圆锥曲线的几何性质

合集下载

高考数学中的圆锥曲线知识

高考数学中的圆锥曲线知识

高考数学中的圆锥曲线知识高考数学中的圆锥曲线是一道重要的考题,也是很多学生容易失分的一道难题。

圆锥曲线是指平面上坐标系中的一种特殊的曲线,也是数学的重要分支之一。

本文将介绍圆锥曲线的基本概念,分类和应用,希望能对广大考生有所帮助。

一、圆锥曲线的基本概念1.圆锥圆锥是一个由一个圆绕着它的直径周而复始地旋转而成的立体物体,其中:该直径是铅锤线,圆锥的底面是这个圆,圆锥的顶点是铅锤线的另一端。

2.圆锥曲线的概念在平面直角坐标系中,将一个固定的点F(称为焦点)与一个固定的直线L(称为直角准线)连接。

在平面上,连结点P到直线L的距离为PF和P到点F的距离的比等于定值e(e>0)。

这样得到的曲线称为圆锥曲线。

圆锥曲线分为三种情况:椭圆、双曲线和抛物线。

二、圆锥曲线的分类1.椭圆椭圆是平面上与两个焦点F1,F2的距离之和等于定值2a(a>0)的点P的轨迹。

椭圆是圆锥曲线中最简单的一种形式。

椭圆可以通过平移、伸缩、旋转对平面上的圆形进行简单的变换。

2. 双曲线双曲线是平面上与两个焦点F1,F2的距离之差等于定值2a (a>0)的点P的轨迹。

双曲线有两条渐进线,即切射线和渐进线。

3. 抛物线抛物线是平面上焦点F到直线L的距离等于点P到焦点F的距离的平方与定值a(a>0)成正比例的点P的轨迹。

抛物线的形状像一个平翻的碗,有上凸抛物和下凸抛物两种。

三、圆锥曲线的应用1. 物理学圆锥曲线在物理学中得到广泛的应用。

例如,在宇宙空间中,行星的轨迹可以用椭圆来描述。

在天体力学中,利用双曲线描绘有关天体的相对运动情况。

抛物线则可用于描述抛体的轨迹。

2. 工程学圆锥曲线在工程学中也有重要的应用,特别是在光学的设计中。

例如,望远镜的光学系统用到的镜面都是椭圆形的;飞机的机翼、车轮和机器的轮子都是利用圆锥的形状进行设计的。

3. 数学研究圆锥曲线在数学研究中的应用也是相当广泛的,例如,利用双曲线求解微积分中的积分问题;还可以用抛物线中的特殊几何性质证明三次方程有一个实根。

圆锥曲线与二次曲线的方程与性质分析总结

圆锥曲线与二次曲线的方程与性质分析总结
离心率的几何意义:对于椭圆,离心率e表示焦点到椭圆中心的距离与长轴半径的比值;对于双曲线,离 心率e表示焦点到双曲线中心的距离与实轴半径的比值。
离心率的计算公式:对于椭圆,离心率e的计算公式为e = c/a,其中c为焦点到椭圆中心的距离,a为长轴 半径;对于双曲线,离心率e的计算公式为e = c/a,其中c为焦点到双曲线中心的距离,a为实轴半径。
曲线的导数与切线斜率
圆锥曲线的导数表示切线的斜率 二次曲线的导数可以求出切线的斜率 导数的几何意义是曲线在某点的切线的斜率 导数在研究圆锥曲线和二次曲线的性质中具有重要作用
曲线的交点与公共点个数问题
公共点的个数也是解析性质 的一个重要方面
圆锥曲线与二次曲线的交点 个数取决于它们的方程和几 何性质
二次曲线在几何图形中的应用:二次曲线常用于描述平面几何中的一些形状和结构,例 如椭圆、抛物线、双曲线等。
圆锥曲线与二次曲线的组合应用:在一些复杂的几何图形中,可能需要同时利用圆锥曲 线和二次曲线的性质来解决相关问题。
实际应用中的注意事项:在利用圆锥曲线和二次曲线的性质解决实际问题时,需要注意 一些细节和限制条件,以确保结果的准确性和可靠性。
圆锥曲线与二次曲线的解析性 质
曲线的渐近线与水平截距
圆锥曲线的渐近线:根据圆锥曲线的标准方程,求出其渐近线的方程。 二次曲线的水平截距:根据二次曲的标准方程,求出其与x轴交点的横坐标。 曲线的渐近线与水平截距的关系:分析渐近线与水平截距在曲线性质中的作用和相互影响。 解析性质的应用:举例说明解析性质在解决实际问题中的应用。
解析性质决定了曲线在平面 上的位置关系和相互交点的
个数
解析性质对于研究圆锥曲线 与二次曲线的几何性质具有
重要意义
曲线的参数方程与极坐标方程

(完整版)高中数学圆锥曲线知识点总结

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。

用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。

用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。

其中定点叫焦点,定直线叫准线,常数e是离心率。

用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。

用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。

则椭圆的各性质(除切线外)均可在这个图中找到。

3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。

当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。

高中数学圆锥曲线知识点

高中数学圆锥曲线知识点

高中数学知识点—圆锥曲线部分一、平面解析几何的知识结构:二、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。

