数,假设p为偶数q为奇数时,那么y x p是非奇非偶函数.⑤图象特征:幂函数yx,x(0,),当1时,假设0x1,其图象在直线y x下方,假设x1,其图象在直线y x上方,当10x1yx上方,假设x1,其图象在直线时,假设,其图象在直线x下方.〖补充知识〗二次函数〔1〕二次函数解析式的三种形式①一般式:f(x)ax2bx c(a0)②顶点式:f(x)a(x h)2k(a0)③两根式:f(x)a(x x1)(x x2)(a0)〔2〕求二次函数解析式的方法①三个点坐标时,宜用一般式.②抛物线的顶点坐标或与对称轴有关或与最大〔小〕值有关时,常使用顶点式.③假设抛物线与x轴有两个交点,且横线坐标时,选用两根式求f(x)更方便.〔3〕二次函数图象的性质①二次函数f(x)ax2bx c(a0)的图象是一条抛物线,对称轴方程为x b,顶点坐标是2ab4acb2 (,).2a4a②当a0时,抛物线开口向上,函数在(,b]上递减,在[b,)上递增,当xb时,2a2a2af min(x)4acb 2;当a0时,抛物线开口向下,函数在(,b]上递增,在[b,)上递减,4a2a2a当x b4acb2时,f max(x)4a.2a③二次函数f(x)ax2bx c(a0)当b24ac0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),|M1M2||x1x2||a|.〔4〕一元二次方程ax2bxc0(a0)根的分布一元二次方程根的分布是二次函数中的重要内容,这局部知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理〔韦达定理〕的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程ax2bx c 0(a 0)的两实根为x1,x2,且x1x2.令f(x) ax2bx c,从以b 下四个方面来分析此类问题:①开口方向: a ②对称轴位置:x ③判别式:④端点函数2a值符号.〔5〕二次函数f(x)ax 2 bxc(a 0)在闭区间[p,q]上的最值设f(x)在区间[p,q]上的最大值为M,最小值为m ,令x 01(p q).〔Ⅰ〕当a0时〔开口向上〕2①假设bp ,那么mf(p) ②假设p bq ,那么mf( b ) ③假设b q ,那么mf(q)2a2a2a2affff(q)(p)(q)(p)OxOxOxfbbf((p)bf()f f())2a2a 2a(q)b Mf(q)bf(p)①假设x 0,那么②x 0,那么M2a2ax 0f(q)O gxff((p)b )(Ⅱ)当a02a时(开口向下)①假设bf(p)②假设pp ,那么M2af(b)2af(p)(p)Oxfb(q),那么mf(q)①假设x 0 2af(b ) f 2a(p)x 0gOxf (q)f(p)xgOxf f(b)2a(q)b q ,那么Mf( b)③假设b2a2a2af(b)2aff f (Ox(q)f(q)Ob x 0,那么mf(p).f②2a(p)f (b)2a(q)xgO xf (p)q ,那么Mf(q)) 2ax第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x 叫做函数yf(x)(xD)的零点。
全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数$f(x)=2x^3-ax^2+b$.1)讨论$f(x)$的单调性;2)是否存在$a,b$,使得$f(x)$在区间$[0,1]$的最小值为$-1$且最大值为$1$?若存在,求出$a,b$的所有值;若不存在,说明理由.解析】1)对$f(x)=2x^3-ax^2+b$求导得$f'(x)=6x^2-2ax=2x(3x-a)$。
所以有:当$a<0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减;当$a=0$时,$(-\infty,+\infty)$区间上单调递增;当$a>0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减.2)若$f(x)$在区间$[0,1]$有最大值$1$和最小值$-1$,所以,若$a<0$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$[0,1]$上单调递增,所以$f(0)=-1$,$f(1)=1$代入解得$b=-1$,$a=\frac{1}{3}$,与$a<0$矛盾,所以$a<0$不成立.若$a=0$,$(-\infty,+\infty)$区间上单调递增;在区间$[0,1]$,所以$f(0)=-1$,$f(1)=1$代入解得$\begin{cases}a=0\\b=-1\end{cases}$.若$0<a\leq2$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(1)$而$f(0)=b$,$f(1)=2-a+b\geq f(0)$,故所以区间$[0,1]$上最大值为$f(1)$.若$2<a\leq3$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(0)$而$f(0)=b$,$f(1)=2-a+b\leq f(0)$,故所以区间$[0,1]$上最大值为$f(0)$.已知函数$f(x)=x^3+ax+\frac{1}{4},g(x)=-\ln x$。
高考数学十年真题专题解析—函数图象

函数的图象真题解析年份题号考点考查内容2012课标理10函数图象的识别根据定义域、特殊值、单调性识别函数图象2013卷1理11(文12)函数图象的变换利用对折变换作出函数图象解函数不等式卷1文9函数图象的识别利用奇偶性、特殊值及极值识别函数图象2016卷1理7(文9)函数图象的识别函数的奇偶性、函数图象2017卷1文8函数图象的识别函数的奇偶性、函数图象卷3文7函数图象的识别函数的奇偶性、函数图象2018卷1文3函数图象的应用含糊的图象应用卷2理3函数图象的识别函数的奇偶性、函数图象卷3理7(文9)函数图象的识别函数的奇偶性、函数图象2019卷1理5函数图象的识别函数的奇偶性、函数图象卷3理11函数图象识别函数的奇偶性、函数图象可能考查利用函数图象解函数不等式或函数零点问题考点17函数图象的识别1.(2020天津3)函数241x y x =+的图象大致为()A .B .C .D .【答案】A【思路导引】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【解析】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选A .2.