七年级上册数学 几何图形初步单元测试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .
(1)猜想与的数量关系,并说明理由;
(2)若,求的度数;
(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.
【答案】(1)解:,理由如下:
,
(2)解:如图①,设,则,
由(1)可得,
,
,
(3)解:分两种情况:
①如图1所示,当时,,
又,
;
②如图2所示,当时,,
又,
.
综上所述,等于或时, .
【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.
(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.
(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.
2.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.
(1)求证:△ABC≌△EDC;
(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.
①求∠DHF的度数;
②若EB平分∠DEC,试说明:BE平分∠ABC.
【答案】(1)证明:∵CA平分∠BCE,
∴∠ACB=∠ACE.
在△ABC和△EDC中.
∵BC=CD,∠ACB=∠ACE,AC=CE.
∴△ABC≌△EDC(SAS).
(2)解:①在△BCF和△DCG中
∵BC=DC, ∠BCD=∠DCE,CF=CG,
∴△BCF≌△DCG(SAS),
∴∠CBF=∠CDG.
∵∠CBF+∠BCF=∠CDG+∠DHF
∴∠BCF=∠DHF=60°.
②∵EB平分∠DEC,
∴∠DEH=∠BEC.
∵∠DHF=60°,
∴∠HDE=60°-∠DEH.
∵∠BCE=60°+60°=120°,
∴∠CBE=180°-120°-∠BEC=60°-∠BEC.
∴∠HDE=∠CBE. ∠A=∠DEG.
∵△ABC≌△EDC, △BCF≌△DCG(已证)
∴∠BFC=∠DGC,
∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,
∴∠ABF=∠HDE,
∴∠ABF=∠CBE,
∴BE平分∠ABC.
【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.
(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.
②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.
3.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .
(1)求证:EF∥CD;
(2)若∠AGD=65°,试求∠DCG的度数.
【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,
∴∠BFE=∠BDC=90°,
∴EF∥CD.
(2)解:∵EF∥CD,
∴∠2=∠DCE=50°,
∵∠1=∠2,
∴∠1=∠DCE,
∴DG∥BC,
∴∠AGD=∠ACB=65°,
∴∠DCG=
【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;
(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.
4.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)试说明CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF?并说明理由.
【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)
∵∠O =40°,
∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=
又∵CF平分∠ACD ,
∴ (角平分线定义)
∴∠ECF=
(2)证明:∵CG⊥CF,
∴ .
∴
又∵)
∴
∵
∴ (等角的余角相等)
即CG平分∠OCD
(3)解:结论:当∠O=60°时,CD平分∠OCF .
当∠O=60°时
∵DE//OB,
∴∠DCO=∠O=60°.
∴∠ACD=120°.
又∵CF平分∠ACD
∴∠DCF=60°,
∴
即CD平分∠OCF
【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;
(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;
(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.
5.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系________;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;