用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数e 是离心率。

用集合表示为:;e 越小,椭圆越圆;e 越大,椭圆越扁(2)标准方程和性质:①范围:由标准方程知,,说明椭圆位于直线,22221x y a b+=||x a ≤||y b ≤x a =±所围成的矩形里;y b =±②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点y -y (,)x y 也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于(,)x y -x x -x 轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

y x -x y -y 所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,x y 椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭x y 圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

0x =y b =±1(0,)B b -2(0,)B b y 同理令得,即,是椭圆与轴的两个交点。

0y =x a =±1(,0)A a -2(,0)A a x 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和21A A 21B B 2a 2b a 分别叫做椭圆的长半轴长和短半轴长。

b 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,a 22Rt OB F ∆2||OBb =,,且,即;2||OF c =22||B F a =2222222||||||OF B F OB =-222c a b =-④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

圆锥曲线又一个统一的几何性质

圆锥曲线又一个统一的几何性质

圆锥曲线又一个统一的几何性质作者:邹书生来源:《数学教学通讯(教师阅读)》2008年第11期湖北阳新高级中学 435200摘要:本文介绍了圆锥曲线的又一个统一的几何性质. 不难看出《圆锥曲线“和谐”新观点》一文中的四个结论分别是本文所阐述的四个定理中当点F为焦点、点N为对应准点时的一个特例. 另一方面,可以说本文是《圆锥曲线的一个优美性质》的姊妹篇.关键词:圆锥曲线;统一;几何性质笔者在研究圆锥曲线时,发现了圆锥曲线的又一个统一的几何性质,现介绍如下.定理1 OX是顶点为O的抛物线的对称轴,点N,F在该对称轴上且分别在点O两侧,OF=ON,过点N的直线交抛物线于A,B两点,则∠AFN=∠BFX.证明设OF=ON=d,建立直角坐标系如图1所示,则抛物线的方程为y2=2p·(x+d),即y2=2px+2pd①. 又直线AB过点N(-2d,0),故可设直线AB方程为: x=my-2d②. 把②代入①化简得y2-2pmy+2pd=0③.[y][x][F][O][N][A][B]图1设A(x1,y1),B(x2,y2),则y1,y2是方程③的两个根,由根与系数的关系得y1+y2=2pm,y1y2=2pd,所以kFA+kFB=+=,把点A,B的坐标代入②得x1=my1-2d,x2=my2-2d,所以y1x2+y2x1=y1(my2-2d)+y2(my1-2d)=2my1y2-2d(y1+y2)=2m·2pd-2d·2pm=0,故kFA+kFB=0,即tan∠AFX+tan∠BFX=0,故tan(π-∠AFN)+tan∠BFX=0,故tan∠AFN=tan∠BFX,故∠AFN=∠BFX.定理2 OX是中心为点O,长轴长为2a,短轴长为2b的椭圆的对称轴,点N,F在该对称轴上且在点O的同侧,OF=d(d证明建立直角坐标系如图2所示,则椭圆的方程为:+=1①.[B][y][A][N][F][O][x]图2因为FN=ON-OF=,所以直线AB过点N-,0,故可设直线AB的方程为: x=my-②. 把②代入①可得:b2my-2+a2y2-a2b2=0,化简得:d2(a2+b2m2)y2-2a2b2mdy+a2b2·(a2-d2)=0③.设A(x1,y1),B(x2,y2),则y1,y2是方程③的两个根,由根与系数的关系得y1+y2=,y1y2=,故kFA+kFB=+=,把点A,B的坐标代入②得x1=my1-,x2=my2-,所以,y1x2+y2x1=y1my2-+y2my1-=2my1y2-(y1+y2)=-·=0,故kFA+kFB=0,即tan∠AFX+tan∠BFX=0,故tan(π-∠AFN)+tan∠BFX=0,故tan∠AFN=tan∠BFX,故∠AFN=∠BFX.同理可证明如下的定理3.定理3 OX是中心为点O,实轴长为2a,虚轴长为2b的双曲线的对称轴,点N,F在该对称轴上且在点O的同侧,OF=d(d若把上述三个定理中的点F,N分别称为“类焦点”和相应的“类准点”,综合上述三个结论,可得圆锥曲线的一个统一的几何性质,如下:定理4 圆锥曲线的一个类焦点为F,对应类准点为N,过点N的直线交曲线于A,B两点,则直线FA,FB与曲线的对称轴FN所成的角相等.特别地,当A,B两点重合于一点M时,直线NM与圆锥曲线相切于点M,此时MF⊥NF. 故有如下结论:定理5 圆锥曲线的一个类焦点为F,对应类准点为N,过点N的直线与曲线相切于点M,则MF⊥NF.。

