小学奥数行程问题及答案讲解学习

合集下载

四年级奥数详解答案 第16讲 行程问题

四年级奥数详解答案 第16讲 行程问题

四年级奥数详解答案第16讲第十六讲行程问题一、知识概要关于物体运动的速度、时间和路程(距离三者之间的关系问题就是行程问题。

行程问题是小学阶段一个重点知识,本讲只汲及到火车过桥、钻越隧道等常见的行程问题,讲述的重点应放在五年级或者六年级。

行程问题最基本的数量关系式是:速度×时间=路程二、典型题目精讲1、客车以每秒21m的速度行驶,另一列货车以每秒15m的速度从对面开过来,司机观察此车从身边经过共用10秒钟,试问:货车的车长是多少米?解:分析,如图,两车相遇时为路程的起,客车头和货车尾离开为路程的终点,很明显,货车的车长是所求的路程,且这段路程是两列车同时行驶的,所以,用“速度和×时间即得路程”。

(21+15)×10=360(m)答:货车的车长是360(m)2、火车通过一条长1460m的桥用了70秒,穿越1940m隧道用了90秒,求火车的车长和车速。

解:分析,如图,这类问题首先要明白,这里的“路程”二桥长(或隧道长)+车长”。

因为为桥的一头为起点,另一头与火车头相接,火车尾就是终点。

①车速:(1940-1460)÷(90-7)=24(m/秒)②车长:24×70-1460=220(m)答:火车的车长是220,车速为24m/秒.3、一列火车有18节车厢,每节车厢长45m,车厢与车厢之间相隔1m。

这列火车以30m/秒的速度通过一座长103m的大桥,需要多少分钟?解:分析:①18节车厢共长18×45=810(m)②每个间隔1m,共(18-1)×1=17(m)③车长+桥长=810+17+103=930(m)故:需要时间为[45×18+(18-1)×1+103]÷30=31(分)答:需要31分钟。

4、在铁路复线上两列火车同向而行,甲车车长172m,车速为每秒24m,乙车车长128m,车速为每秒16m。

现乙车在前,甲车在后,两车相距180m,甲车完全超过乙车要行多少路程?解:分析,这是个追及问题,追及的路程=甲车长+乙车长+两车距离。

小学奥数行程问题50道详解

小学奥数行程问题50道详解

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

五年级奥数行程问题一讲座及练习答案

五年级奥数行程问题一讲座及练习答案

五年级奥数行程问题一讲座及练习答案文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]五年级奥数行程问题[一]讲座及练习答案行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1:甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米。

两车在距中点 32 千米处相遇。

东、西两地相距多少千米?【思路导航】两车在距中点 32 千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多 32 千米,乙车行了全程的一半少 32 千米,因此,两车相遇时,甲车比乙车共多行了 32 × 2= 64 (千米)。

两车同时出发,又相遇了,两车所行的时同是一样的,为什么甲车会比乙车多行 64 千米?因为甲车每小时比乙车多行 56-48 = 8 (千米)。

64 ÷8 =8 所以两车各行了 8 小时,求东、西的路程只要用( 56 + 48 )× 8 即可。

32× 2 ÷(56-48 )= 8 (小时) ( 56 + 48 ) ×8 = 832 (千米)答:东、西两地相距 832 千米。

【疯狂操练】1、小玲每分行 100 米,小平每分行 80 米,两人同时从学校和少年宫相向而行,并在离中点 120 米处相遇,学校到少年宫有多少米?解:小玲速度比小平速度快,在离中点120米处相遇,也就是说他们相遇的时候小玲比小平多走了120×2=240米,那么他们相遇时间为240÷(100-80)=12分钟,总路程就是他们的速度和乘以相遇时间:(100 + 80)×12 = 2160(米)答:学校到少年宫有2160米.2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行 40 千米,摩托车每小时行 65 千米,当摩托车行到两地中点处时,与汽车还相距 75 千米,甲、乙两地相距多少千米?解:因当摩托车行到两地中点处时,与汽车还相距 75 千米,所以75千米就是两车所行的路程差。

小学五年级奥数第36讲 火车行程问题(含答案分析)

小学五年级奥数第36讲 火车行程问题(含答案分析)

第36讲火车行程问题一、专题简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

二、精讲精练例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。

乙火车在前,两火车在双轨车道上行驶。

甲火车从后面追上到完全超过乙火车要用多少秒?练习一1、一列快车长150米,每秒行22米;一列慢车长100米,每秒行14米。

快车从后面追上慢车到超过慢车,共需几秒钟?2、小明以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长188米的火车,火车每秒行18米。

