二次函数解析式最值问题专题总结

合集下载

解题秘诀二次函数最值的4种解法

解题秘诀二次函数最值的4种解法

解题秘诀二次函数最值的4种解法二次函数是高中数学中的一个重要知识点,掌握了解题的秘诀和方法,就可以更好地解决与二次函数相关的各种问题。

本文将介绍四种解法来求解二次函数的最值问题。

一、二次函数的最值根据导数解法要求解二次函数的最值,可以通过求导数的方法来解决。

具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2. 对函数进行求导,得到导函数:f'(x) = 2ax + b。

3.导函数表示了二次函数的斜率,要求函数的最值,就是要求导函数为零点时的x值。

4. 解方程2ax + b = 0,求得x = -b / 2a。

5.将求得的x值代入二次函数,计算得到对应的y值。

6.x和y的值就是二次函数的最值。

二、二次函数的最值根据顶点法解法顶点法也是求解二次函数的最值的一种方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2.求出二次函数的顶点坐标,顶点的x值为-x/2a。

3.将求得的x值代入二次函数,计算得到对应的y值。

4.x和y的值就是二次函数的最值。

三、二次函数的最值根据平移法解法平移法是一种通过平移变换求解二次函数最值的方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2.将二次函数表示为顶点形式:f(x)=a(x-h)^2+k,其中(h,k)为顶点坐标。

3.根据函数的几何性质,二次函数的最值就是顶点的纵坐标k。

四、二次函数的最值根据因式分解解法因式分解是一种求解二次函数最值的常用方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2.将二次函数进行因式分解:f(x)=a(x-x1)(x-x2),其中x1和x2为二次函数的两个零点。

3.根据函数的几何性质,二次函数的最值为x轴与二次函数的拐点处的纵坐标。

通过以上四种解法,我们可以灵活地解决二次函数的最值问题。

二次函数求最值的六种考法(含答案)

二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。

二次函数最值问题及解题技巧(个人整理)

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可二、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长三、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)利用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、不规则图形面积最值问题1)分割。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

二次函数求最值方法总结

二次函数求最值方法总结

二次函数求最值方法总结二次函数是高中数学中一个非常重要的内容,它的研究主要是通过函数的图像和性质来分析。

求二次函数的最值是我们在解决实际问题时经常需要用到的一个重要问题,下面我将对二次函数求最值的几种常用方法进行总结。

一、求二次函数的最值的基本思路:求解二次函数的最大值或最小值,就是要找出二次函数图像上的顶点。

根据二次函数的解析式f(x) = ax^2 + bx + c (a ≠ 0),顶点的横坐标为 x = -b/2a,纵坐标为 f(-b/2a)。

二、二次函数的变形:通过对二次函数的变形,将其转化为标准的完全平方形式,可以更方便地求解最值。

1.完全平方形式:f(x)=a(x-h)^2+k2.平移变形:f(x)=a(x-h)^2+k+c三、利用函数图像特征求解最值:1.如果a>0,则二次函数的图像开口向上,顶点为最小值;如果a<0,则二次函数的图像开口向下,顶点为最大值。

2.如果函数的常数项c>0,则函数的最小值为c;如果函数的常数项c<0,则函数的最大值为c。

四、利用导数的方法求解最值:1. 求二次函数的一阶导数 f'(x) = 2ax + b,并令其为零,求出顶点的横坐标 x = -b/2a。

2.将顶点的横坐标代入二次函数的解析式,求出纵坐标f(-b/2a)即可得到顶点的坐标。

五、利用求根公式求解最值:求根公式是指二次函数求根的公式,即二次函数的解为 x = (-b ± √(b^2 - 4ac))/(2a)。

1. 如果二次函数的判别式Δ = b^2 - 4ac < 0,则二次函数没有实数解,从而也没有最值。

2. 如果二次函数的判别式Δ = b^2 - 4ac > 0,则二次函数有两个实数解 x1 和 x2,取其中更接近顶点的一侧的解作为最值。

3. 如果二次函数的判别式Δ = b^2 - 4ac = 0,则二次函数有且只有一个实数解 x = -b/2a,此时该解即为最值。

微专题13 含参数二次函数的最值问题(解析版)

微专题13 含参数二次函数的最值问题(解析版)

微专题13 含参数二次函数的最值问题【方法技巧与总结】1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

