一元一次不等式的解集的四种情况
一元一次不等式组解集的四种情况
一元一次不等式组解集的四种情况示例文章篇一:《一元一次不等式组解集的四种情况》嗨,小伙伴们!今天咱们来聊聊一元一次不等式组解集的四种情况,这可超级有趣呢!咱们先来说第一种情况。
想象一下,有两个不等式,就像两个小伙伴在争地盘。
如果一个不等式是x > a,另一个是x > b,这里a和b是两个数哦。
那这个不等式组的解集是啥呢?这就好比两个人都想要更大的地方,那肯定是取更大的那个数呀。
所以这个不等式组的解集就是x > 最大的那个数。
比如说,一个不等式是x > 3,另一个是x > 5,那这个不等式组的解集就是x > 5。
这多简单呀,就像两个小朋友抢糖果,谁要的更多就听谁的。
你们看,是不是很好理解呢?再来说第二种情况啦。
要是一个不等式是x < a,另一个是x < b呢?这就像是两个小懒虫,都想找个最小的地方躲起来。
那这个时候,解集就是x < 最小的那个数。
比如说x < 2和x < 4,那解集就是x < 2。
这就好像是两个小动物找洞穴,越小的洞穴越能让它们觉得安全,所以就选最小的那个啦。
第三种情况有点不一样咯。
如果一个不等式是x > a,另一个是x < b,这里a比b 小。
这就像是两个人,一个想往大的地方去,一个想往小的地方去,那中间的部分就是他们都能接受的啦。
这个时候不等式组的解集就是a < x < b。
就像在一条路上,一个人想走到3这个位置之后,另一个人想走到7这个位置之前,那3到7之间的路就是他们都能走的啦。
比如说x > 1和x < 5,那解集就是1 < x < 5。
这是不是很像两个人在商量一个共同的活动范围呀?最后一种情况呢。
要是一个不等式是x < a,另一个是x > b,这里a还比b小。
这就像两个人的要求完全相反啦,一个要小的地方,一个要大的地方,而且大的地方还在小的地方左边,这怎么可能同时满足呢?所以这个不等式组就没有解啦。
9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1
2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1
2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①
初中数学 如何判断一元一次不等式的解集是否为空集
初中数学如何判断一元一次不等式的解集是否为空集要判断一元一次不等式的解集是否为空集,我们需要考虑不等式的形式以及未知数的取值范围。
一元一次不等式是指只含有一个未知数的一次函数,并且包含不等式符号(如大于、小于、大于等于、小于等于等)。
下面,我将详细介绍如何判断一元一次不等式的解集是否为空集。
首先,让我们回顾一下一元一次不等式的一般形式:ax + b < c 或ax + b > c,其中a、b、c 为实数,且a ≠ 0。
我们可以将一元一次不等式的解集分为以下三种情况来讨论:情况1:无解的情况(解集为空)如果一元一次不等式的解集为空,那么不等式表示的条件在实数范围内无解。
这种情况可能出现在不等式的两侧无交集的情况下,例如:1. 当不等式为ax + b < c,其中a > 0时,如果不等式的右侧c小于不等式左侧的最小值(即x的取值范围的下界),则不等式无解。
2. 当不等式为ax + b > c,其中a < 0时,如果不等式的右侧c大于不等式左侧的最大值(即x的取值范围的上界),则不等式无解。
情况2:有解的情况(解集非空)如果一元一次不等式的解集非空,那么不等式表示的条件在实数范围内至少有一个解。
这种情况可能出现在不等式的两侧有交集的情况下,例如:1. 当不等式为ax + b < c,其中a > 0时,如果不等式的右侧c大于等于不等式左侧的最小值(即x的取值范围的下界),则不等式有解。
2. 当不等式为ax + b > c,其中a < 0时,如果不等式的右侧c小于等于不等式左侧的最大值(即x的取值范围的上界),则不等式有解。
综上所述,要判断一元一次不等式的解集是否为空集,我们需要考虑不等式的形式以及未知数的取值范围。
如果不等式的解集为空,那么不等式在实数范围内无解;如果不等式的解集非空,那么不等式在实数范围内至少有一个解。
希望这个解答能够帮助你理解如何判断一元一次不等式的解集是否为空集。
考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
9.1.1不等式及其解集(5.4)
导航
不等式
解
解集
解集的表示方法
一元一次不等式
火眼金睛
下列式子哪些是不等式?哪些不是不等式? 为什么? ⑤a+b≠c ①-2<5 ⑥5m+3=8 ②x+3>6 ⑦8+4<7 ③4x-2y≤0 3 2 ⑧ ④ a-2b x 1 5
答:①②③⑤⑦⑧是不等式,④⑥不是,因为④不含 不等号,⑥是等式。
导航
不等式
解
解集
解集的表示方法
一元一次不等式
3.不等式的解集
一般的,一个含有未知数的不等式 的所有的解组成这个不等式的解集。求 不等式的解集的过程叫解不等式
想一想:
1.不等式的解和不等式的解集是一样的吗?