问:火车追上小明到完全超过小明共用了多少秒钟?例2 一列火车长180米,每秒钟行25米。

全车通过一条120米的山洞,需要多长时间?练习二1、一列火车长360米,每秒行18米。

全车通过一座长90米的大桥,需要多长时间?2、一座大桥长2100米。

一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。

这列火车长多少米?例3 有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。

现在两车相向而行,从相遇到离开需要几秒钟?练习三1、有两列火车,一列长260米,每秒行18米;另一列长220米,每秒行30米。

现两列车相向而行,从相遇到相离需要几秒钟?2、一列火车长500米,要穿过一个长150米的山洞,如果火车每秒钟行26米,那么,从车头进洞到车长全部离开山洞一共要用几秒钟?例4 一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。

四年级奥数行程问题及答案【三篇】

四年级奥数行程问题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。

【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。

求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。

【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。

【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。

⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

2024年小学五年级行程问题奥数题及答案

2024年小学五年级行程问题奥数题及答案
行程问题答案:
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案

小学五年级奥数第31讲 行程问题(四)(含答案分析)

小学五年级奥数第31讲 行程问题(四)(含答案分析)

第31讲行程问题(四)一、专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间=追及距离÷速度差如果上述的几种情况交织在一起,组成的应用题将会丰富多彩、千变万化。

解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。

二、精讲精练例1甲、乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米。

整修路面的一段路长多少千米?1、一辆汽车从甲城到乙城共行驶395千米,用了5小时。

途中一部分公路是高速公路,另一部分是普通公路。

已知汽车在高速公路上每小时行105千米,在普通公路上每小时行55千米。

汽车在高速公路上行驶了多少千米?2、小明家离体育馆2300米,有一天,他以每分钟100米的速度去体育馆看球赛。

出发几分钟后发现,如果以这样的速度走下去一定迟到,他马上改用每分钟180米的速度跑步前进,途中共用15分钟,准时到达了体育馆。

问:小明是在离体育馆多远的地方开始跑步的?例2 客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米。

两车相遇后又以原速前进,到达对方站后立即返回,两车再次相遇时客车比货车多行21.6千米。

甲、乙两站间的路程是多少千米?1、乙、慢两车同时从甲、乙两地相对开出并往返行驶。

快车每小时行80千米,慢车每小时行45千米。

两车第二次相遇时,快车比慢车多行了210千米。

求甲、乙两地间的路程。

2、甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行。

已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回。

小学六年级奥赛行程问题及解析三篇.doc

小学六年级奥赛行程问题及解析三篇.doc

小学六年级奥赛行程问题及解析三篇第1条小学六年级数学划题划题([知识点讲解)基本概念划题是研究物体的运动,它研究物体速度、时间、距离三者之间的关系.距离速度时间的基本公式;距离/时间速度;距离/速度/时间键决定移动过程中的位置和方向。

遇到问题的速度和遇到时间的距离请写出其他公式来追踪问题和时间与距离之间的差异速度与距离之间的差异写出其他公式主要方法是画一个线图基本问题类型是已知的遇到距离、遇到距离、遇到时间、时间相遇的时间、轨迹的时间、速度和速度差、并找到第三个量。

遇到问题的例子1、两辆车同时离开AB。

第一次见面后,两辆车将继续行驶,到达对方的起点后立即返回。

在第二次会议上,从AB到B的距离是AB总距离的51%。

众所周知,当第一辆车相遇时,短跑运动员花了1XX年的时间。

顺风跑90米需要10秒.时间,同样风速下逆风跑70米。

在没有风的情况下,他还花了10秒.的时间来询问他在购物中心跑100米需要多少秒。

小明从自动扶梯的顶部向上移动到年级的底部,XXXX 奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克运动每小时行驶48公里,b每小时行驶54公里。

当他们相遇时,两辆车距中点36公里。

当他们相遇时,a和b之间的距离是4+4+4+4+2公里。

小明从a到b每小时走6公里,回来时每小时走9公里,共用5个小时。

小学奥数专题——第4讲:分段计算的行程问题(老师版)

小学奥数专题——第4讲:分段计算的行程问题(老师版)

小学奥数专题——第4讲:分段计算的行程问题(老师版)第4讲:分段计算的行程问题例1】XXX上学时步行,回家时骑车,路上共用了24分钟.如果往返都骑车,则全程需要14分钟,求小高往返都步行所需要的时间。

