调洪演算说明书
调洪演算
第1章 调洪演算1.1 调洪演算已知正常高水位▽正=128m ,查水库水位库容曲线,可得361044.296m V ⨯=。
010020030040050060070060708090100110120130140150160水位(m)容积(106m 3)图 1 - 1 枋洋水库水位库容曲线1.1.1 确定防洪库容用枋洋水库入库断面20年一遇洪水流量同倍比法推求“6·9”洪水过程线,以洪峰控制,其放大倍比为095.121192320===mdmp Q Q K 表1-1 计算表格如下所示:)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q1 23 25 19 318 348 37 530 5802 51 56 20 454 497 38 417 4563 132 144 21 623 682 39 296 324 4 267 292 22 649 710 40 194 2125 366 400 23 721 789 41 137 150 6 412 451 24 694 759 42 99 108 7 519 568 25 802 877 43 75 82 868474826851931445863)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q9 953 1043 27 1150 1258 45 45 49 10 1053 1152 28 1711 1872 46 35 38 11 1154 1262 29 2119 2318 47 27 30 12 961 1051 30 1903 2082 48 21 23 13 814 891 31 1673 1830 49 15 16 14 629 688 32 1297 1419 50 9 10 15 475 520 33 1055 1154 51 6 7 16 375 410 34 846 926 52 2 2 17 314 344 35 719 787 53 1 1 182712963663669654根据表格数据,绘制6.9洪水过程线:51015202530354045505001000150020002500时间t (h)流量q(m3/s)图1-2 6.9洪水过程线1.1.2 求防洪库容和防洪高水位由正常高水位起调,下游最大安全泄量为500s m /3,调洪计算得防洪库容361044.296m V ⨯=正常。
洪水调节调洪演算列表法和图解法
调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。
由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。
不计流速水头。
) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。
4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。
防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。
5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。
6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。
某尾矿库调洪演算
**铁矿尾矿库调洪演算
一、排洪设施
尾矿库采用塔—管式排洪系统,现使用?#溢流塔,塔底与排水管相连接,溢流塔采用了框架式结构,塔内直径2.5m,每块叠梁高300mm,厚100mm,排水管直墙断面尺寸为0.8×1.0m。
目前?#溢流塔和排水管质量较好,排水管出水清澈,运行效
二、
*
(1
(2
(3
(1
(2
(3)2
查尾矿库库容曲线,可知调洪幅度ΔH对应调洪库容V0=38.88万m3,而200年一遇24小时洪水流量为10.58万m3,即在目前情况下,该库调洪库容均大于24小时一次洪水流量。
因此,目前尾矿库的调洪库容满足要求。
三、泄洪能力复核
按照规范要求,只要24小时一次洪水量能在72小时内排空,该库就能满足200年一遇洪水的调洪高度要求。
下面即对一次洪水的排空时间进行计算。
根据冶金设计研究院计算压力流泄流计算:Q=u×Fx×(2gH)1/2式中:Fx-----隧洞出口断面积,Fx=0.8 m2
