八年级数学 二次根式的化简求值 练习题
初二的二次根式化简练习题
![初二的二次根式化简练习题](https://img.taocdn.com/s3/m/84ab46b64793daef5ef7ba0d4a7302768e996f17.png)
初二的二次根式化简练习题一、基础知识回顾二次根式又称作平方根,是数学中的一个重要概念。
在初二的数学学习中,学生们开始接触并学习如何化简二次根式。
本文将为大家提供一些初二二次根式化简的练习题,帮助大家巩固知识。
二、练习题1. 化简下列二次根式:(1) $\sqrt{16}$(2) $\sqrt{20}$(3) $\sqrt{25}$(4) $\sqrt{27}$(5) $\sqrt{50}$2. 将下列二次根式化简为最简形式:(1) $\sqrt{8}$(2) $\sqrt{18}$(3) $\sqrt{32}$(4) $\sqrt{45}$(5) $\sqrt{98}$3. 将下列表达式化简为最简形式:(1) $2\sqrt{5} + 3\sqrt{5}$(2) $4\sqrt{3} - 2\sqrt{3}$(3) $3\sqrt{7} + 2\sqrt{7} - \sqrt{7}$(4) $5\sqrt{2} - 2\sqrt{2} + \sqrt{2}$(5) $2\sqrt{10} - 5\sqrt{10} + 3\sqrt{10}$三、解答1. 化简下列二次根式:(1) $\sqrt{16} = 4$(2) $\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}$(3) $\sqrt{25} = 5$(4) $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$(5) $\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$ 2. 将下列二次根式化简为最简形式:(1) $\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}$(2) $\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}$(3) $\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$(4) $\sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5}$(5) $\sqrt{98} = \sqrt{49 \times 2} = 7\sqrt{2}$ 3. 将下列表达式化简为最简形式:(1) $2\sqrt{5} + 3\sqrt{5} = 5\sqrt{5}$(2) $4\sqrt{3} - 2\sqrt{3} = 2\sqrt{3}$(3) $3\sqrt{7} + 2\sqrt{7} - \sqrt{7} = 4\sqrt{7}$(4) $5\sqrt{2} - 2\sqrt{2} + \sqrt{2} = 4\sqrt{2}$(5) $2\sqrt{10} - 5\sqrt{10} + 3\sqrt{10} = 0$通过以上练习题,我们对初二二次根式的化简有了更深入的了解。
二次根式的化简求值题(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)
![二次根式的化简求值题(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)](https://img.taocdn.com/s3/m/ce5fe2dfb8d528ea81c758f5f61fb7360b4c2b3e.png)
专题2.25二次根式的化简求值50题(分层练习)(提升练)1.已知x =,y =,求下列各式的值:(1)22x y -.(2)22252x xy y -+.2.(1)先化简,再求值:)(x x x x ++-,其中x =(2)已知x y =,试求代数式22252x xy y -+的值.3.(1(2;(3)已知2x =,求代数式((272x x ++4.(1)已知x =y =,求22x xy y ++的值;(275.已知x =y =,求代数式223x xy y -+的值.6.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a =2281a a -+的值.他们是这样解答的:2=-∴2a -=,∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据张兵小组的解题方法和过程,解决以下问题:(1)a =,则2281a a -+=.(2)若a =43443a a a --+的值.7.已知a =,b =8.先化简,再求值:(()1x x x x -+-,其中2x =.9.已知a =,b =求:(1)22a b ab -的值;(2)22a ab b ++的值.10.先化简,再求值:(()22323a a a a --+,其中3a =.11.先化简下式,再求值:()()2237752x x x x -+----,其中1x =+.12.先化简,再求值:153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中12x =,3y =.13,其中:3a =,2b =.14.已知.已知1,1a b ==.(1)代数式221a a -+的值为________;(2)求代数式22a b +值.15.已知a =,求代数式229a a -+的值.16.(1)已知1α=+,求代数式((241αα-+的值(2)已知4y =x y 的值.17.已知:x =y =,求22x xy y ++的平方根.18.已知a =,b =(1)22a b ab -(2)22a b +19.在数学课外学习活动中,嘉琪遇到一道题:已知a =,求2281a a -+的值.他是这样解答的:∵2a ==∴2a -=.∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-,请你根据嘉琪的解题过程,解决如下问题:(1)化简:=__________;=__________;(2)(3)若a =2481a a -+的值.20.已知1a =+,1b ,求22a b -和abb a+的值.21.某同学在解决问题:已知a =2362a a -+的值.他是这样分析与解的:1a ===+ ,1a ∴-=()212a ∴-=,2212a a -+=,221a a ∴-=,()223623223125a a a a ∴-+=-+=⨯+=,请你根据这位同学的分析过程,解决如下问题:(1)++ (2)若a =;①求2281a a --的值;②求3236216a a a --+的值.22.(1=,=;(2)已知x =((272x x ++(323.阅读材料:像))221⨯=()0a a =≥,……这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号.数学课上,老师出了一道题“已知a =2361a a --的值.”聪明的小明同学根据上述材料,做了这样的解答:因为1a ===所以1a -=所以()212a -=,所以2212a a -+=所以221a a -=,所以2363a a -=,所以23612a a --=请你根据上述材料和小明的解答过程,解决如下问题:__________=______;2-的有理化因式是________=______;(2)若a =,求22123a a -++的值.24)0,0x y->>,其中1x =-,1y .25.先化简,再求值:(1a a a aa ⎛⎫++- ⎪⎝⎭,其中a =26.已知x =,y =(1)求222x xy y ++的值.(2)若x 的小数部分为a ,y 的整数部分为b ,求ax by +的平方根.27.已知非零实数a ,b 满足=28.先化简,再求值:()()()22282x y x y x y --++,其中1x =1y =.29.已知12x =,求()33420252022x x --.30.已知1,10,15a b c ==-=-31.已知:12x x +=,求221x x+的值.32.已知8a b +=-,12ab =,求33.(1)已知a 、b4b +,求a 、b 的值.(2)已知实数a 满足2021a a -,求22021a -的值.34.已知x =y =,求代数式22x y +的值.35.先化简,再求值:()()()22 2222a b a b a b b ⎡⎤++-⎣⎦+-2069b b ++=.36.已知x =y =,求代数式22205520x xy y ++的值.37.已知x =,y =.(1)求33x y xy +的值;(2)求y x x y +的值.38.若x ,y 为实数,且12y =39.已知x =y =.求:(1)x y +和xy 的值;(2)求22x xy y -+的值.40.已知x =y =,求下列各式的值:(1)22x y -(2)222x xy y ++.41.有这样一类题目:如果你能找到两个数m 、n ,使22m n a +=且mn =a ±将变成222m n mn +±,即变成2()m n ±(1)例如,∵222532+=++=++=,==______,请完成填空.(2)(3)利用上面的方法,设A =,B =,求A +B 的值.42.已知a =,b =,求b a a b+的值.43.先化简,再求值:⎛- ⎝,其中8x =,127y =.44.(12-+4x =.(2)已知x =y =,求22x xy y -+值.45.已知3y =+,若a b =a2+b 2+ab 的值.46.(1)已知x ,y ﹣2,求下列各式的值:①11x y +;②x 2﹣xy +y 2;(28=.47.已知x =1x 的值.48.已知=x x 的整数部分为a ,小数部分为b ,求2a b a b--+的值.49.(1)先化简,再求值:((26a a a a +---+,其中1a -.(2)已知2x =,2y =223x y xy+-50.已知a =b =(1)求22a ab b -+的值;(2)若a 的小数部分为m ,b 的小数部分为n ,求()()m n m n +-的值.参考答案1.(1);(2)42【分析】(1)先求解x y x y +-,再利用平方差公式进行因式分解,再直接代入计算即可;(2)先求解()2x y xy ,+再利用完全平方公式进行变形求值即可.(1)解:∵x =y ,∴x y +=,x y -=∴()()22x y x y x y -=+-=;(2)解:∵x =y ,∴x y +=,2xy ==-∴()22222529yx y y x x y x =+--+(()229242=-´-=.【点拨】本题考查的是二次根式的求值,二次根式的加减乘法的混合运算,掌握“利用平方差公式与完全平方公式进行变形求解代数式的值”是解本题的关键.2.(15-,1-(2)42【分析】(1)先计算整式的乘法,再合并同类项,然后把x =(2)先利用x 、y 的值计算出x y -=2xy =-,再利用完全平方公式得到222252(2)x xy y x y xy -+=--,然后利用整体代入的方法计算.(1)解:)(x x x x ++-225x x =-+-5=-,当x =原式56512=-=-=-(2)解:∵x =y ,∴x y -=,352xy =-=-,∴222252(2)x xy y x y xy-+=--(()222=⨯--42=.【点拨】本题主要考查了二次根式的混合运算,整式的混合运算,熟练掌握相关运算法则是解题的关键.利用整体代入的方法可简化计算.3.(1(2);(3)2【分析】(1)根据二次根式的乘除混合计算法则求解即可;(2)根据二次根式的混合计算法则求解即可;(3)直接把2x =((272x x ++++然后合并同类二次根式即可得到答案.解:(1)原式=(2)原式===(3)原式((27222=+-++-+()74343=+-+-+(7743=+-+-49481=-++2=【点拨】本题主要考查了二次根式的混合计算,二次根式的化简求值,二次根式的乘除混合计算,熟知相关计算法则是解题的关键.4.(1)11;(2)【分析】(1)先计算出x y xy +,值,再根据()222x xy y x y xy ++=+-,代入计算即可得到答案;(2x y ==,则2222727936x y x y a a +=+=-++=,,从而可以求出=33<解:(1) x =y =,x y ∴+==321xy ==-=,∴()222x xy y x y xy ++=+-(2111=-=;(2x y ==,则2222727936x y x y a a +=+=-++=,,∴()()222213xy x y x y =+-+=,∴()222223x y x y xy -=+-=,∴x y -==33<=【点拨】本题考查了运用完全平方公式的变形进行求值,注()222x xy y x y xy ++=+-以及整体思想的运用.5.3【分析】先将x 、y 的值分母有理化,再代入到原式2)x y xy --=(计算可得.解:1x == ,1y =,∴原式()2=--x y xy))21111=--41=-3=【点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式分母有理化的能力.6.(1)1-;(2)4【分析】(1)仿照例题,可以求得所求式子的值;(2)仿照例题,将a 的值分母有理化,然后变形,即可求得所求式子的值.(1)解:2a ==+ ,2a ∴-()223a ∴-=,2443a a ∴-+=,241a a ∴-=-,()()22281241211211a a a a ∴+=+=⨯-+=---+=-,故答案为:1-;(2)解:2a =+ ,2a ∴-=,()225a ∴-=,2445a a +-∴=,241a a ∴-=,()43222244344314343134a a a a a a a a a a a ∴+=-+=⨯-++--=-=+=-,即43443a a a --+的值为4.【点拨】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确题意,利用类比的方法解答.7.【分析】先分母有理化求出a b 、的值,再利用完全平方公式将222a b ++变形为2()22a b ab +-+,然后代入求值即可.解:2a =,2b =,====.【点拨】本题主要考查了二次根式的化简求值和完全平方公式的应用,熟练掌握化简方法和完全平方公式的变形是解题的关键.8.222x x --,32-.【分析】先用二次根式的混合运算法则化简,然后将2x =代入计算即可.解:(()1x x x x -+-,=222x x x -+-,=222x x --,当x =时,原式=22222--()(),=()212422---),=32-.【点拨】本题主要考查了二次根式的混合运算、代数式求值等知识点,正确运用二次根式的混合运算法则化简原式是解答本题的关键.9.(1)-;(2)11【分析】(1)根据二次根式的乘法法则求出ab ,根据二次根式的减法法则求出a b -,根据提公因式法把原式变形,代入计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.(1)解:a = ,b =321ab ∴==-=,a b -=-=-则22a b ab -()ab a b =-(1=⨯-=-;(2)22a ab b ++2223a ab b ab=-++()23a b ab=-+2(31=-+⨯83=+11=.【点拨】本题考查的是二次根式的化简求值,掌握二次根式的加减法法则、乘法法则是解题的关键.10.26a a +,7-【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.解:原式2243363a a a =--++26a a =+,把3a 代入,得,原式))2336=+2918=+-7=-.【点拨】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.11.224x x --,3-【分析】先去括号,然后合并同类项化简,最后代值计算即可.解:()()2237752x x x x -+----2237752x x x x -+--++=224x x =--,当1x =+时,原式())2222415115253x x x =--=--=--=-=-.【点拨】本题主要考查了二次根式的化简求值,正确计算是解题的关键.12.【分析】先确定00,x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将x ,y 的值代入计算即可得.解:由题意得:100y x x >>,,∴00,x y >>,则153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2221153x y x x y ⎛⎛=⋅⋅-- ⎝⎝=-=当12x =,3y =时,原式6====【点拨】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.13.a b -,1.【分析】利用二次根式的性质和平方差公式化简,然后代入求值即可.221·ab =-a b =-a b =-,当3a =,2b =时,原式32=-1=.【点拨】题目主要考查二次根式的化简求值及平方差公式,熟练掌握二次根式的运算法则是解题关键.14.(1)3;(2)8【分析】(1)将221a a -+变形为()21a -,再代入a 的值求解即可;(2)将22a b +变形为()22a b ab +-,再代入a ,b 的值利用平方差公式和完全平方公式求解即可.(1)解:∵1a +,∴())222211113a a a -+=-=+-=,故答案为:3;(2)解:22a b +2222a b ab ab =++-()22a b ab =+-,当1,1a b =+=时,22a b +()22a b ab=+-)))211211⎡⎤=+-⎣⎦()12231=-⨯-8=.【点拨】本题考查二次根式的化简求值,掌握平方差公式和完全平方公式是解决问题的关键.15.13【分析】先对a进行分母有理化求出1a =,再把所求式子变形为()218a -+,再把1a =整体代入求解即可.解:∵a =,∴)())24141411511a ⨯+⨯+⨯+===+--,∴229a a -+2218a a =-++()218a =-+)2118=-+28=+58=+13=.【点拨】本题主要考查了二次根式的化简求值,分母有理化,正确求出1a =+并把所求式子变形为()218a -+是解题的关键.16.(1)2;(2)16.【分析】(1)把4-)21,再代入数据利用平方差公式计算即可求解;(2)根据二次根式有意义的条件得到20x -≥,20x -≥,求得2x =,4y =,再代入数据计算即可求解.解:(1)∵1α=,∴((241αα-+))()221111=+-))21111⎡⎤=--⎣⎦()()23131=---42=-2=;(2)∵4y =++4y =+∴20x -≥,20x -≥,∴2x =,4y =,∴2416x y ==.【点拨】本题考查了二次根式有意义的条件,二次根式的化简求值,掌握平方差公式的结构特征是解题的关键.17.±【分析】先将x 、y 化简,然后即可得到x y xy +、的值,从而可以求得所求式子的值.解:∵25x ==+,25y==-∴(55105525241x y xy +=++-==+-=-=,,∴22x xy y ++222x xy y xy=++-()2x y xy =+-2101=-1001=-99=.∵99的平方根为±∴22x xy y ++的平方根为±【点拨】本题考查二次根式的化简求值,求一个数的平方根,解答本题的关键是明确二次根式化简求值的方法.18.(1)-;(2)14【分析】(1)先把a 、b进行分母有理化得到2a =-2b =+,进而求出a b -=-1ab =,再根据()22a b ab ab a b -=-进行代值求解即可;(2)根据()2222a b a b ab +=-+进行求解即可.