答案】34分钟详解:骑车往返需要14分钟,说明单程;需要7分钟,步行单程就是24-7=17分钟,所以小高往返都步行所需的时间是17×2=34分钟。

例2】甲、乙两人分别从A、B两地同时出发相向而行,甲出发5分钟后与XXX相遇,这时XXX走了500米.乙又走了400米时,甲刚好到达B地,这时乙距离A地多少米?答案】225米详解:先画出行XXX,乙从出发到相遇行驶的时间是5分钟,行驶的路程是500米,所以速度是500÷5=100米/分;乙虚线所行驶的路程是400米,所以乙虚线行驶的时间是400÷100=4分钟,甲用4分钟的时间行驶的路程是500米,所以甲的速度是125米/分,甲实线所行驶的旅程是5×125=625米,所以乙间隔A地还有625-400=225米.1、XXX每天都以固定的速度骑车去学校,需要10分钟.一天,当行进到全程一半时,自行车坏了,XXX便把车锁在路边,步行去学校。

结果一共用了15分钟.如果自行车没办法修好,XXX每天都得步行。

那么去学校需要多长时间?答案】20分钟简答:骑车全程需要10分钟,申明半程只需要5分钟,步行半程就是15-5=10分钟,所以小高全程都步行所需要的工夫是10×2=20分钟.12、甲、乙两地相距60千米,快、慢两辆汽车分别从甲、乙两地同时动身相向而行,30分钟后两车相遇.相遇后两车继续以原速度前进,又经过20分钟快车到达乙地.此时,慢车距甲地还有多少千米?答案】20千米简答:.画出行程图,快车50分钟行驶60千米,所以速度是60÷50=1.2千米/分;快车虚线所行驶的旅程是24千米,所以慢车30分钟路程是24千米,速度为24÷30=0.8千米/分,慢车20分钟的时间行驶的路程是16千米,所以慢车的总路程是24+16=40千米,所以间隔甲地还有60-40=20千米.关于庞大行程题目,我们肯定要学会分段,学会根据分段画行程图.相遇时、追及时、不同时间出发时、转向时等等都是很重要的分段时刻.在解题进程中,我们偶然需要分段去考虑,偶然需要从整体去考虑,所以一定要灵活解题.在路程、速度与时间这行程三要素中,有时我们只知道其中的一个量,这时我们就可以通过设份数来解决此外,我们还经常需要用到以下这三个基本倍数关系:当运动的速度不异时,工夫的倍数关系即是旅程的倍数关系;当运动的工夫不异时,速度的倍数关系即是旅程的倍数关系;当运动的旅程不异时,工夫的倍数关系即是速度的反倍数关系:工夫长的速度慢,工夫短的速度快因此我们往往要仔细分析在同一段工夫大概同一段旅程中,不同运动对象的运动过程及其联系.接下来我们来看一下和倍数有关的分段行程题目.例3】早晨7:30,XXX从家出发到离自己家4000米的表哥家去玩.同时表哥骑车从家出发接他,到XXX家才发现他已经走了,此时是7:50。

小学奥数 行程问题之变速问题带答案解析版

小学奥数 行程问题之变速问题带答案解析版

行程板块之变速问题知识精讲变速变道问题属于行程中的综合题,用到了比例、分步、分段处理等多种处理问题等解题方法。

例题精讲:【例1】小红和小强同时从家里出发相向而行。

小红每分走 52 米,小强每分走 70 米,二人在途中的 A 处相遇。

若小红提前 4 分出发,且速度不变,小强每分走 90 米,则两人仍在 A 处相遇。

小红和小强两人的家相距多少米?解析;因为小红的速度不变,相遇的地点不变,所以小红两次从出发到相遇行走的时间不变,也就是说,小强第二次走的时间比第一次少 4 分钟。

(70×4)÷(90-70)=14 分钟可知小强第二次走了 14分钟,他第一次走了 14+4=18 分钟;两人家的距离:(52+70)×18=2196(米)【例2】甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 25秒同时回到原地。