【题型归纳目录】 题型一:定轴定区间型 题型二:动轴定区间型 题型三:定轴动区间型 题型四:动轴动区间型题型五:根据二次函数的最值求参数 【典型例题】 题型一:定轴定区间型例1.(2022·全国·高一专题练习)函数()232f x x x =++在区间[] 55-,上的最大值、最小值分别是( ) A .1124-,B .212,C .1424-, D .最小值是14-,无最大值【答案】C【解析】22313224y x x x ⎛⎫=++=+- ⎪⎝⎭,抛物线的开口向上,对称轴为32x =-,∴在区间[]55-,上,当32x =-时,y 有最小值14-;5x =时,y 有最大值42,函数()232f x x x =++在区间[]55-,上的最大值、最小值分别是:42,14-. 故选:C .例2.(2022·全国·高一课前预习)函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1 D .以上都不对【答案】B【解析】因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,ymin =1,当x =-2时,ymax =(-2-1)2+1=10. 故选:B.例3.(2022·陕西·榆林市第十中学高一期中)若二次函数()()()24f x a x x =+-的图像经过点()0,4-,则函数()f x 在[]4,2-上的最小值为___________. 【答案】92-【解析】由题知,()()()002044f a =+-=-,解得12a = 则()()()211924(1)222f x x x x =+-=--,所以当1x =时,()f x 有最小值9(1)2f =-.故答案为:92-例4.(2022·全国·高一专题练习)已知函数242y x x =-+-,当14x ≤≤上时y 的最小值是________ 【答案】-2 【解析】2242(2)2y x x x =-+-=--+,则二次函数在(),2-∞上单调递增,在()2,+∞上单调递减, ∴在14x ≤≤上,当4x =时有最小值-2,故答案为:-2.例5.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______ 【答案】80【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:80题型二:动轴定区间型例6.(2022·全国·高一课时练习)已知函数()()20f x x mx m =->在区间[]0,2上的最小值为()g m .(1)求函数()g m 的解析式. (2)定义在()(),00,∞-+∞上的函数()h x 为偶函数,且当0x >时,()()h x g x =.若()()4h t h <,求实数t 的取值范围.【解析】(1)因为()()222024m m f x x mx x m ⎛⎫=-=--> ⎪⎝⎭,所以当04m <≤时,022m <≤,此时()224m m g m f ⎛⎫==- ⎪⎝⎭;当4m >时,22m >,此时函数()2224m m f x x ⎛⎫=-- ⎪⎝⎭在区间[]0,2上单调递减,所以()()242g m f m ==-.综上,()2,04442,4m m g m m m ⎧-<≤⎪=⎨⎪->⎩(2)因为0x >时,()()h x g x =,所以当0x >时,()2,04442,4x x h x x x ⎧-<≤⎪=⎨⎪->⎩,易知函数()h x 在()0,∞+上单调递减,因为定义在()(),00,∞-+∞上的函数()h x 为偶函数,且()()4h t h ≥,所以04t<<,解得40t -<<或04t <<,所以实数t 的取值范围为()()4,00,4-.例7.(2022·全国·高一单元测试)已知函数2()2(f x x mx m m =-++∈R).当[1,1]x ∈-时,设()f x 的最大值为M ,则M 的最小值为( ) A .14B .0C .14-D .1-【答案】C【解析】由22()()f x x m m m =--++,故()f x 在(,)m -∞上递增,在(,)m +∞上递减, 当1m ≤-,则[1,1]x ∈-上递减,故最大值(1)10M f m =-=--≥,当11m -<<,则最大值22111()()[,2)244M f m m m m ==+=+-∈-,当m 1≥,则[1,1]x ∈-上递增,故最大值(1)312M f m ==-≥, 综上,M 的最小值为14-.故选:C例8.(2022·全国·高一单元测试)已知函数()()2213f x x k x =-++.(1)若函数()f x 为偶函数,求实数k 的值;(2)若函数()f x 在区间[]1,3-上具有单调性,求实数k 的取值范围;(3)求函数()f x 在区间[]22-,上的最小值. 【解析】(1)因为定义在R 上的函数2()2(1)3f x x k x =-++为偶函数,所以R x ∀∈,都有()()f x f x -=成立,即R x ∀∈,都有222(1)32(1)3x k x x k x +++=-++成立,解得1k =-.(2)因为函数2()2(1)3f x x k x =-++图象的对称轴为1x k =+, 所以要使函数()f x 在[]1,3-上具有单调性, 则13k +≥,或11k +≤-,即2k ≥或2k ≤-, 则k 的取值范围为(][),22,-∞-+∞.(3)①若函数()f x 在[]22-,上单调递减,则12k +≥,即1k,此时函数()f x 在区间[]22-,上的最小值为()234f k=-.②若函数()f x 在[]22-,上单调递增,则12k +≤-,即3k ≤-,此时函数()f x 在区间[]22-,上的最小值为()2114f k -=+.③若函数()f x 在[]22-,上不单调,则212k -<+<,即31k -<<,此时函数()f x 在区间[]22-,上的最小值为2(1)22f k k k +=--.综上所述,函数()f x 在区间[]22-,上的最小值为2min 34,1()22,31114,3k k f x k k k k k -≥⎧⎪=---<<⎨⎪+≤-⎩. 例9.(2022·全国·高一专题练习)已知函数()221f x x mx =++.(1)若1m =,求()f x 在13x -≤≤上的最大值和最小值; (2)求()f x 在22x -≤≤上的最小值;(3)在区间12x -≤≤上的最大值为4,求实数m 的值. 【解析】(1)1m =时,()()22211f x x x x =++=+,结合函数图像得:()f x 在13x -≤≤上的最大值是316f =(),最小值是()10f -=;(2)()221f x x mx =++的对称轴是x m =-,①当2-<-m ,即2m >时,函数在22x -≤≤上递增, 当2x =-时,取到最小值()245f m -=-+;②当22m -≤-≤,即22m -≤≤时,函数在22x -≤≤上先递减后递增,当x m =-时,取到最小值()21f m m -=-+;③当2m ->,即2m <-时,函数在22x -≤≤上递减, 当2x =时,取到最小值()245f m =+,综上所得,当2m >时,最小值()245f m -=-+;当22m -≤≤时,取到最小值()21f m m -=-+;当2m <-时,取到最小值()245f m =+.(3)由(2)的讨论思路结合函数图像在12x -≤≤内的 可能情况知()1f -,2f ()中必有一个是最大值;若()12241f m m -=-==-,,代回验证: ()()22211f x x x x =-+=-,符合()1f -最大;若2544f m =+=(),14m =-,代回验证: ()2211151()2416f x x x x =-+=-+,符合2f ()最大;1m ∴=-或14-.例10.(2022·广东湛江·高一期末)已知函数()()f x x x a =-.其中a R ∈,且0a >. (1)求函数()f x 的单调区间; (2)求函数()f x 在1,12⎡⎤-⎢⎥⎣⎦上的最小值.【解析】(1)由题知,函数22,0()(),0x ax x f x x x a x ax x ⎧-≥⎪=-=⎨-+<⎪⎩,其中0a > 当0x ≥时,222()()24a a f x x ax x =-=--则函数()f x 在区间(0,)2a 单调递减,在区间(,)2a+∞单调递增; 当0x <时,222()()24a a f x x ax x =-+=--+,则函数()f x 在区间(,0)-∞递增∴综上,函数()f x 的单调递增区间为(,0)-∞,(,)2a +∞,单调递减区间为(0,)2a.(2)因为0a >,所以当12a ≥即2a ≥时,函数()f x 在1[,0]2-递增,在(0,1]递减且 11()242af -=--,(1)1f a =-,若1()(1)2f f -≥,即52a ≥时,min ()(1)1f x f a ==-,若1()(1)2f f -<,即522a ≤<时,min 11()()242a f x f =-=--,当012a <<即02a <<时,函数()f x 在1[,0]2-递增,在(0,]2a 递减,在(,1]2a 递增,且11()242a f -=--, 2()24a a f =-,而02a <<时,21424a a --<-,即1()()22a f f -<,所以02a <<时,min 11()()242af x f =-=--,∴综上所述,当502a ≤<时,min 1()42a f x =--;当52a ≥时, min ()1f x a =-.例11.(2022·上海师大附中高一期末)已知函数2(1)h x ax x=+(常数a R ∈). (1)当2a =时,用定义证明()y h x =在区间[]1,2上是严格增函数; (2)根据a 的不同取值,判断函数()y h x =的奇偶性,并说明理由;(3)令1()()2f x h x x a x=--+,设()f x 在区间[]1,2上的最小值为()g a ,求()g a 的表达式.【解析】(1)当2a =时,函数21()2f x x x =+,设[]12,1,2x x ∈且12x x <,则222221212121211111()()222()()f x f x x x x x x x x x -=+--=-+- 1221212121121212()()()[2()]x x x x x x x x x x x x x x -=-++=-+-, 因为12x x <,可得210x x -> 又由[]12,1,2x x ∈,可得()2111124,1x x x x +><,所以211112()0x x x x +->所以21()()0f x f x ->,即12()()f x f x <, 所以函数()y f x =是[]1,2上是严格增函数.(2)由函数21()f x ax x=+的定义域为(,0)(0,)-∞+∞关于原点对称, 当0a =时,函数1()f x x =,可得11()()f x f x x x-==-=--,此时函数()f x 为奇函数; 当0a ≠时,2211()()f x a x ax x x-=⋅-+=--,此时()()f x f x -≠-且()()f x f x -≠, 所以0a ≠时,函数()y f x =为非奇非偶函数.(3)2211()()2221f x h x x a ax x a ax x a x x x=--+=+--+=-+,当0a =时, ()f x x =-,函数()f x 在区间[1,2]的最小值为(2)2f =-; 当0a >时,函数的对称轴为:12x a=. 若112024a a ≥⇒<≤,()f x 在区间[1,2]的最小值为(2)62,()62f a g a a =-∴=-; 若11112242a a <<⇒<<,()f x 在区间[1,2]的最小值为 111()2,()2244f a g a a a a a=-+∴=-+; 若11122a a ≤⇒≥,()f x 在区间[1,2]的最小值为(1)31,()31f a g a a =-∴=-;当0a <时, 102x a=<,()f x 在区间[1,2]的最小值为(2)62,()62f a g a a =-∴=-. 综上所述:162,4111()2,442131,2a a g a a a aa a ⎧-≤⎪⎪⎪=-+<<⎨⎪⎪-≥⎪⎩;例12.(2022·全国·高一专题练习)已知函数()21f x x x a x R a R =+-+∈∈,,. (1)当1a =时,求函数()f x 的最小值 (2)求函数()f x 的最小值为()g a .【解析】(1)()22211121x x x f x x x x x x ⎧+≥=+-+=⎨-+<⎩,,, 由()()()2211124f x x x f x x x ⎛⎫=+⇒=+-≥ ⎪⎝⎭,可知()2f x ≥;由()()22172(1)24f x x x f x x x ⎛⎫=-+⇒=-+< ⎪⎝⎭,可知()74f x ≥.所以()min 1724f x f ⎛⎫== ⎪⎝⎭.(2)()2211x x a x af x x x a x a ⎧+-+≥=⎨-++<⎩,,,1)当12a ≥,()f x 在12⎛⎫-∞ ⎪⎝⎭,单调递减,在12a ⎛⎫ ⎪⎝⎭,单调递增,故()min 1324f x f a ⎛⎫==+ ⎪⎝⎭;2)当1122a -<<,()f x 在()a -∞,单调递减,在()a ∞+,单调递增,()()2min 1f x f a a ==+ , 3)当12a ≤-,()f x 在12⎛⎫-∞ ⎪⎝⎭,-单调递减,在12⎛⎫+∞ ⎪⎝⎭-,单调递增,()min 1324f x f a ⎛⎫=-=- ⎪⎝⎭;所以()23142111223142a a g a a a a a ⎧+≥⎪⎪⎪=+-<<⎨⎪⎪-≤-⎪⎩,,, 例13.(2022·全国·高一课时练习)已知函数()f x 是定义在R 上的偶函数,且当0x ≤时,()22f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象.(1)补充完整图象并写出函数()()f x x R ∈的增区间; (2)写出函数()()f x x R ∈的解析式;(3)若函数()()[]()211,2g x f x ax x =-+∈,求函数()g x 的最小值. 【解析】(1)因为函数()f x 是定义在R 上的偶函数,所以函数()f x 的图象关于y 轴对称,由对称性即可补充完整图象,如图所示:由图可知,函数()f x 的递增区间为(1,0)-和(1,)+∞;(2)根据题意,当0x >时,0x -<,所以22()()22f x x x x x -=--=-, 因为函数()f x 是定义在R 上的偶函数,所以()2()()20f x f x x x x =-=->,所以222,0()2,0x x x f x x x x ⎧+=⎨->⎩,(3)当[]1,2x ∈时,222()221(1)2g x x x ax x a a a =--+=----,对称轴为1x a =+,当11a +,即0a 时,()g x 在[]1,2上递增,所以()min ()12g x g a ==-; 当12a +,即1a 时,()g x 在[]1,2上递减,所以()min ()214g x g a ==-; 当112a <+<,即01a <<时,()g x 在[]1,1a +上递减,在[]1,2a +上递增,所以m n 2i ()(1)2g x a a g a =+=--,综上,函数()g x 的最小值2min2,0()2,0114,1a a g x a a a a a -⎧⎪=--<<⎨⎪-⎩. 例14.(2022·安徽·合肥市第十中学高一期中)设函数2()43f x x ax =-+ (1)函数f (x )在区间[1,3]有单调性,求实数a 的取值范围; (2)求函数f (x )在区间[1,3]上的最小值h (a ).【解析】(1)22()(2)34f x x a a =-+-,()f x 在区间[1,3]上单调,则21a ≤或23a ≥,所以12a ≤或32a ≥; (2)12a ≤时,21a ≤,()f x 在[1,3]上是增函数,()(1)44h a f a ==-, 1322a <<时,2()(2)34h a f a a ==-, 32a ≥时()f x 在[1,3]上是减函数,()(3)1212h a f a ==-, 综上,2144,213()34,2231212,2a a h a a a a a ⎧-≤⎪⎪⎪=-<<⎨⎪⎪->⎪⎩,题型三:定轴动区间型例15.(2022·全国·高一单元测试)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值;【解析】(1)因为函数2()2f x x mx n =++的图象过点(0,1)-,所以1n =- 又(1)(2)f f -=, 所以1224m-+=-, 解得2m =-,所以2()221f x x x =--;(2)2213()221222f x x x x ⎛⎫=--=--⎪⎝⎭,[,2]x a a ∈+,当122a +≤时,即32a ≤-时,函数()f x 在[],2a a +上单调递减,所以2min [()](2)263f x f a a a =+=++,当122a a <<+时,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,所以min 13[()]22f x f ⎛⎫==- ⎪⎝⎭;当12a ≥时,函数()f x 在[],2a a +上单调递增, 所以2min [()]()221f x f a a a ==--.综上:2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩例16.(2022·江苏·高一单元测试)二次函数()f x 满足()()12f x f x x +-=且()01f =. (1)求()f x 的解析式;(2)当[]11x ∈-,时,不等式()2f x x m >+恒成立,求实数m 的取值范围.(3)设函数()f x 在区间[]1a a +,上的最小值为()g a ,求()g a 的表达式. 【解析】(1)设()2f x ax bx c=++,0a ≠.则()()21(1)1f x a x b x c +=++++.从而,()()()(()221[1)12f x f x a x b x c ax bx c ax a b ⎤+-=++++-++=++⎦,又()()12f x f x x +-=,22101a a a b b ==⎧⎧∴⇒⎨⎨+==-⎩⎩, 又()01f c ==,()21f x x x ∴=-+.(2)因为当[]11x ∈-,时,不等式()2f x x m >+恒成立, 所以231m x x <-+在[]11x ∈-,上恒成立. 令()231g x x x =-+,[]11x ∈-,, ()min m g x ∴<.当[]11x ∈-,时,()231g x x x =-+单调递减,∴当1x =时,()()11min g x g ==-,所以1m <-. (3)当112a +≤,即12a ≤-时,()f x 在[]1a a +,单调递减,()2min ()11f x f a a a ∴=+=++;当112a a <<+,即1122a -<<时,则()f x 在12a ⎡⎤⎢⎥⎣⎦,单调递减,112a ⎛⎤+ ⎥⎝⎦,单调递增, min 13()24f x f ⎛⎫∴== ⎪⎝⎭;当12a ≥时,则()f x 在[]1a a +,单调递增, ()2min ()1f x f a a a ∴==-+.()2211,2311,42211,2a a a g a a a a a ⎧++≤-⎪⎪⎪∴=-<<⎨⎪⎪-+≥⎪⎩.例17.(2022·全国·高一期中)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+.(1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示).【解析】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+, 所以2c =,且22(1)(1)()21a x b x c ax bx c x ++++-++=+,由22(1)(1)()21a x b x c ax bx c x ++++-++=+,得221ax b a x ++=+,所以221a b a =⎧⎨+=⎩,得10a b =⎧⎨=⎩,所以2()2f x x =+.(2)因为2()2f x x =+是图象的对称轴为直线0x =,且开口向上的二次函数,当0t ≥时,2()2f x x =+在[,2]x t t ∈+上单调递增,则2min ()()2f x f t t ==+;当20t +≤,即2t ≤-时,2()2f x x =+在[,2]x t t ∈+上单调递减,则22min ()(2)(2)246f x f t t t t =+=++=++;当01t t <<+,即20t -<<时,min ()(0)2f x f ==,综上222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩例18.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值. 【解析】(1)当1a =时,()()222211f x x x x =++=++,函数在[)21-,-上单调递减,在()1,3-上单调递增, ()()min 11317x f x f ∴===-,,,∴函数()f x 在区间[)23-,上的值域是[)1,17;(2)当1a =-时,()()222211f x x x x =-+=-+,12t ,函数()f x 在区间[]1t t +,上的最大值()()211f t t =-+; 12t ≥,函数()f x 在区间[]1t t +,上的最大值()211f t t +=+; ∴函数()f x 在区间[]1t t +,上的最大值221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,;(3)函数()()222222f x x ax x a a =++=++- 的对称轴为x a =-,①当5a -<-,即5a >时,函数y 在[]55-,上是增函数, 当5x =-时,函数y 取得最小值为2710a -;当5x =时,函数y 取得最大值为2710a +. ②当50a -≤<,即05a <≤时,当x a =-时,函数y 取得最小值为22-a ;当5x =时,函数y 取得最大值为2710a +. ③当05a ≤≤-,即50a ≤≤-时,x =-a 时,函数y 取得最小值为22a -;当5x =-时,函数y 取得最大值为2710a -.④当5a >-,即5a <-时,函数y 在[]55-,上是减函数, 故当5x =-时,函数y 取得最大值为2710a -;当5x =时,函数y 取得最小值为2710a +. 综上,当5a >时,函数的最大值为2710a +,最小值为2710a -,当05a <≤时,函数的最大值为2710a +,最小值为22-a ,当50a ≤≤-时,函数的最大值为2710a -,最小值为22a -,当5a <-时,函数的最大值为2710a -,最小值为2710a +例19.(2022·江苏南通·高一开学考试)已知关于x 的函数22 4.y x mx =-+ (1)当23x -≤≤时,求函数224y x mx =-+的最大值; (2)当23x -≤≤时,若函数最小值为2,求m 的值.【解析】(1)因为22224()4y x mx x m m =-+=-+-,对称轴为x m =,开口向上,若12m <,则当3x =时,函数224y x mx =-+有最大值为136m -, 若12m ≥,则当2x =-时,函数224y x mx =-+有最大值为84.m + (2)若2m <-,则当2x =-时函数224y x mx =-+有最小值为84m +,即842m +=,32m =-,不符合条件;若23m -≤≤,则当x m =时函数224y x mx =-+有最小值为242m -=, 可得2m =若3m >,则当3x =时函数224y x mx =-+有最小值为136m -, 即1362m -=,解得1136m =<,不符合条件; 综上,m 的值为 2.±例20.(2022·全国·高一专题练习)已知()f x 是二次函数,不等式()0f x <的解集是()05,,且()f x 在区间[]2-,4上的最大值是28. (1)求()f x 的解析式;(2)设函数()f x 在[]1x t t ∈+,上的最小值为()g t ,求()g t 的表达式. 【解析】(1)()f x 是二次函数,且()0f x <的解集是()05,,∴可设()()5(0)f x ax x a =>-,对称轴为 2.5x =,()f x ∴在区间[]24-,上的最大值是()214f a -=.由已知得14282a a =∴=,, ()()()225210f x x x x x x ∴=-=∈-R .(2)由(1)得()()22 2.512.5f x x =--,函数图象的开口向上,对称轴为 2.5x =(讨论对称轴 2.5x =与闭区间[] 1t t +,的相对位置) ①当1 2.5t +≤时,即 1.5t ≤时,()f x 在[] 1t t +,上单调递减,(对称轴在区间右侧) 此时()f x 的最小值()()()()22121101268g t f t t t t t =+=+-+=--;②当 2.5t ≥时,()f x 在[] 1t t +,上单调递增,(对称轴在区间左侧)此时()f x 的最小值()()2210g t f t t t ==-;③当1.5 2.5t <<时,函数()y f x =在对称轴处取得最小值(对称轴在区间中间)此时,()()2.512.5g t f ==-综上所述,得()g t 的表达式为:()22268 1.512.51.5 2.5210 2.5t t t g t t t t t ⎧--≤⎪=-<<⎨⎪-≥⎩,,,. 题型四:动轴动区间型例21.(2022·江苏·楚州中学高一期中)已知函数2()2(0)f x x ax a =-> (1)当2a =时,解关于x 的不等式3()5f x -<<(2)函数()y f x =在[],2t t +的最大值为0,最小值是-4,求实数a 和t 的值.【解析】(1)不等式为2345x x -<-<,即22450430x x x x ⎧--<⎨-+>⎩,由2450x x --<可得15x -<<;由2430x x -+>可得1x <或3x >, 故原不等式解集为()()1,13,5-⋃. (2)因为()()2222f x x ax x a a =-=--由于(0)(2)0f f a ==,由题意0=t 或22t a +=,若0t =时, 则1a t ≥+,且()()min 4f x f a ==-或()()min 24f x f ==-,当()24f a a =-=-时,2a =±,2a =-不满足题意,舍去;当()2444f a =-=-时,2a =;若22t a +=,则1a t ≤+,且()()min 4f x f a ==-或()()min 224f x f a =-=-当()24f a a =-=-时,2a =±,当2,2a t ==,符合题意; 当2a =-,与题设矛盾,故舍去;当()()()222222224f a a a a -=---=-时,2,2a t ==; 综上所述:2,0a t ==或2,2a t ==,符合题意.例22.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.例23.(2022·四川巴中·高一期中)已知a R ∈,函数()f x x x a =-. (1)设1a =,判断函数()f x 的奇偶性,请说明理由;(2)设0a ≠,函数()f x 在区间(),m n 上既有最大值又有最小值,请分别求出m ,n 的取值范围.(只要写出结果,不需要写出解题过程)【解析】(1)当1a =时,()22,11,1x x x f x x x x x x ⎧-≥=-=⎨-+<⎩,其图象如图所示:由图象知:函数()f x 既不是奇函数也不偶函数;(2)()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a >时,由()224a x ax x a -=≥,解得12x +=,因为函数()f x 在区间(),m n 上既有最大值又有最小值, 如图所示:所以02a m ≤<,12a n +<≤, 当0a <时,由()224a x ax x a -+=-<,解得12x +=,因为函数()f x 在区间(),m n 上既有最大值又有最小值, 如图所示:12m a +≤<,02a n <≤.例24.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0, 此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()(24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩.例25.(2022·浙江·磐安县第二中学高一开学考试)已知R a ∈,函数()f x x x a =-,(1)当2a =时,写出函数()y f x =的单调递增区间; (2)当2a >时,求函数()f x 在区间[]1,2上的最小值;(3)设0a ≠,函数()f x 在(),m n 上既有最大值又有最小值,请分别求出,m n 的取值范围(用a 表示)【解析】(1)当2a =时,(2),2()2(2),2x x x f x x x x x x -⎧=-=⎨-<⎩由二次函数的性质知,单调递增区间为(-∞,1],[2,)∞+.(2)因为2a >,[1x ∈,2]时,所以222()()()24a a f x x a x x ax x =-=-+=--+当3122a <,即23a <时,()min f x f =(2)24a =-当322a >,即3a >时,()min f x f =(1)1a =-∴24,23()1,3min a a f x a a -<⎧=⎨->⎩ (3)(),()(),x x a x a f x x a x x a -⎧=⎨-<⎩①当0a >时,图象如上图左所示由24()a y y x x a ⎧=⎪⎨⎪=-⎩得(21)a x +=02a m <,212a n a +<②当0a <时,图象如上图右所示由24()a y y x a x ⎧=-⎪⎨⎪=-⎩得(12)x +=∴12m a +<,02a n < 例26.(2022·全国·高一课时练习)已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =.记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=______.【答案】16-【解析】()()2244f x x a a =-+--⎡⎤⎣⎦,()()22124g x x a a =---+-⎡⎤⎣⎦, 令()()f x g x =,得2x a =+或2=-x a .因为()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =,所以()1H x 的最小值(2)44A f a a =+=--,()2H x 的最大值(2)124B g a a =-=-, 所以()()4412416A B a a -=----=-. 故答案为:16-.例27.(2022·浙江·温州市第二十二中学高一开学考试)函数()f x x x a =-, (1)若()f x 在R 上是奇函数,求a 的值;(2)当2a =时,求()f x 在区间(0,4]上的最大值和最小值;(3)设0a >,当m x n <<时,函数()f x 既有最大值又有最小值,求m n 、的取值范围(用a 表示) 【解析】(1)因为()f x 在R 上是奇函数,所以()()f x f x -=-恒成立,即x x a x x a -+=--恒成立.所以x a x a +=-恒成立, 所以0a =.(2)当2a =时,()()222,(02)22,24x x x f x x x x x x ⎧-+<≤⎪=-=⎨-<≤⎪⎩ 函数22y x x =-+在()0,1上单调递增,在()1,2上单调递减,所以22y x x =-+在(]0,2上的值得范围为[]0,1,其中2x =时,()0f x =, 函数22y x x =-在(]2,4上单调递增,所以函数22y x x =-在(]2,4上的值域为(]0,8,其中当4x =时,()8f x =; 所以当4x =时,max ()8f x =,当2x =时,min ()0f x =.(3)()()()22,,x ax x a f x x x a x ax x a ⎧-+≤⎪=-=⎨->⎪⎩ 因为0a >,所以函数2y x ax =-+在,2a ⎛⎫-∞ ⎪⎝⎭上单调递增,在,2a a ⎛⎫⎪⎝⎭上单调递减,函数2y x ax =-在(),a +∞上单调递增,当2a x =时,24a y =当x a >时,令224a x ax -=,可得12x +=因为当0a >,m x n <<时,函数()f x 既有最大值又有最小值, 所以120,2m a a n +<<≤≤. 题型五:根据二次函数的最值求参数例28.(2022·全国·高一专题练习)已知抛物线2y x bx c =-++与x 轴的一个交点为(1,0)-,且经过点(2,)c .(1)求抛物线与x 轴的另一个交点坐标.(2)当2t x t ≤≤-时,函数的最大值为M ,最小值为N ,若3M N -=,求t 的值. 【解析】(1)方法一:∵抛物线经过(2,c )和(0,c ), ∴抛物线的对称轴为直线1x =, ∴(-1,0)的对称点为(3,0),即抛物线与x 轴的另一个交点坐标为(3,0);方法二:将(-1,0),(2,c )分别代入2y x bx c =-++得0142b c c b c =--+⎧⎨=-++⎩,解得23b c =⎧⎨=⎩, ∴抛物线的表达式为2y x 2x 3=-++,令0y =得,2023x x =-++,解得11x =-,23x =, ∴抛物线与x 轴的另一个交点坐标为(3,0). (2)∵2t t ≤-,∴1t ≤,21t -≥,∴当2t x t ≤≤-时,当1x =时取得最大值4,即4M =,当x t =或2x t =-时取得最小值N , ∵3M N -=,∴1N =,令1y =得,2123x x =-++,解得131x =(舍去),231x =-, ∴31t =-.例29.(2022·全国·高一专题练习)若函数f (x )=ax 2+2ax +1在[-1,2]上有最大值4,则a 的值为( ) A .38B .-3C .38或-3D .4【答案】C【解析】由题意得f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;②当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得38a =;③当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3. 故选:C .例30.(2022·全国·高一课时练习)函数()f x x x a =-在区间()0,1上既有最大值又有最小值,则实数a 的取值范围是( ) A .)222,0⎡-⎣B .()0,222C .2⎡⎫⎪⎢⎪⎣⎭D .)222,1⎡⎣【答案】D【解析】易得函数()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,若0a =,则()22,0,0x x f x x x ⎧≥=⎨-<⎩,且函数()f x 在()0,1上单调递增,所以函数()f x 在()0,1上无最值.若0a <,作出函数()f x 的大致图像,如图1所示,易得函数()f x 在区间()0,1上无最值.若0a >,作出函数()f x 的大致图像,如图2所示,要使函数()f x 在区间()0,1上既有最大值又有最小值,则()0112a a f f <<⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,即2201122a a a a <<⎧⎪⎨⎛⎫-≤-+ ⎪⎪⎝⎭⎩,解得:2221a ≤<. 综上,实数a 的取值范围是)222,1⎡⎣.故选: D.例31.(2022·上海交大附中高一阶段练习)已知二次函数[]224,0,y x x x m =-+∈的最小值是3,最大值是4,则实数m 的取值范围是___________. 【答案】[]1,2【解析】二次函数()2224133y x x x =-+=-+≥, 由2244x x -+=解得0x =或2x =,画出二次函数()2240y x x x =-+≥的图象如下图所示,由图可知,m 的取值范围是[]1,2. 故答案为:[]1,2例32.(2022·湖北黄石·高一期末)已知函数21()2f x x x =-+.若()f x 的定义域为[,]m n ,值域为[2,2]m n ,则m n +=__________. 【答案】2-【解析】因为()22111()1222f x x x x =-+=--+,对称轴为1x =,当1m n ≤<时:()f x 在[,]m n 上单调递减,所以221()221()22f m m m n f n n n m⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,无解;当1m n <≤时:()f x 在[,]m n 上单调递增,所以221()221()22f m m m m f n n n n⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,解得:2m =-或0m =,2n =-或0n =,又1m n <≤,所以2m =-,0n =; 当1m n <<时:()f x 在[,1]m 上单调递增,在[1,]n 上单调递减,此时111(1)12224f n n =-+==⇒=,与1n >矛盾;综上所述:2m =-,0n =,此时2m n +=- 故答案为:2-. 【过关测试】 一、单选题1.(2022·甘肃·民勤县第一中学高一阶段练习)有如下命题:①若幂函数()y f x =的图象过点12,2⎛⎫⎪⎝⎭,则()132f >; ②函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2; ③函数()1221log f x x x =--有两个零点; ④若函数()224f x x x =-+在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2.其中真命题的序号为( ). A .①②B .②④C .①④D .②③【答案】B【解析】①设幂函数为()a f x x =,因为()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,所以122a=,解得1a =-,则()1f x x =,在(),0∞-上递减,在()0,∞+上递减,所以()()1322f f <=,故错误; ②令10x -=,解得1x =,此时2y =,所以函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2,故正确; ③令()1221log 0f x x x =--=,得1221log x x -=,在同一坐标系中作出1221,log y x y x =-=的图象,如图所示,由图象知:1221,log y x y x =-=有1个交点,即函数()1221log f x x x =--有1个零点,故错误; ④函数()224f x x x =-+的图象,如图所示:,由图象知:若()f x 在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2,故正确. 故选:B2.(2022·全国·高一专题练习)若函数2()23f x x bx a =-+在区间[0,1]上的最大值是M ,最小值m ,则M m -( )A .与a 无关,且与b 有关B .与a 有关,且与b 无关C .与a 有关,且与b 有关D .与a 无关,且与b 无关【答案】A【解析】函数2()23f x x bx a =-+的图象开口朝上,且对称轴为直线x b =, ①当1b >时,()f x 在[0,1]上单调递减,则(0)3M f a ==,()1123m f b a ==-+, 此时21M m b -=-,故M m -的值与a 无关,与b 有关,②当0b <时,()f x 在[0,1]上单调递增,则(1)123M f b a ==-+,()03m f a ==, 此时12M m b -=-,故M m -的值与a 无关,与b 有关,③当01b ≤≤时,()23m f b a b ==-,若102b ≤≤时,(1)(0)f f ≥,有(1)123M f b a ==-+,221M m b b ∴-=-+,故M m -的值与a 无关,与b 有关, 若12b >时,(1)(0)f f <,有(0)3M f a ==, 2M m b ∴-=,故M m -的值与a 无关,与b 有关, 综上:M m -的值与a 无关,与b 有关. 故选:A.3.(2022·河南·郏县第一高级中学高一开学考试)已知()f x 为奇函数,且当0x >时,2()42f x x x =-+,则()f x 在区间[]4,2--上( ) A .单调递增且最大值为2 B .单调递增且最小值为2 C .单调递减且最大值为-2 D .单调递减且最小值为-2【答案】A【解析】因为2()42f x x x =-+的图象开口向上,且对称轴为2x =,所以()f x 在区间[2,4]上单调递增,最小值为(2)2f =-,最大值为(4)2f =, 又因为()f x 是奇函数,所以()f x 在区间[]4,2--上单调递增,且最小值为-2,最大值为2. 故选:A4.(2022·黑龙江·哈尔滨德强学校高一期中)已知函数()22f x x x a a =-++在区间[0,2]上的最大值是1,则a 的取值范围是( ) A .10,2⎡⎤⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】将函数()()()22211f x x x a a x a a =-++=-+-+的图象向左平移一个单位,得到函数()21g x x a a =+-+.则()f x 在区间[0,2]上的最大值是1,只需函数()g x 在区间[-1,1]上的最大值是1. 由11x -≤≤,201x ≤≤,当10a -≥,1a ≥时,()22121211g x x a a x a a =+-+=+-≥-≥,此时函数()g x 的最小值为1,不合题意;当11a -≤-,0a ≤时,()()22111g x x a a x =-+-+=-+≤,符合题意;当110a -<-<,01a <<时,()()()22221,011,11x a a x a g x x a a a x ⎧-+-+≤≤-⎪=⎨+-+-<≤⎪⎩,化简得()22221,0121,11x x a g x x a a x ⎧-≤≤-=⎨+--<≤⎩ 又由当201x a ≤≤-时,根据二次函数的性质,()g x 的值域为()()2111a g x --≤≤,当211a x -<≤时,()()21212a a g x a -+-≤≤,必有21a ≤,可得102a <≤. 综上,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.故选:B.5.(2022·湖北·恩施土家族苗族高中高一阶段练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9 B .8 C .6 D .4【答案】D【解析】∵函数2y x ax b =++(,R a b ∈)的最小值为0, ∴2404b a -=,∴24a b =, ∴函数222224a y x ax b x ax x a ⎛⎫=++=++=+ ⎪⎝⎭,其图像的对称轴为2a x =-.∵不等式2x ax b c 的解集为{}|4x m x m <<+, ∴方程2204a c x ax ++-=的根为m ,4m +,∴4m m a ++=-,解得42a m --=,22a m ∴+=-, 又∵2204a m am c ++-=,∴222442a a c m am m ⎛⎫=++=+= ⎪⎝⎭.故A ,B ,C 错误.故选:D .6.(2022·河南·濮阳一高高一期中(理))已知定义域为R 的函数()f x 满足()()13f x f x +=,且当(]01x ∈,时,()()41f x x x =-,则当(]20x ∈-,时,()f x 的最小值为( ) A .181-B .127-C .19-D .13-【答案】D【解析】当(]01x ∈,时,()()22141444()12f x x x x x x =-=-=--,易知当12x =时,min ()1f x =-, 因为()()13f x f x +=,所以()()113f x f x -=, 所以当()10x ∈-,时,()min 11133y =⨯-=-;当(]21x ∈--,时,()2min 11()139y =⨯-=-,综上,当(]20x ∈-,时,min 13y =-.故选:D .7.(2022·河北省博野中学高一开学考试)已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根,则(m +2)(n +2)的最小值是( ). A .7 B .11 C .12 D .16【答案】D【解析】∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根, ∴m +n =2t ,mn =t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0, ∴t ≥2,∴(t +1)2+7≥(2+1)2+7=16. 故选:D .8.(2022·陕西商洛·高一期末)若函数()2f x x bx c =++满足()10f =,()18f -=,则下列判断错误的是( ) A .1b c +=-B .()30f =C .()f x 图象的对称轴为直线4x =D .f (x )的最小值为-1【答案】C【解析】由题得1018b c b c ++=⎧⎨-+=⎩,解得4b =-,3c =,所以()()224321f x x x x =-+=--, 因为(1)0,1f b c =∴+=-,所以选项A 正确;所以(3)=0f ,所以选项B 正确;因为min ()1f x =-,所以选项D 正确; 因为()f x 的对称轴为2x =,所以选项C 错误. 故选:C 二、多选题9.(2022·全国·高一课时练习)设函数()21,21,ax x af x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2 B .-1 C .0 D .1【答案】BC【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.10.(2022·全国·高一课时练习)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( ) A .()00f = B .()10f =C .最大值14D .最小值14-【答案】ABC【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+,则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.11.(2022·浙江省龙游中学高一期中)已知函数()221f x x mx =-+,则下列结论有可能正确的是( )A .()f x 在区间[]1,2上无最大值B .()f x 在区间[]1,2上最小值为()f mC .()f x 在区间[]1,2上既有最大值又有最小值D .()f x 在区间[]1,2上最大值()1f ,有最小值()2f 【答案】BCD【解析】二次函数()f x 图象的对称轴为直线x m =.①当1m 时,函数()f x 在区间[]1,2上单调递增,则()()min 1f x f =,()()max 2f x f =; ②当12m <<时,函数()f x 在区间[)1,m 上单调递减,在区间(],2m 上单调递增,则()()min f x f m =,()()(){}()()max31,22max 1,232,12f m f x f f f m ⎧≤<⎪⎪==⎨⎪<<⎪⎩;③当2m ≥时,函数()f x 在区间[]1,2上单调递减,此时()()max 1f x f =,()()min 2f x f =. 故A 错误,BCD 可能正确. 故选:BCD.12.(2022·全国·高一单元测试)若[]()()11,9f x x x =+∈,()22()()g x f x f x =+,那么( )A .()g x 有最小值6B .()g x 有最小值12C .()g x 有最大值26D .()g x 有最大值182【答案】AC【解析】因为[]()()11,9f x x x =+∈,()22()()g x f x f x =+,所以21919x x ≤≤⎧⎨≤≤⎩,解得13x ≤≤,即函数()g x 的定义域为[]1,3, 所以()22221322222()112g x x x x x x ⎛⎫++=++ ⎪⎝⎭=+++=,所以()213222g x x ⎛⎫=++ ⎪⎝⎭在[]1,3上单调递增,所。

