第六章 实数单元测试题试卷

合集下载

数学第六章 实数单元测试附解析

数学第六章 实数单元测试附解析

数学第六章 实数单元测试附解析一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个 C .3个 D .4个 2.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( ) A .25B .49C .64D .813.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( ) A .132B .146C .161D .6664.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)5.2,估计它的值( ) A .小于1B .大于1C .等于1D .小于06.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个7.1的值( ) A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间8.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( ) A .1个B .2个C .3个D .4个9.若4a =,且a +b <0,则a -b 的值是( ) A .1或7B .﹣1或7C .1或﹣7D .﹣1或﹣710.在下列实数中,无理数是( ) A .337B .πC .25D .13二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.13.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .14.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.15.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.16.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.18.若x <0323x x ____________. 1946________.20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果.22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题: ①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.25.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则; 192与2的大小 ∵1922194-= 161925<< 则4195<< ∴19221940-=> ∴1922>请根据上述方法解答以下问题:比较223-与3-的大小. 26.阅读理解.459253. ∴151<251的整数部分为1, 5152.解决问题:已知a 17﹣3的整数部分,b 17﹣3的小数部分. (1)求a ,b 的值;(2)求(﹣a )3+(b +4)2172=17.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【分析】根据一个正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,可求得x,再由平方根的定义即可解答.【详解】解:由正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,解得x=﹣2,所以5﹣x=5﹣(﹣2)=7,所以a=72=49.故答案为B.【点睛】本题考查了平方根的性质,理解平方根与算术平方根的区别及联系是解答本题的关键.3.B解析:B 【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; 2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.4.D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.5.A解析:A 【分析】首先根据479<<可以得出23<<2的范围即可.【详解】<<,∵23-<<-,∴22232<<,∴021-的值大于0,小于1.2所以答案为A选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.6.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.7.B解析:B【分析】利用36<38<49得到671进行估算.【详解】解:∵36<38<49,∴67,∴51<6.故选:B.【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解本题的关键.8.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个. 故选C . 【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键.9.D解析:D 【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a 与b 的值,即可求出-a b 的值.【详解】解:∵3a ==, 且a +b <0, ∴a =−4,a =−3;a =−4,b =3, 则a −b =−1或−7. 故选D . 【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.10.B解析:B 【分析】分别根据无理数、有理数的定义即可判定选择项. 【详解】解:337,13是有理数, π是无理数, 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题11.、、、. 【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53; 如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤22的最大整数,∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.13..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.14.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.15.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,x x=-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.三、解答题21.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->-∴综上所述最大值为53,最小值为117-. 【点睛】 本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.24.(1)2 (2)①2--5,3(3)71937,,288【分析】(1)根据对称性找到折痕的点为原点O ,可以得出-2与2重合;(2)根据对称性找到折痕的点为-1,①设3表示的点与数a表示的点重合,根据对称性列式求出a的值;②因为AB=8,所以A到折痕的点距离为4,因为折痕对应的点为-1,由此得出A、B两点表示的数;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,所以设AB=a,BC=a,CD=2a,得a+a+2a=9,a=94,得出AB、BC、CD的值,计算也x的值,同理可得出如图2、3对应的x的值.【详解】操作一,(1)∵表示的点1与-1表示的点重合,∴折痕为原点O,则-2表示的点与2表示的点重合,操作二:(2)∵折叠纸面,若使1表示的点与-3表示的点重合,则折痕表示的点为-1,①设3表示的点与数a表示的点重合,则3-(-1)=-1-a,a=-2-3;②∵数轴上A、B两点之间距离为8,∴数轴上A、B两点到折痕-1的距离为4,∵A在B的左侧,则A、B两点表示的数分别是-5和3;操作三:(3)设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,设AB=a,BC=a,CD=2a,a+a+2a=9,a=94,∴AB=94,BC=94,CD=92,x=-1+94+98=198,如图2,当AB:BC:CD=1:2:1时,设AB=a,BC=2a,CD=a,a+a+2a=9,a=94,∴AB=94,BC=92,CD=94,x=-1+94+94=72,如图3,当AB:BC:CD=2:1:1时,设AB=2a,BC=a,CD=a,a+a+2a=9,a=94,∴AB=92,BC=CD=94,x=-1+92+98=378,综上所述:则折痕处对应的点所表示的数可能是198或72或378.25.2233>-【分析】根据例题得到223(3)523--=-523.【详解】解:223(3)523--=-∵162325<,∴4235<<,∴223(3)5230-=->,∴2233>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.26.(1)a=1,b17﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.。