2.不等式的解与解不等式一样吗?
导航
不等式
解
解集
解集的表示方法
一元一次不等式
尝试练习
下列说法正确的是( A ) A. x=3是2x+1>5的解 B. x=3是2x+1>5的唯一解 C. x=3不是2x+1>5的解 D. x=3是2x+1>5的解集
例5、下列说法中正确的是:D (1)-7是x+3<-3的一个解。 (2)-40是不等式4x<-4的解 (3)不等式x<-3的整数解有有限个 (4)不等式x<3的正整数解有有限个
导航
不等式
解
解集
解集的表示方法
一元一次不等式
4. 解集的表示方法
第一种:用式子(如x>2),即用最简 形式的不等式(如x>a或x<a)来表示. 2 x 50 的解集 如不等式 3 可以用不等式x >75来表示
1.2一元一次不等式(组)解法
基本概念
1、同解不等式: 如果两个不等式的解集相等,那么 这两个不等式就叫做同解不等式。 2、同解变形: 一个不等式变形为另一个不等式时, 如果这两个不等式是同解不等式,那么 这种变形叫做不等式的同解变形。
一元一次不等式的解法:
任何一个一元一次不等式,经过不等式的同解变形 后。都可以化成
例7 : 解不等式组 4 + 2 x > 7 x + 3 3 x + 6 > 4 x + 5 2 x − 3 < 3x − 5 (1) (2) (3)
x+ y =3 x > 0 例8 : 方程组 的解满Байду номын сангаас x − 2 y = −3 + a y > 0 求a的取值范围
解:两边都乘以6,得
12( x + 1) + 2( x − 2) > 21x − 6
14 x + 8 > 21x − 6
移项,整理后,得
− 7 x > −14
两边除以-7,得解集
{x | x < 2}
例2 : 求不等式21 − 4 x > 5的非负整数解;
例3 : k取什么值时 , 1 2 代数式 (1 − 5k ) − k的值为非负数 ; 2 3
2 3 x + 25 例4 : 关于x的方程 − ( x + m) = + 1的解是正数; 3 3 那么m的取值范围是什么?
例5 : 解不等式组 4 x − 3 > 2( x + 1) 4 x − 2 ≤ −1 1 x + 6 5 5 (1) (2)
例6 : 解不等式
8.3.1 一元一次不等式组及其解法
知2-练
1
(福州)不等式组
x x
1的, 解集在数轴上表示正确的是 2
()
第十八页,编辑于星期五:九点 二十四分。
2
不等式组 A.x<1
x x
1 , 的解集是( 3
B.x≥3
)
C.1≤x<3
D.1<x≤3
知2-练
第十九页,编辑于星期五:九点 二十四分。
易看出,这两个不等式的解集没有公共部分.这时,
这个不等式组无解.
第二十三页,编辑于星期五:九点 二十四分。
总结
知3-讲
解不等式组的关键:一是要正确地求出每个不等 式的解集;二是要利用数轴正确地表示出每个不等式 的解集,并找出不等式组的解集.