(1)解:∵a =b =∴a=b =,∴2243a -==-2243b ==-∴22a b -=---(22431ab =+-=-=,∴22a b ab -()ab a b =-1=-=-(2)解:由(1)得a b -=-1ab=,∴()(22222212214a b ab a b =-+=-+=+=+.【点拨】本题主要考查了二次根式的化简求值,正确求出a b -=-1ab=是解题的关键.19.,1;(3)5【分析】(1)根据分母有理化的方法进行求解即可;(2)把各项进行分母有理化,从而可求解;(3)仿照所给的解答方式进行求解.(1)解:==;2⨯=(21=++1;(3)解:∵1a ==,∴1a -=∴()212a -=,即2212a a -+=,∴()224814211442148145a a a a -+=-++-=⨯+-=+-=.【点拨】本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.20.4【分析】将a ,b 的值分别代入要求的式子中,然后按照二次根式运算的法则计算即可.解:22221)1)44a b -=-=++=2222842a b a b b a ab ++=====.【点拨】本题考查了二次根式的混合运算,熟记二次根式的混合运算法则是解题的关键.注意做这类计算题时,一定要细心.21.1;(2)①3-;②0;【分析】(1)根据例题可得:对每个式子的分子和分母,同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)①将a =化简,再得到241a a -=-,再整体代入化简后的式子计算即可;②根据241a a -=-,将所求式子变形,再整体代入计算即可.(1+ 1=1=;(2)解:① 2a ==-2a ∴-=()223a ∴-=,2443a a -+=241a a ∴-=-,∴()()222812412113a a a a --=--=⨯--=-,②由①知241a a -=-,∴3236216a a a --+()()()2224246436a a a a a a a a a =-+-+-++()()()1216136a a a =⨯-+⨯-+⨯-++2636a a a =---++0=.【点拨】本题考查了二次根式的化简求值,解题的关键是明确题意,利用平方差和完全平方公式解答.22.(1)2,2;(2)2+(3)>【分析】(1)根据二次根式的分母有理化可进行求解;(2)直接把x 的值代入求解即可;(3=解:(12142222-==-2;(2)∵x =,∴22x==∴((272x x ++((72=+⨯+⨯2=(3=;故答案为>.【点拨】本题主要考查二次根式的运算及分母有理化,熟练掌握二次根式的运算及分母有理化是解题的关键.23.2或2;2;(2)7【分析】(1)根据有理化因式的定义,进行求解即可;(2)根据题干给出的解题方法,进行求解即可.(1)解:∵321 =-=,=∵))()22341,22431=-=--=-=,22+或2,22=-=;2+或2;2;(2)解:∵(232332a+==+∴3a-=∴()237a-=,∴2697a a+=-,∴262a a-=-,∴22124aa-+=,∴221237a a-++=.【点拨】本题考查分母有理化.理解并掌握有理化因式的定义,是解题的关键.24.4【分析】利用二次根式的性质将原式化简,然后由平方差公式得出4xy=,代入求解即可.==,∵1x =-,1y =+,∴1)4xy ==,∴原式4==.【点拨】题目主要考查二次根式的化简及求代数式的值,平方差公式,熟练掌握运算法则是解题关键.25.223a -,3【分析】根据二次根式的混合运算法则,平方差公式和单项式乘多项式法则计算即可化简,再将a =代入化简后的式子计算即可.解:(1a a a a a ⎛⎫++- ⎪⎝⎭2221a a =-+-223a =-.当a =22232(33a =-=⨯-=.【点拨】本题考查二次根式的化简求值,涉及二次根式的混合运算,平方差公式和单项式乘多项式.熟练掌握各运算法则是解题关键.26.(1)20;(2)1±.【分析】(1)先分母有理化求出x 、y 的值,再求出x y +和xy 的值,最后根据完全平方公式进行变形,代入求出即可;(2)先求出x 、y 的范围,再求出a 、b 的值,最后代入求出即可.(1)解:12 2x ⨯==,2y =-,))22x y +=+-=,∴()(2222220x xy y x y ++=+==;(2)解;∵23,∴4<25+<,0<21-<,∵x 的小数部分为a ,y 的整数部分为b ,∴=a 24+-=2-,0y =,∴))2220541ax by +=+⨯=-=,∴ax by +的平方根是1=±.【点拨】本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点,能求出x y +和xy 的值是解(1)的关键,能估算出x 、y 的范围是解(2)的关键.27.3【分析】利用因式分解将已知化为0=,得出a b =,然后代入所求代数式即可得解.解: 非零实数a ,b 满足=,由题意可知0,0a b >>,220∴+=,∴=0,0a b >> ,0∴,=,a b ∴=,2332a a a a a a++=+-62aa =3=.【点拨】此题考查了二次根式的化简求值,熟练掌握二次根式的性质、因式分解以及分式的性质是解答此题的关键.28.18xy -,18-【分析】根据完全平方差公式、多项式乘以多项式运算法则先运算,再根据整式加减运算法则,去括号、合并同类项即可得到化简结果,最后代值利用平方差公式求解即可得到结果.解:()()()22282x y x y x y --++()()22222448282x xy y x xy xy y =-+-+++22228828102x xy y x xy y =-+---()()()22228881022x x xy xy y y =-+--+-18xy =-,当1x =1y =时,原式)1811=-⨯2181⎡⎤=-⨯-⎢⎥⎣⎦()1821=-⨯-18=-.【点拨】本题考查整式化简求值,涉及完全平方差公式、多项式乘以多项式、整式加减运算、去括号法则、合并同类项、平方差公式及二次根式运算,熟练掌握相关运算法则及公式是解决问题的关键.29.1-.【分析】根据x =12x -=()22121442022x x x -=-+=,2442021x x -=,将原式化为()()3322444420212022x x x x x ⎡⎤-+---⎣⎦,再整体代入即可求解.解:∵12x =,∴112122x -=-⨯∴()22121442022x x x -=-+=,∴2442021x x -=,∴原式()()3322444420212022x x x x x ⎡⎤=-+---⎣⎦()32021202120212022x x =+--()31=-1=-.【点拨】本题主要考查二次根式的化简,能正确根据二次根式的运算法则进行计算是解题关键.30.【分析】把已知数据代入代数式,根据二次根式的性质化简即可.解:∵1,10,15a b c ==-=-,===【点拨】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.31.5+【分析】根据2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭进行计算求解即可.解:∵12x x +=,∴221x x +2112x x x x ⎛⎫=+-⋅ ⎪⎝⎭(222=+-432=+-5=+【点拨】本题主要考查了二次根式的化简求值,完全平方公式的变形求值,正确根据完全平方公式得到2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭是解题的关键.32【分析】根据题意可判断a 和b 都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:8a b +=-Q ,12ab =,∴a 和b 均为负数,()222240a b a b ab +=+-====b b a a-+-=22=22a b-+====3-=【点拨】此题考查的是二次根式的化简和完全平方公式的变形;掌握二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.33.(1)5a =,4b =-;(2)2022【分析】(1)根据二次根式有意义的条件先求出a 的值,进而求出b 的值即可;(2)根据二次根式有意义的条件得到2022a ≥,2021=,两边平方即可得到答案.解:(14b +要有意义,∴501020a a -≥⎧⎨-≥⎩,∴5a =,4b =+,∴4b =-;(2)∵2021a a -要有意义,∴20220a -≥,∴2022a ≥,∴2021a a -=,2021=,∴220222021a -=,∴220212022-=a 【点拨】本题主要考查了二次根式有意义的条件,化简绝对值,代数式求值,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.34.24【分析】先计算出x y +=2xy =-,,再利用完全平方公式变形得到()2222x y x y xy +=+-,然后利用整体代入的方法计算.解:∵x =y =,∴x y +=++=2xy =+=-,∴()(()222222220424x y x y xy +=+-=-⨯-=+=.【点拨】本题主要考查二次根式的化简求值,代数式求值,解题的关键是熟练运用完全平方公式化简二次根式.35+【分析】先根据整式的混合运算法则将所求整式化简,再根据算术平方根和偶次幂的非负性求出a 、b ,代入即可作答.解:()()()22+ 2+2+22a b a b a b b --⎡⎤⎣⎦()()22222442322a ab b a ab b b⎡⎤=+++-⎣⎦--()22222442322a ab b a ab b b =+++---()23a a b =+23b a a =+=+,2069b b ++=,()203b +=,0≥,()203b +≥,0=,()203b +=,∴20a -=,30b +=,∴=2a ,3b =-,将=2a ,3b =-3+中,原式()3332=+=+⨯-=【点拨】本题考查了二次根式的加减乘除混合运算,其中涉及到了算术平方根的非负性和完全平方公式等,解决本题的关键是牢记整式的混合运算法则.36.2015【分析】直接利用分母有理化将原式化简,再将多项式变形,进而代入得出答案.解:∵x 25===-,y 25===+22205520x xy y ∴++2220402015x xy y xy=+++()2220215x xy y xy=+++()22015x y xy=++((22055155252=⨯-++⨯-+()22010152524=⨯+⨯-2010015=⨯+200015=+2015=.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.37.(1)10;(2)10【分析】(1)先求出xy 及x +y 的值,再将33x y xy +因式分解,最后再整体代入求值;(2)先将y x x y+通分,再通过完全平方公式变形,最后代入求值.解:(1)x y ==1,xy ∴=⨯+=x y +==()33222()212110x y xy xy x y xy x y xy⎡⎤⎡⎤∴+=+=+-=⨯-⨯=⎣⎦⎣⎦(2)y x x y +22y x xy+=2()2x y xy xy+-=2211-⨯=10=【点拨】本题考查与二次根式相关的代数式求值问题,解题的关键是整体思想的应用.38.【分析】先根据二次根式有意义的条件求出x 的值,进而求出y 的值,然后代值计算即可.解:∵12y =要有意义,∴140410x x -≥⎧⎨-≥⎩,∴1144x ≤≤即14x =,∴1122y ==,∴122x y y x==,,==【点拨】本题主要考查了二次根式有意义的条件,二次根式的求值,正确求出x 、y 的值是解题的关键.39.(1)1;(2)9【分析】(1)根据二次根式的加法法则即可求出x y +,根据二次根式的乘法法则即可求出xy ;(2)先根据完全平方公式变成()2223x xy y x y xy =+--+,再代入求出答案即可.(1)解:∵x =y =,∴x y ==++321xy ⨯==-=.∴x y +的值为xy 的值为1.(2)∵x y +=1xy =,22x xy y -+()23x y xy=+-(231=-⨯123=-9=.∴22x xy y -+的值为9.【点拨】本题考查二次根式的化简求值,完全平方公式,平方差公式.能正确根据二次根式的运算法则进行计算是解题的关键.40.(1);(2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算.(1)解:x =Q y =,x y ∴+=,x y -=()()22x y x y x y -=+-=(2)由(1)知x y +=∴22222()12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.41.1-;(3)2+【分析】(1(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩,即可得出相应结果.(2)根据(1)中“222532+=++=++=”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A式和B式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B式的结果分别算出,最后把A式和B式再代入A+B中,求出A+B的值.解:(1)∵222 5232+=++=++==(2)∵)22 43111 -=+-=+-=-1-.(3)∵222 6422(2A=+++++⨯+∴2 A=+∵2212132B+-⨯⨯===∴B=====∴把A式和B式的值代入A+B中,得:222A B+=+=【点拨】本题考查二次根式的化简求值问题,完全平方公式.解本题的关键在熟练掌握二次根式的性(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩和熟练运用完全平方公式()2222a b a ab b±=±+.42.18【分析】先将条件变形为:2a=,2b=,然后将结论变形22a bab+,最后将化简后的条件代入变形后的式子就可以求出其值.解:∵a =,b =,∴2a +,2b -,∴ab =1,+=a b∴b a a b +()(22222218a b a b ab ab ++==-=-=.【点拨】本题主要考查了二次根式的分母有理化,完全平方公式的运用,正确求出2a =,2b =是解答本题的关键.43.2+3+.【分析】先根据二次根式的运算法则,在根据分式的运算法则计算即可,先化简,再代入8x =,127y =即可.解:原式2=-2=+,当8x =、127y =时,原式3=329=+⨯3=.【点拨】本题考查了二次根式及分式的运算法则,熟练掌握并应用二次根式及分式的运算法则是解答本题的关键.44.(1)(2)11【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =,∴x y -==231xy ==-=-,原式=x 2﹣2xy +y 2+xy=(x ﹣y )2+xy=(2﹣1=12﹣1=11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.45.3x +y ,15【分析】根据题意求出x 与y 的值,然后根据完全平方公式以及平方差公式进行化简,然后将x 与y 代入原式即可求出答案.解:∵3y =+有意义∴40x -≥且40x -≥∴x =4,∴y =3,∵a b =()222222a b ab a b ab ab a b ab++=++-=+-∴()2222a b ab a b ab ++=+-=+-(()2x y =--3x y=+把x =4,y =3代入上式中原式34315=⨯+=【点拨】本题主要考查了二次根式有意义的条件,二次根式的化简求解,完全平方公式和平方差公式,解题的关键在于能够熟练掌握相关知识进行求解.46.(1)①3;②19;(2)±【分析】(1)①根据x +2,y −2,可以得到xy 、x +y 的值,然后即可求得所求式子的值;②将所求式子变形,然后根据x2,y −2,可以得到xy 、x +y 的值,从而可以求得所求式子的值;(2)根据完全平方公式和换元法可以求得所求式子的值.解:(1)①11x y +=x yy x +,∵x 2,y ,∴x +y =,xy =3,当x +y =,xy =3时,原式=3;②x 2−xy +y 2=(x +y )2−3xy ,∵x 2,y ,∴x +y =,xy =3,当x +y ,xy =3时,原式=()2−3×3=19;(2x y ,则39−a 2=x 2,5+a 2=y 2,∴x 2+y 2=44,8,∴(x +y )2=64,∴x 2+2xy +y 2=64,∴2xy =64−(x 2+y 2)=64−44=20,∴(x −y )2=x 2−2xy +y 2=44−20=24,∴x −y =±,±故答案为:±【点拨】本题考查二次根式的化简求值、分式的加减法、平方差公式,解答本题的关键是明确它们各自的计算方法.47.32-【分析】先把=x x =再化简2154x x x --+得111x x ---,最后代入求值即可.解:x =+∵12<<∴34<<∴4x <1x1x=(4)1(4)(1)x x x x--=---111x x =---将x =代入上式得:原式=13(222-==-=【点拨】本题考查了二次根式的混合计算,熟练掌握运算法则是解答此题的关键.48.7-2=+12<得到3a =,1b =,将a 、b 代入即可计算即可.2=,12<<,∴3a =,1b =,∴(2312227a b a b -----===-+【点拨】本题考查二次根式的化简及计算,同时也考查了学生的估算能力,夹逼法是估算时常用的一种方法.49.(1)(a a ;5-(2)11【分析】(1)利用乘法公式化简,在代入求值计算即可;(2)把x ,y 代入代数式求解即可;解:(1)原式(222266a a a a a =--+=+=+,当1a -时,原式11=+,5=-.(2)由已知可得:1x y xy -==,原式=222x xy y xy -+-,()2=--x y xy,(21=-,121=-,11=.【点拨】本题主要考查了二次根式的化简计算,利用乘法公式化简是解题的关键.50.(1)13;(2)3-【分析】(1)利用二次根式的加法运算和乘法运算求得a b +和ab ,对所求式子利用完全平方公式变形,进而整体代入求出即可;(2)首先利用分母有理化法则求出a ,b的值,根据12<,可得m ,n 的值,进而代入求值即可.解:(1)22114442a b+-++====,1ab =,22a ab b -+()23a b ab=+-243=-13=;(2)2a ==,2b ==+∵12<<,21-<-,∴22221-<<-,21222+<<+,即021<,324<+∴2的整数部分是0,小数部分是2,即2m =2+31,即1n =,∴()()m n m n +-()()2121=3=-【点拨】本题主要考查了二次根式的化简求值,估算无理数的大小,根据12<<,得出m ,n 的值是解题关键,注意要分母有理化.。
第7讲解题技巧专题:二次根式中的化简求值(6类热点题型讲练)(原卷版)--初中数学北师大版8年级上册
![第7讲解题技巧专题:二次根式中的化简求值(6类热点题型讲练)(原卷版)--初中数学北师大版8年级上册](https://img.taocdn.com/s3/m/7ab48e0a3d1ec5da50e2524de518964bce84d24a.png)
(1)
1 3
______ ; 2
(2)化简
1 2 1
1 3
2
1 4
3
1 10
; 9
(3)若 a
1 5
2
,求
a2
4a
3 的值.