二次函数最值问题类型题总结

二次函数最值问题类型题总结

二次函数得最大值或最小值问题知识点:1、配方法:将二次函数得一般式化为顶点式(1)若,有最小值、当时,取得最小值(2)若,有最大值、当时,取得最大值2、公式法:直接利用二次函数图像得顶点坐标求解、(1)若,有最小值,没有最大值,当时,、(2)若,有最大值,没有最小值,当时,、考察方向:一、1、已知二次函数得图像确定二次函数得最值例1、二次函数得部分图象如图1、3-3所示,则该函数有最值,最值为、2、已知二次函数表达式求函数最值①在函数整个定义域内求函数最值例2、二次函数有( )A.最大值B、最小值C、最大值D、最小值②在给定定义域区间范围内求函数最值二次函数在自变量得给定范围内,对应得图象就是抛物线上得一段.那么最高点得纵坐标即为函数得最大值,最低点得纵坐标即为函数得最小值.根据二次函数对称轴得位置,函数在所给自变量得范围得图象形状各异.下面给出一些常见情况:例3、当时,求函数得最大值与最小值例4、二次函数,当且时,y 散文最小值为2m,最大值为2n ,则得值为多少?3、由二次函数得最大值或最小值求二次函数表达式中得待定系数(解答最值问题忽略二次项系数得符号)例5、已知二次函数有最小值1,则得大小关系就是什么?例6、已知二次函数有最小值0,则m 得值就是多少?二、4、二次函数最值在实际应用题间得应用(①生活中得应用②几何图形面积最值问题)例7、某水产品养殖企业为指导该企业某种水产品得养殖与销售,对历年市场行情与水产品养殖情况进行了调查.调查发现这种水产品得每千克售价(元)与销售月份(月)满足关系式=,而其每千克成本(元)与销售月份(月)满足得函数关系如图所示.(1)试确定得值; (2)求出这种水产品每千克得利润(元)与销售月份(月)之间得函数关系式; “五·一”之(3)前,几月份出售这种水产品每千克得利润最大?最大利润就是多少?例8、已知边长为4得正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PND M有最大面积. 25 24 y 2(元)x (月) 1 2 3 4 5 6 7 8 9 O。

二次函数最值问题

二次函数最值问题
综上所述,m的值为-2或-3- .
二、求几何图形的最值,如线段长度,图形面积等.一般先求出关系
式,再根据关系式求最值(要特别注意自变量的取值范围).
4.如图所示,点E是正方形ABCD的边AB上的动点,EF⊥DE交BC
于点F.
(1)求证:△ADE∽△BEF;
(1)证明:∵四边形ABCD是正方形,
A.4
B.-4
C.5
D.-5
2.(2022贺州)已知二次函数y=2x2-4x-1在0≤x≤a时,y取得的最
D
大值为15,则a的值为(
A.1
B.2
C.3
D.4

3.(2022绍兴)已知函数y=-x2 +bx+c(b,c为常数)的图象经过点
(0,-3),(-6,-3).
(1)求b,c的值;
解 : (1) 把 (0 , - 3) , ( - 6 , - 3) 代 入 y = - x2 + bx + c , 得




y1 ;当后者大时,y最小 =y2;若- 不在此范围内,直接利用二次函数的

增减性求最值即可.
冲关
一、给出函数解析式(部分含参数 ),讨论函数在某个范围内的最
值.解决此类问题时最好利用函数的图象(数形结合)求之.
1.(2023哈尔滨三模)抛物线y=-3(x-4)2-5的最大值为( D )
间再用栅栏把它分成两个面积为1∶2的矩形,已知栅栏的总长度为24 m,
设较小矩形的宽为x m.(如图)
(1)若矩形养殖场的总面积为36 m2,求此时x的值;
解:(1)根据题意知,较大矩形的宽为2x
m.
∴(x+2x)(8-x)=36.解得x 1 =2,x 2 =6.