第二十四页,编辑于星期五:九点 二十四分。
知2-练
1 解下列不等式组,并把它们的解集在数轴上表示出来:
第八页,编辑于星期五:九点 二十四分。
知1-练
1 下列不等式组是一元一次不等式组的有_________.
(填序号)
①
x 2 3x 1, 2y 7;
②
③ 2( x 1) 3x, ④
x
2;
⑤
x 1 0,
2
x
3
0
⑥
x 4 2 x 3;
x2 1 2x 2, 3x 1;
x 6 1,
式合在一起,就组成了一个一元一次不等式组. 要点精析:(1)这里的“几个”是指两个或两个以上;(2)每
个不等式只能是一元一次不等式;(3)每个不等式必须含 有同一个未知数. 2. 易错警示:判断一个不等式组是否为一元一次不等式组, 常出现以下几种错误:
①不等式组中不都是一元一次不等式;
2020年中考数学第二轮复习 第10讲 一元一次不等式(组) 强基训练+真题(后含答案)
2020年中考数学第二轮复习 第十讲 一元一次不等式(组)【强基知识】一、不等式的基本概念:1、不等式:用 连接起来的式子叫做不等式2、不等式的解:使不等式成立的 值,叫做不等式的解3、不等式的解集:一个含有未知数的不等的解的 叫做不等式的解集 注意:1、常用的不等号有 等2、不等式的解与解集是不同的两个概念,不等式的解是单独的未知数的值, 而解集是一个范围的未知数的值组成的集合,一般由无数个解组成3、不等式的解集一般可以在数轴上表示出来。
注意“>”“<”在数轴上表示 为 ,而“≥”“≤”在数轴上表示为 二、不等式的基本性质:基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a -c b -c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )注意:运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要 三、一元一次不等式及其解法:1、定义:只含有一个未知数,并且未知数的次数是 且系数 的不等式叫一元一次不等式,其一般形式为 或 。
2、一元一次不 等 式 的 解 法 步 骤 和 一 元一次方程的解法相同,即包含 、 、 、 、 等五个步骤 注意:在最后一步系数化为1时,切记不等号的方向是否要改变 四、一元一次不等式组及其解法:1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集3、解法步骤:先求出不等式组中各个不等式的 再求出他们的 部分,就得到不等式组的解集4、一元一次不等式组解集的四种情况(a <b )解集是、⎩⎨⎧>>bx a x 1 口诀:大大取大; 解集是、⎩⎨⎧<<bx a x 2 口诀:小小取小;解集是、⎩⎨⎧<>bx a x 3 口诀:小大大小,取中间; 解集是、⎩⎨⎧><bx a x 4 口诀:大大小小,无解了(无解或空集)。
二元一次方程组,一元一次不等式组及其应用
一元一次不等式组及其应用◆知识讲解1.解不等式组一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.2.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组 (其中a<b )图示解集口诀x ax b ≥⎧⎨≥⎩x ≥b同大取大x ax b ≤⎧⎨≤⎩x ≤a 同小取小x ax b ≥⎧⎨≤⎩ a ≤x ≤b 大小、小大中间找 x ax b≤⎧⎨≥⎩空集小小、大大找不到3.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.◆经典例题: 例1 (2006,江苏江阴)关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是:( ) A .-5≤a ≤-143 B .-5≤a<-≤-143 C .-5<a ≤-143 D .-5<a<-143例2 (2004,南昌市)仔细观察图,认真阅读对话:根据对话内容,试求出饼干和牛奶的标价各是多少元?例3 (2004,江西赣州)某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.◆强化训练:一、填空题1.(06,四川达州)不等式组31011x x -+≥⎧⎨+>-⎩的解集是_______.2.(2006,四川成都)不等式组52(1)1233x x x >-⎧⎪⎨-≤-⎪⎩的整数解的和是______. 3.不等式1≤3x-7<5的整数解是______. 4.对于整数a ,b ,c ,d ,符号a b c d表示运算ac-bd ,已知1<a b c d<3,则b+d 的值是____.5.长度分别为3cm ,•7cm ,•xcm•的三根木棒围成一个三角形,•则x•的取值范围是_______.6.如果a<2,那么不等式组2x a x >⎧⎨>⎩的解集为________;当______时,不等式组2x a x <⎧⎨>⎩的解集是空集.7.(2006,山西)若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x<1,则(a+b )=______.8.已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有5个,则a 的取值范围是______.9.(2008,苏州)2008年6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元,2元和3元,这三种环保购物袋每只最多分别能装大米3kg ,5kg 和8kg .6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20kg 散装大米,他们选购的3只环保购物袋至少应付给超市_______元. 二、选择题10.已知0<b<a ,那么下列不等式组中无解的是( )A .x a x b>⎧⎨<⎩ B .x a x b>-⎧⎨<-⎩ C .x a x b>⎧⎨<-⎩ D .x a x b>-⎧⎨<⎩11.