七年级上册数学 几何图形初步单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .

(1)猜想与的数量关系,并说明理由;

(2)若,求的度数;

(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.

【答案】(1)解:,理由如下:

(2)解:如图①,设,则,

由(1)可得,

(3)解:分两种情况:

①如图1所示,当时,,

又,

②如图2所示,当时,,

又,

.

综上所述,等于或时, .

【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.

(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.

(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.

2.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.

(1)求证:△ABC≌△EDC;

(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.

①求∠DHF的度数;

②若EB平分∠DEC,试说明:BE平分∠ABC.

【答案】(1)证明:∵CA平分∠BCE,

∴∠ACB=∠ACE.

在△ABC和△EDC中.

∵BC=CD,∠ACB=∠ACE,AC=CE.

∴△ABC≌△EDC(SAS).

(2)解:①在△BCF和△DCG中

∵BC=DC, ∠BCD=∠DCE,CF=CG,

∴△BCF≌△DCG(SAS),

∴∠CBF=∠CDG.

∵∠CBF+∠BCF=∠CDG+∠DHF

∴∠BCF=∠DHF=60°.

②∵EB平分∠DEC,

∴∠DEH=∠BEC.

∵∠DHF=60°,

∴∠HDE=60°-∠DEH.

∵∠BCE=60°+60°=120°,

∴∠CBE=180°-120°-∠BEC=60°-∠BEC.

∴∠HDE=∠CBE. ∠A=∠DEG.

∵△ABC≌△EDC, △BCF≌△DCG(已证)

∴∠BFC=∠DGC,

∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,

∴∠ABF=∠HDE,

∴∠ABF=∠CBE,

∴BE平分∠ABC.

【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.

(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.

②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.

3.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .

(1)求证:EF∥CD;

(2)若∠AGD=65°,试求∠DCG的度数.

【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,

∴∠BFE=∠BDC=90°,

∴EF∥CD.

(2)解:∵EF∥CD,

∴∠2=∠DCE=50°,

∵∠1=∠2,

∴∠1=∠DCE,

∴DG∥BC,

∴∠AGD=∠ACB=65°,

∴∠DCG=

【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;

(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.

4.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.

(1)若∠O=40°,求∠ECF的度数;

(2)试说明CG平分∠OCD;

(3)当∠O为多少度时,CD平分∠OCF?并说明理由.

【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)

∵∠O =40°,

∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=

又∵CF平分∠ACD ,

∴ (角平分线定义)

∴∠ECF=

(2)证明:∵CG⊥CF,

∴ .

又∵)

∴ (等角的余角相等)

即CG平分∠OCD

(3)解:结论:当∠O=60°时,CD平分∠OCF .

当∠O=60°时

∵DE//OB,

∴∠DCO=∠O=60°.

∴∠ACD=120°.

又∵CF平分∠ACD

∴∠DCF=60°,

即CD平分∠OCF

【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;

(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;

(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.

5.已知AM∥CN,点B为平面内一点,AB⊥BC于B.

(1)如图1,直接写出∠A和∠C之间的数量关系________;

(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;

相关文档
最新文档