专题07 二次函数的最值问题-九年级数学上册(解析版)

专题07 二次函数的最值问题-九年级数学上册(解析版)

专题07二次函数的最值问题考点1:定轴动区间;考点2:动轴定区间。

1.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是()A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0解:抛物线的对称轴是直线x =1,则当x =1时,y =1﹣2﹣3=﹣4,是最小值;当x =3时,y =9﹣6﹣3=0是最大值.答案:A .2.(易错题)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为()A .12或4B .43或−12C .−43或4D .−12或4解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1,顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a ,∵y 的最小值为﹣4,∴﹣a =﹣4,∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值,∴9a ﹣a =﹣4,解得a =−12;综上所述:a 的值为4或−12,答案:D.3.(易错题)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为()A .﹣1B .2C .0或2D .﹣1或2解:当y =1时,有x 2﹣2x +1=1,解得:x 1=0,x 2=2.题型01定轴动区间∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,答案:D.4.已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.解:∵y=﹣3(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),又∵a=﹣3<0,∴抛物线的开口向下,顶点是它的最高点,∴x=2时,函数有最大值为4.答案:2,4.5.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.6.已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为﹣1.(2)若当1≤x≤4时,y的最大值是4,则a的值为43或﹣4.解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=43,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.答案:(1)﹣1;(2)43或−4.7.(易错题)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数,它在给定的闭区间上都有最小值.(1)函数y=﹣x2+4x﹣2在区间[0,5]上的最小值是﹣7(2)求函数=(+12)2+34在区间[0,32]上的最小值.(3)求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1](t为任意实数)上的最小值y min的解析式.解:(1)y=﹣x2+4x﹣2其对称轴为直线为x=2,顶点坐标为(2,2),函数图象开口向下.如图1所示:当x=5时,函数有最小值,最小值为﹣7.答案:﹣7.(2)=(+12)2+34,其对称轴为直线=−12,顶点坐标(−12,34),且图象开口向上.其顶点横坐标不在区间[0,32]内,如图2所示:当x=0时,函数y有最小值m=1.(3)将二次函数配方得:y=x2﹣4x﹣4=(x﹣2)2﹣8其对称轴为直线:x=2,顶点坐标为(2,﹣8),图象开口向上若顶点横坐标在区间[t﹣2,t﹣1]左侧,则2<t﹣2,即t>4.当x=t﹣2时,函数取得最小值:m=(−4)2−8=2−8+8若顶点横坐标在区间[t﹣2,t﹣1]上,则t﹣2≤2≤t﹣1,即3≤t≤4.当x=2时,函数取得最小值:y min=﹣8若顶点横坐标在区间[t﹣2,t﹣1]右侧,则t﹣1<2,即t<3.当x=t﹣1时,函数取得最小值:m=(−3)2−8=2−6+1综上讨论,得m=2−8+8(>4)−8(3≤≤4)2−6+1(<3).8.(易错题)已知二次函数y =﹣x 2+6x ﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x ≤4时,函数的最大值和最小值分别为多少?(3)当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4,∴顶点坐标为(3,4);(2)∵a =﹣1<0,∴抛物线开口向下,∵顶点坐标为(3,4),∴当x =3时,y 最大值=4,∵当1≤x ≤3时,y 随着x 的增大而增大,∴当x =1时,y 最小值=0,∵当3<x ≤4时,y 随着x 的增大而减小,∴当x =4时,y 最小值=3.∴当1≤x ≤4时,函数的最大值为4,最小值为0;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而增大,当x =t +3时,m =﹣(t +3)2+6(t +3)﹣5=﹣t 2+4,当x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9,∴﹣6t +9=3,解得t =1(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴m =4,i )当0≤t ≤32时,在x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =4﹣(﹣t 2+6t ﹣5)=t 2﹣6t +9,∴t2﹣6t+9=3,解得t1=3−3,t2=3+3(不合题意,舍去);ii)当32<t<3时,在x=t+3时,n=﹣t2+4,∴m﹣n=4﹣(﹣t2+4)=t2,∴t2=3,解得t1=3,t2=−3(不合题意,舍去),③当t≥3时,y随着x的增大而减小,当x=t时,m=﹣t2+6t﹣5,当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,∴6t﹣9=3,解得t=2(不合题意,舍去),综上所述,t=3−3或3.9.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣1解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值=4a−24=4oK1)−424=2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.答案:C.10.设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a题型02动轴定区间解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:=1+22=rr2=2r2,∵a>0,∴y有最小值,当=2r2时y最小,即=o2r2−p(2r2−−p=−24,当k=2时,函数y的最小值为=−224=−;当k=4时,函数y的最小值为=−424=−4,答案:A.11.在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值154C.最小值5D.最小值154解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:4a−24=4×1×6−324×1=154.答案:D.12.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.2C.32或2D.−32或2解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=−32;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=32<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=2或m=−2<−1(舍),∴m的值为−32或2,答案:D.13.(易错题)当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是32或−解:对称轴:x=−22=−k,分三种情况讨论:①当﹣k<﹣1时,即k>1时,此时﹣1≤x≤2在对称轴的右侧,y随x的增大而增大,=(﹣1)2+2k×(﹣1)+1=﹣1,∴当x=﹣1时,y有最小值,y小k=32,②当﹣1≤﹣k≤2时,即﹣2≤k≤1,对称轴在﹣1≤x≤2内,此时函数在﹣1≤x≤﹣k,y随x的增大而减小,在﹣k≤x≤2时,y随x的增大而增大,=(﹣k)2+2k•(﹣k)+1=﹣1,∴当x=﹣k时,y有最小值,y小k2﹣2k2+2=0,k2﹣2=0,k=±2,∵﹣2≤k≤1,∴k=−2,③当﹣k>2时,即k<﹣2,此时﹣1≤x≤2在对称轴的左侧,y随x的增大而减小,∴当x=2时,y有最小值,y=22+2k×2+1=﹣1,小k=−32(舍),综上所述,k的值可能是32或−2,答案:32或−2.14.已知y=﹣x(x+3﹣a)是关于x的二次函数,当x的取值范围在1≤x≤5时,若y在x=1时取得最大值,则实数a的取值范围是a≤5.解:第一种情况:当二次函数的对称轴不在1≤x≤5内时,此时,对称轴一定在1≤x≤5的左边,函数方能在这个区域取得最大值,x=K32<1,即a<5,第二种情况:当对称轴在1≤x≤5内时,对称轴一定是在顶点处取得最大值,即对称轴为x=1,∴K32=1,即a=5综合上所述a≤5.答案:a≤5.15.(易错题)已知二次函数y=x2﹣2hx+h,当自变量x的取值在﹣1≤x≤1的范围中时,函数有最小值n,则n的最大值是14.解:二次函数y=x2﹣2hx+h图象的对称轴为直线x=h.当h≤﹣1时,x=﹣1时y取最小值,此时n=1+2h+h=1+3h≤﹣2;当﹣1<h<1时,x=h时y取最小值,此时n=h2﹣2h2+h=﹣h2+h=﹣(h−12)2+14≤14;当h≥1时,x=1时y取最小值,此时n=1﹣2h+h=1﹣h≤0.综上所述:n的最大值为14.答案:14.16.(易错题)已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为1或2.解:y=x2﹣2x+2=(x﹣1)2+1,分类讨论:(1)若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,即t<0,此时y随x的增大而减小,=t=(t+1)2﹣2(t+1)+2,∴当x=t+1时,函数取得最小值,y最小值方程无解.(2)若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,=1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值∴t=1.(3)若顶点横坐标在范围t≤x≤t+1左侧时,即t>1时,y随x的增大而增大,=t=t2﹣2t+2,解得t=2或1(舍弃),∵当x=t时,函数取得最小值,y最小值∴t=1或2.答案:1或2.17.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=−3−10或m=−3+10(舍去).综上所述,m=﹣2或−3−10.18.(易错题)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y=x2+bx+b2,图象开口向上,对称轴为直线x=−2,①当−2<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=−7(舍去),b2=7;②当b≤−2≤b+3时,即﹣2≤b≤0,∴x=−2,y=34b2为最小值,∴34b2=21,解得,b1=﹣27(舍去),b2=27(舍去);③当−2>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=7时,解析式为:y=x2+7x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+7x+7或y=x2﹣4x+16.。

二次函数最值问题专题

二次函数最值问题专题

二次函数最值问题专题➢知识点梳理:y=ax2+bx+c(a≠0)配方法得y=a(x+b2a)2+4ac−b24a顶点坐标(−b2a,4ac−b24a)对称轴为 x=−b2a一、不限定x的取值范围情况(1) a>0时,开口向上,二次函数有最小值。

最小值为y=4ac−b 24a(2) a<0时,开口向下,二次函数有最大值。

最大值为y=4ac−b 24a 二、当m≤x≤n时✧a>0时(1)x=−b2a在m≤x≤n中二次函数最小值为当x=−b2a 时,y=4ac−b24a二次函数最大值为当y m,,y n,中的最大值。

(2)−b2a>n即对称轴在自变量取值范围右侧。

二次函数最大值为x=m时y的值。

二次函数最小值为x=n时y的值。

(3)−b2a<m,即对称轴在取值范围的左侧。

二次函数最大值为x=n时y的值。

二次函数最小值为x=m时y的值。

✧a<0时(1)x=−b2a在m≤x≤n中二次函数最大值为当x=−b2a 时,y=4ac−b24a二次函数最小值为当ym,, yn,中的最小值。

(2)−b2a>n即对称轴在自变量取值范围右侧。

二次函数最大值为x=n时y的值。

二次函数最小值为x=m时y的值。

(3)−b2a<m,即对称轴在取值范围的左侧。

二次函数最大值为x=m时y的值。

二次函数最小值为x=n时y的值。

➢典例分析类型一:常规类求最值问题类型二:含有自变量取值限制的求最值问题类型三:实际问题中的最值问题(考虑自变量x的取值范围)一、利润最值问题公式:总利润=总售价-总成本总利润=每件商品的利润×销售量例1:一玩具厂去年生产某种玩具,成本价为10元每件。

出厂价为12元每件年销售量为2万元今年计划通过适当增加成本提高产品档次,以拓展市场。

若今年这种玩具每件成本比去年增加0.7x倍。

今年这种玩具每件出厂价比去年出厂价相应提高0.5x倍。

则预计今后年销售量增加x倍。

二次函数求最值专题总结

二次函数求最值专题总结

二次函数求最值专题总结二次函数求最值是数学中的一个重要内容,涉及到了二次函数的解析式以及二次函数图像的性质。

本文将就二次函数求最值的方法和技巧进行总结,并提供相关实例加深理解。

一、二次函数求最值的基本思路二次函数的解析式为f(x)=ax^2+bx+c。

在求最大值或最小值时,可以先通过求导数的方法找到函数的驻点(即导数等于0的点),然后通过驻点的求解和函数图像的性质来确定最值的位置。

二、二次函数求最值的步骤1.求导数:将二次函数f(x)=ax^2+bx+c对x求导,得到f'(x)=2ax+b。

2.求解驻点:令f'(x)=0,即求解方程2ax+b=0,解得x= -b/(2a)。

3.确定最值位置:根据二次函数的图像性质,当a>0时,x=-b /(2a)为二次函数的最小值点;当a<0时,x=-b/(2a)为二次函数的最大值点。

4.求最值:将得到的x值代入原函数f(x)中,即可得到最值。

三、实例分析以二次函数f(x)=x^2+2x+1为例,来演示二次函数求最值的过程。

1.求导数:f'(x)=2x+2。

2.求解驻点:令2x+2=0,解得x=-1。

3.确定最值位置:由于a=1>0,所以x=-1为二次函数的最小值点。

4.求最值:将x=-1代入原函数f(x)中,得到f(-1)=(-1)^2 +2*(-1)+1=0。

经过计算可知,二次函数f(x)=x^2+2x+1的最值为0,即当x=-1时,函数取得最小值。

通过本文的分析和实例演示,我们了解了二次函数求最值的基本思路和步骤。

其中关键的一步是求解驻点,需要通过导数的方法进行求导和方程的解,进而确定最值的位置。

在实际应用中,掌握二次函数求最值的方法可以帮助我们更好地理解和解决问题。

希望本文的总结能够对二次函数求最值的学习有所帮助,同时也希望读者能通过更多的实例练习和思考,进一步提升对二次函数求最值的理解和运用能力。

专题二次函数含参数最值问题(解析版)

专题二次函数含参数最值问题(解析版)