(2008,义乌)不等式组312,840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A B C D 12.(2006,山东聊城)已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x-y<0,则k 的取值范围是( )A .-1<k<-12B .0<k<12C .0<k<1D .12<k<1 13.如果不等式组320x x m-≥⎧⎨≥⎩有解,则m 的取值范围是( ) A .m<32B .m ≤32C .m>32D .m ≥3214.若15233m m +>⎧<⎪⎨-⎪⎩,化简│m+2│-│1-m │+│m │得( )A .m-3B .m+3C .3m+1D .m+115.不等式组3(2)423x a xx x +--≤⎧>⎪⎨⎪⎩无解,则a 的取值范围是( ) A .a<1 B .a ≤1 C .a>1 D .a ≥116.为了改善城乡人民生产,生产环境,我市投入大量资金治理清水河污染,在城郊建立了一个综合性污水处理厂.设库池中存有待处理的污水at ,又从城区流入库池的污水按每小时bt 的固定流量增加.如果同时开动2台机组需30h 处理完污水,同时开动4台机组需10h 处理完污水.若要求在5h 内将污水处理完毕,那么至少要同时开动机组的台数为( ) A .6台 B .7台C .8台 D .9台 三、解答题17.(1)(2005,南京市)解不等式组2(2)33134x x xx +≤+⎧⎪+⎨<⎪⎩,并写出不等式组的整数解; (2)(2004,太原市)解不等式组312(1)2(1)4x x x x+≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.18.(2006,湖北十堰)某牛奶乳业有限公司经过市场调研,决定从明年起对甲,乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p (万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?19.(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?20.(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A 型和B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A ,B 两种型号的陶艺品用料情况如下表:需甲种材料 需乙种材料1件A 型陶艺品 0.9kg 0.3kg 1件B 型陶艺品 0.4kg1kg(1)设制作B 型陶艺品x 件,求x 的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数.产品 每件产品的产值 甲 4.5万元 乙7.5万元21.(2008,青岛)2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,•观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张.•某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A 种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?22.(2006,青岛)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60•座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),•而且要比单独租用一种车辆节省租金.请你帮助学校选择一种最节省的租车方案.23.(2005,深圳)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,•甲,乙两工程队再合作20天完成.(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x<15,y<70,求x,y.24.(2005,苏州)苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4kg蟹苗和20kg虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面n亩,则年租金共需______元;(2)水产养殖的成本包括水面年租金,苗种费用和饲养费用,•求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35000元。
一元一次不等式及解集
分析:设一年至少要回收x个易拉罐。
因为一个可以卖0.1元,所以x个可以卖 0.1x 元。 资助二名同学共需资金 1000元 ,已经集资了 450元, 还需集资 550 元。
由题可知,回收易拉罐卖的钱不能少于还需集资的钱,
所以可列不等式
0.1x≥550
。
猜想不等式的解集是
x≥5500
。
道们在
什知数
么道学
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系
统
5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产 生 一些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物 , 正常在我们常识中不可能发生的事情,会让我们印象更深。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个 记忆周 期是 1天 第五个 记忆周 期是 2天 第六个 记忆周 期是 4天
第 记七 忆个 周如何利用规律实现更好记忆呢?
