原子物理学课后习题详解第6章(褚圣麟)

合集下载

原子物理学,褚圣麟第六章

原子物理学,褚圣麟第六章

2
1 1 1 1 ( 1) 1(1 1) ( 1) 2 2 2 2 2 g1 1 1 1 3 2 ( 1) 2 2
第 六 章 在 磁 场 中 的 原 子
M
M2 g 2
3 2 6 5
1 2 3 5

1 2

3 2
M
2

3 2
,
1 2

3 5

6 5
M1
h
c
3 .4
第 六 章 在 磁 场 中 的 原 子
1. 可测原子的基态的 g 值. 2. 原子处在磁场为单峰, 固体出现多个共振峰.
3. 波谱精细结构用于研究分子、固体、液体结构.
4. 超精细结构: 用于测量原子核的角动量量子数. 晶体顺磁共振吸收曲线
2l 1 个
超精细结构
(一个峰裂成几个挨近的峰)

PJ
洛伦兹单位
L
eB 4 π mc
d
dP
第 六 章 在 磁 场 中 的 原 子
附加能量
2
E Mg B B
15 g 1 4 3
例 求 P3 2 在磁场中能级的分裂。
L 1, s 1 2 , J 3 2
2 3 4 4 5 3 2
M
3 2

第 2. 原子受磁场作用的附加能量 六 e 章 E J B cos g PJ B cos 2m 在 B h 磁 J PJ cos M , 2π 场 中 M J , J 1, , J . 的 原 附加能量 E Mg B B 子 光谱项差 eh B T E hc Mg MgL 4 π m hc

原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案原子物理学习题解答原子物理学习题解答原子物理学习题解答原子物理学习题解答刘富义刘富义刘富义刘富义编编编编临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系理论物理教研室理论物理教研室理论物理教研室理论物理教研室第一章原子的基本状况1.1若卢瑟福散射用的粒子是放射性物质镭放射的,其动能为电子伏?''C67.6810?特。

散射物质是原子序数的金箔。

试问散射角所对应的瞄准距离多大?79Z?150 b解:根据卢瑟福散射公式:20022cot4422KMvbbZeZe得到:米2192150152212619079(1.600)3.97104(48.510)(7.681010)ZectgctgbK式中是粒子的功能。

212KMv1.2已知散射角为的粒子与散射核的最短距离为??,试问上题粒子与散射的金原子核2202121()(1)4sinmZerMv之间的最短距离多大?mr 解:将1.1题中各量代入的表达式,得:mr2min202121()(1)4sinZerMv1929619479(1.010)1910(1)7.68101.6010sin75米143.02101.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个电荷而质量是质子的e?两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为。

当入射粒子的动能全部转化为两180?粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:,故有:220min124pZeMvKr2min04pZerK???米19291361979(1.6010)9101.410101.6010由上式看出:与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代minr替质子时,其与靶核的作用的最小距离仍为米。

《原子物理学》(褚圣麟)第六章_磁场中的原子

《原子物理学》(褚圣麟)第六章_磁场中的原子

E eB Mg MgL 光谱项差: T hc 4mc
e 1 洛仑兹单位: L B 0.47 cm B 4mc
第6章 在磁场中的原子
结 论
E Mg B B
1.原子在磁场中所获得的附加能量与B成正比;
2.因为M取(2J+1)个可能值,因此无磁场时的原子
的一个能级,在磁场中分为(2J+1)个子能级。
1 2

第6章 在磁场中的原子 原子 Su, Cd, Hg,, Pb
史特恩-盖拉赫实验结果
g — — Mg 0 相片图样
基态
1
S0 P0 S1 / 2 P1/ 2 P2 P1 P0
Su,
Pb
3 2 2 3
0
H, Li, Na, K
Cu, Ag,, Au Tl
2
1
1 3
2/3 3/2
3 3, ,0 2
1 dB L 2 1 dB L 2 S ( ) z ( ) Mg B 2m dZ v 2m dZ v
M J , J 1, J
原子态为2s+1Lj的原子将分裂为2j+1束。 如实验中使用基态氢原子、银原子,基态原态 所以进入非均匀磁场中要分裂为两束。
2
S1 / 2 , M
PJ
E J B J B cos
B