u-----压力泄流的流量系数,u=0.6
g------重力g=9.8m/s2
H----库水位与隧洞出口断面中心之间高差,单位米,H=45.0m。
1/23。
调洪演算
2、采用列表试算法进行调洪演算:1) 确定水库蓄泄关系a) 确定库容曲线:根据给定的库容曲线表绘制水库的库容曲线如图2-1图2-1水库库容曲线b) 确定水库泄流公式 根据堰流泄流能力:2302H g mB Q =式中: m —— 流量系数,本工程取0.35; B —— 堰顶净宽,55.0m ; g —— 重力加速度,取29.81gm s ;H0—— 堰顶水头,考虑坝前行进流速水头较小,取H0=H 。
则水库泄流能力公式可确定为:23(27.85)Zo Zt Q -=式中: Zt 为当前水库水位 Zo 为正常高水位(溢流堰堰顶高程),本地取167.3m 。
c) 确定蓄泄关系 i. 确定一组水库库容V(I),I=1,2……m ; ii. 对V(I),据库容曲线查得库水位Z (I ),据2)计算对应的泄流能力q (i ); iii. 对应一组V~q ,确定蓄泄关系,如图2—2。
图2-2 水库蓄泄关系图2)列表进行调洪演算a)试算程序调洪演算原理i.对t时段计算,水库初始需水量V(t-1)由上一时段给出;ii.假设qt,则可计算出该时段的水库需水量V(t),从蓄泄关系上差得qt’;iii.比较qt与qt’,若|qt-qt’|<ξ1,则t=t+1,否则重新假设qt,令t=t;iv.当算至水库|Z(t)- Zo|<ξ2时,终止计算。
b)计算表格i.设计频率为P=5.0%的计算结果如表2-1:表2-1 频率为P=5.0%的调洪演算计算结果图2-3 频率为P=5.0%的调洪演算计算图ii.设计频率为P=3.33%的计算结果如表2-2;表2-2 频率为P=3.33%的调洪演算计算结果图2-4 频率为P=3.33%的调洪演算计算图iii.设计频率为P=0.33%的计算结果如表2-3;表2-3 频率为P=0.33%的调洪演算计算结果来水、泄流及水位过程线图2-4:表2-5 频率为P=0.33%的调洪演算计算结果c)调洪演算计算结果如表2-6表2-6 列表法调洪演算结果31)拟定工作图a)确定Z—q关系线,见列表法进行调洪演算;b)确定(V/△t±q/2)—q关系线;i.确定一组水库库容V(I),I=1,2……m;ii.对V(I),据库容曲线查得库水位Z(I),据2)计算对应的泄流能力q(i),并计算V(i)/△t+q(i)/2;iii.对应一组V(i)~Z(i)~ V(i)/△t+q(i)/2~ V(i)/△t-q(i)/2,确定各相各关系。
调洪演算说明书
水库调洪演算系统说明书(Storo )1概述水库调洪演算原理比较简单,但是计算过程却十分繁琐复杂。
首先,设计洪水过程每一时段的调洪演算都需经过反复的假定、试算,计算工作量很大;其次,计算溢洪道的下泄流量也是相当繁琐的,以最简单的无坎宽顶堰为例,其流量系数要分直角形翼墙进口、八字形翼墙进口、圆弧形翼墙进口三种形式,分别根据B b ;B b 和θtg ;b r 和Bb(b 为闸孔净宽,B 为进水渠宽,θ为八字形翼墙收缩角,r 为圆弧形翼墙的圆弧半径)查表计算确定,其侧收缩系数则要根据过流孔数、单孔净宽、墩头形式、堰顶水头来计算确定;最后,还要整理计算结果,绘制调洪演算曲线。
上述工作不仅消耗设计人员大量的精力,而且要求设计人员具有丰富的水利计算和水力学计算方面的专业知识。
本计算系统storo 通过编制周到的计算程序、提供简捷明了的操作界面并利用成熟的商业绘图软件作为输出平台,让计算机来完成上述繁琐复杂的调洪演算工作,计算机操作人员不必具备水利计算和水力学计算方面的专业知识.2调洪计算原理调洪演算的核心是水量平衡方程.其基本含义是:在某一时段Δt 内,入库水量减去库水量,应等于该时段内水库增加或减少的蓄水量。
用方程来表示就是1221212/)(2/)(V V t Q Q t Q Q a a -=⨯+-⨯+ (1。
2.1)式中 Q a1,Q a2—--时段t 始末的入库流量 Q 1,Q 2 -——时段t 始末的出库流量 V 1,V 2 ---时段t 始末的水库蓄水量T -——计算时段入库流量过程Q a ~T 是已知的,出库流量Q~T 曲线未知,但是可以先假设一个q 作为初始流量得到Q ’,再代回计算V 2.这样不断试算,直到两个量满足精度要求。
这样再将该时段末的量做为下一时段初的对应的量,进行同样计算,就可以得到每一时段对应的泄量,从而得到出库流量曲线。