4.(2023 春·河北邢台·八年级校考期中)【阅读材料】在二次根式中,如: 3 2 3 2 1, 3 3 3 3 6 ,它们的积不含根号,我们称这样的两个二次根式互为有理化因式.于是我们可以利用
m
*
n
m m
n m n n m n ,则计算 3*8 27 * 2 的结果为
.
【变式训练】
1.(2023 春·广西南宁·七年级校联考期中)对于两个不相等的实数 a、b,定义一种新的运算如下,
ab
ab ab
(
a
b
0)
,如:
3
*
2
32 32
5 ,那么 5 4
.
2.(2023 秋·河北保定·七年级统考期末)定义一种对正整数 n 的“F 运算”:①当 n 为奇数时,结果为 3n 5;
2.(2023 春·广东肇庆·七年级校考期中)已知 | a 1| 7 b 0,则 2a 2b 的算术平方根是
.
3.(2023·全国·八年级假期作业)如果实数 x 、 y 满足 y x 3 3 x 2 ,则 x 3y 的平方根为 .
4.(2023 春·安徽池州·八年级统考期末)已知直角三角形两边 x、y 的长满足 x2 4 y2 5 y 6 0 ,则第
第 2 章第 07 讲 解题技巧专题:二次根式中的化简求值(6 类热点题型 讲练)
目录 【类型一 利用二次根式的非负性求值】 ..........................................................................................................1 【类型二 利用乘法公式进行计算】 ..................................................................................................................2 【类型三 整体代入求值】 .................................................................................................................................. 2 【类型四 新定义型运算】 .................................................................................................................................. 3 【类型五 二次根式的分母有理化】 ..................................................................................................................4 【类型六 复合二次根式的化简】 ......................................................................................................................7
二次根式的化简求值—2023-2024学年八年级数学下册压轴题(沪科版)(解析版)
![二次根式的化简求值—2023-2024学年八年级数学下册压轴题(沪科版)(解析版)](https://img.taocdn.com/s3/m/9760d713bf1e650e52ea551810a6f524ccbfcbe7.png)
z二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
一、二次根式的定义形如√a (a ≥0)的式子叫做二次根式,√⬚叫做二次根号,a 叫做被开方数. 二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:√a ≥0. 三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是 非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:&√a'!=a (a ≥0),即一个非负数的算术平方根的平方等于它本身;性质2:√a !=|a|=)a (a ≥0)−a (a <0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式. ①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.◆知识点总结◆思想方法z六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 七、二次根式的乘除法则①二次根式的乘法法则:√a ∙√b =√a ∙b(a ≥0,b ≥0); ②积的算术平方根:√a ∙b =√a ∙√b(a ≥0,b ≥0); ③二次根式的除法法则:√#√$=5#$(a ≥0,b >0);④商的算术平方根:5#$=√#√$(a ≥0,b >0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式. 九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母 组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个 二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.①在进行二次根式的化简与运算时,我们有时会碰上如!√%&'一样的式子,其实我们还可以将其进一步化简:!√%&'= !(√%)')(√%&')(√%)')= !(√%)')(√%)!)'=!(√%)')!= √3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求a !+b !.我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则a !+b !=(a +b)!−2ab =x !−2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果. (1)计算:'√%&'+ '√+&√%+ '√,&√++ ...+'√!-'.&√!-',;◆典例分析z(2)m 是正整数, a =√/&')√/√/&'&√/,b =√/&'&√/√/&')√/且2a !+1823ab +2b !=2019.求 m .(3)已知√15+x !−√26−x !=1,求√15+x !+√26−x !的值.(1)由题目所给出的规律进行计算即可;(2)先求出a +b =2(2m +1),ab =1再由2a !+1823ab +2b !=2019进行变形再求值即可;(3)先得到√15+x !⋅√26−x !=20,然后可得(√15+x !+√26−x !)!=(√15+x !−√26−x !)!+4√15+x !⋅√26−x !=81,最后由√15+x !≥0,√26−x !≥0,求出结果. 解:(1)原式=√%)'!+√+)√%!+√,)√+!+⋯+√!-'.)√!-',!=√3−1+√5−√3+√7−√5+⋯+√2019−√20172=√!-'.)'!, (2)∵a =√/&')√/√/&'&√/,b =√/&'&√/√/&')√/,∴a +b =(√/&')√/)!&(√/&'&√/)!(√/&'&√/)(√/&')√/)=2(2m +1),ab =1,∵2a !+1823ab +2b !=2019, ∴2(a !+b !)+1823=2019, ∴a !+b !=98, ∴4(2m +1)!=100, ∴2m =±5−1, ∵m 是正整数, ∴m =2.(3)由√15+x !−√26−x !=1得出(√15+x !−√26−x !)!=1, ∴√15+x !⋅√26−x !=20,∵(√15+x !+√26−x !)!=(√15+x !−√26−x !)!+4√15+x !⋅√26−x !=81, 又∵√15+x !≥0,√26−x !≥0, ∴√15+x !+√26−x !=9.z1.(2023下·浙江·八年级阶段练习)已知x =√2−√3,y =√2+√3,则代数式Kx !+2xy +y !+x −y −4的值为( ) A .√%! B .%C .√3−1D .√+)'!【思路点拨】根据已知,得到x +y =√2−√3+√2+√3=2√2,x −y =√2−√3−√2−√3=−2√3,整体思想带入求值即可. 【解题过程】解:∵x =√2−√3,y =√2+√3,∴x +y =√2−√3+√2+√3=2√2,x −y =√2−√3−√2−√3=−2√3, ∴Kx !+2xy +y !+x −y −4=K (x +y )!+(x −y )−4 =5&2√2'!−2√3−4 =58−2√3−4 =54−2√3 =5&√3'!−2√3+1 =5&√3−1'! =√3−1. 故选C .2.(2022下·广西钦州·八年级统考阶段练习)已知x +'1=7(0<x <1),则√x −'√1的值为( )A .−√7B .−√5C .√7D .√5【思路点拨】由0<x <1,得0<x <'1,故√x <'√1,将√x −'√1平方展开计算,后开平方即可.【解题过程】解:∵0<x <1, ∴0<x <'1,◆学霸必刷∴√x<'√1,∵(√x−'√1)!=x−2+'1,x+'1=7(0<x<1),∴(√x−'√1)!=5,∴√x−'√1=-√5或√x−'√1=√5,∵√x<'√1,∴√x−'√1<0,∴√x−'√1= -√5,√x−'√1=√5不符合题意,舍去,故选B.3.(2023·浙江宁波·校考一模)若x!+y!=1,则√x!−4x+4+K xy−3x+y−3的值为()A.0 B.1 C.2 D.3【思路点拨】先根据x!+y!=1得出−1≤x≤1,−1≤y≤1,根据√x!−4x+4+K xy−3x+y−3要有意义,得出(x+1)(y−3)≥0,根据y−3<0得出x+1≤0,从而得出x=−1,将x=−1代入即可求出式子的值.【解题过程】解:∵x!+y!=1,∴−1≤x≤1,−1≤y≤1,∵√x!−4x+4+K xy−3x+y−3要有意义,∴xy−3x+y−3≥0,整理得:(x+1)(y−3)≥0,∵y−3<0,∴x+1≤0,∴x=−1,∴√x!−4x+4+K xy−3x+y−3=K(x−2)!+K(x+1)(y−3)=K(−1−2)!+K(−1+1)(y−3)=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知x='√!-!-)√!-'.,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x ﹣√2020的值为()A.0 B.1 C.√2019D.√2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵x='√!-!-)√!-'.=√2020+√2019,∴x2−2√2019x+−x0+x%−2√2020x!+2x−√2020,=x+&x−2√2019'−x0+x!&x−2√2020'+2x−√2020,=x+&√2020+√2019−2√2019'−x0+x!&√2020+√2019−2√2020'+2x−√2020,=x+&√2020−√2019'−x0+x!&√2019−√2020'+2x−√2020,=x0Mx&√2020−√2019'−1N+x!&√2019−√2020'+2x−√2020,=x&√2020+√2019'&√2019−√2020'+2x−√2020=−x+2x−√2020,=x−√2020,=√2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为K3+√5−K3−√5的小数部分,b为K6+3√3−K6−3√3的小数部分,则!b −'#的值为()A.√6+√2−1B.√6−√2+1C.√6−√2−1 D.√6+√2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:K3+√5−K3−√5=P 6+2√52-P 6-2√52=√5+1√2-√5-1√2=√2∴a 的小数部分为√2-1, 56+3√3−56−3√3 =P 12+6√32−P 12−6√32=√3+3√2-3-√3√2=√6∴b 的小数部分为√6-2, ∴!b −'#=!√2-!-'√!-'=√6+2-√2-1=√6-√2+1,故选:B .6.(2022上·湖南益阳·八年级统考期末)设a '=1+''!+'!!,a !=1+'!!+'%!,a %=1+'%!+'0!,……,a 5=1+'5!+'(5&')!.其中n 为正整数,则√a '+√a !+K a %+⋅⋅⋅+K a !-!'的值是( ) A .2020!-'.!-!-B .2020!-!-!-!'C .2021!-!-!-!'D .2021!-!'!-!!【思路点拨】根据题意,先求出K a 5=1+'5(5&'),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n 为正整数, ∴K a 5=51+'5!+'(5&')! =55!•(5&')!&(5&')!&5!5!(5&')!=5[5(5&')]!&!5(5&')&'5!(5&')!=9(5!&5&')!5(5&')=5!&5&'5(5&')=1+'5(5&');∴√a'+√a!+K a%+⋯+K a!-!'=(1+''×!)+(1+'!×%)+(1+'%×0)+…+(1+'!-!'×!-!!)=2021+1﹣'!+'!−'%+'%−'+⋯+'!-!'−'!-!!=2021+1﹣'!-!!=2021!-!'!-!!.故选:D.7.(2023上·上海金山·八年级校考期中)如果a=√5−2,则'#+5'#!+a!−2=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得'#,从而可得'#−a>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵a=√5−2,∴'#='√+)!=√+&!;√+&!<;√+)!<=√5+2,∴'#−a=√5+2−&√5−2'=4>0,∴1a+P1a!+a!−2=1a+P R1a−aS!=1a+R1a−aS=√5+2+4=√5+6.故答案为:√5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知x=+)√',√',)%,y=√',)%+)√',,则4x!−3xy+4y!=.【思路点拨】先把x和y的值分母有理化得到x=√',)'0,y=√',&',则x−y=−'!,xy=1,再利用完全平方公式变形原式得到4(x−y)!+5xy,然后利用整体代入的方法计算.解:∵x=+)√',√',)%,y=√',)%+)√',,∴x=;+)√',<;√',&%<;√',)%<;√',&%<=√',)',y=;√',)%<;+&√',<;+)√',<;+&√',<=√',&',∴x−y=−'!,xy=1,∴原式=4(x−y)!+5xy=4×(−12)!+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知√x+'√1=2,那么511!&%1&'−511!&.1&'的值等于.【思路点拨】通过完全平方公式求出x+'1=2,把待求式的被开方数都用x+'1的代数式表示,然后再进行计算.【解题过程】解:∵√x+'√1=2,∴U√x+'√1V!=4,∴x+'1+2=4∴x+'1=2,∴511!&%1&'−511!&.1&'=P 1x+3+1x−P1x+9+1x=P 12+3−P12+9=√++−√''''.故答案为:√++−√''''.10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,x K y+y√x−√7x−√7y+ K7xy=7,求x+y=.将等式进行因式分解,得到&√x+K y+√7'&K xy−√7'=0,求得xy=7,即可求解.【解题过程】解:∵x K y+y√x−√7x−K7y+K7xy=7,∴x K y+y√x−√7x−K7y+K7xy−7=0,∴K xy&√x+K y'−√7&√x+K y'+√7&K xy−√7'=0,∴&√x+K y'&K xy−√7'+√7&K xy−√7'=0,∴&√x+K y+√7'&K xy−√7'=0,∵√x+K y+√7>0,∴K xy−√7=0,∴xy=7,又x,y为正整数,则(x,y)=(1,7)或(7,1),从而x+y=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设x=√3−2,则x2+3x++11x%+2x+1=.【思路点拨】利用(x+2)!=x!+4x+4和x=√3−2,推得x!+4x+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵x=√3−2,∴(x+2)!=&√3−2+2'!=3,又∵(x+2)!=x!+4x+4,即x!+4x+4=3,整理得x!+4x+1=0,x2+3x++11x%+2x+1=x0(x!+4x+1)+3x++11x%+2x+1−4x+−x0=−x+−x0+11x%+2x+1=−x%(x!+4x+1)−x0+11x%+2x+1+4x0+x%=3x0+12x%+2x+1=3x!(x!+4x+1)+2x+1−3x!=−3x!+2x+1=−3(x!+4x+1)+2x+1+12x+3=14x+4,将x=√3−2代入原式可得14×&√3−2'+4=14√3−24.故答案为:14√3−24.12.(2022下·湖北武汉·九年级统考自主招生)已知x=%&√+!,则代数式2x%−3x!−7x+2022的值为.【思路点拨】将已知条件x=%&√+!变形得,x!−3x=−1,再将所求代数式变形为2x%−6x!+3x!−7x+2022,由此即可求解.【解题过程】解:已知x=%&√+!,∴2x=3+√5,即2x−3=√5,等式两边同时平方得,(2x−3)!=&√5'!,整理得,4x!−12x+9=5,即4x!−12x=−4,∴x!−3x=−1,∵2x%−3x!−7x+2022=2x(x!−3x)+3x!−7x+20022把x!−3x=−1代入得,=2x×(−1)+3x!−7x+2022=3x!−2x−7x+2022=3x!−9x+2022=3(x!−3x)+2022把x!−3x=−1代入得,=3×(−1)+2022=2019,故答案为:2019.13.(2022上·上海闵行·八年级上海市闵行区莘松中学校考期中)先化简,再求值:1)=√1)√=+1&=&!√1=√1&√=,其中x=3,y='%.首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=(√1)√=)(√1&√=)√1)√=+(√1&√=)!√1&√==√x+K y+√x+K y =2√x+2K y当x=3,y='%时,原式=2√3+25'%=2√3+23√3=>%√3.14.