《圆锥曲线》章末复习课件精选全文

《圆锥曲线》章末复习课件精选全文
的斜率,交点A x1, y1 , B x2 , y2 .
2
1
2
(2)处理中点弦问题时,一般有两种思路,思路一:联立方程组,消元,利用根与系数的关系
进行“设而不求”;思路二:利用“点差法”
知识要点整合
高中数学
GAOZHONGSHUXUE
四、圆锥曲线中的弦长、中点弦问题
例4
x2 y 2
已知椭圆 a 2 b2 1(a b 0) 的一个顶点为A(0,1),离心率为
一、圆锥曲线的定义及应用
2
2
例1 (1)一动圆与两圆: x 2 y 2 1和 x y 6 x 5 0都外切,则动圆圆心的轨迹为( )
A.抛物线
B.双曲线
C.双曲线的一支
D.椭圆
(2)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为
2
.
2
过F1的直线l交椭圆C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为______.
例2
x2 y 2
3
(1)若椭圆 2 2 1(a b 0) 的离心率为
2
a
b
1
A. y 2 x
B. y 2 x
C. y 4 x
x2 y 2
,则双面线 2 2 1的渐近线方程为(
a
b
1
y


x
D.
4
x2 y 2
(2)已知双曲线 a 2 b2 1(a 0, b 0) 的左焦点为F,离心率为
,且
a
2
x2
2

y
1
2, c 1.易得椭圆方程为

方法技巧专题07圆锥曲线的概念及其几何性质

方法技巧专题07圆锥曲线的概念及其几何性质

方法技巧专题07圆锥曲线的概念及其几何性质圆锥曲线是平面几何中的一个重要概念,是指由一个动点P在平面上,以一个定点F为焦点和一个定直线L为准线,满足动点P到焦点F的距离与动点P到准线L的距离的比值始终保持不变的轨迹。

根据这个定义可以推导出圆锥曲线的几何性质。

一、圆锥曲线的种类根据焦点和准线的位置不同,圆锥曲线分为三种:1.当焦点F在线上准线L上时,得到的是一个圆。

2.当焦点F在准线L上方时,得到的是一个椭圆。

3.当焦点F在准线L下方时,得到的是一个双曲线。

二、圆锥曲线的性质1.定义性质:圆锥曲线上的任意一点P到焦点F的距离与点P到准线L的距离的比值始终保持不变。

这个比值称为离心率,用e表示。

2.焦点和准线之间的距离:对于椭圆和双曲线,焦点到准线的距离是有限的。

对于双曲线,焦点到准线的距离大于焦点到曲线上任意一点的距离。

对于椭圆,焦点到准线的距离小于焦点到曲线上任意一点的距离。

3.长轴和短轴:对于椭圆,长轴是两个焦点之间的距离的2倍,而短轴是两个准线之间的距离的2倍。

长轴和短轴的长度决定了椭圆的形状。

4.焦点和准线的关系:焦点位于准线的内部,且焦点到准线的距离等于焦点到曲线上最远的点的距离。

每条曲线上都存在两个焦点,两个焦点是关于准线的镜像。

5.对称性:圆锥曲线具有轴对称性。

对于椭圆和双曲线,轴是通过两个焦点的直线,称为主轴。

对于圆和抛物线,轴是和准线平行的直线,称为准轴。

6.双曲线的渐近线:双曲线有两条渐近线,分别与曲线无限延伸的两个分支趋于平行。

渐近线的斜率是曲线离心率e的倒数。

7.抛物线的焦点性质:抛物线的焦点是准线上的一个点,且抛物线上任意一点到焦点的距离等于该点到准线的垂直距离。

三、圆锥曲线的应用圆锥曲线广泛应用于科学和工程中的各个领域,如天文学、物理学、航天工程、建筑设计等。

其中一些应用包括:1.天体运动:天体运动中的椭圆轨道和抛物线轨道可以用圆锥曲线来描述。

2.反射器:抛物线可以用于设计反射器,如车灯和卫星碟天线。

专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮

专题七 解析几何  第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮

③|F1A|+|F1B|=
2 p
;④以弦
AB
为直径的圆与准线相切.
[典型例题]
1.已知椭圆 T : x2 y2 1(a b 0) 的长半轴为 2,且过点 M 0,1 .
a2 b2 若过点 M 引两条互相垂直的直线 l1 , l2 ,P 为椭圆上任意一点,
记点 P 到 l1 , l2 的距离分别为 d1 , d2 ,则 d12 d22 的最大值为( B )
C. x2 y
D. x2 1 y 2
[解析]
本题考查抛物线的定义、标准方程. 抛物线 C : x2 2 py( p 0) 的准线方程为 y p .因为 | AF | 4 ,
2 所以由抛物线的定义得 p 3 4 ,解得 p 2 ,
2 所以抛物线 C 的方程为 x2 4 y .故选 A.
因为 | BC | 2 | BF | ,所以 | BC | 2 | BN | ,所以 BC 2 ,所以 BN 2 ,
CF 3
p3
所以 BN BF 4 , BC 8 ,
3
3
[解析]
所以 CF 4 ,因为 p CF , AM CA
所以 2 CF 4 4 , AM CF AF 4 AF 4 AM 4
则 d12 d22 x2 (1 y)2 ,因为 P 在椭圆上,所以 x2 4 4 y2 ,
所以
d12
d
2 2
5
3y2
2y
5
3
y
1 2 3
1 3