培优专题01 二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示). 【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【分析】(1)由题意可得0c ,再代入(1)()21f x f x x +-=-到2()(0)f x ax bx a =+≠,化简可求出,a b ,从而可求出()f x 的解析式.(2)求出抛物线的对称轴,然后分1,21t t ≥+≤和11t t <<+三种情况求解函数的最小值.【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c ,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a a b =⎧⎨+=-⎩ ,得12a b =⎧⎨=-⎩. 所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩. 【例2】已知定义在R 上的函数()f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程). (3)若()f x 在区间[],2t t +上的最小值为6,求实数t 的值. 【答案】(1)()234f x x x =--;(2)332m ≤≤;(3)4t =-或5t =. 【分析】(1)利用换元法即得;(2)由题可得()232524f x x ⎛⎫=-- ⎪⎝⎭,可得函数的最小值()254f x =-,结合条件进而即得; (3)分类讨论结合二次函数的性质即得.(1)∵()226f x x x -=--,令2u x =-,则2x u =-,∵()()()222226442634f u u u u u u u u =----=-+-+-=--,所以()234f x x x =--; (2)∵()2299325344424f x x x x ⎛⎫=-+--=-- ⎪⎝⎭, ∵当32x =时,32524f ⎛⎫=- ⎪⎝⎭, 当()4f x =-时,2434x x -=--,解得:0x =或3x =,∵()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦, ∵332m ≤≤;(3)∵()234f x x x =--,对称轴为32x =, 当322t +<时,则21t <-,函数在[],2t t +上单调递减, 当2x t =+时,函数的最小值()()()2223246f t t t +=+-+-=,解得4t =-或3t =(舍);当322t t ≤≤+时,则1322t -≤≤, 则此时,当32x =时,函数的最小值()2564f x =-≠,不符合题意; 当32t >时,函数在[],2t t +上单调递增, 当x t =时,()2346f t t t =--=,解得:2t =-或5t =,∵32t >, ∵2t =-(舍),故5t =;综上:4t =-或5t =.【例3】对于函数()f x ,若存在0R x ∈,使得00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;(2)当函数()f x 的定义域是[,1]t t +时,求函数()f x 的最大值()g t .【答案】(1)23a b =-⎧⎨=-⎩,()224f x x x =--+ (2)()225251,43351,844124,4t t t g t t t t t ⎧--+≤-⎪⎪⎪=-<≤-⎨⎪⎪--+>-⎪⎩【分析】(1)根据不动点可列方程求解,a b ,(2)分类讨论定义域与对称轴的位置关系,结合二次函数的单调性即可求解.(1)依题意得()()2211f f -=-⎧⎪⎨=⎪⎩,即()42242241a b a b ⎧-++=-⎨+++=⎩ , 解得23a b =-⎧⎨=-⎩. ()224f x x x ∴=--+.(2)∵当区间[],1t t +在对称轴14x =-左侧时,即114t +≤-,也即54t ≤-时,()f x 在[],1t t +单调递增,则最大值为()21251f t t t +=--+;∵当对称轴14x =-在[],1t t +内时,即114t t <-<+也即5144t -<<-时,()f x 的最大值为13348f ⎛⎫-= ⎪⎝⎭. ∵当[],1t t +在14x =-右侧时,即14t ≥-时,()f x 在[],1t t +单调递减,则最大值为()224f t t t =--+. 所以()225251,43351,844124,4t t t g t t t t t ⎧--+≤-⎪⎪⎪=-<≤-⎨⎪⎪--+>-⎪⎩. 【例4】已知函数()f x 为二次函数,不等式()0f x >的解集是1,5,且()f x 在区间[1,4]-上的最小值为12-.(1)求()f x 的解析式;(2)设函数()f x 在[,1]t t +上的最大值为()g t ,求()g t 的表达式.【答案】(1)()265f x x x =-+-(2)()224,24,2365,3t t t g t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【分析】(1)根据题意,设()()1(5)f x a x x =--,可得函数的对称轴3x =,再根据函数在[]1,4-上的最小值,求出a ,可得函数()f x 数的表达式;(2)分13t +时、3t 时和23t <<时三种情况,分别讨论函数的单调性,可得相应情况下函数的最大值,最后综合可得()g t 的表达式.(1)解:因为不等式()0f x >的解集是()1,5,所以()0f x =的两根为1和5,且函数开口向下,故可设()()()15f x a x x =--()0a <,所以函数的对称轴为1532x +==,所以当[]1,4x ∈-时,()()min 11212f x f a =-==-,解得1a =-,故()()()15f x x x =---,即()265f x x x =-+-(2)解:因为()()226534f x x x x =-+-=--+,当13t +≤时,即2t ≤时,()f x 在[],1t t +上单调递增,所以 ()()214g t f t t t =+=-+,当31t t <<+时,即23t <<时,()f x 在[],3t 上单调递增,在(]3,1t +上单调递减,所以()()34g t f ==;当3t ≥时,()f x 在[],1t t +上单调递减,所以()()265g t f t t t ==-+-;综合以上得()224,24,2365,3t t t g t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明理由.【答案】(1)2m ≤-;(2)()225-∞+,;(3)存在,6m =. 【分析】(1)根据对称轴和区间端点的相对位置即可求得m 的取值范围.(2)分类讨论当1x >时函数的最大值小于4恒成立即可求得m 的取值范围.(3)分类讨论得函数的值域结合已知条件求得m 的值.【详解】(1)函数()f x 图象开口向下且对称轴是2m x =,要使()f x 在[1,0]-上单调递减,应满足12-≤m ,解得2-≤m .(2)函数()f x 图象的对称轴是2m x =. 当12m ≤时,()4f x <恒成立,故()114f =-<,所以2m ≤; 当12m >时,()4f x <恒成立,故22244160242m m m f m m m ⎛⎫=-+-<⇒--< ⎪⎝⎭; 所以2225m <<+综上所述:m 的取值范围()225-∞+, (3)当22≤m ,即4≤m 时,()f x 在[2,3]上递减, 若存在实数m ,使()f x 在[2,3]上的值域是[2,3],则(2)3,(3)2,f f =⎧⎨=⎩即423,932,m m m m -+-=⎧⎨-+-=⎩,此时m 无解. 当32≥m ,即6≥m 时,()f x 在[2,3]上递增,则(2)2,(3)3,f f =⎧⎨=⎩即422,933,m m m m -+-=⎧⎨-+-=⎩解得6m =. 当232m <<,即46m <<时,()f x 在[2,3]上先递增,再递减,所以()f x 在2m x =处取得最大值,则23222m m m f m m ⎛⎫⎛⎫=-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得2m =-或6,舍去. 综上可得,存在实数6m =,使得()f x 在[2,3]上的值域恰好是[2,3].【例2】已知二次函数()2f x ax bx c =++的图象过点()0,3,且不等式20ax bx c ++≤的解集为{}13x x ≤≤.(1)求()f x 的解析式:(2)若()()()24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.【答案】(1)()243f x x x =-+;(2)1±【分析】(1)根据题意得()30f c ==,又由一元二次不等式的解可知,1和3是方程230ax bx ++=的两根,利用根与系数的关系即可求参数,写出解析式;(2)由二次函数的开口及对称轴,结合其在闭区间上的最小值,讨论t ≤−1、−1<t <2、t ≥2三种情况下求符合条件的t 值即可.(1)由题意可得:()30f c ==∵不等式230ax bx ++≤的解集为{}13x x ≤≤,则230ax bx ++=的两根为1,3,且0a >∵=43=3b a a -⎧⎪⎪⎨⎪⎪⎩,解得=1=4a b -⎧⎨⎩故()243f x x x =-+(2)由(1)可得()()()22423g x f x t x x tx =--=-+的对称轴为=x t当1t ≤-时,则()g x 在[]1,2-上单调递增∵()()1242g x g t ≥-=+=,则1t =-当12t -<<时,则()g x 在[]1,t -上单调递减,在(],2t 上单调递增∵()()232g x g t t ≥=-=,则=1t 或1t =-(舍去)当2t ≥时,则()g x 在[]1,2-上单调递减∵()()2742g x g t ≥=-=,则54t =(舍去)综上所述:实数t 的值为1±.【例3】已知函数2()f x x ax b =++.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;(3)若1b =时,求[0,3]x ∈时()f x 的最小值()g a . 【答案】(1)[2,)-+∞;(2)2a =-,0b =;(3)21,0()1,604103,6a a g a a a a ≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩ 【分析】(1)根据函数()f x 的对称轴为2a x =-,且在(1,)+∞上是增函数,可得12a -≤,由此求得a 的范围; (2)由题意得0,2是方程的两个实数根,利用一元二次方程根与系数的关系,求出,ab 的值; (3)根据()f x 的对称轴和区间的关系分类讨论,根据函数的单调性求得()g a .(1)∵函数2()f x x ax b =++的对称轴为2a x =-,且()f x 在(1,)+∞上是增函数, ∵12a -≤,解得2a ≥-, ∵实数a 的取值范围是[2,)-+∞.(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,则0,2是方程20x ax b ++=的两个实数根,∵0202a b +=-⎧⎨⨯=⎩,∵20a b =-⎧⎨=⎩. (3)若1b =,则2()1=++f x x ax ,对称轴为2a x =-, 当02a -≤,即0a ≥时,函数()f x 在到[0,3]单调递增, 则()()min 01f x f ==,当032a <-<,即60a -<<时, 函数()f x 在0,2a ⎛⎫- ⎪⎝⎭单调递减,在,32a ⎛⎫- ⎪⎝⎭单调递增, 则()222min112424a a a a f x f ⎛⎫=-=-+=- ⎪⎝⎭, 当32a -≥,即6a ≤-时,函数()f x 在[0,3]单调递减, 则()()min 3103f x f a ==+,综上,21,0()1,604103,6a a g a a a a ≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩. 【例4】已知函数()223f x x bx =-+,Rb ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;(3)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【答案】(1)2b =;(2){}13x x <<;(3)当1b ≤-时,()f x 的最大值为13,当12b -<<时,()f x 最大值为422+.【分析】(1)由题可得()43f =,进而即得;(2)利用二次不等式的解法即得;(3)对()f x 的对称轴与区间[]1,2-的关系进行分情况讨论,判断()f x 的单调性,利用单调性解出b ,再求出最大值.(1)由题可得()244833f b =-+=,∵2b =;(2)由()2430f x x x =-+<,解得13x <<,所以不等式()0f x <的解集为{}13x x <<;(3)因为2()23f x x bx =-+是开口向上,对称轴为x b =的二次函数,∵若1b ≤-,则()f x 在[]1,2-上是增函数,∵min ()(1)421f x f b =-=+=,解得32b =-, ∵max ()(2)7413f x f b ==-=;∵若2b ≥,则()f x 在[]1,2-上是减函数,∵min ()(2)741f x f b ==-=,解得32b =(舍); ∵若12b -<<,则()f x 在[]1,b -上是减函数,在(],2b 上是增函数;∵2min ()()31f x f b b ==-=,解得2b =或2b =-(舍).∵max ()(1)42422f x f b =-=+=+;综上,当1b ≤-时,()f x 的最大值为13,当12b -<<时,()f x 最大值为422+.【例5】在∵[]2,2x ∀∈-,∵[]1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间[]22-,上的值域; (2)若______,()0f x ≥,求实数a 的取值范围.【答案】(1)[]3,12(2)答案见解析【分析】(1)利用二次函数的性质直接求解其值域,(2)若选条件∵,求出抛物线的对称轴,分22a -≤-,222a -<-<和22a -≥三种情况求出函数的最小值,使最小值大于等于零,即可求出a 的取值范围,若选条件∵,则()max 0f x ≥,由抛物线的性质可得()10f ≥或()30f ≥,从而可求出a 的取值范围.(1)当2a =-时,()()222413f x x x x =-+=-+,∵()f x 在[]2,1-上单调递减,在[]1,2上单调递增,∵()()min 13f x f ==,()()max 212f x f =-=,∵函数()f x 在区间[]22-,上的值域为[]3,12. (2)方案一:选条件∵.由题意,得()22424a a f x x ⎛⎫=++- ⎪⎝⎭. 若22a -≤-,即4a ≥,则函数()f x 在区间[]22-,上单调递增, ∵()()min 2820f x f a =-=-≥,解得4a ≤,又4a ≥,∵a =4.若222a -<-<,即44a -<<,则函数()f x 在区间2,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在区间,22a ⎡⎤-⎢⎥⎣⎦上单调递增, ∵()2min 4024a a f x f ⎛⎫=-=-≥ ⎪⎝⎭, 解得44a -≤≤,∵44a -<<.若22a -≥,即4a ≤-,则函数()f x 在区间[]22-,上单调递减, ∵()()min 2820f x f a ==+≥,解得4a ≥-,又4a ≤-,∵a =-4.综上所述,实数a 的取值范围为[]4,4-. 方案二:选条件∵. ∵[]1,3x ∃∈,()0f x ≥, ∵()max 0f x ≥,∵函数()f x 的图象是开口向上的抛物线,最大值只可能在区间端点处取得. ∵()10f ≥或()30f ≥,解得5a ≥-或133a ≥-, ∵5a ≥-.故实数a 的取值范围为[)5,-+∞. 【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立. (1)求二次函数()f x 的解析式;(2)若函数()()42g x f x x x λ=++-的最小值为5,求实数λ的值. 【答案】(1)()2111424f x x x =-+,(2)174λ=± 【分析】(1)根据()()2f x f x +=-得到420a b +=,根据()0f x x +≥恒成立得到a c =,结合()11f a b c -=-+=,求出11,42a b ==-,14c =,求出二次函数解析式;(2)结合第一问,将()()42g x f x x x λ=++-写出分段函数,分12λ<-,1122λ-≤≤与12λ>三种情况,结合函数单调性,最小值为5,列出方程,求出实数λ的值. 【详解】(1)由题意得:()11f a b c -=-+=,且0a ≠,()()210f x x ax b x c +=+++≥恒成立,故()2Δ140a b ac >⎧⎪⎨=+-≤⎪⎩, 将1b a c +=+代入()2140b ac +-≤中,()20a c -≤, 故a c =,从而21a b c a b -+=-=,由()()2f x f x +=-得:()()()22222f x a x b x c ax bx c +=++++=-+,整理得()42420a b x a b +++=,故420a b +=, 联立21a b -=与420a b +=,解得:11,42a b ==-,故14c a ==, 二次函数解析式为()2111424f x x x =-+; (2)函数()()2421g x f x x x x x λλ=++-=++-的最小值为5,()2222131,24131,24x x x x g x x x x x λλλλλλ⎧⎛⎫+-+=+-+≥⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-++=-++< ⎪⎪⎝⎭⎩, 且()21g λλ=+,即在端点处分段函数的函数值相等,当12λ<-时,()g x 在12x <-上单调递减,在21x ≥-上单调递增,故()g x 在12x =-处取得最小值,即354λ-+=,解得:17142λ=-<-,符合要求;当1122λ-≤≤时,()g x 在x λ<上单调递减,在x λ≥上单调递增, 故()g x 在x λ=处取得最小值,即215λ+=,解得:2λ=±,不合题意,舍去; 当12λ>时,()g x 在12x <上单调递减,在12x ≥上单调递增,故()g x 在12x =处取得最小值,即354λ+=,解得:17142λ=>,符合要求;综上:174λ=±. 【例2】已知函数()R a a x x x f ∈-+=,22. (1)若()x f 为偶函数,求a 的值;(2)若函数()()2+=x af x g 的最小值为8,求a 的值. 【答案】(1)0,(2)2【分析】(1)利用偶函数的定义,列出关系式,即可求出a 的值; (2)化简函数为分段函数,通过讨论a 的范围,列出关系式求解即可.【详解】(1)因为f (x )是偶函数,所以f (-x )=f (x ), 故x 2+2|-x -a |=x 2+2|x -a |,所以|x +a |=|x -a |,即x 2+2ax +a 2=x 2-2ax +a 2,化简得4ax =0, 因为x ∵R ,所以a =0.(2)22222(1)22,()()222(1)22,a x a a x ag x af x ax a x a a x a a x a ⎧+--+=+=+-+=⎨-+-+<⎩∵若a =0,则g (x )=2,不合题意; ∵若a <0,则g (x )无最小值,不合题意; ∵若0<a ≤1,当x ≥a 时,g (x )在[a ,+∞)上单调递增,g (x )≥g (a ); 当x <a 时,g (x )在(-∞,a )上单调递减,g (x )>g (a ).所以,g (x )的最小值为g (a )=a 3+2=8,所以a =36>1,舍去; ∵若a >1,当x ≥a 时,g (x )在[a ,+∞)上单调递增,g (x )≥g (a );当x <a 时,g (x )在(-∞,1]上单调递减,在(1,a )内单调递增,所以g (x )≥g (1), 因为g (1)<g (a ),所以g (x )的最小值为g (1)=2a 2-a +2=8,所以a =32-(舍去)或a =2,综上所述,a =2.【例3】已知函数()||1()f x x x a x =--+∈R .(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间; (2)若函数()f x 在[1,4]上的最小值是3-,求a 的值 【答案】(1)单调递增区间为3,22⎛⎫⎪⎝⎭;(2)3或4【分析】(1)当2a =时,求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间;(2)分1a <,12a ≤<,24a ≤<,48a ≤<和8a ≥五种情况进行讨论,结合函数的图象得到对应的最小值,即可得到答案 (1)当2a =时,()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩, 所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩, 当2x <时,231y x x =-+,其图象开口向上,对称轴方程为32x =, 所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫⎪⎝⎭上单调递增;当2x ≥时,21y x x =-++,其图象开口向下,对称轴方程为12x =, 所以()g x 在[2,)+∞上单调递减,综上可知,()g x 的单调递增区间为3,22⎛⎫⎪⎝⎭;(2)当1a <时,()224()124a a f x x x a x +⎛⎫=--+=--+ ⎪⎝⎭,因为122a <,所以()min ()44153f x f a ==-=-,解得3a =,故舍去; 当12a ≤<时,()22224,4244,124a a x a x f x a a x x a ⎧+⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩, 因为1122a≤<,所以()f x 在[]1a ,递增,在[],4a 递减, 所以()f x 的最小值在()1f 或()4f 中取,且()22411224a a f a -⎛⎫=-+=- ⎪⎝⎭,()2244441524a a f a +⎛⎫=--+=- ⎪⎝⎭,若()f x 的最小值为()123f a =-=-,解得5a =,故舍去; 若()f x 的最小值为()44153f a =-=-,解得3a =,故舍去;当24a ≤<时,()22224,4244,124a a x a x f x a a x x a ⎧+⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩,因为122a ≤<,所以()f x 在12a ⎡⎤⎢⎥⎣⎦,递减,在,2a a ⎡⎤⎢⎥⎣⎦递增,在[],4a 递减, 所以()f x 的最小值在2a f ⎛⎫⎪⎝⎭或()4f 中取,若()f x 的最小值为24324a af -⎛⎫==- ⎪⎝⎭,解得4a =±,故舍去; 若()f x 的最小值为()44153f a =-=-,解得3a =, 检验:353224a f f ⎛⎫⎛⎫==->- ⎪ ⎪⎝⎭⎝⎭,故满足;当48a ≤<时,()224()124a a f x x a x x -⎛⎫=--+=-+ ⎪⎝⎭,因为242a ≤<,所以2min 4()324a af x f -⎛⎫===- ⎪⎝⎭,因为48a ≤<,解得4a =; 当8a ≥时,()224()124a a f x x a x x -⎛⎫=--+=-+ ⎪⎝⎭,因为42a≥,所以()min ()41743f x f a ==-=-,解得5a =,故舍去; 综上所述,a 的值为3或4【点睛】关键点睛:这道题的关键在于比较对称轴2a和a 与区间[]1,4的关系,分成了5种情况,数形结合,利用二次函数的图象与性质得到对应的最小值 【例4】已知函数() 2.f x x x a =-+ (1)当2a =时,求()f x 的单调增区间;(2)若12,[0,2]x x ∃∈,使()()122f x f x ->,求实数a 的取值范围. 