(2023·北京·九年级专题练习)已知x=√%)√!√%&√!,y=√%&√!√%)√!,求1=!+=1!的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵x=√%)√!√%&√!=(√%)√!)(√%)√!)(√%&√!)(√%)√!)=5−2√6,y=√%&√!√%)√!=(√%&√!)(√%&√!)(√%)√!)(√%&√!)=5+2√6,∴原式=+)!√2(+&!√2)!++&!√2(+)!√2)!=5−2√649+20√6+5+2√649−20√6=(5−2√6)(49−20√6)(49+20√6)(49−20√6)+(5+2√6)(49+20√6)(49−20√6)(49+20√6)=245−100√6−98√6+240+245+100√6+98√6+240 =970.15.(2023下·山东威海·九年级校考期中)已知a+b=−8,ab=12,求b5$#+a5#$的值.【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:∵a +b =−8,ab =12, ∴a 和b 均为负数,a !+b !=(a +b )!−2ab =40 b P b a +a5a b =b P b !ab +a P a !ab=b√b !√ab +a √a !√ab =b√b !+a√a !√ab=b (−b )+a (−a )√ab=−b !−a !√ab=−(a !+b !)√ab=−40√12 =−40√1212 =−40×2√312 =−20√33 16.(2023上·上海杨浦·七年级校考阶段练习)已知a −2√ab −15b =0,求#&√#$&!$#)!√#$&$的值.【思路点拨】讨论:当a >0,b >0,利用因式分解的方法得到&√a −5√b'&√a +3√b'=0,解得a =25b ,当a<0,b <0,则−M&√−a +5√−b'&√−a −3√−b'N =0,解得a =9b ,然后把a =25b ,a =9b 代入#&√#$&!$#)!√#$&$中进行分式的化简求解. 【解题过程】解: ∵ a −2√ab −15b =0要有意义,即ab ≥0, ∴ a >0且b >0或a<0且b <0,当a>0且b>0时,∵a−2√ab−15b=&√a−5√b'&√a+3√b'=0,∴√a−5√b=0或√a+3√b=0(舍去),解得:a=25b,把a=25b代入#&√#$&!$#)!√#$&$得:#&√#$&!$#)!√#$&$=!+$&+$&!$!+$)'-$&$=2;当a<0且b<0时,∵a−2√ab−15b=−M&√−a+5√−b'&√−a−3√−b'N=0,∴√−a+5√−b=0(舍去)或√−a−3√−b=0,解得:a=9b,把a=9b代入#&√#$&!$#)!√#$&$得:#&√#$&!$#)!√#$&$=.$&%√$!&!$.$)2√$!&$=.$)%$&!$.$&2$&$='!.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知x='√'-)%,y='√'-&%.(1)求x!+2xy+y!的值.(2)求9(1!)01&0)1(1)!)−9(=!&!=&')=(=&')值.【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵x='√'-)%=√10+3,y='√'-&%=√10−3,∴x+y=2√10,x−y=6,∴x!+2xy+y!=(x+y)!=(2√10)!=40.(2)∵x=√10+3,y=√10−3,∴x−2>0,y+1>0,∴K(x!−4x+4)x(x−2)−K(y!+2y+1)y(y+1)=x−2x(x−2)−y+1y(y+1)=1x−1y=1√10+3−1√10−3=√10−3−√10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知x=2−√3,y=2+√3.(1)求x+y和xy的值;(2)求x!+y!−3xy的值;(3)若x的小数部分是a,y的整数部分是b,求ax−by的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入x=2−√3,y=2+√3即可求出x+y和xy的值;(2)将原式变形为(x+y)!−5xy,代入数值进行计算即可;(3)先估算出1<√3<2,从而得出a=2−√3,b=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵x=2−√3,y=2+√3,∴x+y=2−√3+2+√3=4,xy=&2−√3'&2+√3'=4−3=1;(2)解:由(1)得:x+y=4,xy=1,∴x!+y!−3xy=(x+y)!−5xy=4!−5×1=11(3)解:∵1<3<4,∴√1<√3<√4,即1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∵x的小数部分是a,∴a=2−√3,∵3<2+√3<4,y的整数部分是b,∴b=3,∴ax−by=&2−√3'&2−√3'−3&2+√3'=4−4√3+3−6−3√3=1−7√3.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将K a ±2√b 化简,如果你能找到两个数m 、n ,使m !+n !=a 且mn =√b ,a ±2√b 将变成m !+n !±2mn ,即变成(m ±n)!,从而使K a ±2√b 得以化简. (1)例如,∵5+2√6=3+2+2√6=(√3)!+(√2)!+2√2×√3=(√3+√2)!, ∴K 5+2√6=5(√3+√2)!=______,请完成填空. (2)仿照上面的例子,请化简K 4−2√3;(3)利用上面的方法,设A =K 6+4√2,B =K 3−√5,求A +B 的值. 【思路点拨】(1)根据二次根式的性质:√a !=|a|=Z a(a >0)0(a =0)−a(a <0),即可得出相应结果.(2)根据(1)中“5+2√6=3+2+2√6=(√3)!+(√2)!+2√2×√3=(√3+√2)!”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值. 【解题过程】(1)∵5+2√6=2+3+2√6=&√2'!+&√3'!+2×√2×√3=&√2+√3'!∴K 5+2√6=5(√3+√2)!=√3+√2 故答案为:√3+√2(2)∵4−2√3=3+1−2√3=&√3'!+1−2√3=&√3−1'!∴K 4−2√3=5(√3−1)!=√3−1.(3)∵A =6+4√2=4+2+4√2=&√4'!+&√2'!+2×√4×√2=(2+√2)! ∴A =K 6+4√2=2+√2 ∵B =3−√5=2)!√+!=+&')!√+!=;√+<!&'!)!×'×√+!=(√+)')!! ∴B =K 3−√5=5;√+)'<!!=√+)'√!=√'-)√!!='!√10−'!√2∴把A 式和B 式的值代入A +B 中,得:A+B=2+√2+12√10−12√2=2+12√10+√2220.(2023下·广西钦州·八年级校考阶段练习)我们将&√a+√b'、&√a−√b'称为一对“对偶式”,因为&√a+√b'&√a−√b'=(√a)!−(√b)!=a−b,所以构造“对偶式”再将其相乘可以有效的将&√a+√b'和&√a−√b'中的“√⬚”去掉于是二次根式除法可以这样解:如'√%=√%√%×√%=√%%,!&√!!)√!=(!&√!)!(!)√!)×(!&√!)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小'√,)!_____'√2)√%用“>”、“<”或“=”填空);(2)已知x=√+&!√+)!,y=√+)!√+&!,求1)=1!=&1=!的值;(3)计算:!%&√%+!+√%&%√++!,√+&+√,+⋯+!..√.,&.,√..【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得x−y,xy的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(1)'√,)!=√,&!;√,)!<;√,&!<=√,&!%,'√2)√%=√2&√%;√2)√%<;√2&√%<=√2&√%%∵√7>√6,2>√3∴√,&!%−√2&√%%='%M&√7−√6'+&2−√3'N>0,∴'√,)!>'√2)√%,故答案为:>.(2)∵x=√+&!√+)!=;√+&!<!;√+&!<;√+)!<=5+4√5+4=9+4√5,y=√+)!√+&!=;√+)!<!;√+&!<;√+)!<=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=&9+4√5'&9−4√5'=81−80=1,∴1)=1!=&1=!=1)=1=(1&=)=>√+'×'>=0√+.;(3)!%&√%+!+√%&%√++!,√+&+√,+⋯+!..√.,&.,√..=2(3−√3)(3+√3)(3−√3)+2(5√3−3√5)(5√3+3√5)(5√3−3√5)+√97+97√99(7√5+5√7)(7√5−5√7)+⋯+2(99√97−97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√''%%.。
河北专用2023八年级数学下册第十六章二次根式专项二次根式的化简与求值作业课件新版新人教版
![河北专用2023八年级数学下册第十六章二次根式专项二次根式的化简与求值作业课件新版新人教版](https://img.taocdn.com/s3/m/28d69ac09f3143323968011ca300a6c30c22f18f.png)
类型1 利用二次根式的非负性化简求值
2.已知
−3+| 2 −9|
( +3)2
=0,求
答案
2.解:∵
−3+| 2 −9|
( +3)2
=0,
∴x-3y=0,x2-9=0,x+3≠0,
∴x=3,y=1,
∴
+2
=
+1
3+2 10
= .
1+1 2
+2
+1
的值.
类型1 利用二次根式的非负性化简求值
(2)设 39−2 =x, 5 + 2 =y,
则x2+y2=39-a2+5+a2=44.
∵ 39−2 + 5 + 2 =8,即x+y=8,
∴(x+y)2=64,∴x2+2xy+y2=64,
∴2xy=64-(x2+y2)=64-44=20,
∴(x-y)2=x2-2xy+y2=44-20=24,
3.[2021重庆巴南区期中]已知y= 8− + −8+2.
(1)求代数式 的值;
(2)求代数式
++2−
+ −2的值.
答案
3.解:(1)由题意得x-8≥0,8-x≥0,
∴x=8,∴y=2,∴xy=16,
∴ = 16=4.
(2)由(1)知x=8,y=2,
∴
++2−
1
1
∴a->0,a+<0,∴原式=a-+a+=2a.
八年级二次根式化简题100题
![八年级二次根式化简题100题](https://img.taocdn.com/s3/m/7458ff7f86c24028915f804d2b160b4e777f8173.png)
八年级二次根式化简题100题1. 二次根式化简题在八年级数学学习中,二次根式化简是一个重要的知识点。
通过化简二次根式,我们可以简化计算过程,更好地理解和应用根式的性质。
本文将为大家提供100道八年级二次根式化简题,帮助大家巩固和提高相关知识。
1. $\sqrt{16} = 4$2. $\sqrt{25} = 5$3. $\sqrt{36} = 6$4. $\sqrt{49} = 7$5. $\sqrt{64} = 8$6. $\sqrt{81} = 9$7. $\sqrt{100} = 10$8. $\sqrt{121} = 11$9. $\sqrt{144} = 12$10. $\sqrt{169} = 13$11. $\sqrt{196} = 14$12. $\sqrt{225} = 15$13. $\sqrt{256} = 16$15. $\sqrt{324} = 18$16. $\sqrt{361} = 19$17. $\sqrt{400} = 20$18. $\sqrt{441} = 21$19. $\sqrt{484} = 22$20. $\sqrt{529} = 23$21. $\sqrt{576} = 24$22. $\sqrt{625} = 25$23. $\sqrt{676} = 26$24. $\sqrt{729} = 27$25. $\sqrt{784} = 28$26. $\sqrt{841} = 29$27. $\sqrt{900} = 30$28. $\sqrt{961} = 31$29. $\sqrt{1024} = 32$30. $\sqrt{1089} = 33$31. $\sqrt{1156} = 34$32. $\sqrt{1225} = 35$34. $\sqrt{1369} = 37$35. $\sqrt{1444} = 38$36. $\sqrt{1521} = 39$37. $\sqrt{1600} = 40$38. $\sqrt{1681} = 41$39. $\sqrt{1764} = 42$40. $\sqrt{1849} = 43$41. $\sqrt{1936} = 44$42. $\sqrt{2025} = 45$43. $\sqrt{2116} = 46$44. $\sqrt{2209} = 47$45. $\sqrt{2304} = 48$46. $\sqrt{2401} = 49$47. $\sqrt{2500} = 50$48. $\sqrt{2601} = 51$49. $\sqrt{2704} = 52$50. $\sqrt{2809} = 53$51. $\sqrt{2916} = 54$53. $\sqrt{3136} = 56$54. $\sqrt{3249} = 57$55. $\sqrt{3364} = 58$56. $\sqrt{3481} = 59$57. $\sqrt{3600} = 60$58. $\sqrt{3721} = 61$59. $\sqrt{3844} = 62$60. $\sqrt{3969} = 63$61. $\sqrt{4096} = 64$62. $\sqrt{4225} = 65$63. $\sqrt{4356} = 66$64. $\sqrt{4489} = 67$65. $\sqrt{4624} = 68$66. $\sqrt{4761} = 69$67. $\sqrt{4900} = 70$68. $\sqrt{5041} = 71$69. $\sqrt{5184} = 72$70. $\sqrt{5329} = 73$72. $\sqrt{5625} = 75$73. $\sqrt{5776} = 76$74. $\sqrt{5929} = 77$75. $\sqrt{6084} = 78$76. $\sqrt{6241} = 79$77. $\sqrt{6400} = 80$78. $\sqrt{6561} = 81$79. $\sqrt{6724} = 82$80. $\sqrt{6889} = 83$81. $\sqrt{7056} = 84$82. $\sqrt{7225} = 85$83. $\sqrt{7396} = 86$84. $\sqrt{7569} = 87$85. $\sqrt{7744} = 88$86. $\sqrt{7921} = 89$87. $\sqrt{8100} = 90$88. $\sqrt{8281} = 91$89. $\sqrt{8464} = 92$91. $\sqrt{8836} = 94$92. $\sqrt{9025} = 95$93. $\sqrt{9216} = 96$94. $\sqrt{9409} = 97$95. $\sqrt{9604} = 98$96. $\sqrt{9801} = 99$97. $\sqrt{10000} = 100$98. $\sqrt{10201} = 101$99. $\sqrt{10404} = 102$100. $\sqrt{10609} = 103$通过以上100道二次根式化简题的练习,相信大家对二次根式的化简有了更深入的理解。
补充练习2:二次根式的化简求值
![补充练习2:二次根式的化简求值](https://img.taocdn.com/s3/m/6238f2c0c1c708a1284a4473.png)
二次根式补充练习2:二次根式的化简求值初二( )班 姓名: 学号:.例1、求下列各式的值:(1)已知1888+-+-=x x y ,求代数式x y y x xy y x y x ---+2的值.(2)已知211881+-+-=x x y ,求22-+-++x y y x x y y x 的值.(3)已知a ,b 为实数,且22222+-+-=a a ab .求()222a b a b ---+-的值.(42=-的值为.例2、求下列各式的值:(1)已知321+=a ,求a a a a a a a -+---+-22212121的值.(2)已知7878+-=x ,7878-+=y ,求:y x xyy x +++2的值.(3)已知x y ==5445x x y xy y +++的值.(4=的值.(5)已知01a <<,且16aa +=的值。
例3、求下列各式的值:(1)已知)56()2(y x y y x x +=+,求y xy x y xy x 32++-+的值.(2=例4、(1,所得的结果为_____________. 计算2222222220041200311413113121121111++++++++++++.(2)已知0,0abc a b c ≠++=且x = 111111y a b c b c c a a b ⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求子式22222222422x y x xy y x y x y xy x y xy ⎛⎫⎛⎫--+-+÷ ⎪ ⎪--+⎝⎭⎝⎭的值。
例5、(1)已知y x ,都为正整数,且1998=+y x ,求y x +的值.(2)是否存在正整数)(y x y x <、,使其满足1476=+y x ?若存在,请求出x 、y的值;若不存在,请说明理由.例6、 1.设a 为5353--+的小数部分,b 为336336--+的小数部分,则ab 12-的值为( ) (A )126+- (B )41 (C )12-π (D )832π--2的整数部分为x ,小数部分为y ,试求2212x xy y ++的值.3a ,小数部分为b ,试求1a b b ++的值。
二次根式化简求值练习题及答案
![二次根式化简求值练习题及答案](https://img.taocdn.com/s3/m/93653c860029bd64783e2cde.png)
5?2______2?