人教版七年级数学下册《第六章实数》单元测试卷-附带答案

人教版七年级数学下册《第六章实数》单元测试卷-附带答案

人教版七年级数学下册《第六章实数》单元测试卷-附带答案(本试卷六个大题,23个小题。

满分120分,考试时间120分钟。

)学校:___________班级:___________姓名:___________考号:___________一、单项选择题(每小题3分,共18分.) 1.在实数√273,227,−√2,4π,0.102030……中,无理数有( )A .1个B .2个C .3个D .4个2.设a=√8,b=√283,c=3,则a ,b ,c 的大小关系为 ( )A .a<b<cB .a<c<bC .b<a<cD .c<b<a3.已知|5-a|+√b +6=0,则(a+b )2023的值为( )A .1B .-1C .±1D .-20234.已知a 的算术平方根是12.3,b 的立方根是-45.6,x 的平方根是±1.23,y 的立方根是456,则x 和y 可分别用含有a ,b 的式子表示为 ( )A .x=a100,y=1000b B .x=100a ,y=-b1000 C .x=a 100,y=-b1000D .x=a 100,y=-1000b5.某长方形的面积为36,且长是宽的3倍,则它的宽的值在如图所示的数轴上表示的大概位置是( )A .点AB .点C .点CD .点D6.在如图所示的方格中,每个小正方形的边长为1,如果把阴影部分剪拼成一个新的正方形,那么新的正方形的边长是 ( )A .2B .3C .√5D √6二、填空题(本大题共6小题,每小题3分,共18分)7.-√7的相反数是 . 8.√181的算术平方根是 .9.若将三个数-√2,√5,√10表示在如图所示的数轴上,则可能被墨迹覆盖的数是三个数中的 .10.写出一个无理数,使它与√2-1的和是有理数,该无理数可以是 . 11.已知√1.513=1.147,√15.13=2.472,√0.1513=0.5325,则√15103的值是 . 12.若√x +53-5=x ,则x 的值为 .三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|-6|+√16. (2)求实数x 的值:3x 2=12.14.计算:√1253+√-10003+√(-34)2. 15.计算:√-83+|√3-2|+√(-3)2.16.已知2a-1的平方根为±3,a+2b-1的立方根为2. (1)求a ,b 的值.(2)求a-2b 的算术平方根.17.已知在图1所示的5×5的方格中有两个边长为2的正方形.(1)将这两个正方形剪拼成一个大正方形,并在图2中画出示意图.(2)求(1)中拼出的大正方形的边长.(结果保留根号)图1 图2四、(本大题共3小题,每小题8分,共24分)18.下面是小贤同学探索√107的近似值的过程:∵面积为107的正方形边长是√107,且10<√107<11∴设√107=10+x,其中0<x<1,画出如图所示的示意图.∵图中S正方形=102+2×10x+x2,S正方形=107∴102+2×10x+x2=107.当x2较小时,省略x2,得20x+100≈107,得到x≈0.35,即√107≈10.35.仿照上述方法,探究√76的近似值.19.如图,已知实数-√5,-1,√5与3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离.(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a-b的值.20.小明现有一块面积为900 cm2的正方形纸板,他准备用这块纸板自制一个书架装饰品,他设计了如下两种方案:方案一:沿着边的方向裁出一块面积为750 cm2的长方形纸板.方案二:沿着边的方向裁出一块面积为750 cm2的长方形纸板,且其长宽之比为3∶2.小明设计的两种方案是否可行?若可行,说明如何裁剪;若不可行,请说明理由.五、解答题(本大题共2小题,每小题9分,共18分)21.阅读材料:∵√4<√5<√9,即2<√5<3∴1<√5-1<2∴√5-1的整数部分为1∴√5-1的小数部分为√5-2.解决问题:(1)填空:√7的小数部分是.(2)已知a是√10的整数部分,b是√10的小数部分,求式子(b-√10)a-1的平方根.22.如图,这是一个无理数筛选器的工作流程图.(1)当x的值为16时,y的值为.(2)是否存在输入有意义的x的值后,却始终输不出y值?如果存在,写出所有满足要求的x的值;如果不存在,请说明理由.(3)如果输入x的值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x的值可能是什么情况.六、解答题(本大题共12分)23.依照平方根和立方根的定义,可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫作a 的四次方根;②如果x5=a,那么x叫作a的五次方根.请依据以下两个定义解决下列问题:(1)求81的四次方根.(2)求-32的五次方根.(3)求式子中x的值:x4=16.参考答案1.C2.B3.B4.D5.C6.D7.√7 8.13 9.√5 10.答案不唯一,如:-√2 11.11.4712.-4或-5或-6 提示:∵√x +53-5=x ∵√x +53=x+5.∵立方根等于本身的数有1,-1,0 ∵x+5=1或x+5=-1或x+5=0 ∵x=-4或x=-6或x=-5. 故答案为-4或-5或-6.13.(1)解:原式=6+4 .......................................................................................................................................1分 =10. ...............................................................................................................................................................3分 (2)解:化简得x 2=4. ........................................................................................................................................2分 因为(±2)2=4,所以x=±2. ...............................................................................................................................3分 14.解:原式=5-10+34=-174. ..............................................................................................................................6分 15.解:原式=-2+2-√3+3 ...............................................................................................................................3分 =3-√3. ...........................................................................................................................................................6分 16.解:(1)∵2a-1的平方根是±3,∵2a-1=9,∵a=5. .........................................................................................1分 ∵a+2b-1的立方根是2 ∵a+2b-1=8,∵5+2b-1=8∵b=2. ............................................................................................................................................................3分 (2)把a=5,b=2代入a-2b得a-2b=5-2×2=1, ........................................................................................................................................4分 a-2b 的算术平方根是1. ...............................................................................................................................6分 17.