【答案】(1)单调递增区间为(),1-∞和()2,+∞ (2)(,1)(22,)-∞⋃+∞【分析】(1)根据已知及分段函数,函数的单调性与单调区间的计算,求出()f x 的单调增区间;(2)根据已知及二次函数的性质求最值,结合不等式和绝对值不等式的计算求出实数a 的取值范围. (1)当2a =时,()2222,22222,2x x x f x x x x x x ⎧-+=-+=⎨-++<⎩,2≥x 时,()f x 单调递增,2x <时,()f x 在(),1-∞上单调递增,在()1,2上单调递减,所以()f x 的单调递增区间为(),1-∞和()2,+∞, (2)12,[0,2]x x ∃∈,使()()122f x f x ->所以()()12max 2f x f x ->, 即()()max min 2f x f x ->,∵当2≤a 时,()22f x x ax =-++,对称轴2a x =, (i)当221≤≤a 即42≤≤a 时,()2max224a a f x f ⎛⎫==+ ⎪⎝⎭, ()()min 02f x f ==,所以()20224a a f f ⎛⎫-=> ⎪⎝⎭, 所以22a >或22a <-, 因为42≤≤a ,所以224a < , (ii)当22a>即4a >时,()()max 222f x f a ==-, ()()min 02f x f ==,所以()()20242f f a -=->,3a >,因为4a >,所以4a >,∵当0a 时,()22f x x ax =-+,对称轴02ax =<, 所以()()max 262f x f a ==-,()()min 02f x f ==,所以()()20422f f a -=->,1a <,所以0a ,∵当02a <<时,()222,02,2x ax x af x x ax a x ⎧-++<<=⎨-+<<⎩,因为()()()min 022f x f f ===,因为()220124a a f f ⎛⎫-=< ⎪⎝⎭, 所以2a f ⎛⎫⎪⎝⎭不可能是函数的最大值,所以()()max 262f x f a ==-, 所以()()20422f f a -=->, 所以01a <<,综上所述:a 的取值范围是(,1)(22,)-∞⋃+∞ .【点睛】关键点点睛:本题主要考查了分段函数,函数的单调性与单调区间,函数的最值,不等式和绝对值不等式的应用,属于较难题,解题的关键是将12,[0,2]x x ∃∈,使()()122f x f x ->,转化为()()max min 2f x f x ->,然后分类利用二次函数的性质求出其最值即可,考查了分类思想和计算能力【例5】已知函数()f x x m =-.(1)若函数()f x 在[]1,2上单调递增,求实数m 的取值范围;(2)若函数()()2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【答案】(1)(],1-∞ (2)2m =-或231m =-【分析】(1)化为分段函数,结合单调性得到实数m 的取值范围;(2)化为分段函数,对m 分类讨论,结合最小值为7,求出实数m 的值,注意舍去不合要求的值. (1)(),,x m x m f x x m m x x m -≥⎧=-=⎨-<⎩,即()f x 在()m -∞,上单调递减,在[),m +∞上单调递增,若函数()f x 在[]1,2上单调递增,则1m ,所以实数m 的取值范围是(],1-∞;(2)()()222222,,x mx m x mg x xf x m x x m m x mx m x m ⎧-+≥=+=-+=⎨-++<⎩, ∵当1m 时,()g x 在[]1,2上单调递增,故()()2min 117g x g m m ==-+=,解得:2m =-或3(舍去);∵当12m <≤时,()()2min 7g x g m m ===,解得:7m =±(舍去);∵当23m <≤时,()g x 在1,2m ⎛⎫⎪⎝⎭上单调递增,在,22m ⎛⎫ ⎪⎝⎭上单调递减,且2m x =更靠近1,所以()()2min 2247g x g m m ==+-=,解得:231m =-或231--(舍去);∵当34m <≤时,()g x 在1,2m ⎛⎫⎪⎝⎭上单调递增,在,22m ⎛⎫ ⎪⎝⎭上单调递减,且2m x =更靠近2,所以()()2min 117g x g m m ==-+=,解得:2m =-(舍去)或3(舍去);∵当4m >时,()g x 在[]1,2上单调递增,故()()2min 117g x g m m ==-+=,解得:2m =-(舍去)或3(舍去);综上:2m =-或231m =-.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,n 的值;若不存在,请说明理由. 【答案】(1)12a =-,1b =(2)存在,2,0m n =-=【分析】(1)由()20f =、()210ax b x +-=有两个相等的实数根可得答案;(2)假设存在符合条件的m ,n .21122f x x x ,得14n ≤,由一元二次函数图象的特征结合定义域和值域可得答案. (1)由()2f x ax bx =+,()20f =,得420a b +=,又方程()f x x =,即()210ax b x +-=有两个相等的实数根,所以()2140--=b a ,解得1b =,12a =-;(2)假设存在符合条件的,m n , 由(1)知22111112222f xx x x ,则有122n ≤,即14n ≤,由一元二次函数图象的特征,得14()2()2m n f m m f n n ⎧<≤⎪⎪=⎨⎪=⎪⎩,即2214122122m n m m m n n n⎧<≤⎪⎪⎪-+=⎨⎪⎪-+=⎪⎩,解得20m n =-⎧⎨=⎩,所以存在2m =-,0n =,使得函数()f x 在[]2,0-上的值域为[]4,0-. 【例2】已知函数()11,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩. (1)当0a b <<,且()()f a f b =时,求11a b+的值; (2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值范围.【答案】(1)2; (2)104m <<.【分析】(1)根据函数()f x 的单调性可知,()()f a f b =可等价于1111a b -=-,即可解得11a b+的值; (2)根据函数()y f x =在[,]a b 上的单调性,即可确定()y f x =在[,]a b 上的值域,从而根据根的分布建立方程组,即可解出m 的取值范围. (1)由题意得()y f x =在()0,1上为减函数,在()1,+∞上为增函数, 由0a b <<,且0a b <<,可得01a b <<<且1111a b-=-因此112a b+=.(2)当[),1,a b ∞∈+时,则()y f x =在[)1,+∞上为增函数 故1111ma amb b⎧-=⎪⎪⎨⎪-=⎪⎩ 即a b 、是方程210mx x -+=的两个根即关于x 的方程210mx x -+=在[)1,+∞上有两个不等的实数根. 设()21g x mx x =-+,则()Δ0101120g m m >⎧⎪>⎪⎪⎨>⎪⎪>⎪⎩ 解得104m <<. 【例3】已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a >时,()f x 的定义域和值域都是[],m n ,求n m -的最大值. 【答案】(1)()f x 在[],m n 上单调递增,理由见解析 (2)433【分析】(1)由定义法直接证明可得; (2)由题知,m n 是方程2112x a a x+-=的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a 的范围,再用韦达定理表示出所求,然后可解. (1)设120<m x x n ≤<≤,则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则222222Δ2402010a a a a a m n a mn a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩(),解得12a >,222222241216()4333a a n m n m mn a aa ⎛⎫+⎛⎫∴-=+-=-=--+ ⎪ ⎪⎝⎭⎝⎭, 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -最大值为433;【例4】已知二次函数2()(,,)f x ax bx c a b c =++∈R 的图像经过原点O ,满足对任意实数x 都有(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;若不存在,请说明理由. 【答案】(1)2()2f x x x =-+ (2)存在,0,1m n ==【分析】(1)由题意列方程求解,,a b c(2)根据定义域与对称轴关系,讨论()f x 值域后求解 (1)()f x 经过原点,故0c,()2f x x =,即2(2)0ax b x +-=有两个相等的实数根,由Δ0=知2b =,(3)(1)f x f x -=-,故()f x 的对称轴为1x =,即12ba-=,1a =-, 函数()f x 的解析式为2()2f x x x =-+.(2)2()(1)11f x x =--+≤,故11n -≤≤,故()f x 在[,]m n 上单调递增,由题意得222222m m m n n n ⎧-+=⎨-+=⎩又m n <,解得01m n =⎧⎨=⎩ 存在0,1m n ==满足题意【例5】已知函数()f x =x 2-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为()f x 的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;(2)若函数f (x )的保值区间为[m ,n ]()m n <,且f (x )在[m ,n ]上单调,求实数b 的取值范围. 【答案】(1)[1,)-+∞和[3,)+∞ (2)591,2,44⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】(1)根据对称轴为标准分类讨论,使其满足定义即可求解;(2)以对称轴为界分类讨论,依据单调性建立等式,再将问题转化为二次函数或一元二次方程问题求解. (1)当0b =时,2()2f x x x =-,其对称轴为1x =.当1t ≤时,()[1,)f x ∈-+∞,此时,要满足函数f (x )是形如[,)()t t R ∞+∈的保值区间,则1t =-,区间为[1,)-+∞; 当1t >时,2()[2,)f x t t ∈-+∞,定义域为[,)t +∞,此时,要满足函数f (x )是形如[,)()t t R ∞+∈的保值区间,则22t t t -=,解得3t =或0=t (舍),因此,此时区间为[3,)+∞.综上可知,函数f (x )形如[,)()t t R ∞+∈的保值区间为[1,)-+∞和[3,)+∞; (2)因为函数f (x )的定义域、值域都为[m ,n ],且f (x )在[m ,n ]上单调, 当m ≥1时,函数f (x )在[m ,n ]上单调递增,此时()()f m m f n n =⎧⎨=⎩即222,2,m m b m n n b n ⎧-+=⎨-+=⎩等价于方程x 2-3x +b =0在[1,+∞)上有两个不等实根,令g (x )=x 2-3x +b ,则有Δ940,(1)20,31,2b g b ⎧⎪=->⎪=-+≥⎨⎪⎪>⎩解得924b ≤<;当n ≤1时,函数f (x )在[m ,n ]上单调递减,此时()()f m n f n m =⎧⎨=⎩即2222m m b n n n b m ⎧-+=⎨-+=⎩两式相减得:(m -n )(m +n -1)=0,即m =n (舍)或m +n -1=0,也即m =1-n ,由m <n 可得112n <≤, 将m =1-n 代入n 2-2n +b =m 可得方程n 2-n +b -1=0在1(,1]2上有解,即为函数b =-n 2+n +1在1(,1]2上的值域问题,因为22151()24b n n n =-++=--+在1(,1]2上单调递减,所以b 5[1,)4∈.综上所述,b 的取值范围是59[1,)[2,)44⋃.【例6】已知函数()221x f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数t 的取值范围. 【答案】(1)(,1)-∞ (2)2- (3)(0,1)【分析】(1)化简函数得21()1(0)f x x x=-≠,由20x >,可求出2111x -<,从而可求得函数的值域, (2)等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,转化为2k x x ≤-+在[]1,2x ∈时恒成立,令2211()24h x x x x ⎛⎫=-+=--+ ⎪⎝⎭,可得()h x 在[]1,2上单调递减,从而可求出其最小值,进而可求得实数k 的最大值,(3)由题意得min max 11()23,()23g x g m g x g n m n ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭,从而可得,m n 是方程2310(0)tx x t t -+-=>的两个不相等的正根,令2()310(0)x tx x t t ϕ=-+-=>,则有Δ94(1)0302(0)10t t t t ϕ=-->⎧⎪⎪>⎨⎪=->⎪⎩,从而可求出实数t 的取值范围 (1)由题意得21()1(0)f x x x =-≠, 因为20x >,所以210x >,则2111x -<, 所以函数()f x 的值域为(,1)-∞ (2)因为[]1,2x ∈,所以不等式可化为2311kx x x ≤-+-, 所以2k x x ≤-+,令2211()24h x x x x ⎛⎫=-+=--+ ⎪⎝⎭,则()h x 在[]1,2上单调递减,所以min ()(2)422h x h ==-+=-,所以2k ≤-, 所以实数k 的取值范围为(,2]-∞-, 所以实数k 的最大值为2- (3)由题意得2()1tg x t x =-++, 因为0t >,所以()g x 在11,(0,0)m n m n ⎡⎤>>⎢⎥⎣⎦上单调递增,所以min max 11()23,()23g x g m g x g n m n ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭,即()()221123,1123t m m t n n -+=--+=-,所以,m n 是方程()21123t x x -+=-,即2310(0)tx x t t -+-=>的两个不相等的正根,令2()310(0)x tx x t t ϕ=-+-=>,其图象开口向上,对称轴为直线32x t=,且有两个不相等的正零点, 所以Δ94(1)0302(0)10t t t t ϕ=-->⎧⎪⎪>⎨⎪=->⎪⎩,即01t R t t ∈⎧⎪>⎨⎪<⎩,解得01t <<所以实数t 的取值范围为(0,1)【例7】已知()f x 是定义在R 上的函数,且()()0f x f x +-=,当0x >时,()22f x x x =-,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不存在,说明理由.【答案】(1)()222020x x x f x x x x ⎧-≥=⎨+<⎩,,; (2)[)3,∞+; (3)存在,151,2a b +==.【分析】(1)根据函数是奇函数以及大于零时()f x 的解析式,即可容易求得结果; (2)根据(1)中所求,结合()f x 的单调性,列出不等关系,即可求得参数范围; (3)根据()h x 的单调性,结合,a b 是方程32210x x -+=的两个正根,求解即可. (1)由题意,任取0x <,则0x ->,故有()22f x x x -=--,因为()f x 是定义在R 上的函数,且()()0f x f x +-=,即函数()y f x =是定义在R 上的奇函数,0x ∴<时,()()22f x f x x x =--=+,又0x =时,()()000f f +=,即()00f =,所以()222020x x x f x x x x ⎧-≥=⎨+<⎩,,. (2)当[)1,x ∞∈+时,()()2(1)1g x f x x ==--+,在[)1,+∞单调递减,又当(),1x ∞∈-时,()223g x x mx m =-+-,且()g x 在R 上单调递减,所以121231m m m ⎧≥⎪⎨⎪-+-≥⎩,解得3m ≥, 即m 的取值范围为[)3,∞+. (3)当0x >时,()2(1)11f x x =--+≤,若存在这样的正数a ,b ,则当[]()max 1,[]1x a b f x a∈=≤时,,故1a ≥, ()f x ∴在[],a b 内单调递减,()()221212f b b b bf a a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,所以,a b 是方程32210x x -+=的两个正根, ()()32221110x x x x x -+=---=, 12151,2x x +∴==, 故存在正数1512a b +==,满足题意. 【例1】已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立. 【答案】(1)2 (2)证明见解析【分析】(1)由题意,可得Δ0=,从而即可求解;(2)利用对勾函数单调性求出()f x 在[1,2]上的值域,再分三种情况讨论二次函数()g x 在闭区间[]1,3-上的值域,然后证明()f x 的值域是()g x 值域的子集恒成立即可得证. (1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦. 设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.【例2】函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x . (1)求()f x 的对称中心;(2)已知函数()g x 同时满足:∵()11+-g x 是奇函数;∵当[]0,1x ∈时,()2g x x mx m =-+.若对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围. 【答案】(1)()1,1-- (2)[]2,4-【分析】(1)设()f x 的对称中心为(),a b ,根据对称性得到关于,a b 的方程,解得即可得解;(2)易求得()f x 的值域为[]2,4-,设函数()g x 的值域为集合A ,则问题可转化为[]2,4A ⊆-,分0m ≤,2m ≥和02m <<三种情况讨论,从而可得出答案.【详解】(1)解:()()()2211666111x x x x f x x x x x +-+-+-===-+++, 设()f x 的对称中心为(),a b ,由题意,得函数()y f x a b =+-为奇函数, 则()()f x a b f x a b -+-=-++, 即()()20f x a f x a b ++-+-=, 即()()662011x a x a b x a x a +-+-+--=++-++,整理得()()()()221610a b x a b a a ⎡⎤---+-+=⎣⎦, 所以()()()21610a b a b a a -=-+-+=,解得1,1a b =-=-, 所以函数()f x 的对称中心为()1,1--;(2)解:因为对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =, 所以函数()g x 的值域是函数()f x 的值域的子集, 因为函数6,1y x y x ==-+在[]1,5上都是增函数, 所以函数()61f x x x =-+在[]1,5上是增函数, 所以()f x 的值域为[]2,4-, 设函数()g x 的值域为集合A , 则原问题转化为[]2,4A ⊆-,因为函数()11+-g x 是奇函数,所以函数()g x 关于()1,1对称, 又因为()11g =,所以函数()g x 恒过点()1,1, 当02m≤,即0m ≤时,()g x 在[]0,1上递增,则函数()g x 在(]1,2上也是增函数, 所以函数()g x 在[]0,2上递增, 又()()()0,2202g m g g m ==-=-,所以()g x 的值域为[],2m m -,即[],2A m m =-, 又[][],22,4A m m =-⊆-, 所以2240m m m ≥-⎧⎪-≤⎨⎪≤⎩,解得20m -≤≤,当12m≥即2m ≥时,()g x 在[]0,1上递减,则函数()g x 在(]1,2上也是减函数, 所以函数()g x 在[]0,2上递减, 则[]2,A m m =-, 又[][]2,2,4A m m =-⊆-, 所以2224m m m ≥⎧⎪-≥-⎨⎪≤⎩,解得24m ≤≤,当012m<<即02m <<时, ()g x 在0,2m ⎛⎫ ⎪⎝⎭上递减,在,12m ⎛⎫⎪⎝⎭上递增, 又因函数()g x 过对称中心()1,1,所以函数()g x 在1,22m ⎛⎫- ⎪⎝⎭上递增,在2,22m ⎛⎫- ⎪⎝⎭上递减,故此时()()min min 2,2m g x g g ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,()()max max 0,22m g x g g ⎧⎫⎛⎫=-⎨⎬ ⎪⎝⎭⎩⎭,要使[]2,4A ⊆-,只需要()()()222202222404222422402g g m m m g m g m m m m g g m m ⎧=-=-≥-⎪⎛⎫⎪=-+≥- ⎪⎪⎝⎭⎪=≤⎨⎪⎛⎫⎛⎫⎪-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎪<<⎩,解得02m <<,综上所述实数m 的取值范围为[]2,4-.【点睛】本题考查了函数的对称性单调性及函数的值域问题,考查了转化思想及分类讨论思想,解决本题第二问的关键在于把问题转化为函数()g x 的值域是函数()f x 的值域的子集,有一定的难度. 【例3】已知函数2()3,()221()f x x g x x ax a a =-+=-+-∈R . (1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;(2)若对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 【答案】(1)1a = (2)1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】(1)利用二次函数的图像与性质,得到Δ0=,求解即可.(2)将问题转化为()()()()min minmax max f x g x f x g x ⎧≥⎪⎨≤⎪⎩,然后利用二次函数的性质以及一次函数的性质,求解两个函数的最值,求解不等式组,即可得出答案. (1)∵函数2()221g x x ax a =-+-的值域为[0,)+∞,∵2(2)4(21)0a a ∆=--=, 解得1a =; (2)由题意可知()()()()min minmax max f x g x f x g x ⎧≥⎪⎨≤⎪⎩对于函数()3f x x =-+在[2,2]-上是减函数,∵min max ()(2)1,()(2)5f x f f x f ===-=, 函数2()221g x xax a =-+-图象开口向上,对称轴为直线x a =.∵当2a ≤-时,函数()g x 在[2,2]-上为增函数,min max?()(2)63,()(2)23g x g a g x g a =-=+==-+,∵163,523,a a ≥+⎧⎨≤-+⎩此时2a ≤-; ∵当20a -<≤时,函数()g x 在区间[2,]a -上为减函数,在[],2a 上为增函数,2min max ()()21,()(2)23g x g a a a g x g a ==-+-==-+,∵2121,523,a a a ⎧≥-+-⎨≤-+⎩此时21a -<≤-;∵当02a <<时,函数()g x 在区间[2,]a -上为减函数,在[],2a 上为增函数,2min max ()()21,()(2)63g x g a a a g x g a ==-+-=-=+, ∵2121,563,a a a ⎧≥-+-⎨≤+⎩此时123a ≤<; ∵当2a ≥时,函数()g x 在[2,2]-上是减函数,∵max min ()(2)63,()(2)23g x g a g x g a =-=+==-+, ∵123,563,a a ≥-+⎧⎨≤+⎩此时2a ≥; 综上所述,实数a 的取值范围是1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.。