3
7?26
22.化简:
6?1=________.
23.设的整数部分a,小数部分为b,则a=______, b=______.
2
24.先化简再求值:当a=9时,求a+?2a?a
的值,甲乙两?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank”class=“keylink”>说慕獯鹑缦?
1.若-1 x
2
?
2
等于
A.2x+1 B.1C.-1-2xD.1-2x
2.下列等式成立的是
A.
2
??2
2
4263
B.x=x2C.b-b?2b?1=-1 D.x?x
3.若
?
2
?1
,则a的取值范围是
A.2≤a≤B.a≥3或a≤2C.a≤2D.a≥3
4.化简a+
2
等于
A.2a-1 B.1C.1或-1 D.2a-1或1
a精品文档2016全新精品资料全新公文范文全程指导写作独家原创精品文档2016全新精品资料全新公文范文全程指导写作独家原创成立则x的取值范围是
二次根式化简求值练习题及答案
练习题
二次根式的化简
年级__________班级_________学号_________姓名__________分数____
一、选择题
2
??5
.
2
???
7?
5.
当a>1时,|a-1|+?2a?a
2
=2a-2.
2
若x=1,则2x-x?4x?4?2x?
2023-2024教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)
![2023-2024教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)](https://img.taocdn.com/s3/m/caf005e5dc3383c4bb4cf7ec4afe04a1b071b08f.png)
第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。
部编数学八年级下册专题2二次根式化简求值技巧(解析版)含答案
![部编数学八年级下册专题2二次根式化简求值技巧(解析版)含答案](https://img.taocdn.com/s3/m/5f32002826284b73f242336c1eb91a37f1113221.png)
专题2 二次根式化简求值技巧(解析版)第一部分典例精析+变式训练类型一a|化简典例1(2022春•郯城县期末)化简二次根式―AB C.D.思路引领:根据二次根式有意义的条件以及二次根式的性质与化简进行计算即可.解:由题意可知,x<0,原式=﹣x因此选项A是正确的,应选:A.总结提升:本题考查二次根式的性质与化简,二次根式有意义的条件,掌握二次根式有意义的条件以及化简方法是得出正确答案的前提.变式训练1.已知a=1,求思路引领:先将a的值分母有理化,判断出a﹣1的符号,继而根据二次根式的性质求解可得.解:∵a====2―∴a﹣1=2――1=1―0,∴原式==|a﹣1|=﹣(a﹣1)=―1.总结提升:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.2.(1)当a<0(2)实数a,b思路引领:(1)直接利用a的取值范围结合二次根式的性质化简得出答案;(2)直接利用a,b的取值范围结合二次根式的性质化简得出答案.解:(1)当a<0a1aa(a1)=―1a;(2)由数轴可得:1<a<2,﹣3<b<﹣2,+=a+2﹣(2﹣b)﹣(a+b)=0.总结提升:此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.类型二含有隐含条件的化简求值典例2(2019春•黄石期中)已知x、y为实数,xy=3,那么+A.B.﹣C.±D.思路引领:根据二次根式有意义条件分析出x与y是同号,然后化简(2,代入xy=3,最后再开方即可.解:根据二次根式有意义的条件可得x与y是同号,所以(2=x2⋅yx+y2⋅xy+2xy=xy+xy+2xy=4xy,∵xy=3,所以4xy=12,即(+2=12.∵x与y是同号,所以原式=±故选:C.总结提升:本题主要考查了二次根式的化简求值,解决这类问题一定要注意二次根式有意义的条件,在此条件下解答不会漏解.变式训练1.(2021春•阳新县月考)已知x+y=﹣6,xy=8,求代数式+思路引领:根据加法法则、乘法法则和已知条件得出x 、y 同号,并且都是负数,化简所求式子,代值即可.解:∵x +y =﹣6,xy =8,∴x 、y 同号,并且都是负数,∴=―=﹣(y x +xy )=―=―(6)22×88=﹣总结提升:本题考查了解二元二次方程组和二次根式的混合运算与求值等知识点,能正确根据二次根式的性质进行化简是解此题的关键.2.(2021春•虎林市校级期末)昨天的数学作业:化简求值.当a =3时,求a +小红的答案是5.小明却认为:原式=a +a +(1―a )=1.即:无论a 取何值,a 1.你认为小明说得对么?为什么?思路引领:根据题意得到1﹣a <0,根据二次根式性质化简,判断即可.解:小明的解答是错误的,理由如下:∵a =3,∴1﹣a =﹣2<0,∴原式=a +a ﹣1=2a ﹣1,当a =3时,原式=2×3﹣1=5,∴小明的解答是错误的.总结提升:=|a |是解题的关键.类型三 利用整体思想进行求值典例3 已知x =5﹣y =3x 2+5xy +3y 2的值.思路引领:先计算出x +y 与xy 的值,再利用完全平方公式得到3x 2+5xy +3y 2=3(x +y )2﹣xy ,然后利用整体代入的方法计算.解:∵x =5﹣y =∴x +y =10,xy =25﹣24=1,∴3x 2+5xy +3y 2=3(x +y )2﹣xy =3×102﹣1=299.总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.使用整体代入的方法可简化计算.变式训练1.(2020秋•武侯区校级月考)已知x y (1)x 2﹣xy +y 2;(2)y x +xy +2.思路引领:先根据完全平方公式、平方差公式和二次根式的乘除和加减运算得出x 2+y 2和xy 的值,(1)直接代入即可求得;(2)利用异分母分式加减法相加后直接代入即可.解:∵x y =∴xy 32,x ―y =―1,又∵(x ﹣y )2=x 2+y 2﹣2xy ,∴x 2+y 2=(x ―y )2+2xy =1+2×32=4,(1)x 2﹣xy +y 2=x 2+y 2﹣xy =4―32=52.(2)y x +x y +2=y 2x 2xy +2=432+2=83+2=143.总结提升:本题考查完全平方公式,平方差公式,二次根式的加、减、乘运算,分式的加法.能结合二次根式的性质和乘法公式求得x 2+y 2和xy 的值是解题关键.2.(1)已知:x =1,y =1.求2x 2+2y 2﹣xy 的值;(2)已知x ,求x 3x 1x 3的值.思路引领:(1)分母有理化后,代入求解即可;(2)由x 2x =+1,可得2x ﹣1=4x 2﹣4x =4,即x 2﹣x =1,x +1=x 2,利用整体代入的思想解决问题.解:(1)x2―y =2+所以原式=2(2―2+2(2+2﹣(2―(2+=14﹣―1=27;(2)∵x =∴2x +1,∴2x ﹣1=∴4x 2﹣4x =4,即x 2﹣x =1,∴x +1=x 2,∴原式=x 3x 2x 3=x 2(x 1)x 3=x 4x 3=x 总结提升:本题考查二次根式的化简求值,分母有理化等知识,解题的关键是学会用整体代入的思想解决问题,属于中考常考题型.类型四 化简二次根式比较大小典例4(2022秋•修水县期中)阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因+11.(1)请你写出两个二次根式,使它们互为有理化因式: .化简一个分母含有二次根式的式子时,可以采用分子、分母同乘分母的有理化因式的方法.例如:3.(2)请仿照上述方法化简:3.(3)比较1与1的大小.思路引领:(1)根据有理化因式的概念写出乘积不含二次根式的两个式子即可;(2)分子,分母同时乘以分母的有理化因式即可;(3)分母有理化后再比较.解:(122互为有理化因式,+22(答案不唯一);(2=(3∴1<1.总结提升:本题考查二次根式的混合运算,解题的关键是掌握二次根式的分母有理化.变式训练1.(2022春•翔安区期末)观察下列一组等式,然后解答后面的问题+1)1)=1,+1,+1…(1)观察上面规律,计算下面的式子1+1+1+⋯+1(2)利用上面的规律思路引领:(1)根据题目中材料,可以先将所求式子分母有理化,再化简即可解答本题;(2―解:(1++⋯+=1)+++⋯+―=―1+―⋯=1=10﹣1=9;(2==1,=∴1>1,――总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确题意,发现其规律,解答相关问题.第二部分专题提优训练1.(2021春•上城区校级期中)已知a=b=ab的值为 .思路引领:a=b=ab=1即可.解:a=b=∴ab+3﹣2=1.故答案为:1.总结提升:本题考查了二次根式的化简求值,根据二次根式的乘法可得ab的值.2.(2018春•沙坪坝区校级期末)如果一个三角形的三边分别是2,3,m(m为正整数),则|1﹣3m|+3化简求值的所有结果的和是 .思路引领:直接利用三角形三边关系得出m的取值范围,进而化简得出答案.解:∵一个三角形的三边分别是2,3,m(m为正整数),∴1<m<5,|1﹣3m|+3=2m+1﹣(3m﹣1)+3=﹣m+5,当m=2时,﹣m+5=3,当m=3时,﹣m+5=2,当m=4时,﹣m+5=1,故所有结果的和是:1+2+3=6.故答案为:6.总结提升:此题主要考查了三角形三边关系以及二次根式的化简,正确得出m 的取值范围是解题关键.3.(2021春•“>”或“=”或“<”).思路引领:根据分母有理化分别化简,即可得出答案.解:∵14=11+1,∴11,故答案为:<.总结提升:本题考查了分母有理化,实数的比较大小,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.4.(2022春• > 12(填“>”“<”“=”).思路引领:决问题.1>1,>12.故填空结果为:>.总结提升:此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n 次方的方法等.当分母相同时比较分子的大小即可.5.(2021秋•淮安区校级月考)已知实数a 满足|2020﹣a |a ,那么a ﹣20202+1的值是 .思路引领:根据二次根式有意义的条件得出a ≥2021,根据绝对值的性质把原式变形,代入计算即可.解:由题意得:a ﹣2021≥0,解得:a ≥2021,则a ﹣2020a ,=2020,∴a ﹣2021=20202,∴a ﹣20202=2021,∴原式=2021+1=2022,故答案为:2022.总结提升:本题考查的是二次根式有意义的条件、绝对值的性质,掌握二次根式的被开方数是非负数是解题的关键.6.(2022春•宁武县期末)先化简再求值:当a =9时,求a +甲的解答为:原式=a =a +(1﹣a )=1;乙的解答为:原式a =a +(a ﹣1)=2a ﹣1=17.两种解答中, 的解答是错误的,错误的原因是 .思路引领:利用二次根式的性质化简即可;解:∵a =9,∴1﹣a <0,∴原式=a +a +a ﹣1=2a ﹣1=17.∴甲错误,故答案为甲,没有注意到1﹣a <0.总结提升:本题考查二次根式的性质,解题的关键是熟练掌握基本公式,注意公式的应用条件.7.(2010秋•=5―2;16请回答下列问题:(1)观察上面的解题过程,请直接写出1的结果为 .(2)利用上面所提供的解法,求值:1+1+1+⋯+1 .思路引领:(1)直接利用分母有理化化简得出答案;(2)直接将原式化简,进而计算得出答案.解:(1)1(2)原式=―1+―...―=1.1.总结提升:此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.8.(2022春•彭州市校级月考)已知x=1,y=1,求值:(1)xy;(2)x2+3xy+y2.思路引领:(1)利用平方差公式进行运算即可;(2)利用完全平方公式及平方差公式进行运算即可.解:(1)xy=11=1 75=1 2;(2)x2+3xy+y2=(x+y)2+xy2+122+122+12=7+12=712.总结提升:本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.9.(2022秋•静安区校级期中)先化简,再求值,如果a=2―b=1,求思路引领:直接利用二次根式的性质分母有理化,进而化简二次根式得出答案.解:∵b===2+a=2―∴a ﹣b =2――(2+2―2――0,=总结提升:此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.10.(2022秋•章丘区校级月考)已知a =,b =1.(1)求ab 的值;(2)求a 2+b 2的值.思路引领:(1)根据平方差公式计算即可;(2)根据二次根式的加法法则求出a +b ,根据完全平方公式把原式变形,代入计算即可.解:(1)∵a +1,b 1,∴ab 1)1)=3﹣1=2;(2)∵a =+1,b =―1,∴a +b 1)+1)=∴a 2+b 2=(a +b )2﹣2ab =(2﹣2×2=8.总结提升:本题考查的是二次根式的化简求值,掌握平方差公式、完全平方公式是解题的关键.11.(2022•南京模拟)计算:(1)已知x =,y =1,试求x 2﹣xy +y 2的值.(2)先化简,再求值:a 21a 2a ÷(2+a 21a),其中a 思路引领:(1)先计算出x ﹣y =2,xy =1,再将所求代数式变形为(x ﹣y )2+xy ,然后整体代入计算即可;(2)先根据分式混合运算法则化简,再把x 值代入化简式计算即可.解:(1)∵x =,y =1,∴x ﹣y =2,xy =1,∴x 2﹣xy +y 2=(x ﹣y )2+xy =22+1=5;(2)a 21a 2a ÷(2+a 21a )=(a 1)(a 1)a (a 1)÷a 22a 1a=(a1)(a1)a(a1)⋅a(a1)2=1a1,当a原式=―1.总结提升:本题考查代数式求值,逆用完全平方公式,分式化简求值,二次根式运算,熟练掌握完全平方公式与分式混合运算法则是解题的关键.12.(2022春•a=思路引领:先分母有理化,再利用二次根式的性质化简得到原式=1)a﹣|a﹣1|,接着利用a=>1去绝对值,合并得到原式+1,然后把a=+1)a+1)a﹣|a﹣1|,∵a1,+1)a﹣(a﹣1)=+1,当a=1=3.总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.13.已知a=b=2―c=2,比较a,b,c的大小.思路引领:先求出a0.318,b=2―0.268,c=2≈0.236,再根据实数大小比较的方法进行比较即可求解.解:∵a=≈0.318,b=2―≈0.268,c=2≈0.236,0.318>0.268>0.236,∴a>b>c.总结提升:考查了实数大小比较,关键是求出a,b,c的大小.14.(2022春•金华月考)在一节数学课上,李老师出了这样一道题目:先化简,再求值:|x﹣1|+x=9.小明同学是这样计算的:解:|x﹣1|+=x﹣1+x﹣10=2x﹣11.当x=9时,原式=2×9﹣11=7.小荣同学是这样计算的:解:|x﹣1|+=x﹣1+10﹣x=9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?思路引领:根据二次根式的性质判断即可.解:小荣的计算结果正确,小明的计算结果错误,错在去掉根号:|x﹣1|+=x﹣1+x﹣10(应为x﹣1+10﹣x).总结提升:本题考查了二次根式的性质与化简,能熟记二次根式的性质是解此题的关键,|a|=a(a≥0)―a(a<0).15.(2021春•五华区期中)阅读下列简化过程:1=1―11(1)请用n(n为正整数)表示化简过程规律.(2)计算1+1+1+⋯⋯1.(3)设a=1,b=1,c=1比较a,b,c的大小关系.思路引领:(1)观察题目可得分母上的数相差1,即可得出结论;(2)利用(1)中的规律先化简,随后进行加减即可;(3)先将a,b,c按照题目中的形式化简,再进行比较即可.解:(1)∵分母上的每个数都含有根号,根号内的数相差为1,分子为1,==(2⋯⋯+⋯⋯=―1+⋯⋯+=1.(3)∵ab=c=∴ab 2c2,∴a <b <c .总结提升:本题考查二次根式的化简,平方差公式,分母有理化,实数的大小比较,涉及的知识点比较多,本题的难点在于通过题干得出计算规律,运用规律即可解决问题.16.(2022春•福清市期中)阅读材料:像=3=7这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号,即为分母有理化.==3+解答下列问题:(1(2(3)应用:当n ―思路引领:(1)根据有理化因式的定义求解;(2)把分子分母都乘以(3―,然后利用平方差公式和完全平方公式计算;(3)利用分母有理化得1,1,然后比较与1的大小即可.解:(1+(2)原式98﹣(31,=1,++0,总结提升:本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.也考查了分母有理化.。