y [1,1],
[解析]
所以当
y
1 3
时,
பைடு நூலகம்d12
d22
有最大值
16 3
,所以

圆锥曲线的定义、

圆锥曲线的定义、

感悟高考 明确考向
x y + 2 =1(a >0,b >0) 2 (2009山东)设椭圆E: b a
2 2
过点M(2, 2 )N( 6 ,1)两点, O为坐标原点. (1)求椭圆E的方程;
(删)考点2、圆锥曲线的方程
海南、 例3 (2009·海南、宁夏 已知椭圆C的中 海南 宁夏)已知椭圆 的原点, 心为平面直角坐标系xOy的原点,焦点在 x轴上,它的一个顶点到两个焦点的距离 轴上, 分别是7和 分别是 和1. (1)求椭圆C的方程; 求椭圆 的方程; (2)若P为椭圆C上的动点,M为过P且垂 上的动点, 若 直于x轴 OP 的直线上的一点, 的直线上的一点, O M =λ,求点M的轨 迹方程,并说明轨迹是什么曲线. 迹方程,并说明轨迹是什么曲线.
感悟高考 明确考向
山东理) (2008山东理)设椭圆 C1的离 山东理 5 焦点在x轴上且长 心率为 1 3 ,焦点在 轴上且长 轴长为26, 轴长为 ,若曲线 C2 上的点到 椭圆 C1 的两个焦点的距离的差 的绝对值等于8, 的绝对值等于 ,则曲线 C2 的标 准方程为_________ 准方程为
1.圆锥曲线的定义是根本,它是相联系应标准 圆锥曲线的定义是根本, 圆锥曲线的定义是根本 方程和几何性质的“ 方程和几何性质的“源”,对于圆锥曲线的有 关问题,要有运用圆锥曲线定义解题的意识, 关问题,要有运用圆锥曲线定义解题的意识, 回归定义”是一种重要解题策略. “回归定义”是一种重要解题策略 2.注意定义中的条件 注意定义中的条件. 注意定义中的条件 3. 涉及椭圆、双曲线上的点与两个焦点构成的 涉及椭圆、 三角形问题,常用定义结合正弦定理、 三角形问题,常用定义结合正弦定理、余弦定 理来解决. 理来解决