将不同时段的出库流量和入库流量对应画在图上,如图1。
水库双辅助曲线调洪演算计算程序
钮,其黄色填充
段序号、时段长
击“调洪演算”
水标准下的调洪
不能有空格或负
下方程的形式:
q 每项都与 q 有 2
Q1 Q2 q1 q 2 V2 V1 2 2 t t
Q1 Q2 q q2 t 1 t V2 V1 2 2
即:(
V2 q 2 V q V q ) Q1 2 ( 1 1 ) 式中两个括号内都包括两项 、 每项都与 q 有 2 t t 2 t 2
关,最后一个式子的两个括号内的数据可写成如下两个函数式:
V q q f1 t 2 V q q f2 t 2
V q q f1 t 2 V q q f2 t 2
助曲线法原理,
。
(米) 、下泄流量
水库调洪演算程序说明
1.编制原理及适用范围。本程序系依据《工程水文学》双辅助曲线法原理, 利用 Excel VBA 编制而成,适用于水库无闸控制溢洪道调洪演算。 2.程序应用。首先在调洪辅助曲线计算表中输入水库水位(米) 、下泄流量 (立米/秒) 、库容(万立米)数据后,单击“计算辅助曲线”按钮,其黄色填充 区的数据自动计算。其次,激活调洪演算计算表,在表中输入时段序号、时段长 (小时) 、来水流量(立米/秒) ,此数据即为洪水过程线数据,单击“调洪演算” 按钮,其黄色填充区数据自动计算,下泄流量最大值即为设计洪水标准下的调洪 下泄流量。 注:数据输入必须是英文状态下的有效数值,数据输入区内不能有空格或负 数,否则程序报错不予计算。 3.双辅助线法调洪演算原理。 双辅助线法的解算原理也是水库水量平衡方程,只须改变一下方程的形式: 可写成:
水库调洪演算(常向明)
前一个时段的
Vt 1 , qt 1
求出后,
其值即成为后一时段的 Vt , qt 值,
使计算有可能逐时段地连续进行下去。
四、水库调洪计算半图解法
水库调洪演算,就是联解(3-1) 和(3-4)两个方程. 将(3-1)改写为:
(Vt/△t+qt/2 )+Q – qt = (Vt+1/△t)+(qt+1/2 )
铜钱坝水库Z~V关系曲线
5000
10000
15000
20000
25000 库容(万m3)
625 620 615 610
库水位Z(米)
q=f(Z)关系曲线
泄量q(100米3/秒)
605
10
30
50
70
90
铜钱坝水库q=f(Z)关系曲线图
铜钱坝水库库水位-下泄流量曲线计算表
Z上(m)
605 607
Z下(m)
(3-5)
Q— 计算时段平均入流量;
Q=(Qt + Qt+1)/2 式(3-5)的右端项利用式(3-4) 代入,可见右端项为q的函数.
也就是说,可以事先绘制 q~ (V/△t)+(q/2 )的关系曲线, 即调洪演算工作曲线.因式(3-5) 的左端各项为已知数,故式(3-5)右 端项也可求出,然后根据 (Vt+1/△t)+(qt+1/2 )的值,通过工作 曲线q~ (V/△t)+(q/2 )可查出qt+1的 值.因第一时段的V2、q2就是第二时 段的V1、q1,于是可重复以上步骤连 续进行计算,直到求出结果.
以铜钱坝水库调洪演算为例
《洪水调节课程设计》设计说明书
《洪水调节课程设计》设计说明书1、根据工程规模和建筑物的等级,确定相应的洪水标准:大M山水库是小(一)型水库,挡水建筑物是浆砌石重力拱坝,则可确定其设计洪水标准的频率为3.33%,校核洪水标准的频率为0.5%。
2、设计洪水调洪演算:2.1 用列表试算法进行调洪演算2.1.1计算并绘制V-Z线,q-V线,q-Z线表一水库水位容积关系及水库q=f(V)关系曲线计算表其中:起调水位为227.2m,此时库容根据内插法算出为16万m3,流量系数由内插法算得,下泄流量由水力学公式算出。
2.1.2列表试算起调水位是227.2m,从0时开始计算,此时q1=0,V1=16万m3表二设计洪水下泄流量列表试算计算表列表试算:q1=0,V1=16,假设一个q2,则由水量平衡方程可以算出相应的V2,再由q-V曲线可以查的V2所对应的q2,如果此q2与假设的q2相同,则假设正确,如果不同,则重新假设并计算,并把假设正确的q2和V2作为下一时段的q1和V1,继续计算,以此类推,直至算出整个洪水过程线,其中应注意再洪峰段应对时间进行加密。
最后算得:最大下泄流量为1582.01m3/s,最高库水位为232.81m。