J
e E g p J B cos 2m
h p J cos M M 2
磁量子数: M J , J 1, J 共(2J+1)个
第6章 在磁场中的原子
e E Mg B Mg B B 2m
e L g B B, 2me
J e g g 2me PJ

原子物理学课后习题详解第6章(褚圣麟)

原子物理学课后习题详解第6章(褚圣麟)

第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。

(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。

解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。

钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。

(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。

解:裂开后的谱线同原谱线的波数之差为:mcBe g m g m v πλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。

对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。

mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。

特斯拉。

00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

解:在弱磁场中,不考虑核磁矩。

2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。

原子物理学课后答案(褚圣麟)第3章第4章第6章

原子物理学课后答案(褚圣麟)第3章第4章第6章

第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。

3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。

因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。

试证明之。

证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。

所以,可以将上式的根式作泰勒展开。

只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。

非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。

因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvzed (2)把(2)式代入(1)式,得:2sin)()41(422220θπεΩ=d Mv ze Nt n dn ……(3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学第四,五,六,七章课后习题答案

原子物理学第四,五,六,七章课后习题答案

第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。

试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。

原子物理学详解答案(褚圣麟)

原子物理学详解答案(褚圣麟)

第一章 原子的基本状况若卢瑟福散射用的粒子是放射性物质镭C ' 放射的,其动能为 7.68 106 电子伏特。

散射物质是原子序数Z 79 的金箔。

试问散射角150 所对应的对准距离b 多大解:依据卢瑟福散射公式:ctg24Mv2K2b40 b22 Ze获得:Ze219 2 150bZe ctg 2(479(1.60 10 ) ctg 23.9710 15米40 K8.85 10 12) (7.68106 10 19)式中 K21 Mv2 是 粒子的功能。

已知散射角为 的 粒子与散射核的最短距离为r m (12 Ze2 (11) 4)2sin,Mv2试问上题 粒子与散射的金原子核之间的最短距离r m 多大2解:将题中各量代入r m 的表达式,得:rmin( 1 )2 Ze2 (11 )4Mvsin29 10 94 79 (1.60 10 19 )2 (1 1 ) 3.02 10 14米7.68 10 6 1.60 10 19 sin 75若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大又问假如用相同能量的氘核 (氘核带一个e 电荷而质量是质子的两倍, 是氢的一种同位素的原子核)取代质子,其与金箔原子核的最小距离多大解:当入射粒子与靶查对心碰撞时,散射角为180 。

当入射粒子的动能所有转变为两粒子间的势能时,两粒子间的作用距离最小。

依据上边的剖析可得:1Mv 2K pZe 2,故有: r minZe 24Kp24 0 rmin910 979 (1.60 10 19 ) 21.1410 13米1061.601019由上式看出: r min 与入射粒子的质量没关,所以当用相同能量质量和相同电量获得核代替质子时,其与靶核的作用的最小距离仍为1.14 10 13 米。

钋放射的一种粒子的速度为 1.597 107米 / 秒,正面垂直入射于厚度为10 7米、密度为 1.93210 4公斤 / 米3的金箔。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细

1.1解:根据卢瑟福散射公式:可能达到的最粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:79 (1.60 10 19 )213 6诂 1.14 10 一1310 6 1.60 10 _19由上式看出:r min 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核 代替质子时,其与靶核的作用的最小距离仍为1.14 10“米。

1 .原子的基本状况ctg0—b = 4- 2 Ze 2「b Ze 2得到:e24二;°K79 (1.60 1019)2ctg 曹6…,小二915 r(4 二 8.85 10-12) (7.68 106 10J9^ 3.97 10 米 式中K 一. =2 Mv 2是〉粒子的功能。