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】:因为()2sin cos x x f x x x+=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x x f x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ;又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .3.(2019全国Ⅲ理7)函数3222x x x y -=+在[]6,6-的图像大致为A .B .C .D .【答案】B 【解析】因为332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .4.(2018全国卷Ⅱ)函数2()--=x x e e f x x 的图像大致为【答案】B 【解析】当0<x 时,因为0--<x x e e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B .5.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为【答案】D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或22x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .6.(2017新课标Ⅰ)函数sin 21cos x y x =-的部分图像大致为【答案】C 【解析】由题意知,函数sin 21cos x y x =-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin 20>,cos 20<,故0y >,排除A .故选C .7.(2017新课标Ⅲ)函数2sin 1x y x x=++的部分图像大致为A .B .C .D .【答案】D 【解析】当1x =时,(1)2sin12f =+>,排除A 、C ;当x →+∞时,1y x →+,排除B .选D .8.(2016全国I)函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .【答案】D 【解析】当0x 时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f e '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合条件的图像为D .9.(2012课标,理10)已知函数()f x =1ln(1)x x+-,则y =()f x 的图像大致为【答案】B 【解析1】定义域为(-1,0)∪(0,+∞),()f x '=2(1)(ln(1))x x x x ++-∴()f x 在(-1,0)是减函数,在(0,+∞)是增函数,结合选项,只有B 符合,故选B .10.(2013卷1,文9)函数()f x =(1cos )sin x x -在[,]ππ-的图像大致为【答案】C 【解析】显然()f x 是奇函数,故排除B ,当0x π-<<时,()f x <0,故排除A ,∵()f x '=22sin cos cos x x x +-=22cos cos 1x x -++,由()f x '≥0解得1cos 2x -≤,又∵x ππ-≤≤,∴3344x ππ-≤≤,同理,由()f x '≤0解得,34x ππ-≤≤-或34x ππ≤≤,∴()f x 在[-π,-34π]上是减函数,在[-34π,34π]上是增函数,在[34π,π]上是减函数,∴当x =34π时,()f x 取最小值3()4f π-=12+-,最小值点靠近-π,故选C .11.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C.D .【答案】D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .12.(2013福建)函数)1ln()(2+=x x f的图象大致是A .B .C .D .【答案】A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D .13.(2013四川)函数133-=x x y的图像大致是A B C D【答案】C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .考点18函数图象的变换1.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]【答案】D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,202x x x ax≤⎧⎨-≥⎩且0ln(1)x x ax>⎧⎨+≥⎩,由202x x x ax ≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B ,当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D .2.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________.【答案】6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩ 可知()f x 的单调递增区间为[,)2a -+∞,故362a a -=⇔=-.考点19函数图象的应用1.(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【答案】D 【解析】当0x ≤时,函数()2x f x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D.2.(2015安徽)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【答案】C 【解析】∵2()()ax b f x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N 的横坐标均为正,∴0b x a =->,20b y c =>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.。
压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。
函数高考真题及答案及解析

函数高考真题及答案及解析高考是每个学生都会经历的一场重要考试,而函数作为数学考试的重要一部分,往往也是考生们头疼的问题之一。