求甲原来的速度。

解析:因为相遇前后甲,乙的速度和没有改变,如果相遇后两人和跑一圈用 25秒,则相遇前两人和跑一圈也用 25秒。

以甲为研究对象,甲以原速V 跑了 25 秒的路程与以(V +2 )跑了 25 秒的路程之和等于 400米,25V +25(V +2 )=400 易得V = 7米/秒【例3】甲、乙两车分别从 A, B 两地同时出发相向而行,6 小时后相遇在 C 点.如果甲车速度不变,乙车每小时多行 5 千米,且两车还从 A, B 两地同时出发相向而行,则相遇地点距 C 点 12 千米;如果乙车速度不变,甲车速度每小时多行 5 千米,则相遇地点距 C 点16 千米.甲车原来每小时行多少千米?解析;设乙增加速度后,两车在 D 处相遇,所用时间为 T 小时。

甲增加速度后,两车在 E 处相遇。

由于这两种情况,两车的速度和相同,所以所用时间也相同。

于是,甲、乙不增加速度时,经 T 小时分别到达 D、E。

四年级奥数:行程问题及火车过桥问题的例题讲解、练习、答案

四年级奥数:行程问题及火车过桥问题的例题讲解、练习、答案

火车过桥问题的例题讲解1学而思奥数网奥数专题 (行程问题) 火车过桥1、四年级行程问题:火车过桥难度:中难度:一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度?答:2、四年级行程问题:火车过桥难度:中难度:两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?答:3、四年级行程问题:火车过桥难度:中难度:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。

答:四年级行程问题:火车过桥难度:中难度:一辆长60米的火车以每秒钟50米的速度行驶,在它的前面有一辆长40米的火车以每秒钟30米的速度行驶.当快车车头与慢车车尾相遇到车尾离开车头需要几秒钟?答:4、四年级行程问题:火车过桥难度:中难度:两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。

两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

答:学而思奥数网奥数专题(行程问题)1、四年级火车过桥问题答案:解答:【可以看成一个相遇问题,总路程就是车身长度,所以火车与人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.2、四年级火车过桥问题答案:解答:如图:从车头相遇到车尾离开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾离开所用时间为280÷(20+15)=8秒.3、四年级火车过桥问题答案:解答:【分析】此题是火车的追及问题。

火车越过人时,车比人多行驶的路程是车长90米,追及时间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒。

4、四年级火车过桥问题答案:解答:此题是一个追及问题,要求追及时间,需要求出速度差和路程差.快车车头与慢车车尾相遇到车尾离开车头,快车要比慢车多行60+40=100米,即100米是路程差,因此追及时间为:100÷(50-30)=5秒.5、四年级火车过桥问题答案:解答:此题是两列火车的相遇问题,路程和正好是乙车的长度,速度和是36+54=90千米/时,时间是14秒,乙车长是90×1000×14÷3600=350米。

30道奥数行程问题

30道奥数行程问题

30道奥数行程问题+详解行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2:船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间=(人’与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=小时返回:T’=8/4+12/5=小时T总=++1=10小时7:00+10:00=17:00"整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小明来回共走了多少千米【解析】当路程一定时,速度和时间成反比速度比=6:9=2:3时间比=3:2—3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。

如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少【解析】核心公式:速度=路程÷时间前半程开了3小时,因故障停留30分钟,因此接下来的路程需要小时来完成V=120÷=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B 两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。

小考奥数行程题经典问题及解析

小考奥数行程题经典问题及解析

小考奥数行程题经典问题及解析小考奥数行程题经典问题及解析奥数行程问题是奥数中的重点,也是不少小升初的考试重点,不少学校都把行程问题当压轴题,可见学校对行程的重视程度,由于行程题本身题干就很长,模型多样,变化众多,所以对学生来说处理起来很头疼,而这也是学校考察的重点,这可以充分体现学生对题目的分析能力。

下面是行程问题中经典追及问题试题及解析。

【例1】(★★)在400米的环行跑道上,A,B两点相距100米。

甲、乙两人分别从A,B两点同时出发,按逆时针方向跑步。

甲甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。

那么甲追上乙需要时间是多少秒?(★★★)【解】:甲实际跑100/(5-4)=100(秒)时追上乙,甲跑100/5=20(秒),休息10秒;乙跑100/4=25(秒),休息10秒,甲实际跑100秒时,已经休息4次,刚跑完第5次,共用140秒;这时乙实际跑了100秒,第4次休息结束。

正好追上。

答:甲追上乙需要时间是140秒。

【例2】(★★)甲、乙两车的速度分别为 52千米/时和 40千米/时,它们同时从甲地出发到乙地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【解】:甲乙两车最初的过程类似追及,速度差×追及时间=路程差;路程差为72千米;72千米就是1小时的甲车和卡车的路程和,速度和×相遇时间=路程和,得到速度和为72千米/时,所以卡车速度为72-40=32千米/时。