1.2已知散射角为二的:•粒子与散射核的最短距离为212 Z e 2 1r m =()77^(1-),4 二; 试问上题:•粒子与散射的金原子核之间的最短距离r m 多大?212 Ze 21解:将1.1题中各量代入r m 的表达式,得:r min = ()^(1)192=9 109 I :。

俨寫10)。

靑心02 10_14 米1.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核解:当入射粒子与靶核对心碰撞时,散射角为180:。

当入射粒子的动能全部转化为两1 Mv 2Ze 24 二;0 r min,故有:r minZe 2oK p1・7能量为3.5兆电子伏特的细「粒子束射到单位面积上质量为1.05 10-公斤/米2的银 箔上,:•粒解:设靶厚度为t '。

非垂直入射时引起:粒子在靶物质中通过的距离不再是靶物质的 厚度t ',而是t=t '/si n60,,如图1-1所示。

因为散射到与之间茁立体角内的粒子数dn 与总入射粒子数n 的比为:式中立体角元 d ; -ds/L 2,t =t '/sin60° =2t '/-3门-20°N 为原子密度。

原子物理学习题答案褚圣麟很详细

原子物理学习题答案褚圣麟很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

原子物理学《褚圣麟版》+答案

原子物理学《褚圣麟版》+答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室1.1 若卢瑟福散射用的α 粒子是放射性物质镭 C 放射的,其动能为 7.68⨯10 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150 所对应的瞄准距离 b 多大?219 2Ze ctg θ2 279 ⨯ (1.60 ⨯ 10 ) ctg 150 (4π ⨯ 8.85 ⨯ 10 ) ⨯ (7.68 ⨯ 106 ⨯ 10 )4πε 0 K α 式中 K α = 12 Mv 是α 粒子的功能。

) (1 + M v 4 π ε = ( ) (1 + Mv4π ε 0 4 ⨯ 79 ⨯ (1.60 ⨯ 10 ) 1 7.68 ⨯ 10 6 ⨯ 1.60 ⨯ 10 sin 75ο解:当入射粒子与靶核对心碰撞时,散射角为180 。

当入射粒子的动能全部转化为两7 9 ⨯ (1 .6 0 ⨯ 1 0) 2= 9 ⨯ 10 9 ⨯= 1 .1 4 ⨯ 1 0 - 1 3 米1 0 ⨯ 1 .6 0 ⨯ 1 0第一章 原子的基本状况' 6ο解:根据卢瑟福散射公式:cot θ 2= 4 π ε 0M v 2 2 Ze 2b = 4 π ε0 K α Ze 2b得到:οb == = 3.97 ⨯ 10-15 米-12 -19 21.2 已知散射角为θ 的α 粒子与散射核的最短距离为 r m = ( 1 2 Ze 2 2 0 1 s inθ 2 ),试问上题α 粒子与散射的金原子核之间的最短距离 r m 多大?解:将 1.1 题中各量代入 r m 的表达式,得: r m in 1 2 Ze 22 1 sin θ 2 )-19 2= 9 ⨯ 10 9 ⨯ ⨯ (1 +-19 )= 3 .0 2 ⨯ 1 0 -14 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可 能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?ο粒子间的势能时,两粒子间的作用距离最小。

褚圣麟原子物理学习题解答

褚圣麟原子物理学习题解答

原子物理学习题解答(褚圣麟编)第一章 原子的基本状况1.1 若卢瑟福散射用的粒子是放射性物质镭放射的,其动能为电子伏α'C 67.6810⨯特。

散射物质是原子序数的金箔。

试问散射角所对应的瞄准距离多大?79Z =150οθ=b 解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:米2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯式中是粒子的功能。

212K Mv α=α1.2已知散射角为的粒子与散射核的最短距离为θα ,试问上题粒子与散射的金原子核2202121()(14sinmZe r Mv θπε=+α之间的最短距离多大?m r 解:将1.1题中各量代入的表达式,得:m r 2min202121((14sin Ze r Mv θπε=+1929619479(1.6010)1910(17.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯米143.0210-=⨯1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个电荷而质量是质子e +的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为。