二次函数中的最值问题(解析版)

二次函数中的最值问题(解析版)

二次函数中的最值问题目录题型一【铅垂高系列】2023·四川凉山·中考真题2022·天津·中考真题2022·湖北襄阳·统考中考真题2023·湖南娄底·中考真题2023·湖南中考真题2023·青海西宁·中考真题2023·四川广安·中考真题2023·湖南永州·中考真题2022·四川广元·中考真题题型二【线段和差最值篇】2023·湖南张家界中考真题2022·山东淄博·统考中考真题2022·四川遂宁中考真题2023·山东东营·中考真题2023·四川巴中·中考真题2023·湖南张家界中考真题2023·山东聊城·中考真题2022·湖北襄阳中考真题2023·湖北荆州中考真题2022·江苏连云港中考真题2022·湖南岳阳·中考真题2023·宁夏·中考真题2023·湖北襄阳中考真题题型四【加权线段最值】2023·四川内江·中考真题2023·黑龙江绥化·中考真题题型五 【几何构造最值篇】2022·天津·统考中考真题满分*技巧母题:如图,已知抛物线过A (4,0)、B (0,4)、C (-2,0)三点,P 是抛物线上一点 (1) 求抛物线解析式【答案】2142y x x =++【铅垂高系列】本来这个属于构造二次函数型最值问题,但是比较特殊所以单独拿出来 (2) (☆)若P 在直线AB 上方,求四边形PBCA 面积最大值,【答案】16 补充二级结论212max 2x x PD a − =⋅【思路分析】先分离出面积为定值的△ABC ,△ABC 面积为12 设P 21(,4)2m m m −++,()4H m m −+,2122PH m m =−+(上面的点减去下面的点)当22b m a=−=时,PH 取最大值2,此时△APB 面积为:1=42S PH AO ⋅=(AO 是△PBH ,△PAH 两个三角形高之和)(3) (☆)若P 在直线AB 上方,作PF ⊥AB ,F 在线段AB 上,求PF 最大值H【思路分析】过P作PH平行y轴,H在AB上导角可知△PFH~△AOB为等腰直角三角形,PH取最大时,PF也取到最大(4)(★)若P在直线AB上方,作PF⊥AB,交线段AB于F,作PE∥y轴交AB于E,求△PEF 周长和面积的最大值【答案】2+和1【思路分析】△PEF形状固定,PF FE PE==(5)若P在直线AB上方,连接OP,交AB于D,求PDOD的最大值【答案】【思路分析】化斜为直,平行线,构造8字相似转换PD PH OD BO=(6) (★☆)若P 在直线AB 上方,连接CP ,交AB 于D ,△PDA 面积为S 1,△CDA 面积为S 2,求21S S 的最小值【答案】13【思路分析】化斜为自第一步:面积比转换为共线的边之比21S CDS PD=第二步:构造,共线的边之比转换成平行边之比6CD CG PD PH PH==(7) (★☆)点D 是点B 关于关于x 轴的对称点,连接CD ,点P 是第一象限上一点,求△PCD 面积最大值【答案】12 【思路分析】过动点P 作y 轴平行线交对边(延长)于点H2112538222PCD PCH PDM S S S PH CO PH m m =−=⋅==−++≤△△△ 推导过程如下:以PH 为底,设△PHC 的高为h 1,△PDH 的高为2h12121111()2222PH h PM h PH h h PH CO ⋅−⋅=⋅−=⋅【几何构造最值篇】(8) (☆)点E 是对称轴与x 轴交点,过E 作一条任意直线l ,(点B 、C 分别在直线l 的异侧),设C 、B 两点到直线l 的距离分别为m 、n ,求m +n 的最大值x【答案】【思路分析】m n BC ≥+特殊位置时有最小值,大多数题目都是共线时有最值,所以要重点去分析共线时的情况(9) (☆)已知线段BC 上有两点E (1,3),F (3, 1),试在x ,y 轴上有两动点M 和N ,使得四边形FMNE 周长最小。

专题11 一元二次函数的最值问题(解析版)

专题11 一元二次函数的最值问题(解析版)

专题11 一元二次函数的最值问题一、知识点精讲1.二次函数2 (0)y ax bx c a =++≠的最值.二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a-,无最小值.2.二次函数最大值或最小值的求法.第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 3.求二次函数在某一范围内的最值.如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值.第一步:先通过配方,求出函数图象的对称轴:0x x =; 第二步:讨论:[1]若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。

[2] 若0a >时求最大值或0a <时求最小值,需分两种情况讨论:①对称轴02m nx +≤,即对称轴在m x n ≤≤的中点的左侧; ②对称轴02m nx +>,即对称轴在m x n ≤≤的中点的右侧;说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况。

二、典例精析【典例1】求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y . 【答案】见解析【分析】:由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.【解析】:(1)因为二次函数5322--=x x y 中的二次项系数2>0,所以抛物线5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =849)43(22--x ,所以当43=x 时,函数5322--=x x y 有最小值是849-. (2)因为二次函数432+--=x x y 中的二次项系数-1<0,所以抛物线432+--=x x y 有最高点,即函数有最大值.因为432+--=x x y =425)23(2++-x ,所以当23-=x 时,函数432+--=x x y 有最大值425 【典例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 【答案】见解析 【解析】:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.【说明】:二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【典例3】当0x ≥时,求函数(2)y x x =--的取值范围. 【答案】见解析 【解析】:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-. 【典例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 【答案】见解析【分析】:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.【解析】:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时:当x t =时,2min 1522y t t =--;(2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时: 当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩ 【典例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少? 【答案】见解析【解析】(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.三、对点精练1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点. 【答案】4,14或2,32【解析】当m=4时图象的顶点在y 轴上,当m =14或2时,图象的顶点在x 轴上,当m =32时图象过原点。