圆锥曲线知识要点及结论个人总结

圆锥曲线知识要点及结论个人总结

圆锥曲线知识要点及结论个人总结《圆锥曲线》知识要点及重要结论 一、椭圆1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆.若212F F a =,点P的轨迹是线段21F F .若2120F F a <<,点P 不存在.2 标准方程)0(12222>>=+b a by a x ,两焦点为)0,(),0,(21c F c F -.)0(12222>>=+b a b x a y ,两焦点为),0(),,0(21c F c F -.其中222c b a+=.3 几何性质椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心.椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上. 若椭圆的标准方程为)0(12222>>=+b a b y a x ,则by b a x a ≤≤-≤≤-,;若椭圆的标准方程为)0(12222>>=+b a bx a y ,则ay a b x b ≤≤-≤≤-,.二、双曲线1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线.若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P不存在. 2 标准方程)0,0(12222>>=-b a by a x ,两焦点为)0,(),0,(21c F c F -.)0,0(12222>>=-b a b y a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=.3 几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心. 双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上. 若双曲线的标准方程为)0,0(12222>>=-b a by a x ,则Ry a x a x ∈≥-≤,或;若双曲线的标准方程为)0,0(12222>>=-b a b x a y ,则Rx a y a y ∈≥-≤,或.4 渐近线 双曲线)0,0(12222>>=-b a b y a x 有两条渐近线x a b y =和x aby -=.即02222=-b y a x双曲线)0,0(12222>>=-b a bx a y 有两条渐近线x b a y =和x bay -=.即02222=-bx a y双曲线的渐进线是它的重要几何特征,每一双曲线都对应确定双曲线的渐进线,但对于同一组渐进线却对应无数条双曲线. 与双曲线)0,0(12222>>=-b a b y a x 共渐进线的双曲线可表示为)0(2222≠=-λλby a x .直线与双曲线有两个交点的条件,一定要“消元后的方程的二次项系数0≠”和“0>∆”同时成立. 5 等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线.等轴双曲线的标准方程为)0(12222>=-a ay a x 或)0(12222>=-a a x a y .等轴双曲线的渐近线方程为x y ±=.6 共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线.如:)0,0(12222>>=-b a b y a x 的共轭双曲线为)0,0(12222>>=-b a ax b y ,它们的焦点到原点的距离相等,因而在以原点为圆心,22b a +为半径的圆上.且它们的渐近线都是x aby =和x ab y -=. 三、抛物线1 定义 平面内与一个定点F 和一条定直线F l (不在l 上) 的距离相等的点的轨迹叫做抛物线. 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.2 标准方程 (1) )0(22>=p px y,焦点为)0,2(p ,准线方程为2px -=,抛物线张口向右. (2) )0(22>-=p px y,焦点为)0,2(p -,准线方程为2p x =,抛物线张口向左. (3) )0(22>=p py x,焦点为)2,0(p ,准线方程为2py -=,抛物线张口向上. (4) )0(22>-=p py x,焦点为)2,0(p -,准线方程为2p y =,抛物线张口向下.其中p 表示焦点到准线的距离. 3 几何性质抛物线是轴对称图形,有一条对称轴.若方程为)0(22>=p px y 或)0(22>-=p px y,则对称轴是x 轴,若方程为)0(22>=p py x或)0(22>-=p py x,则对称轴是y 轴. 若抛物线方程为)0(22>=p px y ,则R y x ∈≥,0. 若抛物线方程为)0(22>-=p px y ,则R y x ∈≤,0. 若抛物线方程为)0(22>=p py x ,则R x y ∈≥,0.若抛物线方程为)0(22>-=p py x ,则R x y ∈≤,0.圆锥曲线的一些重要结论【几个重要结论】 1 已知椭圆)0(12222>>=+b a by a x 的两焦点为)0,(),0,(21c F c F -,),(00y x P 为椭圆上一点,则)1()()(22022020201a x b c x y c x PF -++=++=a a cx a a cx a cx a x c +=+=++=020202202)(2因为ax a ≤≤-0,c a a acx c a c acxc +≤+≤-<≤≤-00,, 所以a acx PF+=1. 同理,acx a PF a PF0122-=-=.已知双曲线)0,0(12222>>=-b a b y a x 的左、右焦点分别为)0,(),0,(21c F c F -,),(0y x P 为双曲线上一点,则a acx PF+=1,a acx PF -=2.2 椭圆)0(12222>>=+b a b y a x 的两焦点为21,F F ,P 为椭圆上一点,若θ=∠21PFF ,则21PF F ∆的面积为2tancos 1sin 22αααb b =+.解:根据椭圆的定义可得aPF PF 221=+ ①由余弦定理可得αcos 242122212212PF PF PF PF F F c -+== ② 由①②得)cos 1(2442122α+=-PF PF c a.从而αcos 12221+=b PF PF所以,21F PF ∆的面积为2tan cos 1sin sin 212221ααααb b PF PF =+=双曲线)0,0(12222>>=-b a by a x 的两焦点为21,F F ,P 为其上一点,若α=∠21PF F ,则21PF F ∆的面积为2cot cos 1sin sin 212221ααααb b PF PF =-=.3 已知椭圆)0(1:2222>>=+b a by a x C ,N M ,是C 上关于原点对称的两点,点P 是椭圆上任意一点,当直线PNPM ,的斜率都存在,并记为PNPMk k,时,那么PMk 与PNk之积是与点P 位置无关的定值. 解:设),(),,(11y x M y x P ,则),(11y x N --.1010101,x x y y k x x y y k PN PM----=--=,从而2120212001010101x x y y x x y y x x y y k kPNPM--=----⋅--=⋅.又因为),(),,(1100y x M y x P 都在椭圆上,故1,1221221220220=+=+by a x b y a x .两式相减得,02212022120=-+-by y a x x ,因而2221202120ab x x y y -=--即22ab k k PNPM -=⋅.已知双曲线)0,0(12222>>=-b a b y a x .N M ,是C 上关于原点对称的两点,点P 是双曲线上任意一点,当直线PNPM ,的斜率都存在,并记为PNPMk k,时,那么PMk 与PNk之积是与点P 位置无关的定值.【常用方法】1 在求轨迹方程时,若条件满足圆、椭圆、双曲线、抛物线的定义,则可以用定义求轨迹方程,这是常用求轨迹的数学方法,称为定义法. 2本章经常会碰到直线l 与圆锥曲线C 相交于两点的问题,若已知l 过定点),(0y x P ,则可设l 的方程为x x =或)(00x x k yy -=-.然后分两种情况进行研究,一般处理方法是把直线方程代入曲线C 的方程中,整理得到关于x 或y 的一元二次方程(要注意二次项系数是否为零).韦达定理和判别式经常要用到!若l 的条件不明显时,则可设l 的方程为m x =或mkx y +=.3 本章还经常用到“点差法”:设直线l 与圆锥曲线C 交于点),(),,(2211y x B y x A ,则B A ,两点坐标都满足曲线C 的方程,然后把这两个结构相同的式子相减,整理可以得到直线AB 的斜率1212x x y y--的表达式,也经常会出现2121,y y x x++,这样又可以与线段AB 的中点),(00y x P 联系起来!4 若三点),(),,(),,(02211y x P y x B y x A 满足以线段AB 为直径的圆经过点P 或BP AP ⊥时,常用处理方法有: ①根据勾股定理可得222PBPA AB+=;②根据AP 的斜率与BP 的斜率之积为1-,可得120201010-=--⋅--x x y y x x y y ;③根据),(),,(,002020101y y x x y y x x--=--==⋅可得))(())((02010201=--+--y y y y x x x x .5求轨迹方程的方法常见的有:直接法、定义法、待定系数法、代入法(也叫相关点法).1 椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.离心率c e a ==△PF 1F 2中,记12F PFα∠=, 12PF Fβ∠=,12F F P γ∠=,则有sin sin sin c eaαβγ==+.线到中心的距离为2a c,焦点到对应准线的距离(焦准距)2b p c=。