2.1.2根据列表试算结果绘Q—t、q—t曲线,Z—t曲线2.2 用半图解法进行调洪演算2.2.1 绘制V/△t+q/2=f2(Z)曲线及q=f(Z)曲线表三半图解法单辅助曲线计算表根据以上表格可绘出下列曲线2.2.2 进行图解计算,结果如下表表四水库设计洪水调洪半图解法计算表半图解法计算:对于第一时段,已知q1=0,则由单辅助曲线可以得出(V1/Δt+q1/2)的值,再由水量平衡方程可得出(V2/Δt+q2/2)的值,再由单辅助曲线可以得到q2的值,同法以此类推,可以求出其他时段的泄量。
最后可算出:最大下泄流量为1593.53m3/s,最高库水位为232.84m.2.3 比较分析试算法和半图解法调洪计算的成果利用试算法得出的最大下泄流量为1582.01m3/s,最高库水位为232.81m;利用半图解法得出的最大下泄流量为1593.53m3/s,最高库水位为232.84m。
调洪计算书
计算书1设计依据1.1工程等别及建筑物级别1.1.1根据枢纽的任务确定枢纽组成建筑物由于大华桥工程主要任务为发电,兼有防洪等功能,故需的永久建筑物包括挡水建筑物、泄水建筑物、引水建筑物、开关站。
为便于施工,还需要导流建筑物、施工围堰等临时建筑物。
1.1.2确定工程等别及建筑物等级表2.1 水利水电枢纽工程的分等指标根据表2.1和表2.2(参照~~~规范)m,调节库容0.41亿3m,具有已知条件:正常蓄水位1477m,相应库容2.93亿3周调节性能,电站总装机容量900MW(225MW×4),年发电量40.7亿kW•h,按表2-1知水库属Ⅱ等大(2)型工程,查表2-2知主要建筑物拦河坝、溢流堰、排沙底孔为2级建筑物,相应的次要建筑物等级为3级,则引水道、消能防冲、导流墙、挡土墙为3级,厂房按装机也属3级,导流围堰、明渠等临时建筑物为4级。
1.2洪水标准根据SDJ12-78《水利水电工程枢纽等级划分和设计标准(山区、丘陵区部分)》结合枢纽所给定的特征水位和基本资料,通盘考虑水库总库容、防洪效益、装机容量等因素,该工程为二等大型工程,主要建筑物为2级,次要建筑物为3级,临时建筑物为4级。
由表2.3知永久性建筑物设计洪水标准为:正常运用(设计)洪水重现期为500年,非常运用(校核)洪水重现期为2000年。
1.3主要技术规范[1]华东水利学院.水工设计手册:混凝土坝[M].北京:水利电力出版社,1987.[2]华东水利学院.水工设计手册:泄水与过坝建筑物[M].北京:水利电力出版社,1987.[3]林继镛.水工建筑物(第5版)[M].北京:国水利水电出版社,2010[4]混凝土重力坝设计规范,SL319-2005,2005.[5]水工建筑物荷载设计规范,DL5077-1997,1997.[6]水工建筑物荷载设计规范(DL5077-1997)[7]水利水电工程制图标准(SL73-95)[8]吴媚玲.水工设计图集[M].北京:水利电力出版社,1995.[9]胡明,沈长松.水利水电工程专业毕业设计指南(第二版) [M].北京:水利水电出版社,2010.[10]水利水电工程等级划分及洪水标准(SL252-2000)2洪水调节2.1基本资料2.1.1洪水过程线的确定本设计中枢纽主要任务是发电,兼做防洪之用,所以必须在选定水工建筑物的设计标准外,还要考虑下游防护对象的防洪标准。
水库双辅助曲线调洪演算计算程序
1.编制原理及适用范围。本程序系依据《工程水文学》双辅助曲线法原理, 利用 Excel VBA 编制而成,适用于水库无闸控制溢洪道调洪演算。 2.程序应用。首先在调洪辅助曲线计算表中输入水库水位(米) 、下泄流量 (立米/秒) 、库容(万立米)数据后,单击“计算辅助曲线”按钮,其黄色填充 区的数据自动计算。其次,激活调洪演算计算表,在表中输入时段序号、时段长 (小时) 、来水流量(立米/秒) ,此数据即为洪水过程线数据,单击“调洪演算” 按钮,其黄色填充区数据自动计算,下泄流量最大值即为设计洪水标准下的调洪 下泄流量。 注:数据输入必须是英文状态下的有效数值,数据输入区内不能有空格或负 数,否则程序报错不予计算。 3.双辅助线法调洪演算原理。 双辅助线法的解算原理也是水库水量平衡方程,只须改变一下方程的形式: 可写成:
Q1 Q2 q1 q 2 V2 V1 2 2 t t
Q1 Q2 q q t 1 2 t V2 V1 2 2
即:(
V2 q 2 V q q V ) Q12 ( 1 1 ) 式中两个括号内都包括两项 、 每项都与 q 有 t 2 t 2 2 t
关,最后一个式子的两个括号内的数据可写成如下两个函数式:
V q q f1 t 2 V q q f2 t 2
V q q f1 t 2 V q q f2 t 2
助曲线法原理,
。
(米) 、下泄流量