本文将带领大家回顾一些函数相关的高考真题,并附上详细的解析,帮助大家更好地掌握函数的知识。
问题一:已知函数f(x) = x^2 + 3x + 2,求f(2)的值。
解析:要求f(2)的值,就是将x替换为2,带入函数进行计算。
f(2) = 2^2 + 3(2) + 2 = 4 + 6 + 2 = 12所以f(2)的值为12。
问题二:已知函数g(x) = |x-1|,求g(-2)的值。
解析:g(x) = |x-1|表示的是x-1的绝对值。
要求g(-2)的值,就是将x替换为-2,带入函数进行计算。
g(-2) = |-2-1| = |-3| = 3所以g(-2)的值为3。
问题三:已知函数h(x) = 2x^2 + 5x - 3,求h(3)的值。
解析:同样,要求h(3)的值,就是将x替换为3,带入函数进行计算。
h(3) = 2(3)^2 + 5(3) - 3 = 2(9) + 15 - 3 = 18 + 15 - 3 = 30所以h(3)的值为30。
通过以上三个问题的解析,我们可以看出,高考函数题往往涉及到对函数表达式的替换和计算。
这种题型相对简单,只需要将给定的值代入函数进行计算即可。
下面我们再来看一些更加复杂的函数题。
问题四:已知函数P(x)满足P(x) = 2P(x-1) + 1,且P(0) = 1,求P(3)的值。
解析:根据题目所给条件,P(x)等于2P(x-1)加1。
初始条件是P(0)等于1。
要求P(3)的值,就需要使用递推的方式来解决这个问题。
首先,计算P(1)的值:P(1) = 2P(0) + 1 = 2(1) + 1 = 3接下来,计算P(2)的值:P(2) = 2P(1) + 1 = 2(3) + 1 = 7最后,计算P(3)的值:P(3) = 2P(2) + 1 = 2(7) + 1 = 15所以P(3)的值为15。
全国卷历年高考三角函数及解三角形真题归类分析2019(含答案)

全国卷历年高考三角函数及解三角形真题归类分析(2015年-2019年共14套) 三角函数(共20小题)一、三角恒等变换(6题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( )(A )32-(B )32(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin 30=12,故选D.2.(2018年3卷4)若,则A. B. C. D.【解析】,故答案为B.3.(2016年3卷7)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725 (B )15 (C )15- (D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .5.(2018年2卷15)已知,,则__________.【解析】:因为,,所以,因此6.(2019年2卷10)已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( ) A.15B.5C.33D.255【解析】2sin 2cos 21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,55B . 【点评】这类题主要考查三角函数中二倍角公式(几乎必考)、两角和与差公式、诱导公式、同角三角函数基本关系式等三角函数公式,难度以容易、中等为主。
高中函数试题及答案解析

高中函数试题及答案解析试题一:函数的奇偶性1. 判断函数f(x) = x^2 - 2x + 3的奇偶性,并说明理由。
2. 若f(x)为奇函数,且f(1) = 5,求f(-1)的值。
试题二:函数的单调性3. 判断函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上的单调性。
4. 若函数h(x) = 2x^3 - 6x^2 + 3x + 1在区间[-1, 1]上单调递减,求h'(x)的值。
试题三:复合函数的单调性5. 若f(x) = x^2 + 1,g(x) = 2x - 3,求复合函数f(g(x)),并判断其单调性。
6. 若复合函数f(g(x))在区间[-2, 1]上单调递增,求g'(x)的值。
试题四:函数的值域7. 求函数y = 3x + 2在x∈[-1, 4]上的值域。
8. 若函数y = 1/x在x∈(0, 1]上的值域为[2, +∞),求y的最小值。
试题五:函数的极值9. 求函数k(x) = x^3 - 3x^2 + 2x在x = 1处的极值。
10. 若函数m(x) = x^4 - 4x^3 + 4x^2 + 8x + 1在x = 2处取得极小值,求m'(x)和m''(x)的值。
答案解析:1. 函数f(x) = x^2 - 2x + 3为偶函数,因为f(-x) = (-x)^2 - 2(-x) + 3 = x^2 + 2x + 3 = f(x)。
2. 由于f(x)为奇函数,所以f(-1) = -f(1) = -5。
3. 函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上单调递增,因为g'(x) = -6x + 6,当x < 1时,g'(x) > 0。
4. 函数h(x)的导数h'(x) = 6x^2 - 12x + 3,由于h(x)在区间[-1, 1]上单调递减,所以h'(x) < 0,即6x^2 - 12x + 3 < 0。
近三年高考数学理科全国卷函数小题归类分析(解答版)

近三年全国卷函数小题归类分析(解答版)(近三年共15题,易4题,中4题,难7题)一、分段函数求值:涉及基本的指数、对数运算.1.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.二、函数奇偶性:由于解答题主要考查的是单调性,而周期性主要在三角函数中考查,所以函数小题考查奇偶性比较多,奇偶性进一步推广就是函数的对称性,常见的奇、偶函数,对称性的代数表示要让学生熟练掌握.2.(2015年1卷13)若函数f (x )=ln(x x 为偶函数,则a=【解析】由题知ln(y x =是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性3.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3]【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。
【考点】:函数不等式,函数的单调性。