新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册

新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册

章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。

圆锥曲线精讲

圆锥曲线精讲

圆锥曲线圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

b5E2RGbCAP圆锥曲线分类圆锥曲线包括椭圆,双曲线,抛物线p1EanqFDPw椭圆:到两个定点的距离之和等于定长<定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|>}。

DXDiTa9E3d双曲线:到两个定点的距离的差的绝对值为定值<定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|>}。

RTCrpUDGiT 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。

早在两千多年前,古希腊数学家对它们已经很熟悉了。

古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。

用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。

阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

5PCzVD7HxA1)椭圆参数方程:X=acosθ Y=bsinθ (θ为参数 >直角坐标<中心为原点):x^2/a^2 + y^2/b^2 = 12)双曲线参数方程:x=asecθ y=btanθ (θ为参数 >直角坐标<中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2 /a^2 - x^2/b^2 = 1 (开口方向为y轴) jLBHrnAILg3)抛物线参数方程x=2pt^2 y=2pt (t为参数> t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0xHAQX74J0X直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c <开口方向为x轴, a<>0 > LDAYtRyKfE圆锥曲线<二次非圆曲线)的统一极坐标方程为 Zzz6ZB2Ltkρ=ep/(1-e×co sθ>其中e表示离心率,p为焦点到准线的距离。

第3章 圆锥曲线的方程

第3章 圆锥曲线的方程

x
F2


标准方程
焦点坐标



P
a、b、c 的关系
焦点位置的判断
x2 y 2

1 a b 0
a 2 b2
F1 -c ,0 ,F2 c ,0
y 2 x2
1 a b 0
a 2 b2
F1 0 ,c ,F2 0 ,- c
a2-c2=b2
分母哪个大,焦点就在相应的轴上.
的基本量.
(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点
(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可
分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满
足的方程即可求得动点的轨迹方程.
(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,
再根据条件确定待定的系数.
关于x , y轴对称,关于原点对称
A1 ( a , 0), A2 (a , 0), B1 (0, b), B2 (0, b)
e

A1 ( b, 0), A2 (b, 0), B1 (0, a ), B2 (0, a )
c
(0 e 1)
a
双曲线的定义及标准方程
双曲线定义

平面内与两个定点F1,F2的距离的差的绝对
y 2 2 px( p 0)
p
F ( ,0)
2
y 2 2 px( p 0)
F (
x 2 py( p 0)
p
F (0, )
2
y
p
F (0, )
2
y
2
x 2 2 py( p 0)

圆锥曲线简介

圆锥曲线简介

圆锥曲线简介圆锥曲线圆锥曲线(英语:conic section),又称圆锥截痕、圆锥截面、二次曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的曲线,包括圆,椭圆,抛物线,双曲线及一些退化类型。

圆锥曲线在约公元前200年时就已被命名和研究了,其发现者为古希腊的数学家阿波罗尼奥斯,那时阿波罗尼阿斯对它们的性质已做了系统性的研究。

圆锥曲线应用最广泛的定义为(椭圆,抛物线,双曲线的统一定义):动点到一定点(焦点)的距离与其到一定直线(准线)的距离之比为常数(离心率e)的点的集合是圆锥曲线。

对于0 < e < 1得到椭圆,对于e = 1得到抛物线,对于e > 1得到双曲线。

圆锥曲线的类型圆锥曲线方程离心率(e)半焦距(c)半正焦弦(ℓ)焦点准线距离(p)圆椭圆抛物线双曲线圆锥曲线的类型:1.抛物线2.圆和椭圆3.双曲线椭圆,圆:当平面只与圆锥面一侧相交,交截线是闭合曲线的时候,且不过圆锥顶点,结果为椭圆。