钮,其黄色填充
段序号、时段长
击“调洪演算”
水标准下的调洪
不能有空格或负
下方程的形式:
q 每项都与 q 有 2ቤተ መጻሕፍቲ ባይዱ
洪水调节调洪演算列表法和图解法
调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。
由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。
不计流速水头。
) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。
4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。
防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。
5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。
6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。
岸堤水库洪水预报及调洪演算软件使用说明书_图文(精)
岸堤水库雨洪资源解析使用说明书二〇一五年六月一日作者:李文华电话:135********邮箱:fblwh150@目录第一章概述 (3第二章功能简介 (5第一节功能特点 (5第二节软件画面 (6第三节运算功能 (7第四节气象云图及气象雷达 (13 第三章数学模型 (14第一节洪水模型 (141、瞬时单位线 (142、CAMMADIST函数语法 (153、CAMMADIST函数应用 (164、流域洪水错时叠加 (17第二节洪水传播 (18第三节泄量模型 (191、闸门出流 (192、推求水面线 (213、闸门泄量 (22第四节调洪演算 (22第五节控运方案 (23第四章扩展性设计 (23第五章调洪实例 (29第六章课目攻关概况 (30第七章使用说明书 (31第一节洪水预报 (31第二节调洪演算 (33第三节其他计算 (33附件课题研发小组成员名单....................................................................... 错误!未定义书签。
第一章概述控制和预见洪水,让洪水变为一种资源,实现科学预见、动态管理、合理利用,是本课题的研究对象。
科学控制洪水,真正能够对洪水运用自如,其首要问题是准确解析、及时预报,掌握洪水动态。
但目前实际应用中,对水库防洪兴利控制运用,还仅限于依靠库水位的变化,结合下游河道的承受能力,试探性的调节洪水,这种洪水调整模式,具有较大的盲目性,理论方面的支撑相对不足。
当前,各水库防汛主体单位,均制定了相应的《水库控制运用方案》。
如岸堤水库防洪调度图(图1,但这些方案的编制和批复仅表现为粗线条和原则性的界定,是在进行大量假定的基础上进行编制的,应用中的可操作性相对欠缺,在实践中仅具有指导意义。
(图1洪水调度控制方案的编制,偏离实际应用,存在的突出问题,主要表现在以下几个方面:1、假定了降雨的空间分配是均匀的,即整个流域降雨分布是均等的。
调洪演算
(1)基本资料水位-容积曲线(见蓝图); 实测洪水过程线(见蓝图); 各类型洪峰值(见2.2.3节)正常(设计)洪水重现期 1000~500年 对应频率:0.1%~0.2% 非常(校核)洪水重现期 5000~2000年 对应频率:0.02%~0.05% (2)限制条件起调水位:175.8m ,对应流量824.7m 3/s ;参加泄洪的不包括放空流量,要求计入发电的流量;最大的下泄流量不得大于安全泄量,设计和校核分别为2000m 3/s 2500m 3/s ; (3)设计和校核洪水过程线的推求设计洪水过程线取频率为0.1%的洪水,期洪峰4750m 3/s ;校核洪水过程线取0.02%,对应洪水期洪峰5600m 3/s 。
利用按峰控制的同倍比放大法对典型洪水放大得设计校核洪水过程线。
设计洪水放大系数:48.132204750Q Q K m mp Q ===; 校核洪水放大系数: 74.132205600Q Q K m mp Q ===; 可得设计和校核洪水过程线如图1-2所示 (4)演算方案拟订①泄洪方式:采用表孔式泄洪; ②拟订演算方案(闸孔宽度和数量)取允许单宽流量:[q]=70 m 3/s; 溢流前净宽:m 71.35702500]q [Q L ===防 堰上水深H 0根据公式2/3H g 2m q ε=推求2/30H 8.9248.070⨯⨯= 则H 0=10.28m堰顶高程Z 堰顶=Z 限-H0=181.20-10.28=170.92m图1-1 溢流堰顶形式闸门高h=Z 正常- Z 堰顶=178.00-170.92=7.08m 取7米根据以上基本尺寸现拟订两个方案: Ⅰ b=11m n=3 堰顶高程170.92 Ⅱ b=12m n=3 堰顶高程170.92(5)计算工况计算工况分为校核和设计两种。