二次根式化简习题大全
![二次根式化简习题大全](https://img.taocdn.com/s3/m/4b1796c9af45b307e971976d.png)
二次根式化简习题大全(总3页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式化简练习一、 化简下列二次根式 =12 =8 =18 20=60= =72 =80 =90=108 125= =128 =135二、 比较下列二次根式的大小182_____123 2421 ____2731 12554 ___16932 403_____602 三、 化简=38x 212x = x 232532⨯⨯=292ab = a c b 16332 = 2312a c b = =-22513 =+22158211-= 二选择题1.若-1<x <0,则()221+-x x 等于 +12.下列等式成立的是 A.2)2(2-=- B.4x =x 2 122++b b =-1 D.36x x = 3.若1)3()2(22=-+-a a ,则a 的取值范围是≤a ≤3 ≥3或a ≤2 ≤2 ≥34.化简a +2)1(a -等于 或-1 或1 5.计算22)21()12(a a -+-的值是 或4a -2 6.当3323+-=+x x x x 时,x 的取值范围是 ≤0 ≤-3 ≥-3 ≤x ≤07当a >0时,化简3ax -的结果是ax ax - ax - ax8.实数a ,b 在数轴上对应点的位置如图所示,则化简2222a b ab a -+-的结果为9.计算22)53()52(-+-等于5 5 510.下列二次根式中,是同类二次根式的是 A.b c a bca 3与 B.23b a 与ab C.a 2与34a D.b a 与23b a 三.填空题1.代数式xx x -+++213有意义的条件是 ; x x 263-+-有意义的条件是2.函数x x x y -++-=2132的自变量x 的取值范围是 3化简12=____. .2)23(-= . 4.|)1(1|,22a a +--<化简时当得 .5.若三角形的三边abc 满足a 2-4a +4+3-b =0,则笫三边c 的取值范围是_____________.6.若m <0,则|m |+______332=+m m .已知:42<<x ,化简()|5|12-+-x x =_________.三解答题1.计算221--22+0)101(+1)21(- 2)52(80182445-+-++3.小明和小芳解答题目:"先化简下式,再求值:a +221a a +-,其中a =9"时,得出了不同的答案.小明的解答是:原式=a +2)1(a -=a +(1-a )=1; 小芳的解答是:原式=a +2)1(a -=a +(a -1)=2a -1=2×9-1=17.(1)_________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________. 4.若│1995-a│+2000a =a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值5已知,化简求值6、已知,先化简,再求值。
二次根式的化简与运算练习题
![二次根式的化简与运算练习题](https://img.taocdn.com/s3/m/9b82ef3003768e9951e79b89680203d8ce2f6a83.png)
二次根式的化简与运算练习题1. 化简以下的二次根式,并求出其近似值:a) $\sqrt{12}$b) $\sqrt{27}$c) $\sqrt[3]{64}$d) $\sqrt{50}$e) $\sqrt[4]{81}$f) $\sqrt{72}$2. 将下列各式化简并求值:a) $\sqrt{5^2+12}$b) $\sqrt{(2\sqrt{3})^2+5}$c) $\sqrt{9+\sqrt{64}}$d) $\sqrt{25-\sqrt{144}}$3. 完全展开下列各式,并按照降幂排列:a) $(\sqrt{3}+1)^2$b) $(\sqrt{2}-1)(\sqrt{2}+1)$c) $(\sqrt{5}+2)(\sqrt{5}-2)$4. 运用公式 $a^2-b^2=(a+b)(a-b)$ 简化下列各式,并求值:a) $9-4\sqrt{5}+5$b) $7+\sqrt{3}-2\sqrt{12}$c) $9-3\sqrt{7}+6\sqrt{7}-4$5. 将下列各式进行有理化:a) $\frac{4}{\sqrt{5}+1}$b) $\frac{5}{\sqrt{2}-1}$c) $\frac{3}{\sqrt{7}-\sqrt{3}}$d) $\frac{2}{\sqrt{3}+\sqrt{5}}$6. 计算以下各式的值:a) $(\sqrt{6}+\sqrt{2})^2$b) $(\sqrt{5}-\sqrt{3})^2$c) $(\sqrt{7}+\sqrt{8})^2$7. 分解以下各式:a) $5\sqrt{2}+3\sqrt{8}$b) $16\sqrt{3}-12\sqrt{12}$c) $10\sqrt{5}+\sqrt{80}$8. 将下列各式进行合并:a) $3\sqrt{2}+4\sqrt{2}$b) $6\sqrt{5}-3\sqrt{5}$c) $2\sqrt{7}+5\sqrt{3}-\sqrt{12}+3\sqrt{7}$9. 将下列各式进行整理并合并同类项:a) $\sqrt{2}+4\sqrt{3}-2\sqrt{2}+5\sqrt{3}$b) $2\sqrt{5}-3\sqrt{2}+\sqrt{3}-\sqrt{5}-\sqrt{2}$c) $4\sqrt{6}+3\sqrt{7}-7\sqrt{6}-2\sqrt{7}$10. 计算以下各式的结果:a) $(\sqrt{2}+\sqrt{3})^2-(\sqrt{2}-\sqrt{3})^2$b) $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$c) $(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})$答案:1.a) $\sqrt{12} = 2\sqrt{3}$b) $\sqrt{27} = 3\sqrt{3}$c) $\sqrt[3]{64} = 4$d) $\sqrt{50} = 5\sqrt{2}$e) $\sqrt[4]{81} = 3$f) $\sqrt{72} = 6\sqrt{2}$2.a) $\sqrt{5^2+12} = \sqrt{25+12} = \sqrt{37}$b) $\sqrt{(2\sqrt{3})^2+5} = \sqrt{4\cdot3+5} = \sqrt{17}$c) $\sqrt{9+\sqrt{64}} = \sqrt{9+8} = \sqrt{17}$d) $\sqrt{25-\sqrt{144}} = \sqrt{25-12} = \sqrt{13}$3.a) $(\sqrt{3}+1)^2 = 3+2\sqrt{3}+1 = 4+2\sqrt{3}$b) $(\sqrt{2}-1)(\sqrt{2}+1) = 2-1 = 1$c) $(\sqrt{5}+2)(\sqrt{5}-2) = 5-2 \cdot 2 = 1$4.a) $9-4\sqrt{5}+5 = 14-4\sqrt{5}$b) $7+\sqrt{3}-2\sqrt{12} = 7+\sqrt{3}-2\sqrt{4\cdot3} = 7+\sqrt{3}-4\sqrt{3} = 7-3\sqrt{3}$c) $9-3\sqrt{7}+6\sqrt{7}-4 = 5+3\sqrt{7}$5.a) $\frac{4}{\sqrt{5}+1} = \frac{4(\sqrt{5}-1)}{5-1} = \sqrt{5}-1$b) $\frac{5}{\sqrt{2}-1} = \frac{5(\sqrt{2}+1)}{2-1} = 5(\sqrt{2}+1) = 5\sqrt{2}+5$c) $\frac{3}{\sqrt{7}-\sqrt{3}} = \frac{3(\sqrt{7}+\sqrt{3})}{7-3} = \frac{3(\sqrt{7}+\sqrt{3})}{4} = \frac{3\sqrt{7}+3\sqrt{3}}{4}$d) $\frac{2}{\sqrt{3}+\sqrt{5}} = \frac{2(\sqrt{3}-\sqrt{5})}{3-5} = \frac{2(\sqrt{3}-\sqrt{5})}{-2} = \sqrt{5}-\sqrt{3}$6.a) $(\sqrt{6}+\sqrt{2})^2 = (6+2\sqrt{12}+2) = 8+2\sqrt{12}$b) $(\sqrt{5}-\sqrt{3})^2 = (5-2\sqrt{5}\sqrt{3}+3) = 8-2\sqrt{15}$c) $(\sqrt{7}+\sqrt{8})^2 = (7+2\sqrt{7}\sqrt{8}+8) = 15+4\sqrt{14}$7.a) $5\sqrt{2}+3\sqrt{8} = 5\sqrt{2}+3\cdot2\sqrt{2} =5\sqrt{2}+6\sqrt{2} = 11\sqrt{2}$b) $16\sqrt{3}-12\sqrt{12} = 16\sqrt{3}-12\cdot2\sqrt{3} = 16\sqrt{3}-24\sqrt{3} = -8\sqrt{3}$c) $10\sqrt{5}+\sqrt{80} = 10\sqrt{5}+\sqrt{2\cdot2\cdot2\cdot2\cdot5} = 10\sqrt{5}+4\sqrt{5} = 14\sqrt{5}$8.a) $3\sqrt{2}+4\sqrt{2} = 7\sqrt{2}$b) $6\sqrt{5}-3\sqrt{5} = 3\sqrt{5}$c) $2\sqrt{7}+5\sqrt{3}-\sqrt{12}+3\sqrt{7} = 5\sqrt{7}+5\sqrt{3}-2\sqrt{3} = 5\sqrt{7}+3\sqrt{3}$9.a) $\sqrt{2}+4\sqrt{3}-2\sqrt{2}+5\sqrt{3} = 2\sqrt{3}-\sqrt{2}$b) $2\sqrt{5}-3\sqrt{2}+\sqrt{3}-\sqrt{5}-\sqrt{2} = \sqrt{5}-4\sqrt{2}+\sqrt{3}$c) $4\sqrt{6}+3\sqrt{7}-7\sqrt{6}-2\sqrt{7} = -3\sqrt{6}+\sqrt{7}$10.a) $(\sqrt{2}+\sqrt{3})^2-(\sqrt{2}-\sqrt{3})^2 = (2\sqrt{6}+2)-(2-2\sqrt{6}) = 4\sqrt{6}$b) $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2}) = 5-\sqrt{10}+\sqrt{10}-2 = 3$c) $(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3}) = 7-\sqrt{21}+\sqrt{21}-3 = 4$。
初二数学下册知识点《二次根式的化简求值150题含解析》
![初二数学下册知识点《二次根式的化简求值150题含解析》](https://img.taocdn.com/s3/m/6d09de8e9e314332396893f4.png)