二次函数的最值问题总结

二次函数的最值问题总结

例3.当x_0时,求函数y =「x(2-x)的取值范围. 解:作出函数y =-x(2 -x) = x 2 -2x 在x_0内的图象.二次函数的最值问题二次函数 y =ax ? +bx + c ( a HO)是初中函数的主要内容,也是高中学习的重要基 础•在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当a ■ 0时,2函数在x=-—处取得最小值4a 仝旦,无最大值;当acO 时,函数在x=-—处取得2a4a2a本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.二次函数求最值(一般范围类)例1 •当-2玉x 玄2时,求函数y = x 2 - 2x - 3的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图, 观察图象的最高点和最低点, 由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值._ -4,当X _ -2 时,y max 二 5 •例2.当1乞X 乞2时,求函数y = -X 2 - XT 的最大值和最小值.解:作出函数的图象•当x=1时,y min - -1,当x =2时,y max 一 -5 .由上述两例可以看到, 二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一 段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置, 函数在所给自变量 x 的范围的图象形状各异. 下面给出- 些常见情况:最大值4ac -b 2 4a无最小值.解:ymin1 25 解:函数y x -x的对称轴为x = 1 .画出其草图.221 5 (1)当对称轴在所给范围左侧•即t .1时: 当x =t 时,y mint 2-t- 22⑵ 当对称轴在所给范围之间•即t _ 1 _ t • 1二0 _ t _ 1时:1 2 5当 x = 1 时,y min=2 1一1—㊁二一3 ; ⑶ 当对称轴在所给范围右侧•即 t 1 .^= t :. 0时:1 25 1 2 当 X =t 1 时,y min (t 1)2 - (t 1) t 2 -3 .1 2—t — 3,t < 0 2y - -3,0 zt ^132 —t —5,t>1 .2 2在实际生活中,我们也会遇到一些与二次函数有关的问题:二次函数求最值(经济类问题)例1•为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定 对购买彩电的农户实行政府补贴. 规定每购买一台彩电, 政府补贴若干元,经调查某商场销 售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系•随着补 贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益 Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.置.可以看出:当X =1时,y min 二-1,无最大值. 所以,当x _ 0时,函数的取值范围是 y _ -1 •例4.当t 乞X 乞t • 1时,求函数- x -号的最小值(其中t 为常数).分析:由于X 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位综上所述:政府补贴款额x 之间的函数关系式; (3)要使该商场销售彩电的总收益 w (元)最大,政府应将每台补贴款额 x 定为多少?并求出总收益 w 的最大值.分析:(1)政府未出台补贴措施前,商场销售彩电台数为 800台,每台彩电的收益为200元;(2)禾U 用两个图像中提供的点的坐标求各自的解析式; (3)商场销售彩电的总收益=商场销售彩电台数X 每台家电的收益,将( 2)中的关系式代入得到二次函数,再求二次函数的最大值.解:(1)该商场销售家电的总收益为800 200=160000 (元);(2 )依题意可设 y =k ,x 800 , Z =k 2x 200 ,.有 400k , 800 =1200 ,1 1 200k2 200 =160,解得 k =1, k 2•所以 y =x 800 , Z x 200.55r 1、 1(3) W = yZ = (x 800) x 200(x-100)2 162000,政府应将每台补 I 5丿5贴款额x 定为100元,总收益有最大值,其最大值为162000元.说明:本题中有两个函数图像,在解题时要结合起来思考,不可顾此失彼例2•凯里市某大型酒店有包房 100间,在每天晚餐营业时间, 每间包房收包房费100 元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高 20元的这种方法变化下去.(1) 设每间包房收费提高 x (元),则每间包房的收入为 y 1 (元),但会减少y 2间包房 租出,请分别写出 y 1、y 2与x 之间的函数关系式.(2) 为了投资少而利润大,每间包房提高 x (元)后,设酒店老板每天晚餐包房总收 入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获 得最大包房费收入,并说明理由•分析:(1)提价后每间包房的收入=原每间包房收包房费 +每间包房收包房提高费,包房减少数=每间包房收包房提高费数量的一半;(2)酒店老板每天晚餐包房总收入=提价后每间包房的收入X 每天包房租出的数量,得到二次函数后再求y 取得最大值时x 的值.1解:(1) y 1 =100 x , y 2x ; 21 12(2) y =(100 • x ) "100 x )y (x -50)11250 ,因为提价前包房费总收入2 2(1)(2)为100X 100=10000,当x=50时,可获最大包房收入11250元,因为11250>10000又因为每次提价为20元,所以每间包房晚餐应提高40元或60元.说明:本题的答案有两个,但从“投资少而利润大”的角度来看,因尽量少租出包房,所以每间包房晚餐应提高60元应该更好•例3•某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x (月)3满足关系式y1 = x 36,而其每千克成本y(元)与销售月份x (月)满足的函数关8系如图所示.y 2 (兀)(1) 试确定b 、c 的值;(2) 求出这种水产品每千克的利润 y (元)与销售月份x (月)之间的函数关系式;(3) “五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?分析:(1)将点(3, 25), (4, 24)代入求 b 、c 的值;(2) y = y 1- y 2 ; (3)将(2) 中的二次函数配方为顶点式,再利用二次函数的增减性,在满足“五•一”之前的前提下求x 5 ,所以在4月份出售这种水产品每千克的利润最大.最大利润1 2 1 (4 -6)2 11 =10—(元). 8 2说明:本题在x = 6,即6月份时取得最大值,但题目要求在“五•一”之前,所以要 将二次函数配方为顶点式,利用二次函数的增减性来求解例4.某商场以每件 30元的价格购进一种商品,试销中发现这种商品每天的销售量(1)写出商场卖这种商品每天的销售利润(2)若商场要想每天获得最大销售利润, y 与每件销售价x 之间的函数关系式; 每件商品的售价定为多少最合适?最大销售利润为多少?解:(1)由已知得每件商品的销售利润为(x-30)元,那么m 件的销售利润为y 二m (x - 30),又m =162 -3x .m (件)与每件的销售价x (元)满足一次函数 m =162 —3x,30 空 x ^54 .解:(1 )由题意:25V 32 24三 423b c 4b c—7 ,解得 81c = 29 —I 2(2) y 十 -丫2=一3 x 36 _ 1X 2 _15 X 291 二-1 x 28 8 8 2 83- 2十2X一x 61 — 】(x 2 -12x 36) 4」6」一】(x-6)2 11. 2 8 2 2 8•- --0,•••抛物线开口向下.8在对称轴x = 6左侧y 随x 的增大而增大.由题意\17.y =(x-30)(162 -3x) =—3x 2 252x -4860,30 乞 x 乞 54(2)由⑴ 知对称轴为x = 42,位于x 的范围内,另抛物线开口向下2.当 x = 42时,y max - -3 42 252 42 -4860 =432.当每件商品的售价定为 42元时每天有最大销售利润,最大销售利润为432元.二次函数求最值(面积最值问题)例1.在矩形ABCD 中, AB=6cm BC=12cm 点P 从点A 出发,沿 AB 边向点B 以1cm/s 的速 度移动,同时点 Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果 P 、Q 两点同时出 发,分别到达B 、C 两点后就停止移动.(1) 运动第t 秒时,△ PBQ 的面积y(cm2 )是多少?(2) 此时五边形 APQCD 勺面积是S(cm2 ),写出S 与t 的函数关系式,并指出自变量 的取值范围.(3) t 为何值时s 最小,最小值时多少? 答案:1 2(1) y = -(6 -t ) 2t 一t 6t2(2) S =6 12 一( 一t 2 6t )t 2 -6t • 72(0 ::t :::6) (3) S (t -3)2 63.当t =3时;S 有最小值等于63例2.小明的家门前有一块空地,空地外有一面长 10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个 1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米贝U 长为:32 -4x • 2 =34 -4x (米) 则:S=x(34-4x)--4x 2 34x••• 0 : 34—4x ^106*卫二 %-乎)2 4289而当6乞x 内,S 随x 的增大而减小,2 17 289•••当 X=6 时,S max 一 4(6 -二)2 = 60(平方米)4 4答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.例3.已知边长为4的正方形截去一个角后成为五边形 ABCD (如图),其中AF=2, BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.1 2S = xy x 5x (2 _ x _ 4),此二次函数的图象开口向下,对称轴为x=5,•••当x W5时,函数值y 随x 的增大而增大,1 2对于2^x^4来说,当x=4时,S 最大4—5 4=12 .【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起, 能很好考查学生的综合应用能力•同时,也给学生探索解题思路留下了思维空间.例4.某人定制了一批地砖, 每块地砖(如图(1)所示)是边长为0.4米的正方形 ABCD 点 E F 分别在边BC 和CD 上, △ CFE △ ABE 和四边形 AEFD 均由单一材料制成, 制成△ CFE △ ABE 和四边形AEFD 勺三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH(1) 判断图 ⑵ 中四边形EFGH1何形状,并说明理由;(2) E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:⑴四边形EFG!是正方形.图⑵ 可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的,故 CE=CF =CG• △CEF 等腰直角三角形 因此四边形EFGH 是正方形.(2)设CE=x ,则BE =0.4 — x ,每块地砖的费用为 y 元那么:y = X 」X30+ X 0.4 X (0.4 -x ) X 20+[0.16 - x - X 0.4 X (0.4 -x ) X 10]匚17 67 6,S 与x 的二次函数的顶点不在自变量 x 的范围内,解:设矩形PNDM 勺边DN=x NP=y, 则矩形PNDM 勺面积S=xy (2W x < 4) 易知 CN=4-x , EM=4-y .D 8HC2 2 2 2=10(x2 _0.2x 0.24)= 10(x -0.1)2 2.3 (0 ::: x :: 0.4)当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1 .答:当CE=CF=0.1米时,总费用最省.。

中考数学专题复习二次函数的应用题与最值问题

中考数学专题复习二次函数的应用题与最值问题

二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。

二次函数的最值问题解析

二次函数的最值问题解析

二次函数的最值问题解析在代数学中,二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c为实数且a不等于0。

二次函数在数学和实际问题中都有广泛的应用,特别是涉及到最值问题时。

本文将对二次函数的最值问题进行解析和讨论。

一、二次函数的最值定义在二次函数中,最值问题指求解函数的最大值或最小值。

对于一般的二次函数f(x) = ax² + bx + c,最值问题可以通过以下方式进行求解:1. 如果a大于0,则f(x)在抛物线开口向上,此时函数的最小值为抛物线的顶点,顶点的x坐标为-h/2a,其中h为b²-4ac的平方根。

最小值为f(-h/2a)。

2. 如果a小于0,则f(x)在抛物线开口向下,此时函数的最大值为抛物线的顶点,顶点的x坐标为-h/2a,其中h为b²-4ac的平方根。

最大值为f(-h/2a)。

二、求解最值问题的步骤和方法为了求解二次函数的最值问题,可以按照以下步骤进行:1. 确定二次函数的形式为f(x) = ax² + bx + c,其中a、b、c为已知常数。

2. 计算函数的判别式h = b²-4ac。

3. 判断a的正负情况:a. 如果a大于0,说明函数开口向上,最小值为抛物线的顶点f(-h/2a)。

b. 如果a小于0,说明函数开口向下,最大值为抛物线的顶点f(-h/2a)。

4. 计算顶点的x坐标-xv = -b/2a。

5. 将xv代入原函数中,计算最值f(xv)。

三、实例演示为了更好地理解如何解决二次函数最值问题,我们通过以下实例进行演示:题目:求解二次函数f(x) = 2x² + 3x + 1的最小值和最大值。

解析:根据函数f(x) = 2x² + 3x + 1,可以得到a = 2,b = 3,c = 1。

判别式h = b²-4ac = 3² - 4*2*1 = 9 - 8 = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数解析式最值问题1.线段最值
例1:二次函数y=−
2
x+mx+n的图象经过点A(−1,4),B(1,0),y=−2
1
x+b经过点B,且与二次函数y=−
2
x+mx+n
交于点D. (1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN 的最大值。

考点:[待定系数法求二次函数解析式, 一次函数的性质, 一次函数图象上点的坐标特征
例2:二次函数y=−
2
x+b x+c的图象与x轴交于A(1,0),且当x=0和x=−2时所对应的函数值相等。

(1)
求此二次函数的表达式;
(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC 的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由。

(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积。

考点:[抛物线与x轴的交点, 二次函数的最值, 待定系数法求二次函数解析式, 轴对称-最短路线问题]
ax+3ax+c(a>0)与y轴交于C点,与x轴交于A.B两点,A点在B点左侧。

点B 例3:已知:如图,抛物线y=2
的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值。

例5:如图,在平面直角坐标系中,抛物线y=25
4x +bx+c 与y 轴交于点A ,与x 轴交于B(1,0),C(5,0)两点,其对称轴与x 轴交于点M.
(1)求抛物线的解析式和对称轴; (2)在抛物线的对称轴上是否存在一点P ,使ΔPAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)连接AC ,在直线AC 的下方的抛物线上,是否存在一点N ,使ΔACN 的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.
例6:如图,已知抛物线y=2
ax −3x+c 与y 轴交于点A(0,−4),与x 轴交于点B(4,0),点P 是线段AB 下方抛物线上的一个动点。

(1)求这条抛物线的表达式及其顶点的坐标;
(2)当点P 移动到抛物线的什么位置时,∠PAB=90∘求出此时点P 的坐标;
(3)当点P 从点A 出发,沿线段AB 下方的抛物线向终点B 移动,在移动中,设点P 的横坐标为t ,△PAB 的面积为S ,求S 关于t 的函数表达式,并求t 为何值时S 有最大值,最大值是多少?
ax+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛例7:如图,已知抛物线y=2
物线上的一个动点。

(1)求这条抛物线的表达式及其顶点坐标;
(2)当点P移动到抛物线的什么位置时,使得∠PAB=75∘,求出此时点P的坐标;
(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
ax+bx−3的对称轴为直线x=1,与x轴分别交于A. B两点,与y轴交于点例8:如图(1),已知抛物线y=2
C,一次函数y=x+1经过点A,且与y轴交于点D.
(1)求出该抛物线解析式;
(2)如图(2),点P为抛物线B. C两点间部分上任意一点(不包含B. C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式。

并确定t为何值时,S取得最大值?最大值为多少;
(3)如图(3),将△ODB沿直线y=x+1平移得△O′D′B′,设O′B′与抛物线交于点E,连接ED′.若ED′恰好将△O′D′B′的面积分为1:2两部分,请直接写出此时的平移距离。

(3)如图3中,ED ′恰好将△O ′D ′B ′分为面积线段的两部分时有两种情形。

①若O ′E=2EB ′,设D ′(m,m+1),则O ′(m,m),E(m+2,m),
∵点E 在抛物线上,
∴m=(m+2)2−2(m+2)−3,
②若2O ′E=EB ′,设D ′(m,m+1)则O ′(m,m),E(m+1,m),
∵点E 在抛物线上,
∴m=(m+1)2−2(m+1)−3,
解答:
(1)∵当x =0和x =−2时所对应的函数值相等,
∴抛物线的对称轴为直线x =−1,
∴抛物线与x 轴的另一个交点坐标为(−3,0),
∴抛物线解析式为y =−(x +3)(x −1),即y =−2
x −2x +3;
(2存在。

连结BC 交直线x =−1于点D ,则DB =DA ,
∴DC +DA =DC +DB =BC ,
∴此时DA +DC 最小,△ADC 的周长最小,
当x =0时,y =−2x −2x +3=3,则C (0,3),
设直线BC 的解析式为y =kx +m ,
把B (−3,0),C (0,3)代入得−3k +m =0,m =3,解得k =1,m =3,
∴直线BC 的解析式为y =x +3,
当x =−1时,y =x +3=2,
∴D 点坐标为(−1,2);
(3)作MN ∥y 轴交BC 于N ,如图,
设M (t ,−2t −2t +3)(−3<x <0),则N (t ,t +3), S △BCM =S △MNB +S △NMC =21⋅3⋅MN =23(−2t −2t +3−t −3)=−232t −29t =−23(t +23)2+827 ∴当t =−2
3时,△MBC 的面积的最大值为827, 此时M 点坐标为(−23,4
15).。

相关文档
最新文档