(6)计算方法计算方法:试算法。
由于试算过于复杂且均为重复性计算,考虑用电算。
(7)调洪演算试算法过程①根据库容曲线Z-V(见蓝图),的拟订的泄洪建筑物形式、尺寸,用水力学公式确定算Q-Z 关系为2/32H g Bm q ε=;②分析确定调洪开始时的起始条件,即起调流量824.7m 3/s;③利用水量平衡式和蓄泄曲线,按试算法列表解算各是段时段末的q 2、V 2。
调洪演算报告范文
调洪演算报告范文一、引言调洪演算是水利工程中的重要环节,旨在通过科学的方法和工具,对于河流水系中的洪水进行预测和调度,以达到减轻洪水灾害的目的。
本报告将对于调洪演算的原理、方法和实施过程进行详细的介绍和分析,并结合实际案例进行说明。
二、调洪演算的原理调洪演算的原理主要包括两个方面:洪水预测和调度决策。
洪水预测是基于历史洪水数据和气象预报等信息,通过数学模型和统计学方法,对未来一段时间内的洪水进行预测。
调度决策是在洪水预测的基础上,采用适当的水利工程措施,对水库蓄水和泄洪进行合理的安排,以尽量减少对下游地区的洪水影响。
三、调洪演算的方法调洪演算的方法通常包括以下几个步骤:1.数据收集与分析:根据洪水历史数据、气象预报以及水库、河流和地形等信息,收集并分析相关数据。
2.水文模型建立:根据收集到的数据,建立数学模型,模拟洪水的产生和传递过程。
3.洪水预测:利用建立的水文模型,结合实时的气象预报等信息,对未来一段时间内的洪水进行预测。
4.优化调度决策:根据洪水预测结果,采用优化方法,对水库蓄水和泄洪进行合理的安排,以减少洪水对下游地区的影响。
5.模拟验证与调整:通过模拟验证和调整,对调洪方案进行优化和完善,以提高调洪效果。
四、调洪演算的实施过程调洪演算的实施过程可以分为以下几个阶段:1.需求分析和目标确定:根据实际需要,确定调洪的目标和要求,明确工程的规模、投资和效益等因素。
2.数据采集和分析:收集并分析洪水历史数据、气象预报以及水文测量和地形资料等,建立数据库并进行质控。
3.模型建立和参数调整:根据采集到的数据,建立水文模型,确定模型中的参数,并进行模型的校准和验证。
4.调洪模拟和分析:利用建立的水文模型,进行洪水调洪模拟,并分析不同方案的调洪效果。
5.优化方案设计:根据调洪模拟结果,采用优化方法,设计出合理且有效的调洪方案。
6.方案评价和决策:对于设计的调洪方案进行评价和分析,结合经济、社会和环境效益等因素,做出最终的调洪决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水库调洪演算系统说明书(Storo)1概述水库调洪演算原理比较简单,但是计算过程却十分繁琐复杂。
首先,设计洪水过程每一时段的调洪演算都需经过反复的假定、试算,计算工作量很大;其次,计算溢洪道的下泄流量也是相当繁琐的,以最简单的无坎宽顶堰为例,其流量系数要分直角形翼墙进口、八字形翼墙进口、圆弧形翼墙进口三种形式,分别根据B b ;B b 和θtg ;b r 和Bb (b 为闸孔净宽,B 为进水渠宽,θ为八字形翼墙收缩角,r 为圆弧形翼墙的圆弧半径)查表计算确定,其侧收缩系数则要根据过流孔数、单孔净宽、墩头形式、堰顶水头来计算确定;最后,还要整理计算结果,绘制调洪演算曲线。
上述工作不仅消耗设计人员大量的精力,而且要求设计人员具有丰富的水利计算和水力学计算方面的专业知识。
本计算系统storo 通过编制周到的计算程序、提供简捷明了的操作界面并利用成熟的商业绘图软件作为输出平台,让计算机来完成上述繁琐复杂的调洪演算工作,计算机操作人员不必具备水利计算和水力学计算方面的专业知识。
2调洪计算原理调洪演算的核心是水量平衡方程。
其基本含义是:在某一时段Δt 内,入库水量减去库水量,应等于该时段内水库增加或减少的蓄水量。
用方程来表示就是1221212/)(2/)(V V t Q Q t Q Q a a -=⨯+-⨯+ (1.2.1)式中 Q a1,Q a2---时段t 始末的入库流量Q 1,Q 2 ---时段t 始末的出库流量V 1,V 2 ---时段t 始末的水库蓄水量T ---计算时段入库流量过程Q a~T是已知的,出库流量Q~T曲线未知,但是可以先假设一个q作为初始流量进行计算。