当入射粒子的动能全部转化为两180ο粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:,故有:220min124p ZeMv K r πε==2min 04p Ze r K πε=米19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯由上式看出:与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核min r 代替质子时,其与靶核的作用的最小距离仍为米。

原子物理学第四,五,六,七章课后习题答案-推荐下载

原子物理学第四,五,六,七章课后习题答案-推荐下载

原子的基态为 4S. 试求 4S 、4P 谱项的量子数修正项∆S 、∆P 值各为 多少?
K 原子的主线系波数
~
p n
n ,
~



R (4 S )2
1 p
~
p n

~


1 2.858 107
~
T4S 3.4990 106 m 1

T4S
所以 4 S
R T4P
1.3046 106 m1
第五章 多电子原子
1. He 原子的两个电子处在 2p3d 电子组态.问可能组成哪几种原子态?用
原子态的符号表示之.已知电子间是 LS 耦合.
解:p 电子的轨道角动量和自旋角动量量子数分别为 l1 1,
d 电子的轨道角动量和自旋角动量量子数分别为 l1

R (4 S )2
R R 1.0973731107 m1
4 S 1.7709
S 2.2291
R (n P )2
R (4 S )2
R T4S
m 1
,
n 4,5,
3.4990 106 m1
K 原子共振线为主线系第一条线, 是原子从 4P 到 4S 跃迁产生的光
1.2206 106 m1
~
f 1
T3D
T4F

1 1.8459 106 m
T4F T3D 5.4174 105 m 1 6.8496 105 m 1

5.4174 105 m 1
3. K 原子共振线波长为 7665Å,主线系系限波长为 2858Å. 已知 K
第四章 碱金属原子
0

原子物理学习题答案褚圣麟很详细

原子物理学习题答案褚圣麟很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细
E
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求



4F

3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013

106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t

原子物理学习题答案(褚圣麟)

原子物理学习题答案(褚圣麟)

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

原子物理褚圣麟课后习题答案和解析

原子物理褚圣麟课后习题答案和解析

原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13 m氕核情况结论相同-----------------------------------------------------------------------------------------------21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。

试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。

金的原子量为197。

解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028 个/m 3入射粒子能量 E = 1/2 MV 2 = 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27 kg ⨯ (1.597 ⨯ 107 m/s)2 = 8.47 ⨯ 10-13 J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13 J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n(90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin 145sin 14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。

《原子物理》(褚圣麟)习题解答

《原子物理》(褚圣麟)习题解答

1
3
=RH [
4.试估算一次电离的氦离子 He 、二次电离的锂离子 Li


的第一玻尔轨道半径、电离电
势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解: He 、 Li

都是类氢粒子,由玻尔理论可列表如下:
r1 ( A)
H 0.529 0.265 0.176
0
V (V )
4 0 h 2 v2 e2 m 0.529 10 10 (m) ,其中 a1 2 2 a1 4 0 a1 4 me
由此求得电子的线速度: v 2.18核转动的频率: f
v 6.56 1015 ( s 1 ) 。 2a1
电子的加速度: a
v2 8.98 10 22 (ms 2 ) 。 a1
2. 试用氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
第 4 页
~ =RH 〔 解:∵
1 1 ~ =RH 。∴ U hcR H 13.6(V ) 2 〕,电离情况对应于 n=∞,即 2 1 n e 3 RH , 4
4 2 me 4 2n 当 n 1 时, n cR 2 2 = n n 4 0 2 n 3 h 3
第 7 页
9. Li 原子序数 Z=3,其光谱的主线系可用下式表示:
~=
R R 2 (1 0.5951) (n 0.0401) 2
+++ + ++
已知 Li 原子电离成 Li 离子需要 203.44ev 的功。问如果把 Li 离子电离成 Li 离子, 需要多少 ev 的功? 解:第一步,由已知公式求出 Li Li 所需的功:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。

(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。

解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。

钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。

(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。

解:裂开后的谱线同原谱线的波数之差为:mcBe g m g m v πλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。