4.(2016年3卷)15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.【解析】当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x'=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.另解:本题也可以求出在(-1,-3)处切线斜率,根据对称性可知与点(1,3)-处的切线斜率互为相反数.5.(2015年2卷12)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是(A )(1)01-∞-⋃,(,) (B )-101⋃+∞(,)(,) (C )(1)-10-∞-⋃,(,) (D )011⋃+∞(,)(,)【解析】记函数()()f x g x x =,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是A另解:根据条件可作出符合条件的两种函数图象,当x 取1左侧附近值时,左图不符合'()()0xf x f x -<条件,故选A6.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得: 221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.7.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .三、比较大小:比较大小主要考查基本初等函数的单调性、图象,指数、对数的基本运算,要求学生基本解题思路和方法要掌握.8.(2016年3卷6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b <<【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.9.(2016年1卷8)若101a b c >><<,,则 (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质10.(2017年1卷11)设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【解析】:分别可求得1112352131512,3,5log 2log 3log 5log 2log 3log 5m m m m m m x y z ======分别对分母乘以30可得11151063230log 2log 2,30log 3log 3,30log 5m m m m m ==, 故而可得10156101561log 3log 2log 5325325m m m m y x z >⎧⇒>>⇒<<⎨>>⎩,故而选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近三年高考函数小题分析 16.1 (7)函数y =2x 2–e x 在[–2,2]的图像大致为( ) A B C
D
18.2 3.函数
-2e e ()x x
f x x -=的图像大致为
A. B.
C. D.
18.3 7.函数
422y x x =-++的图像大致为
A. B.
C. D.
16.1 (8)若,则 (A ) (B ) (C ) (D )
16.3 (6)已知432a =,254b =,13
25c =,则( )
(A )b a c << (B )a b c << (C )b c a << (D )c a b <<
17.1 11.设xyz 为正数,且,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z
18.3 12.设0.2log 0.3a =,2log 0.3b =,则
A .0a b ab +<<
B .0ab a b <+<
C .0a b ab +<<
D .0ab a b <<+
16.2 (16)若直线y=kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b = 。
16.3 (15)已知f(x)为偶函数,当x <0时,f (x )=ln (−x )+3x ,则曲线y=f(x),在点(1,-3)处的切线方程是____________。
17.2 11.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )
A.1-
B.32e --
C.35e -
D.1
18.1 16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.
18.2 10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是
A .π
4 B .π2 C .3π4 D .π
18.2 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 10
1a b c >><<,c c a b <c c ab ba <log log b a a c b c <log log a b c c <235x y z ==
18.3 14.曲线(1)e x y ax =+在点(0,1)处的切线的斜率为-2,则a =__________.
16.2 (12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x
+=与()y f x =图像的交点为1122(,),(,),,(,),m m
x y x y x y ⋅⋅⋅ 则1()m
i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m
17.1 5.函数在单调递减,且为奇函数.若,则满足的的取值范围是( )
A .
B .
C .
D .
17.3 15.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是
18.1 16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.
18.2 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=
A .50-
B .0
C .2
D .50
17.3 11.已知函数
211()2()x x f x x x a e e --+=-++有唯一零点,则a =( ) A.12- B.13 C.1
2 D.1 18.1 9.已知函数e 0()ln 0x x f x x x ⎧=⎨>⎩,≤,,, ()()g x f x x a =++.若()g x 存在2个零点,
则a 的取值范围是
A .[10)-,
B .[0)+∞,
C .[1)-+∞,
D .[1)+∞, ()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]。