水库的正常水位对应的蓄水量也是已知的,计算时通过假设的q,算出V2,然后用水库的Z~V曲线(库水位~库容曲线)及泄水工程的泄水能力综合得出的库容泄水曲线来插值,得到Q’,再代回计算V2。
这样不断试算,直到两个量满足精度要求。
这样再将该时段末的量做为下一时段初的对应的量,进行同样计算,就可以得到每一时段对应的泄量,从而得到出库流量曲线。
将不同时段的出库流量和入库流量对应画在图上,如图1.2.1所示。
库最高水位。
3 storo介绍图1.2.1 调洪演算示意图本程序storo采用vb6.0编写。
在输入泄水建筑物有关数据时采用Windows界面输入,十分方便直观。
而库容~水位曲线和来水过程线有时数据十分多,因而采用文件输入。
最终计算结果和输入数据合在一起编为计算书以文本形式输出。
来水过程线和泄流过程线数据存放在*.bln格式的文件中,以便借助Surfer软件自动绘制出如图1.2.1所示的调洪演算曲线图。
下面对storo计算系统通的各操作部分进行介绍。
(输入数据的单位见界面)3.1总界面图1.3.1 计算系统总界面在本界面上输入工程名及本次计算的洪水频率。
这些会在输出文件中输出,方便备档及以后查找。
在“选择堰型”框中选择计算的堰型样式,不同堰型有不同的输入界面。
3.2有坎宽顶堰输入界面图1.3.2 有坎宽顶堰输入界面图1.3.2中一些输入的含义为:孔数---堰的孔数中墩减少系数---表示中墩迎水部分的外形对侧向收缩的影响边墩减少系数---表示边墩迎水部分的外形对侧向收缩的影响堰的净宽---堰整体过水的宽度,即各孔宽之和进口形式---底坎进口的形状。
有两种可以选择“是否有联合泄洪”、“有无闸门控制”根据情况选择,后面有专门对话框输入相关数据。
先根据以上输入的数据计算出流量系数,然后用其计算堰的泄流量。
输入完毕后按“下一步”。
3.3无坎宽顶堰输入界面(见图1.3.3)其中一些输入的含义为:边墩形式,中墩形式---在下拉列表框中选择。
有三种:直角形翼墙,八字形翼墙及圆弧形翼墙。
各种不同的翼墙的输入参数也不一样,具体输入时请参阅该界面上的注释。
其余的输入项参阅有坎宽顶堰情况。
图1.3.3 无坎宽顶堰输入界面3.4实用堰输入界面(见图1.3.4)图1.3.4 实用堰输入界面其中一些输入的含义为:设计水头---又称为剖面定型设计水头,与堰的轮廓有关,一般是最大工作水头的0.75~0.95。
其余的输入项参阅宽顶堰有坎情况。
3.5 溢流堰闸门和泄流底孔相关数据输入界面图1.3.5溢流堰闸门和泄流底孔相关数据输入界面其中一些输入的含义为:闸门开启时的堰顶水头---即闸门开启时的水库水位减堰顶高程。
按水力学公式由输入得到泄洪底孔的流量。
库水位到达溢流堰闸门的开启水位才开始泄水,而闸门开启水头则用来判断某一水头时闸下出流是堰流还是孔流。
3.6 数据文件的建立与调用及计算结果文件的命名在storo中共有两个文件输入:水库库容~水位曲线数据文件及洪水过程线数据文件。
他们都以文本文件(*.txt)的形式输入。
其具体格式为:⑴库容~水位曲线数据文件第一行曲线上取的点数(n)第二行按(Z i,V i)即(水位,库容)的格式输入n个对应点的水位、库容数据,一行不够请让其自动换行(水位以米为单位,库容以百万立方米为单位)⑵来水过程曲线:第一行共三个数据: 曲线上取的点数;一个时间段的长度(小时为单位);水库的正常蓄水位(米为单位)。
第二行输入各个时段的来水流量(立方米/秒为单位)。
点击图1.3.5所示界面中的按钮,依次选择已存放本系统文件夹中的水库库容~水位曲线数据文件、洪水过程线数据文件。
然后再选定或给定计算结果文件名,storo计算系统会将计算结果以文本(*.txt)形式保存在该文件中,以备以后调用。
在选定或给定计算结果文件名,系统自动开始计算。
3.7输出结果界面图1.3.6输出界面按钮介绍:可打开打开Surfer 自动绘制调洪过程图,且其*.bln 文件也保存了,可以以后需要时再绘制。
4 泄洪流量的计算及其程序化本软件泄流量计算中所用到的水力学公式凡未特别注明的均引自(武汉水利电力学院水力学教研室编,水力计算手册,水利出版社,1980),本节中的公式、图、表均注明了它在 被引用著作中的页码及公式、图、表编号,以便本报告阅读者查找。
泄流量计算中需要查表求得的流量系数、侧收缩系数等,本软件均将所涉及的表格固化在程序中并自动查表插值计算出求出各项系数。