期是 7天 第八个 记忆周 期是15 天
超级记忆法--场 景法
人教版七年级上册Unit4 Where‘s my backpack?
费曼学习法--实操步骤
1 获取并理解 费
32 根据参考复述 仅靠大脑复述
曼 学
54 循环强化 反思总结
习 法
6 实践检验
费曼学习法--
实操
第一步 获取并理解你要学习的内容
(一) 理 解 并 获 取
1.知识获取并非多多益善,少而精效果反而可能更好,建议入门时选择一个概念或 知识点尝试就好,熟练使用后,再逐渐增加,但也不建议一次性数量过多(根据自 己实际情况,参考学霸的建议进行筛选); 2.注意用心体会“理解”的含义。很多同学由于学习内容多,时间紧迫,所以更 加急于求成,匆匆扫一眼书本,就以为理解了,结果一合上书就什么都不记得了。 想要理解,建议至少把书翻三遍。
用数轴表示一元一次不等式的解集
4.3.2 用数轴表示一元一次不等式的解集教学目标1 进一步熟练掌握一元一次不等式的解法;2 掌握不等式解集在数轴上的表示方法,能正确的表示出解集。
教学重点、难点重点:熟练的解一元一次不等式,并把解集表示在数轴上。
难点:在数轴上正确的表示不等式的解集。
教学过程1 解下列不等式1(1)7(4-x )-2(4-3x)<4x (2)x-()21038127x x --≤+2 解一元一次不等式的依据是什么?有哪些步骤?与解一元一次方程有哪些相同之处和不同之处?3在数轴上表示:(1) -3(2)大于3的数(3) 不大于3的数,(4)小于5的数(5)大于-2而不大于4的数(1)(2数可以用数轴上的点来表示,数轴上的点可以表示数,这样数和形就紧密的结合起来了,,一元一次不等式的解集能否用数轴上的点来表示呢?下面我们来研究这个问题。
二 合作交流,探究新知。
1 用数轴上的点来表示不等式的解集动脑筋:(1)不等式3x>6的解集是什么?解:两边同除以_____,得:x________(2)不等式3x>6的解集有多少个?包括3吗?(3)分布在数轴上的什么位置?(4)怎样在数轴上表示3x>6的解呢?(5)把3x>6改为3x ≥6,怎样在数轴上表示其解集呢?(6)把3x>6改为3x<6在数轴又怎样表示其解集呢?(7)有上可知,在数轴上表示不等式的解集时是怎样区别“>”与“≥”?怎样区别“>”与“<”的呢?2考考你:(1) 把下列不等式的解集在数轴上表示出来:①x>-1; ② x ≥ -1 ;③ x<4; ④ x ≤4 , ⑤ -2<x ≤4, ⑥ 0≤x <3(3(4)(5(2) 根据图示写出不等式的解集一元一次不等式的解集存在以下四种情况:要注意“>”、“<”在数轴上用空心圆圈表示,“≥”、“≤”在数轴上用实心点表示。
三 应用迁移,巩固提高1 解不等式例1 解下列不等式12-6x ≥2(1-2x ),并把解集在数轴上表示出来2 实践应用①②例2 当x取什么值时,代数式123x-+的值小于或等于0?并把解集在数轴上表示出来。
一元一次不等式的解集
一元一次不等式的解集
一元一次不等式的解集是指让一个变量与一个常数的乘积与另一个常数比较大小所得到的解集。
在数学中,解集的概念非常重要,特别是对于不等式这种数学工具来说更是如此。
因此,本文将主要介绍一元一次不等式的解集,以及如何根据不等式的特性来求解解集。
首先,让我们来看一下一元一次不等式的形式:ax+b<c或
ax+b>c,其中a、b、c均为实数,且a不等于0。
这种不等式的解集也就是所有解的集合,可以用不等式符号表示。
例如,一元一次不等式2x+3<7的解集可以用{x|x<2}的形式表示,也就是x的取值范围是小于2的所有实数。