如果截面与圆锥面的对称轴垂直,结果为圆。

抛物线:截面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。

双曲线:截面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线。

在平面通过圆锥的顶点的时候,有一些退化情况。

交截线可以是一个直线、一个点、或一对直线。

几何性质椭圆(Ellipse)椭圆上的点到两个焦点的距离和等于长轴长(2a)。

抛物线(Parabola)抛物线上的点到焦点的距离等于该点到准线的距离。

双曲线(Hyperbola)双曲线上的点到两个焦点的距离之差的绝对值等于贯轴长(2a)。

离心率有固定焦点F和准线的椭圆 (e=1/2)、抛物线 (e=1)和双曲线 (e=2)。

对于椭圆和双曲线,可以采用两种焦点-准线组合,每个都给出同样完整的椭圆或双曲线。

从中心到准线的距离是,这里的是椭圆的半长轴,或双曲线的半实轴。

从中心到焦点的距离是。

在圆的情况下,e = 0且准线被假想为离中心无限远。

高中数学_圆锥曲线的方程与性质教学课件设计

高中数学_圆锥曲线的方程与性质教学课件设计
因为 cos 2θ=1-2sin2θ,所以13=1-21a2,得 a2=3. 又 c2=1,所以 b2=a2-c2=2,椭圆 C 的方程为x32+y22=1,故选 B.
2.(2018·全国Ⅱ,文,11)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2, 且∠PF2F1=60°,则C的离心率为
值范围是
√A.[ 5, 6]
C.54,32
B.
25,
6
2
D.52,3
x+y=1, 解析 联立ax22+by22=1, 得(a2+b2)x2-2a2x+a2-a2b2=0, 设P(x1,y1),Q(x2,y2), Δ=4a4-4(a2+b2)(a2-a2b2)>0,化为a2+b2>1. x1+x2=a22+a2b2,x1x2=aa2-2+ab2b2 2. ∵OP⊥OQ, ∴O→P·O→Q=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1=0,
∴椭圆长轴的取值范围是[ 5, 6].
跟踪演练 3 (1)(2019·合肥质检)已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,右顶点为 A,上顶点为 B,以线段 F1A 为直径的圆交线段 F1B 的延长线于点 P,
若 F2B∥AP,则该椭圆的离心率是
3 A. 3
2 B. 3
当直线AB的斜率不存在时,2t1+2t2=0,此时t1=-t2, 则 AB 的方程为 x=2,焦点 F 到直线 AB 的距离为 2-12=32, ∵kAB=22tt112--22tt222=t1+1 t2,得直线 AB 的方程为 y-2t1=t1+1 t2(x-2t21). 即x-(t1+t2)y-2=0. 令y=0,解得x=2. ∴直线AB恒过定点D(2,0). ∴抛物线的焦点 F 到直线 AB 的距离小于32, 综上,焦点 F 到直线 AB 距离的最大值为32.

高中数学圆锥曲线总结

高中数学圆锥曲线总结

数学圆锥曲线总结1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。

若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。

4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。

(2)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。

(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的几何性质西安 刘康宁一、选择题(''6636⨯=)1.的椭圆称之为“黄金椭圆”.设22221(0)x y a b a b+=>>为黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,1202.已知双曲线22221(0,0)x y a b a b-=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q两点,交l 于R 点,则( )A ,PFR QFR ∠>∠B ,PFR QFR ∠=∠C ,PFR QFR ∠<∠D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( )A ,(,0][4,)-∞+∞B ,(,0]-∞C ,[4,)+∞D ,[0,4,]4.设椭圆方程2213x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。

若总存在以MN 为底边的等腰AMN ∆,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1]5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上的任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( )A ,(1,)+∞B ,(1,2] C, D ,(1,3] 6.已知P 为抛物线24y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )图1图2A ,B ,5C ,15+ D ,不存在 二、填空题(''9654⨯=)7.设双曲线226x y -=的左、右顶点分别为1A 、2A ,P 为双曲线右支上一点,且2PA x ∠ =1310PA x ∠+,则1PA x ∠的度数是 。

8.如图1,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,左准线为l ,P 为椭圆上一点, PQ l ⊥于点Q 。

若四边形12PQF F 为平行四边形, 则椭圆离心率e 的取值范围是 。

9.圆心在x 轴上,半径为1的动圆与抛物线22y x =相交,交点处的切线互相垂直,动圆的圆心坐标是 。

10.已知直线(5)tan (0,)2y x πθθπθ=-<<≠且与双曲线221169x y -=的两条准线交于 A ,B 两点。

若OA OB ⊥,则sin θ= 。

11.设椭圆方程为22221(0)x y a b a b+=>>,PQ 是过左焦点F 且与x 轴不垂直的弦。

若在左准线l 上存在点R ,使PQR ∆为正三角形,则椭圆离心率e 的取值范围是 。

12.设点B 、C 分别在第四、第一象限,且点B 、C 都在抛物线22(0)y px p =>上,O 为坐标原点,30,60OBC BOC ∠=∠=,k 为直线OC 的斜率,则32k k +的值为 。

三、解答题(''20360⨯=)13.如图2,给定椭圆22221x ya b+=和圆2222(0)x y a b a b +=+>>,CD 为圆的任一 条直径,CD 交椭圆于P 点,在CD 的一侧, 以P 为圆心,1PF 为半径画弧交圆于点A ;在CD 的另一侧,以P 为圆心,2PF 为半径画弧交圆于点B ,求证:A 、P 、B 三点共线.图314.设抛物线22(0)y px p =>的焦点为F ,AB 为抛物线的焦点弦,点M 在抛物线上,O 为坐标原点。