下面是storo 计算泄流量采用的公式及其来源。
4.1堰流的基本计算公式2302H g mnb Q c δ=(3-1-1) [P119] 式中b---每孔净宽;n---闸孔孔数;H0---包括行近流速水头的堰前水头,g v H H 2200+=;v 0---行近流速;m---自由溢流的流量系数,它与堰型、堰高等边界条件有关; σc ---侧收缩系数。
4.1.1 流量系数1.4.1.1.1有底坎宽顶堰流的流量系数(1) 进口边缘为直角,见图3-1-3(a ) [P120]当0<P/H<3.0HP H P m 75.046.0301.032.0+-+= (3-1-3) [P120] 当P/H ≥3.0,m =0.32 (2) 进口边缘修圆,见图3-1-3(b )[P120]当0<P/H<3.0HPH P m 5.12.1301.036.0+-+= (3-1-4)[P120] 当P/H ≥3.0,m =0.36 4.1.1.2无底坎宽顶堰流的流量系数直角形翼墙进口(见图3-1-6)的平底宽顶堰流量系数与b/B 有关,见表3-1-3[P122];八字形翼墙进口(见图3-1-7)的平底宽顶堰流量系数与b/B 和侧收缩角θ有关,见表3-1-4 [P122];圆弧形翼墙进口(见图3-1-8)的平底宽顶堰流量系数与b/B 和r/b 有关,见表3-1-5[P123];4.1.1.3实用堰流量系数(1) 当P/H d ≥1.33,流量系数m 与H/H d 有关,见图10-12 (武汉水利电力学院水力学教研室编,水力学,高等教育出版社,1987。
)。
(2) 当P/H d <1.33,流量系数m 与P/H d 和H 0/H d 有关,见图3-2-3[P134]。
4.1.2 侧收缩系数4.1.2.1有坎宽顶堰流侧收缩系数的计算(1)单孔过流时侧收缩系数σc 按式(3-1-5)计算()B b Bb H Pc /1/2.0143-⋅+-=ασ (3-1-5)[P125] 式中P---上游堰高;H---堰前水头;b---两墩间净宽;B---上游引渠宽,对于梯形断面,近似用一半水深处的渠道宽,即B=b 0’+mh/2,b 0’为底宽,m 为边坡系数,h 为渠道水深;α---系数,闸墩(或边墩)墩头为矩形,宽顶堰进口边缘为直角时,α=0.19;闸墩(或边墩)墩头为曲线形,宽顶堰进口边缘为直角或圆弧时,α=0.10。
式(3-1-5)适用条件:b/B ≥0.2,P/H ≤3.0。
当b/B <0.2时,用b/B=0.2计算;当P/H >3.0时,用P/H=3.0计算。
(2)多孔过流时,σc 的确定可取加权平均值c σ,由式(3-1-6)计算: ()n n cscm c σσσ+-=1 (3-1-6)[P125]式中n---孔数;σcm ---中孔侧收缩系数,按式(3-1-5)计算,式中b/B 用d b b +代替,d 为墩厚;σcs ---边孔侧收缩系数,按式(3-1-5)计算,式中b/B 用b b b ∆+代替,△b 为边墩边缘线与建筑物上游引渠水边线之间的距离。
4.1.2.2无坎宽顶堰流侧收缩系数的计算无底坎宽顶堰边墩侧收缩对溢流能力得影响已包含在流量系数m 中,若流量系数按表3-1-3~3-1-6选用,则单孔无底坎宽顶堰过流不再计算侧收缩系数σc 。
对于多孔过流,其水流状态除受边墩影响外,还受中墩的影响,若按表3-1-3~3-1-6计算流量系数,则侧收缩系数不再计算,综合流量系数为()nm n m m sm +-=1 (3-1-7)[P127]式中n---闸孔数;m m ---中孔的流量系数,将中墩的一半看成边墩,然后按边墩形状查表3-1-3~3-1-6中的相应值,表中b/B 用b /(b+d )代替,b 为每孔净宽,d 为墩厚;m s ---边孔的流量系数,按边墩形状查表3-1-3~3-1-6中的相应值,表中b/B 用b /(b+△b )代替,b 为每孔净宽,△b 为边墩边缘线与上游引水渠水边线之间的距离。
4.2平板闸门闸孔自由出流公式002gH eb Q μ=(3-3-4)式中0μ---闸孔自由出流的流量系数;e ---闸门开启高度;b ---堰的过水净宽度;H 0---包括行近流速的堰顶水头。
4.2.1闸孔出流的流量系数(1) 闸底坎为宽顶堰(有坎或平底)H e18.060.00-=μ(3-3-6) 应用范围:65.01.0<<He。
(2) 闸底坎为曲线型堰H e274.0745.00-=μ(3-3-6) 应用范围:75.01.0<<He。