对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。

mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。

特斯拉。

00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

解:在弱磁场中,不考虑核磁矩。

2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。

6.4 在平行于磁场方向观察到某光谱线的正常塞曼效应分裂的两谱线间波长差是οA 40.0。

所用的磁场的B 是2.5特斯拉,试计算该谱线原来的波长。

解:对单重项(自旋等于零)之间的跃迁所产生的谱线可观察到正常塞曼效应。

它使原来的一条谱线分裂为三条,两个σ成分,一个π成分。

π成分仍在原来位置,两个σ成分在π成分两侧,且与π成分间的波数间隔都是一个洛仑兹单位L 。

又2/)1(~,1~λλλλ∆-=∆=∆=vv符号表示波长增加波数减少。

根据题设,把λ∆近似地看作σ成分与π成分间的波长差,则有:L v=∆=∆2/~λλ 其中mc Be L π4/=2D 3/22P 1/2有磁场-3/2-1/2 M 3/2 1/21/2因此,ολλA L5.4140101405.47=⨯≈∆=-米 6.5氦原子光谱中波长为)2131(1.66781121P p s D d s A →ο及)2131(1.70650311P p s S s s A →ο的两条谱线,在磁场中发生塞曼效应时应分裂成几条?分别作出能级跃迁图。

问哪一个是正常塞曼效应?哪个不是?为什么?解:(1)1,0,1,2,2,0,22221=±±====g M J S L D 谱项:。

1,0,1,1,0,11111=±====g M J S L P 谱项:L v)1,0,1(~+-=∆。

可以发生九种跃迁,但只有三个波长,所以ολA 1.6678=的光谱线分裂成三条光谱线,且裂开的两谱线与原谱线的波数差均为L ,是正常塞曼效应。

(2)对2,0,1,1,1,02213=±====g M J S L S 能级:00,0,0,1,1111103======g M g M J S L P ,能级:对L v )2,0,2(~+-=∆,所以ολA 1.7065=的光谱线分裂成三条,裂开的两谱线与原谱线的波数差均为2L ,所以不是正常塞曼效应。

6.6 2/122/1233S P Na →原子从跃迁的光谱线波长为οA 5896,在B=2.5特斯拉的磁场中发生塞曼分裂。

问从垂直于磁场方向观察,其分裂为多少条光谱线?其中波长最长和最短的两条光谱线的波长各为多少οA解:对于32,21,21,21,13222/12=±====g M J S L P 能级: 对于2,21,21,21,03112/12=±====g M J S L S 能级: L v )34,32,32,34(~--=∆,所以从垂直于磁场方向观察,此谱线分裂为四条。

根据塞曼效应中裂开后的谱线同原谱线波数之差的表达式:2/)1(~λλλ∆-=∆=∆v,L v 34/~2=∆=∆λλ 因此,波长改变λ∆为:ολλA L 54.0342==∆所以,最长的波长m ax λ为:ολλλA 54.5896max =∆+=最短的波长min λ为:ολλλA 46.5895min =∆-=6.7 S P Na 33→原子从跃迁的精细结构为两条,波长分别为5895.93埃和5889.96埃。

试求出原能级2/32P 在磁场中分裂后的最低能级与2/12P 分裂后的最高能级相并合时所需要的磁感应强度B。

解:对;34,21,23,23,21,12/32=±±====g M j s l P 能级: ;32,21,21,21,12/12=±====g M j s l P 能级:磁场引起的附加能量为:B mheMgE π4=∆ 设,,,2/122/122/32S P P 对应的能量分别为012,,E E E ,跃迁,,2/122/122/122/32S P S P →→产生的谱线波长分别为12,λλ;那么,οολλA A 93.5895,96.588912==。

P 2能级在磁场中发生分裂,,,2/122/32P P 的附加磁能分别记为12,E E ∆∆;现在寻求1122E E E E ∆+=∆+时的B 。

B mehg M g M E E E E π4)(22112112-=∆-∆=- 由此得:21121122()4E E E E eBM g M g hc hc mcπ-∆-∆==- 即:mceBg M g M πλλ4)(11221112-=-因此,有:)11(14122211λλπ--=g M g M e mc B其中2,312211-==g M g M ,将它们及各量代入上式得: B=15.8特斯拉。