接下来,让我们来看一下如何求解一元一次不等式的解集。
首先,我们需要观察不等式的符号,判断变量与常数之间的大小关系。
如果不等式符号是小于号,那么我们可以通过减去常数b,再除以系数a来得到x的取值范围。
例如,对于不等式2x+3<7,我们可以先将常数3减去,得到2x<4,然后将系数2作为分母除以2,得到x<2,因此,解集为{x|x<2}。
如果不等式符号是大于号,那么我们需要将不等式反转,先得到小于号形式,再求解。
例如,对于不等式2x+3>7,我们需要将不等式反转得到小于号形式,即2x+3<7,然后就可以按照上面的方法求解得到解集{x|x>2}。
总之,一元一次不等式的解集会影响到很多实际问题的求解,因此,对于学习数学的学生来说,掌握不等式的解集求解方法至关重要。
通过本文的介绍,相信大家能够更加清晰地了解一元一次不等式的解集概念和求解方法,也能够更加顺利地解决相关的数学问题。
解一元一次不等式的方法
解一元一次不等式的方法一元一次不等式是初中数学中常见的题型,解题的方法有很多种。
下面我将介绍几种常用的解一元一次不等式的方法,希望能够帮助同学们更好地理解和掌握。
方法一:逐个试数法逐个试数法是一种简单直观的解题方法。
对于不等式ax+b>0(或ax+b<0)来说,我们可以逐个试数,找出满足不等式的数值范围。
以不等式2x+3>0为例,我们可以先试x=0,代入不等式中得到3>0,不满足条件;再试x=1,代入不等式中得到5>0,满足条件。
因此,解集为x>1。
方法二:移项法移项法是一种常用的解一元一次不等式的方法。
对于不等式ax+b>0(或ax+b<0)来说,我们可以通过移项的方式将不等式转化为等价的形式。
以不等式2x+3>0为例,我们可以先将3移到不等式的另一侧,得到2x>-3;然后再将不等式两边同时除以2,得到x>-3/2。
因此,解集为x>-3/2。
方法三:分析法分析法是一种较为抽象的解题方法,适用于一些特殊的不等式。
对于不等式ax+b>0(或ax+b<0)来说,我们可以通过分析a的正负和b的正负来确定解集的范围。
以不等式2x-4<0为例,我们可以观察到a=2>0,b=-4<0。
由于a>0,所以解集应该在x的右侧;由于b<0,所以解集应该在x的左侧。
因此,解集为x<2。
方法四:图像法图像法是一种直观形象的解题方法,适用于一些较为复杂的不等式。
我们可以将不等式转化为函数图像,通过观察图像来确定解集的范围。
以不等式x^2-4x+3>0为例,我们可以将不等式转化为函数y=x^2-4x+3的图像。
通过观察图像,我们可以发现函数图像在x=1和x=3处交叉x轴,因此解集为x<1或x>3。
综上所述,解一元一次不等式的方法有逐个试数法、移项法、分析法和图像法等。
不同的方法适用于不同的题型和情况,我们需要根据具体的题目选择合适的解题方法。
湘教版八年级数学 4.5 一元一次不等式组(学习、上课课件)
知2-练
根据“同大取大”可知,关于 x 的不等式组 ቊx>xm>m-+12,的 解集是 x>m+2, 而题中给出的解集是 x> - 1, ∴ m+2= - 1, ∴ m= - 3.
感悟新知
知2-练
3-1.若不等式组ቊxx>≤2mm+-1,1无解,则 m 的取值范围是 m≥2
_________ .
感悟新知
+
1
- 4
3x
≤
1;
②
知3-练
解:解不等式①,得 x < 1. 解不等式②,得 x ≥ -3. 在数轴上表示不等式①和②的解集,如图 4.5-5. 由数轴可知,这两个不等式解集的公共部分是 -3 ≤ x < 1, 所以这个不等式组的解集为 -3 ≤ x < 1.