初二数学下册知识点《二次根式的化简求值150题含解析》一、选择题(本大题共34小题,共102.0分)1.满足的整数x的个数是( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题主要考查的二次根式的化简,将不等式的左边分子分母同乘以(),将不等式的右边分子分母同乘以(),最后对化简后的根式进行估计其整数范围,进而求出问题的解,本题解题关键是二次根式的化简以及常见根式的值.【解答】解:将不等式的左边分子分母同乘以,右边分子分母同乘以,得:,即<x<,,满足<x<的整数x只有4、5、6、7、8、9,即满足的整数x的个数有6个,故选C.2.若,,则a2b-ab2的值是( )A. 6B.C.D. 17【答案】B【解析】【分析】本题主要考查的是代数式的值,因式分解的应用,二次根式的化简求值的有关知识,由题意将给出的式子进行变形,然后代入求值即可.【解答】解:原式=ab(a-b),把,代入原式,原式===,故选B.3.已知m、n是方程x2+2x+1=0的两根,则代数式的值为()A. 9B. ±3C. 3D. 5【答案】C【解析】解:∵m、n是方程x2+2x+1=0的两根,∴m+n=-2,mn=1,∴====3.故选C.根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到m+n=-2,mn=1,再变形得,然后把m+n=-2,mn=1整体代入计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-,x1•x2=.也考查了二次根式的化简求值.4.化简的结果是( )A. 6x-6B. -6x+6C. -4D. 4【答案】D【解析】【分析】本题考查了因式分解-运用公式法,二次根式的化简,完全平方公式的运用等相关知识点.熟练掌握完全平方公式解本题的关键.【解答】解:∵有意义∴3x-5≥0∴3x-1>0原式==3x-1-3x+5=4故选D.5.下列计算:①;②;③;④.其中结果正确的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】本题考查了二次根式的乘法、二次根式的化简求值、平方差公式的知识点,解题关键点是熟练掌握这些运算法则.根据二次根式的性质对(1)(2)(3)进行判断;根据二次根式的乘法和平方差公式对(4)进行计算后判断.【解答】解:①,计算结果正确;②,计算结果正确;③,计算结果正确;④,计算结果正确.∴正确的个数有4个.故选D.6.已知a=2,b=-1,则代数式的值为( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的化简求值有关知识,解决本题的关键是先根据二次根式的性质对其进行化简.首先对该式进行化简,然后再代入求值即可.【解答】解:∵a=2,b=-1,∴原式====.故选C.7.若,则的值为( )A. 1B. -1C. ±1D. 以上结果均不正确【答案】A【解析】【分析】本题主要考查的是二次根式的化简求值的有关知识,由题意将式子进行变形,最后代入求值即可.【解答】原式==,把代入原式,原式====1.故选A.8.若,,则的值为( )A. B. C. D.【答案】D【解析】【分析】本题考查的根式的化简求值,掌握好化简求值的方法是解题关键.因为,所以可以先求y-x和xy的值,再整体代入求值即可.解:∵,,∴y-x=,xy=,,故选D.9.设,,用含a,b的式子表示,下列表示正确的是( )A. B. 3ab C. D.【答案】A【解析】【分析】此题主要考查二次根式的化简,直到被开方数开不尽为止.先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,∵=a,=b,∴=0.3ab=.故选A.10.若,x≥1,则( )A. ±2B.C.D.【答案】C【解析】【分析】本题主要考查了二次根式的化简求值,理解完全平方公式的结构,根据已知求得()2是解题的关键.把=两边平方求得的值,然后求得()2的值,最后开方即可.【解答】解:∵,∴,即,∴,∴,∵x≥1,∴,∴.11.若,则的值为()A. B. C. D. 或【答案】A【解析】【分析】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.先根据已知代入x2-x=1,再整体代入所求计算.【解答】解:∵∴x2-x=(x-1)x===1∴原式===.故选A.12.若a=1+,b=1-,则代数式的值为()A. 3B. ±3C. 5D. 9【答案】A【解析】【分析】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.首先把所求的式子化成的形式,然后代入数值计算即可.【解答】解:原式====3.故选A.13.已知x=,y=,则x2+xy+y2的值为()A. 16B. 20C. 2D. 4【答案】A【解析】解:∵x=,y=,∴x+y=2,xy=()()=4,由题可知:=x2+y2+2xy-xy,=(x+y)2-xy,=(2)2-4=16.故选:A.先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.本题考查了二次根式的化简求值,需要同学们对完全平方公式灵活运用能力.14.已知,,,则的结果是A. B. C. D.【答案】B【解析】解:∵x+y=-5,xy=3,∴x<0,y<0,∴原式=x+y=+(x<0,y<0)=+=-2,当xy=3时,原式=-2.故选B.由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式=+=-2,然后把xy=3代入计算即可.本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.15.已知,则的值为()A. 5B. 6C. 3D. 4【答案】A【解析】【分析】此题主要考查代数式求值以及二次根式的混合运算.首先把a和b化简,然后代入计算即可.【解答】解:∵a==,b==,∴==5.故选A.16.若,,则代数式的值为A. B. C. D. 4【答案】B【解析】解:∵a+=6,0<a<1,∴-<0,则(-)2=a-2=6-2=4,∴-=-2;故选B.根据a+=6,0<a<1,判断出-<0,再把要求的式子进行配方,即可求出答案.此题考查了二次根式的化简求值,关键是根据已知条件判断出-<0,从而得出正确答案.17.化简的结果是:()A. 1B. 2x-3C. 3D. 3-2x【答案】A【解析】【分析】本题主要考查了二次根式的非负性、二次根式的化简的知识点,解题关键点是熟练掌握这些计算法则.先利用二次根式的非负性得出x≤1,从得可知x-2≤-1,再进行化简,即可解答.【解答】解:∵1-x≥0,∴x≤1,∴x-2≤-1,∴原式=-(x-2)-(1-x)=-x+2-1+x=1.故选A.18.已知,则的值为()A. a2-2B. a2C. a2-4D. 不确定【答案】A【解析】解:∵∴()2=a2即x+2+=a2∴x+=a2-2故选A.把已知的式子两边同时平方即可求解.本题主要考查了二次根式的化简和完全平方公式,对公式的正确理解运用是解决本题的关键.另外,本题还可对x+进行配方来解答,即.所以在二次根式的化简求值题中,若能根据题目的特点灵活选择适当的方法,将会给解题带来很大的简便.19.已知则 =()A. B. ﹣ C. D.【答案】C【解析】【分析】本题主要考查完全平方公式及二次根式的化简求值,由平方关系:()2=()2-4,先代值,再开平方.【解答】解:∵,∴()2=()2-4=()2-4=7-4=3,∴=,故选C.20.若,0<x<1,则()A. B. -2 C. ±2 D.【答案】A【解析】【分析】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.把已知条件两边平方得到(+)2=6,再根据完全平方公式得到(-)2+4=6,则利用二次根式的性质得|-|=,然后根据0<x<1,去绝对值即可.【解答】解:∵+=,∴(+)2=6,∴(-)2+4=6,∴|-|=,∵0<x<1,∴-=-.故选A.21.已知,则的值是( )A. B. 2 C. 1 D. -1【答案】A【解析】【分析】本题考查的是二次根式的定义有关知识,首先根据题意求出x,y,然后再进行计算即可解答.【解答】解:由题意可得:,解得x=1,把x=1代入求出y=2,原式=.故选A.22.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简-|a+b|的结果是()A. 2aB.C. 2bD.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及二次根式的化简求值,观察函数图象找出a >0、b<0、a+b>0是解题的关键.根据一次函数图象与系数的关系结合当x=1时y>0,即可得出a>0、b<0、a+b>0,进而可得出a-b>0,依此即可得出-|a+b|=(a-b)-(a+b)=-2b,此题得解.【解答】解:观察函数图象可知:a>0,b<0,a+b>0,∴a-b>0,∴-|a+b|=(a-b)-(a+b)=-2b.故选D.23.若a=,b=,则a2+b2+ab的值是()A. 2B. 4C. 5D. 7【答案】B【解析】解:∵a=,b=,∴a+b=+=,ab=•=1,∴a2+b2+ab=(a+b)2-ab=()2-1=5-1=4,故选B.根据a、b的值可以求得a+b和ab的值,从而可以解答本题.本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.24.阅读下面的解题过程:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即,,则(a≥b).根据上述的方法化简为()A. B. C. D.【答案】A【解析】【分析】此题主要考查了二次根式的化简,正确应用完全平方公式是解题关键.直接利用完全平方公式化简求出答案.【解答】解:===.故选A.25.已知x=-6,则代数式x2+5x-6的值为()A. 2+3B. 5-5C. 3-2D. 5-7【答案】D【解析】解:∵x=-6,∴x2+5x-6=(x+6)(x-1)=(-6+6)×(-6-1)=×(-7)=5-7.故选:D.直接把x的值代入进而求出答案.此题主要考查了二次根式的化简求值,正确应用公式是解题关键.26.已知a=2,则代数式的值等于()A. -3B. 3-C. 4-3D. 4【答案】A【解析】解:当a=2时,=2-=2-=2-3-2=-3.故选A.27.已知x+y=+,xy=,则x2+y2的值为()A. 5B. 3C. 2D. 1【答案】A【解析】【分析】本题考查了二次根式的化简求值,解答本题的关键在于先对原式进行恰当的化简然后代入求值,由(x+y)2=x2+y2+2xy,得出x2+y2=(x+y)2-2xy,再带入已知数据求解即可.【解答】解:x2+y2=(x+y)2-2xy=()2-2=3+2+2-2=5.故选A.28.计算的值是()A. -2B. 2或-2C. 4D. 2【答案】D【解析】解:=2,故选:D.直接利用二次根式的性质化简求出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.29.当x=-1时,代数式x2-1的值是()A. 1B. 2C. 2-D. -2【答案】C【解析】解:当x=-1时,x2-1=(-1)2-1=3-2-1=2-2.故选C.先把x的值代入x2-1中,然后利用完全平方公式计算.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.30.已知,则的值为()A. B. C. D.【答案】D【解析】【分析】本题考查了代数式的值,根据可得,再求平方根可得答案.【解答】解:根据可得,则的值为.故选D.31.如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+=()A. B. C. D. 2【答案】C【解析】解:由题意得:x=1-(-1)=2-,∴原式=-x+=-2++=2-2+=2-2+=2-2+=2-2+2+=3.故选:C.根据对称的性质:对称点到对称中心的距离相等,得到x的值后代入代数式化简求值.要能根据对称的性质确定x的值,熟练进行绝对值的化简和二次根式的分母有理化以及加减乘除运算.32.设S1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=,其中n为正整数,用含n的代数式表示S为()A. nB.C. n2D.【答案】D【解析】【分析】本题考查了二次根式的化简求值,求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=,=,=,=,故选D.33.如果等式()2=x成立,那么x为()A. x≤0B. x=0C. x<0D. x≥0【答案】B【解析】【分析】本题考查了二次根式的概念和偶次方的非负性.式子叫二次根式,运用定义可以求出x≤0,又因为平方具有非负性,因此x≥0,所以可得x=0,从而得出答案.【解答】解:∵成立,∴,∴x=0,故选B.34.已知a=2+,则(a-1)(a-3)的值为()A. 24B.C. 2D. 4【答案】D【解析】解:∵a=2+,∴(a-1)(a-3)=a2-4a+3=(a-2)2-1=(2+-2)2-1=5-1=4,故选D.先根据多项式乘以多项式进行计算,再根据完全平方公式变形,最后代入求出即可.本题考查了整式的乘法,二次根式的混合运算的应用,主要考查学生的化简和计算能力,题目比较典型,难度适中.二、填空题(本大题共29小题,共87.0分)35.当-1<a<0时,则________.【答案】2a【解析】【分析】本题主要考查因式分解的应用和二次根式的化简求值。
二次根式化简题50道
![二次根式化简题50道](https://img.taocdn.com/s3/m/6f17339d0d22590102020740be1e650e52eacf27.png)
二次根式化简题50道一、基础化简题(1 - 20)1. √(12)- 解析:将12分解因数,12 = 4×3,而√(4)=2,所以√(12)=√(4×3)=2√(3)。
2. √(18)- 解析:18 = 9×2,√(9) = 3,则√(18)=√(9×2)=3√(2)。
3. √(20)- 解析:20=4×5,√(4)=2,所以√(20)=√(4×5)=2√(5)。
4. √(24)- 解析:24 = 4×6,√(4)=2,故√(24)=√(4×6)=2√(6)。
5. √(27)- 解析:27 = 9×3,√(9)=3,因此√(27)=√(9×3)=3√(3)。
6. √(32)- 解析:32 = 16×2,√(16)=4,所以√(32)=√(16×2)=4√(2)。
7. √(40)- 解析:40 = 4×10,√(4)=2,于是√(40)=√(4×10)=2√(10)。
8. √(45)- 解析:45 = 9×5,√(9)=3,则√(45)=√(9×5)=3√(5)。
9. √(48)10. √(50)- 解析:50 = 25×2,√(25)=5,故√(50)=√(25×2)=5√(2)。
11. √(54)- 解析:54 = 9×6,√(9)=3,因此√(54)=√(9×6)=3√(6)。
12. √(60)- 解析:60 = 4×15,√(4)=2,于是√(60)=√(4×15)=2√(15)。
13. √(63)- 解析:63 = 9×7,√(9)=3,则√(63)=√(9×7)=3√(7)。
14. √(72)- 解析:72 = 36×2,√(36)=6,所以√(72)=√(36×2)=6√(2)。
(完整版)八年级数学二次根式的化简求值练习题及答案
![(完整版)八年级数学二次根式的化简求值练习题及答案](https://img.taocdn.com/s3/m/fb8b0c6a9b89680203d8259a.png)
解析:由m=1+ 可得m-1= ,两边平方得m2-2m+1=2,所以m2-2m=1;
7m2-14m+a=7(m2-2m)+a=7+a;
同理可得n2-2n=1,3n2-6n-7=3(n2-2n)-7=3-7=-4;
所以(7+a)×(-4)=8,解得a=-9.
答案:C
小结:观察所给等式和m,n的值,我们可以发现,对m,n稍作变形便可整体代入.整体思想是解决这类较复杂求值问题常用的思想方法.当然我们也可以直接把m,n的值直接代入,然后解方程求出a的值,这样计算量要大很多.
答案:解:(1)( - )2=11-2× × +3=14-2 ,
( -2)2=10-2× ×2+4=14-2 .
∵33<40,∴ < ,∴-2 >-2 ,∴14-2 >14-2 ,
∴( - )2>( -2)2.又∵ - >0, -2>0,∴ - > -2.
(2) = = ,
= = .
∵ = < ,
∴ < ,
二次根式的化简求值
练习题
温故而知新:
分母有理化
分母有理化是二次根式化简的一种常用方法,通过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化.
例 1计算:(1) ;
(2) ;
(3) .
解析:(1)式进行简单分组,然后利用平方差公式和完全平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,然后再约分.
∴ - > - .
小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.