求证:(I )直线MA 、MF 、MB 的斜率成等差数列; (II )当MA MB ⊥时,MFO BMF AMF ∠=∠-∠.15.如图3,A 、B 为椭圆22221(0)x y a b a b +=>>和双曲线22221x y a b-=的公共顶点.P 、Q 分别为双曲线和椭圆上不同于A 、B 的动点,且满 足()AP BP AQ BQ λ+=+(,1)R λλ∈>. 设直线AP 、BP 、AQ 、BQ 的斜率分别是12,k k ,34,k k .(I)求证:12340k k k k +++=;(II )设12,F F 分别为椭圆和双曲线的右焦点;若21//PF QF ,求22221234k k k k +++的值.参考答案: 一、1.C由12c a =,得220a ac c --=, 而222222222()()2()0AB BF FA a b a a c a ac c +-=++-+=--=,知90ABF ∠= 2.B 设l 为双曲线的右准线,作'',PP l QQ l ⊥⊥,由三角形相似有''PP PR RQQQ =.由双曲线定义得,''PF QF e PP QQ ==。

所以PR PF RQQF=,知FR 平分PFQ ∠。

3.A 设211(4,)B y y -、2(4,)C y y -,显然2140y -≠。

又121121,42AB y k y y -==-+且AB BC ⊥,得1(2)BC k y =-+.由21112(2)[(4)]4y y y x y y x ⎧-=-+--⎪⎨=+⎪⎩,消去y ,得211(2)(21)0y y y y ++++=.由0∆≥,得0y ≤或4y ≥。

4.A 设MN :y kx b =+,代入2213x y +=,得222(13)6330k x kbx b +++-=. 由0∆>,得2213b k <+.又由AM AN =,得121212()()(2)x x x x y y +-+++12()0y y -=.因为1212()y y k x x -=-,12122()22y y k x x b ++=+++,所以212(1)()2(1)0k x x k b ++++=,将122613kbx x k+=-+代入, 得2213b k =+,代入2213b k <+,得21k <,于是11k -<<. 5.D222122222(2)44448PF a PF a PF a a a a PF PF PF +==++≥+=,当且仅当2224a PF PF = 即22PF a =时取等号。

这时14PF a =.由1212PF PF F F +≥,得62a c ≥, 即3ce a=≤,得(1,3]e ∈. 6.B 设2(,2)P t t,则2121d d t +=++(1)当6t ≤-或2t ≥时,212(11d d t +=++-.所以当2t =时, 12min ()5d d +=.(2)当62t -<<时,212(1d d t +=+,所以当t =时,12min ()5d d +=.由(1),(2)知,12min ()5d d +=。

二、7.20. 设00(,)P x y ,则22006x y -=.由1tan PA x ∠=2tan PA x ∠=,得201220tan tan 6y PA x PA x x ∠⋅∠=-=1于是2190PA x PA x ∠=-∠,由1231090PA x PA x ∠+=-∠,得120PA x ∠=.8.1(,1)2. 设00(,)P x y ,则由12PQ F F =,得202a x c c +=,即202a x c c =-. 由0a x a -<<,得22a a c a c -<-<。

解得112c a <<,即1(,1)2e ∈.9. 设圆心为(,0)a ,则圆的方程为:22()1x a y -+=.设圆与抛物线的交点为 2(2,2)P t t ,则22(2)41t a t -+=。

抛物线在点P 处的切线方程为222ty x t =+。

又上述直线与圆在点P 处的切线互相垂直,于是直线必过圆心(,0)a ,得22t a =-。

代入22(2)41t a t -+=,得24210a a --=。

解得a =(舍去正值)。

10.1625将直线与准线165x =±联立,求得169(,tan )55A θ-、1641(,tan )55B θ--。

由OA OB ⊥,得1616941()(tan )(tan )05555θθ⨯-+-⨯-=,即22sin 256cos 369θθ=, 解得16sin 25θ=。

11.,1)3设弦PQ 的中点为M ,过点P 、M 、Q 分别作左准线l 的垂线,垂足分别为 ''',,P M Q ,则'''111()()222MM PP QQ PF QF PQ e e=+=+=。

假设存在点R,则RM =,且'MM RM <,有3e >。

设BC 交x 轴于点A ,记AOC θ∠=,OC r =,则(cos ,sin )C r r θθ。

由60,30BOC OBC ∠=∠=,知90OCB ∠=,2OB r =, 于是(2cos(60),2sin(60))B r r θθ--。

点B 、C 均在抛物线22y px =上,得2222sin 2cos 4sin (60)4cos(60)r pr r pr θθθθ⎧=⎪⎨-=-⎪⎩,消去,p r ,得3tan 2tan θθ+=32k k += 三、解答题13.连结AP 交圆于点'B ,在圆中,由相交弦定理,在12PF F ∆中,由中线长公式,得22'()()PA PB PC PD OC PO OC PO OC PO ⋅=⋅=-⋅+=-=222221211(2)2a b PF PF OF +-+-=222212121[()22]2a b PF PF PF PF c +-+-⋅- =222212121[422]2a b a PF PF c PF PF +--⋅-=⋅。

又1PA PF =,有'2PB PF PB ==。

但以点P 为圆心,PB 为半径的圆与已知圆在CD 一侧的交点是唯一的(两圆的两个交点位于连心线的两侧),故'B 与B 重合。

因此,A 、P 、B 三点共线。

14. (1)设直线MA 、MF 、MB 的斜率分别为13,,k k k ,点11(,)A x y 、22(,)B x y 、(,)2p M m -,直线AB :2px ty =+。

相关文档
最新文档