6.8 已知铁的原子束在横向不均匀磁场中分裂为9束。

问铁原子的J 值多大?其有效磁矩多大?如果已知上述铁原子的速度秒米/103=v ,铁的原子量为55.85,磁极范围03.01米=L ,磁铁到屏的距离 10.02米=L ,磁场中横向的磁感应强度的不均匀度310=dydB特斯拉/米,试求屏上偏离最远的两束之间的距离d 。

解:分裂得条数为2J+1,现2J+1=9。

所以J=4,有效磁矩3为:B J J J J g P megμμ)1(2+== 而52)1(=+J J对D 5原子态:23,2,2===g S L ,因此2231021.653米安⋅⨯≈=-B J μμ 与第二章11题相似,22122122011',/,,v L L dy dB m Mg v L L dy dB m v v L tg L S N A m tg v vvL dy dB m v vL t dy dBm m f a at v B y FeFe y y μμθθμμ-=======∴====⊥⊥⊥⊥而将各量的数值代入上式,得:310799.1'-⨯=S 米原子束在经过磁场1L 距离后,偏离入射方向的距离:B Mg vL dy dB m S μ21)(21⋅-= 其中,0,1,2,3,4±±±±=M ,可见,当4±=M 时,偏离最大。

把4-=M 代入上式,得:B Fe v L dy dB A N S μ234)(2210⨯⋅⋅=把各量的数值代入上式,得:31079.2-⨯=S 米。

所以:31018.9)'(2-⨯=+=S S d米。

6.9 铊原子气体在2/12P 状态。

当磁铁调到B=0.2特斯拉时,观察到顺磁共振现象。

问微波发生器的频率多大?解:对2/12P 原子态:32,21,21,1====g J S L 由B g hv B μ=得h B g vB /μ=代入各已知数,得19109.1-⨯=秒v 。

6.10 钾原子在B=0.3特斯拉的磁场中,当交变电磁场的频率为9104.8⨯赫兹时观察到顺磁共振。

试计算朗德因子g ,并指出原子处在何种状态?解:由公式B g hvB μ=,得:2≈g钾外层只有一个价电子,所以s l s l j s -+==或,21又)1(2)1()1()1(1++++-++=j j s s l l j j g将s j l g -==和2代入上式,得到:2)1(2)1()1)(()1(1=++++---++=j j s s s j s j j j g整理,得:0)1(2=--+s j s j当21=s 时,上方程有两个根:1,2121-==j j 当21-=s 时,上方程有两个根:1,2143-=-=j j由于量子数不能为负数,因此432,,j j j 无意义,弃之。

2121211=∴=+===∴l l j j j 因此钾原子处于212S 状态。

6.11 氩原子(Z=18)的基态为01S ;钾原子(Z=19)的基态为212S ;钙原子(Z=20)的基态为01S ;钪原子(Z=21)的基态为232D 。

问这些原子中哪些是抗磁性的?哪些是顺磁性的?为什么?答:凡是总磁矩等于零的原子或分子都表现为抗磁性;总磁矩不等于零的原子或分子都表现为顺磁性。

而总磁矩为B J J J J g P megμμ)1(2+== 氩原子的基态为01S :00,0,0====J J S L μ所以有故氩是抗磁性的。

同理,钙也是抗磁性的。

钾原子的基态为212S :02,21,21,0≠====J g J S L μ,所以有,故钾是顺磁性的。

钪原子的基态为232D :054,23,21,2≠====J g J S L μ,所以有,故钪是顺磁性的。

6.22 若已知钒(F 4),锰(S 6),铁(D 5)的原子束,按照史特恩-盖拉赫实验方法通过及不均匀的磁场时,依次分裂成4,6和9个成分,试确定这些原子的磁矩的最大投影值。

相关文档
最新文档