八年级数学二次根式的化简求值练习题及答案(2)
![八年级数学二次根式的化简求值练习题及答案(2)](https://img.taocdn.com/s3/m/699f97b2cf84b9d529ea7a85.png)
二次根式的化简求值练习题温故而知新:分母有理化分母有理化是二次根式化简的一种常用方法 , 经过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化 .例 1 计算:(1)(2 3 3 2 6)(2 3 3 2 6) ;(2)(3 2 2 3)2 (3 2 2 3)2;( 3)a ab a .a ab分析:(1)式进行简单分组,而后利用平方差公式和完整平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,而后再约分.答案:解:(1)原式 = (2 3 6 3 2)(2 3 6 3 2) = (2 3 6)2 (3 2)2=12-2 2 3 6 +6-18= 12 2 .(2)原式 = (3 2 2 3 3 2 2 3)(3 2 2332 23)=62(43)=246.( 3)原式 = a ( a b )( a b) = a b .a ( a b)小结:(1)二次根式的混淆运算常常用到幂的运算法例和乘法公式,有时题目中条件不显然,要擅长变形,使之切合乘法公式,幂的运算法例特色,从而简化计算.( 2)二次根式的计算和化简灵巧运用因式分解能使计算简易.贯通融会:1. 若 x = m - n , y = m + n ,则 x y 的值是 ()A. 2 mB. 2 nC. m + nD.m - n分析: x y= ( m -n ) ( m + n ) = ( m )2 - ( n)2 = m - n .例 2 阅读资料 :“黑白双雄 , 纵横江湖; 双剑合璧 , 天下无敌 . ”这是武侠小说的常有描绘 , 其意是指两个人合在一同 , 扬长避短 , 威力非常 . 在二次根式中也有这种相辅相成的“对子”,如:(2 +3 )(2- 3 ) =1,( 5 + 2)( 5- 2 ) = 3, 它们的积不含根号 , 我们就说这两个二次根式互为有理化因式 , 此中一个是另一个的有理化因式. 于是 , 二次根式的除法能够这样解 : 如1=1′3= 3, 2+ 3 =(2 + 3)2= 7 + 4 3 , 像这样 , 经过分子、分母同乘一个式子33′ 3 3 2 -3 (2- 3)(2 + 3)把分母中的根号化去或把根号中的分母化去 , 叫做分母有理化 .(1)4 + 7 的有理化因式是 ___________.分析:由于( 4+ 7 )(4- 7 )= 42- ( 7 )2=9,因此 4+ 7 的有理化因式是 4- 7 .答案: 4- 7 ;(2) 计算 :1 + 27-6 1 .2 + 33分析:1 =2 - 3=2- 3, 27=3 3,61=2 3.2 +3 (2 + 3)(2 - 3)3答案:解:原式 =2- 3 + 3 3 - 2 3 =2.(3) 计算 :骣 11 11 琪 +++ L++ .琪2 +13 + 24 + 3( 2012 1)桫2012 + 2011分析:1n +1 - n= = n +1 - n ,将各个分式分别分母有理化 n +1 + n ( n +1 + n )( n +1 - n)后再进行计算 .答案:解:原式 =( 2-1+ 3- 2+ 4- 3+L + 2012-2011 )( 2012 +1 )= ( 2012 - 1)( 2012 +1)= ( 2012 )2- 12=2012- 1= 2011.(4) 已知 a= 3 + 2, b= 3 - 2 , 求 a 2 - 3ab +b 2 的值 .3 - 2 3 + 2分析: a= 3 + 2 = ( 3 + 2) 2 =5+2 6 ,同理 b=3 -2=5-2 6;3 - 2( 3- 2)( 3+ 2)3 + 2a + b= 5 + 2 6 +5- 2 6 = 10,a b=( 5 + 2 6 )(5- 2 6 )= 1,而后将所要求值的式子用 a +b 和 a b 表示,再整体代入求值即可 .3 + 2 3 - 2 , 答案:解:由于 a=-=5+2 6 ,b==5-2 63 23 +2因此 a + b= 5 + 2 6 + 5 - 2 6 = 10, a b=( 5 + 2 6 )( 5 - 2 6 )= 1. 因此 a 2 - 3ab +b 2 = (a +b) 2 - 5ab =102 - 5?1= 95 .小结:分母有理化是我们办理二次根式问题常常用的一种方法,在相关二次根式化简求值的题目中我们常常会用到.利用平方差公式进行分母有理化是常用方法.如 :( a +b )(a -b ) =a - b,( a+b )( a-b ) =a 2-b, (a +b)(a - b) =a -b 2.贯通融会:2. 如图 , 数轴上与1, 2 对应的点分别为A, B,点B 对于点 A 的对称点为C, 设点C 表示的数为 x, 则 | x- 2 | + 2 =()xA. 2B. 2 2C. 3 2D. 2分析:由于点 B 和点 C 对于点 A 对称,点 A 和点 B 所表示的数分别为1,2,因此点C表示的数为 2-2 ,即 x= 2- 2 ,故| x-2 | + 2 = |2- 2-2|+x2=2 2-2+2+ 2 =3 2.2 - 2例 3比较大小:(1)11-3与10-2;(2) 2 2-5与10-7.分析:(1)用平方法比较大小;(2)用倒数法比较大小 .答案:解:( 1)(11 - 3 )2=11-2×11 × 3 +3= 14-2 33 ,( 10 -2 )2= 10-2 ×10 ×2+4= 14-2 40 .∵ 33< 40, ∴33 < 40 ,∴-2 33>-2 40 , ∴14-2 33 > 14-2 40 ,∴(11 - 3 )2>(10 -2)2.又∵11 - 3 >0, 10 -2 >0, ∴11- 3 > 10-2.( 2)21 = 22+55)=2 2+ 5,2- 5 (2 2- 5)(2 2+ 31 =( 10- 10 + 7 = 10 + 7 .10 - 7 7)( 10 + 7) 3∵22+ 5= 8+ 5< 10+ 7,3 33∴1<1 ,2 - 10 - 7 2 5∴ 2 2 - 5 > 10 - 7 .小结:比较两个二次根式大小的方法好多 , 最常用的是平方法和取倒数法 , 还能够将根号外因子移到根号内比较 , 但这时要注意 :(1) 负号不可以移到根号内; (2) 根号外正因子要平方后才能从根号外移到根号内 .3. 已知 a20142013 , b20152014, c20162015,则以下结论中正确的选项是()A. a>b>cB.c>b>aC. b>a>cD. b>c>a分析:11 20142013 ,a201420131120152014 ,1120162015 ;b20152014c2016 2015∵0<11 1,∴ a>b>c . ab c例 4 (2013·襄阳)先化简,再求值:a 2b 2 2ab b 2a ,此中 a 12 , b 1 2 .a a答案:解:原式 =(a b)( a b)2ab b 2a 2= ( a b)(a b)aaaa(a b) 2= a b .a b∵ a 1 2 , b 1 2 ,∴ a+b= 2,a- b= 2 2 ,∴原式 =222=.2 2例 5 已知实数 x ,y 知足(x - 2- 2012)( y -2- 2012) = 2012 ,则 2- 2y 2的值x y3x+ 3x- 3y- 2011为() A.-2012B.2012C.-1D.1分析:察看所给等式特色可将等式变形为 x -x 2 - 2012 = 2012,将等式右侧分母有y - y 2 - 2012理化得 x -x 2 - 2012 = y + y 2 - 2012 ①;同理可得 y - y 2 - 2012 = x + x 2 - 2012 ②;①+②得 x 2 - 2012 + y 2 - 2012 = 0 ,因此 x 2 = y 2 = 2012 ;① - ②得 x - y = 0 ,因此 x = y ;3x 2- 2y 2+ 3x- 3y- 2011=3x 2- 2x 2+ 3x- 3x- 2011=x 2- 2011= 2012- 2011= 1.答案: D小结:此题有必定的技巧性,解题重点在于对所给等式进行变形,而后对变形所获得的两个等式进行简单的加减运算即可获得我们所需要的条件. 此题也能够依据变形获得的两个等式的特色得出 x=y 的结论,而后辈入本来的等式,从而求出x ,y 的值,最后带入求值 .5. 察看剖析以下数据, 找寻规律:0, 3 , 6 ,3,2 3 , 15 , 3 2 , 那么第10 个数据应是_________.分析:0= 0′3,3= 1′3,6 = 2′3,3= 3′3,2 3= 12 = 4?3, 15= 5′3 ,3 2 = 18 = 6? 3 ,,3(n - 1),因此第10个数据是 9? 3 3 3 .6. (2013·孝感)先化简,再求值: 1 1 1 ,此中 x= 3 2 ,y= 32 .x y y x例 6 已知 m=1+ 2 , n= 1- 2 ,且(7 m2-14 m+a)(3 n2-6 n-7) = 8,则a的值等于()A.-5B.5C.-9D.9分析:由 m=1+ 2 可得m- 1= 2 ,两边平方得m2- 2m+1=2,因此m2- 2m=1;7m2-14 m+a= 7( m2-2 m) +a= 7+a;同理可得 n2- 2n= 1,3n2-6 n-7 = 3( n2-2 n)-7 = 3-7 = -4;因此 (7 +a ) ×(-4) = 8,解得 a= -9.答案: C小结:察看所给等式和 m,n 的值,我们能够发现,对 m,n 稍作变形即可整体代入 . 整体思想是解决这种较复杂求值问题常用的思想方法 . 自然我们也能够直接把 m,n 的值直接代入,而后解方程求出 a 的值,这样计算量要大好多 .4. 设 a= 7-1,则3a3+ 12a2- 6a- 12= ()A. 24B. 25C. 4 7+10D. 4 7+12解析:由a=7 - 1得a+1=7 ,两边平方得a2+ 2a+ 1=7 ,因此a2+ 2a= 6 ,所以3a3+ 12a2- 6a- 12= 3a(a2+ 2a)+6a2- 6a- 12= 3a×6+6a2- 6a- 12= 6a2+ 12a- 12=6(a2+ 2a)- 12= 6× 6- 12= 24.。
考点02 二次根式的运算与化简求值专项练习(原卷版)
![考点02 二次根式的运算与化简求值专项练习(原卷版)](https://img.taocdn.com/s3/m/3fc7916ea0116c175e0e4805.png)
人教版2020——2021年八年级下册新题二次根式的运算与化简求值专项练习1.(2020秋•遵化市期末)计算:(1)3﹣3(1﹣3); (2)(22+63)×6÷2.2.(2020秋•太平区期末)计算题:(1)32712⨯;(2)50×2﹣51020-;(3)(5+3)×(3﹣5)﹣(3﹣1)2.3.(2020秋•市中区期末)计算:(1)18﹣421+28;(2)162188-+.4.(2020秋•项城市期末)计算:(1)212×43+52; (2)(6+23)(23-6).5.(2020秋•织金县期末)计算下列各题:(1)27﹣4831+31;(2)58020+﹣(32﹣1)2.6.(2020秋•沈河区期末)计算:(1)8﹣21+26÷2;(2)5105+﹣31×12.7.(2020秋•碑林区校级期末)计算:(1)218﹣221+2;(2)(3﹣2)2﹣2818-.8.(2020秋•武侯区期末)计算:(1)(π﹣2020)0﹣243+38-+|1﹣3|. (2)32712+﹣(3﹣2)(3+2).9.(2020秋•郫都区期末)计算:(1)15÷55+15×5﹣27; (2)(5+2)2﹣(5+2)(5﹣2).10.(2020秋•龙华区期末)计算题 (1)28+(3+2)(3﹣2); (2)621+|1﹣3|﹣(6+1)÷33.11.(2020秋•新化县期末)已知a =1+2,b =1﹣2,求:(1)求a 2﹣2a ﹣1的值;(2)求a 2﹣2ab +b 2的值.12.(2020秋•永年区期末)已知x =321-. (1)求代数式x +x1;(2)求(7﹣43)x 2+(2﹣3)x +3的值.13.(2020春•遵义期末)已知x =2+1,y =2﹣1,求下列各式的值:(1)x 2+2xy +y 2;(2)xy 11-.14.(2020春•浦北县期末)已知:m=55+2,n=5﹣2,求(1)m﹣n的值;(2)m n的值.15.(2020春•和县期末)已知x=22+3,y=22﹣3,求代数式x2﹣y2的值.16.(2020春•潮南区期末)已知a=5+2,b=5﹣2.求下列式子的值:(1)a2b+ab2;(2)(a﹣2)(b﹣2).17.(2020春•姑苏区期末)已知:a =5+3,b =5-3.求值:(1)ab ;(2)a 2﹣3ab +b 2;18.(2020春•临邑县期末)已知x =154-,y =154+. (1)计算x +y = ;x y = ;(2)求x 2﹣x y +y 2的值;19.(2020春•鱼台县期末)先化简,再求值:()142--x x x +(x ﹣2)2﹣692x ,其中,x =5+1.20.(2020春•马山县期末)已知:x=3+2,y=3﹣2,求代数式x2﹣y2+5xy的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=12- +6-18= .
(2)原式= =
= .
(3)原式= = .
小结:(1)二次根式的混合运算常常用到幂的运算法则和乘法公式,有时题目中条件不明显,要善于变形,使之符合乘法公式,幂的运算法则特点,从而简化计算.
(2)二次根式的计算和化简灵活运用因式分解能使计算简便.
举一反三:
举一反三:
4.设a= -1,则3a3+12a2-6a-12=()
A. 24 B. 25 C. D.
解析:由a= -1得a+1= ,两边平方得a2+2a+1=7,所以a2+2a=6,所以3a3+12a2-6a-12=3a(a2+2a)+6a2-6a-12=3a×6+6a2-6a-12=6a2+12a-12=
A.-5B.5C.-9D.9
解析:由m=1+ 可得m-1= ,两边平方得m2-2m+1=2,所以m2-2m=1;
7m2-14m+a=7(m2-2m)+a=7+a;
同理可得n2-2n=1,3n2-6n-7=3(n2-2n)-7=3-7=-4;
所以(7+a)×(-4)=8,解得a=-9.
答案:C
小结:观察所给等式和m,n的值,我们可以发现,对m,n稍作变形便可整体代入.整体思想是解决这类较复杂求值问题常用的思想方法.当然我们也可以直接把m,n的值直接代入,然后解方程求出a的值,这样计算量要大很多.
1.若 , ,则xy的值是( )
A. B.
C.m + nD.m-n
解析:xy= = = .
例2阅读材料:“黑白双雄,纵横江湖;双剑合璧,天下无敌.”这是武侠小说的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(2+ )(2- )=1,( + )( - )=3,它们的积不含根号,我们就说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:如 = = , = = ,像这样,通过分子、分母同乘一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
答案:解:(1)( - )2=11-2× × +3=14-2 ,
( -2)2=10-2× ×2+4=14-2 .
∵33<40,∴ < ,∴-2 >-2 பைடு நூலகம்∴14-2 >14-2 ,
∴( - )2>( -2)2.又∵ - >0, -2>0,∴ - > -2.
(2) = = ,
= = .
∵ = < ,
∴ < ,
∴ - > - .
小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.
3.已知 , , ,则下列结论中正确的是( )
A.a>b>cB.c>b>a
C.b>a>cD.b>c>a
所以 = = = .
小结:分母有理化是我们处理二次根式问题时常用的一种方法,在有关二次根式化简求值的题目中我们经常会用到.利用平方差公式进行分母有理化是常用方法.如:( + )( - )=a-b,(a+ )(a- )=a2-b, ( +b)( -b)=a-b2.
举一反三:
2.如图,数轴上与1, 对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x- |+ =( )
解析: ,
, ;
∵0< ,∴a>b>c.
例4(2013·襄阳)先化简,再求值: ,其中 , .
答案:解:原式= =
= .
∵ , ,∴a+b=2,a-b= ,
∴原式= = .
例5已知实数x,y满足 ,则3x2-2y2+3x-3y-2011的值为()
A.-2012 B.2012 C.-1 D.1
解析:观察所给等式特点可将等式变形为 ,将等式右边分母有理化得 ①;
A. B.
C. D. 2
解析:因为点B和点C关于点A对称,点A和点B所表示的数分别为1, ,所以点C表示的数为2- ,即x=2- ,故|x- |+ =|2- - |+ =2 -2+ =3 .
例3比较大小:(1) - 与 -2;(2) - 与 - .
解析:(1)用平方法比较大小;(2)用倒数法比较大小.
同理可得 ②;
①+②得 ,所以 ;
①-②得 ,所以 ;
3x2-2y2+3x-3y-2011=3x2-2x2+3x-3x-2011=x2-2011=2012-2011=1.
答案:D
小结:本题有一定的技巧性,解题关键在于对所给等式进行变形,然后对变形所得到的两个等式进行简单的加减运算便可得到我们所需要的条件.本题也可以根据变形得到的两个等式的特点得出x=y的结论,然后代入原来的等式,进而求出x,y的值,最后带入求值.
=( )( )=( )2-12=2012-1=2011.
(4)已知a= ,b= ,求 的值.
解析:a= ,同理b= ;
a + b= + =10,a b=( )( )=1,然后将所要求值的式子用a + b和a b表示,再整体代入求值即可.
答案:解:因为a= ,b= ,
所以a + b= + =10,a b=( )( )=1.
举一反三:
5.观察分析下列数据,寻找规律:0, , ,3,2 , , ,……那么第10个数据应是_________.
解析:0= , = , = , = ,2 = , = , = ,…, ,所以第10个数据是 .
6.(2013·孝感)先化简,再求值: ,其中x= ,y= .
例6已知m=1+ ,n=1- ,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于( )
二次根式的化简求值
练习题
温故而知新:
分母有理化
分母有理化是二次根式化简的一种常用方法,通过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化.
例 1计算:(1) ;
(2) ;
(3) .
解析:(1)式进行简单分组,然后利用平方差公式和完全平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,然后再约分.
(1)4+ 的有理化因式是___________.
解析:因为(4+ )(4- )=42-( )2=9,所以4+ 的有理化因式是4- .
答案:4- ;
(2)计算: .
解析: , , .
答案:解:原式=2- + - =2.
(3)计算: .
解析: ,将各个分式分别分母有理化后再进行计算.
答案:解:原式=( )( )