方法2: 52×6-40×7=32千米/时【拓展】:甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。

有一辆迎面开来的卡车分别在他们出发后 6时、7时、8时先后与甲、乙、丙三辆车相遇。

求丙车的`速度。

39千米/小时。

提示:先利用甲,乙两车的速度及与迎面开来的卡车相遇的时间,求出卡车速度为24千米/小时【拓展】:快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、10分、12分追上骑车人。

小学奥数四年级行程问题

小学奥数四年级行程问题

小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。

4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。

小学奥数系列行程问题习题及详解

小学奥数系列行程问题习题及详解

行程问题行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。

具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。

现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。

一般行程问题相遇问题(重点)与相离问题,两类问题的共同点是都用到了速度和行程问题几大题型追及问题与领先问题,两个问题的共同点是同向而行,一快一慢,有速度差“火车过桥问题”“流水行船问题”“钟表问题”行程问题是“行路时所产生的路程、时间、速度的一类应用题”,基本数量关系如下:速度×时间=路程;路程÷时间=速度;路程÷速度=时间。

注意总行程的平均速度的算法:平均速度=总路程÷总时间,而不是两个(或几个)速度相加再除以2。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题和领先问题)和“相背运动”(相离问题)三种情况。

但归纳起来,不管是“一个物体的运动”还是“两个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程(路程÷时间=速度,路程÷速度=时间)。

在各类行程问题中进一步推演的数量关系都依赖于这一基本思想,在学习时要多注意从“简单”到“复杂”的推导过程,重在理解,在理解的基础上形成对各类行程问题中所涉及到的关系式的记忆和正确应用;此类问题的题型非常多且富于变化,但是“万变不离其宗”,希望学习者能深入理解其中包含的数学思想的本源,从而做到“以不变应万变”!解行程问题时还要注意充分利用图示把题中的“情节”形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

相向而行的公式:相遇时间=距离÷速度和。

小学奥数系列3-1-1行程问题(二)及参考答案

小学奥数系列3-1-1行程问题(二)及参考答案

小学奥数系列3-1-1行程问题(二)一、1. 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.2. 某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?3. 胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?4. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。

小明往返一趟共行了多少千米?5. 小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.6. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?7. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?8. 小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同9. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

10. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.11. 一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如图).它爬行一周平均每分钟爬行多少厘米?12. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?13. 张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?14. 老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?15. 小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?16. 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?17. 解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?18. 某人要到 60千米外的农场去,开始他以 6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?19. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

奥数行程问题归纳总结及部分例题及答案

奥数行程问题归纳总结及部分例题及答案

奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

小学五年级奥数趣味学习——火车行程问题

小学五年级奥数趣味学习——火车行程问题

小学五年级奥数趣味学习——火车行程问题火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。

人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。

例1:一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。

例2:一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。

例3:一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。

解:这列客车每秒行驶:(860-620)÷(45-35)=240÷10=24(米)这列客车的车身长:24×45-860=1080-860=220(米)答:这列客车每秒行驶24米,车身长220米。

例4:某小学三、四年级学生共528人,排成四路纵队去看电影,队伍进行的速度是每分25米,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分,这座桥走多少米?解:队伍长:1×(528÷4-1)=131(米)队伍行进的路程:25×16=400(米)桥长:400-131=269(米)答:这座桥长269米。

小学奥数行程问题习题及详解系列之一

小学奥数行程问题习题及详解系列之一

小学奥数行程问题习题及详解系列之一小学行程问题是我们在小学应用题中经常会遇到的,我们在解决行程问题前,要牢记以下公式:基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水速度+流水速度÷2 水速:流水速度-流水速度÷21、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数行程问题及
答案
小学奥数行程问题及答案一
1.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,
通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,
所以两次相遇点相距9-(3+4)=2千米。

2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差
所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3.A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?
解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)
×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)
解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。

这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。

总路程就是
=100×30=3000米。

5.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?
解:画示意图如下。

第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了
3.5×3=10.5(千米)。

从图上可看出,第二次相遇处离乙村2千米。

因此,甲、乙两村距离是
10.5-2=8.5(千米)。

每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程。

其中张走了
3.5×7=2
4.5(千米),
24.5=8.5+8.5+7.5(千米)。

就知道第四次相遇处,离乙村
8.5-7.5=1(千米)。

答:第四次相遇地点离乙村1千米。

相关文档
最新文档