解:(1)如图所示(答案不唯一,形状一致即可). ........................................................................................3分(2)∵S大正方形=22+22=8∵大正方形的边长为√8(或写成2√2).........................................................................................................6分18.解:∵82=64,92=81而64<76<81∵√64<√76<√81,即8<√76<9∵设√76=8+x,其中0<x<1,画出如图所示的示意图. .................................................................................4分∵图中S正方形=82+2×8x+x2,S正方形=76∵82+2×8x+x2=76.当x2较小时,省略x2,得16x+64≈76,得到x≈0.75∵√76≈8.75....................................................................................................................................................8分19.解:(1)3-√5. ...............................................................................................................................................3分(2)由题意可得,a=|-√5+1|=√5-1,b=3-√5, ..................................................................................................5分∵a-b=√5-1-(3-√5)=2√5-4...........................................................................................................................8分20.解:方案一可行. ........................................................................................................................................1分因为正方形的面积为900 cm2,所以正方形的边长为√900=30(cm).........................................................2分沿着一条边的方向裁一块面积为750 cm2的长方形所以750÷30=25(cm)故宽为25 cm, ...............................................................................................................................................3分因此裁出一个长为30 cm,宽为25 cm的长方形即可................................................................................4分方案二不可行. ..............................................................................................................................................5分理由:设长方形纸板的长为3x cm、宽为2x cm则3x·2x=750,................................................................................................................................................6分x2=125,x=√125所以长方形的长为3√125cm.因为121<125<144,所以11<√125<12所以33<3√125<36,即3√125>30.因此方案二不可行. ......................................................................................................................................8分21.解:(1)√7-2. ...............................................................................................................................................3分提示:∵4<7<9,∵2<√7<3∵√7的整数部分是2∵√7的小数部分是√7-2.(2)∵a是√10的整数部分,b是√10的小数部分∵9<10<16,∵3<√10<4∵a=3,b=√10-3, ............................................................................................................................................5分∵(b-√10)a-1=9...............................................................................................................................................7分∵9的平方根为±3∵(b-√10)a-1的平方根为±3...........................................................................................................................9分22.解:(1)√2. ..................................................................................................................................................3分(2)当x=0或1时,始终输不出y值.因为0和1的算术平方根分别是0和1,一直是有理数.................6分(3)当x<0时,开平方运算无法进行. ............................................................................................................9分23.解:(1)因为(±3)4=81,所以81的四次方根是±3.......................................................................................4分(2)因为(-2)5=-32,所以-32的五次方根是-2.................................................................................................8分(3)因为(±2)4=16,所以x=±2. ......................................................................................................................12分。