感悟新知
解:(2)--11<<33xx-2-2 11≤≤55可. 转化为不等式组൞-31x<-23x1-2≤ 51.
感悟新知
知3-练
例4 [母题 教材 P150 练习 T2 ] 解一元一次不等式组 .
2 x+1<3, ①
(1)
[中考·福建
]ቐx 2
+
1
- 4
3x ≤
1;
②
(2) 解-题1<秘3方x -2:紧1≤扣5.解一元一次不等式组的一般步骤 求解 .
感悟新知
2 x+1<3, ①
(1)
[中考·福建
]ቐx 2
知识点 3 解一元一次不等式组
知3-讲
1. 定义: 求不等式组的解集的过程,叫作解不等式组. 2. 解一元一次不等式组的一般步骤:
(1)分别解每一个一元一次不等式; (2)利用数轴法或口诀法确定不等式组的解集; (3)写出不等式组的解集 .
一元一次不等式组的四种情况
一元一次不等式组的四种情况
设a、b为已知数,且a<b,任何一个由两个一元一次不等式组成的不等式组,经过化简变形后,都可以得到下面四种情况中的一种:
上面四种不等式组的解集的情况分别是:
(1)x<a(上下都小于,比小的数小);
(2)x>b(上下都大于,比大的数大);
(3)a<x<b(比小的大,比大的小,两式合写便是解集);
(4)无解(比小的小,比大的大,“夹”不起来定无解)。
用数轴图示,以上四种情况分别是:
说明:要解一个不等式组,首先不是判定它属于哪一种情况,而是先化简变形,化为上述四种情况之一。
实际上,一般是不可能首先判断出它属于哪一种情况的,因为在化简过程中,有的不等式中不等号的方向会发生变化,所以要看化简以后的最简单的不等式组。
所谓“最简单”,指的是不等式组里每一个不等式的左边只含有系数是1的未知数,而右边是常数。
中考数学点对点-一元一次不等式(组)及其应用(解析版)
专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。
不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。
类型二:一元一次不等式组无解的情况。
类型三:明确一元一次不等式组的解集求范围。
类型四:一元一次不等式组有解求未知数的范围。
类型五:一元一次不等式组有整数解求范围。
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
知识卡片-在数轴上表示不等式的解集
在数轴上表示不等式的解集
能量储备
用数轴表示不等式的解集时,应确定两点:一是“界点”,二是“方向”.若解集包含“界点”,则用实心圆点;若解集不包含“界点”,则用空心圆圈.对于方向,相对于界点而言,大于向右画,小于向左画,画线要与数轴平行、对齐.
一般来说,一元一次不等式的解集用数轴表示有以下四种情况(设a<0):
通关宝典
★基础方法点
方法点1:用数轴表示不等式解集的方法
用数轴(通常取向右为正方向)表示不等式的解集,应记住下面的规律:(1)方向:大于向右画,小于向左画;(2)边界:有等号(≥,≤)画实心圆点,无等号(>,<)画空心圆圈.
例1 直接说出下列不等式的解集,并在数轴上表示出来.
(1)x+1>2;(2)x-1≤3.
解:(1)不等式x+1>2的解集是x>1,在数轴上的表示如图1所示.
图1
(2)不等式x-1≤3的解集是x≤4,在数轴上的表示如下图2所示.
图2
★★易混易误点
易混易误点1:在数轴上表示不等式的解集时,界点或画线方向标注错误
例2不等式3x<-6的解集,在数轴上表示正确的是()
解析:由不等式的基本性质2,在不等式3x<-6两边都除以3,得x<-2,故选B.
答案:B
蓄势待发
考前攻略
考查在数轴上表示不等式的解集.在数轴上表示不等式的解集,关键有两方面,一是画图的方向,二是画圆圈还是圆点.题型以选择题为主,也有与解不等式综合考查的解答题.
完胜关卡。