第六章 实数 单元检测卷(解析版)

第六章 实数 单元检测卷(解析版)

第六章《实数》单元检测卷一、单选题1.下列各式中错误的是( )=±0.6B=0.6A.±C.―【答案】D=±0.6,A中式子不符合题意;【解析】【解答】A.±B.=0.6,B中式子不符合题意;C.―D.=1.2,D中式子符合题意.故答案为:D.【分析】利用二次根式的性质求解即可。

2等于( )【答案】A【解析】故答案为:A.【分析】根据算术平方根的定义,即正数正的平方根。

据此求值即可.3.(七下·博白期末)16的平方根是( )A.4B.±4C.-4D.±8【答案】B【解析】【解答】解:16的平方根为±4.故答案为:B【分析】根据正数的平方根有两个,它们互为相反数,就可求出16的平方根。

4.(七下·福建期中)下列式子中,正确的是( )A=―B.――0.6C―3D=±6【答案】A―=−2,A符合题意.【解析】【解答】A.B. 原式=−,B不符合题意.C. 原式=|−3|=3,C不符合题意.D. 原式=6,D不符合题意.故答案为:A.【分析】任何数都有立方根,且都只有一个立方根.正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.(八上·南召期中)下列各式正确的是( )=1B2C―6D=―3A.±【答案】D=±1,故不符合题意;【解析】【解答】A、±B、C、=6,故不符合题意;=-3,故符合题意.D、故答案为:D.【分析】一个正数的平方根有两个,它们互为相反数,一个正数的算数平方根只有一个是一个正数;一个负数的平方的算数平方根等于它的相反数;任何一个数都只有一个立方根,一个负数的立方根是一个负数,根据性质即可一一判断。

6.下列说法正确的是( )A.负数没有立方根B.如果一个数有立方根,那么它一定有平方根C.一个数有两个立方根D.一个数的立方根与被开方数同号【答案】D【解析】【解答】解:A、错误.负数的立方根的负数.B、错误.负数没有平方根.C、错误.一个数只有一个立方根.D、正确.一个数的立方根与被开方数同号.故选D.【分析】根据立方根、平方根的意义以及性质一一判断即可.7.(七下·合肥期中)下列实数中,无理数是( )A .3.1415926BC .―D .―237【答案】B 【解析】【解答】A 、3.1415926是有理数,不符合题意;B 、是无理数,符合题意;C 、 ―=-0.8,是有理数,不符合题意;D 、 ―237是有理数,不符合题意.无理数是:.故答案为:B .【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.8.(2022七上·萧山期中)在227,3.14,π2,0.43,0.3030030003……(每两个3之间依次多一个零)中,无理数的个数有( )A .2个B .3个C .4个D .5个【答案】A【解析】【解答】解:227是分数,是有理数,不是无理数;3.14是有限小数,是有理数,不是无理数;=―3是整数,是有理数,不是无理数;π2是无限不循环小数,是无理数;0.43是循环小数,是有理数;0.3030030003……(每两个3之间依次多一个零)是无限不循环小数,是无理数;∴无理数一共有2个,故答案为:A.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可一一判断.9.(八上·遂宁期末)在实数―,3,0,0.5中,最小的数是( )A.―【答案】A<0<0.5<3,【解析】【解答】根据题意可得:―所以最小的数是―故答案为:A.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.10.(九下·云南月考)一个正方形的面积是15,估计它的边长在( ).A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【解析】【解答】∵一个正方形的面积是15,.∴其边长=<<,∴3<故答案为:C.【分析】先求出正方形的边长,再估算出其大小即可.二、填空题11.若|x-3|+ =0,则x2y的平方根是 【答案】±6【解析】【解答】解:由题意得:x-3 =0,x+2y-11=0,解得x=3,y=4,∴x2y=36,∴x2y的平方根是±6.故答案为:±6.【分析】根据非负数之和等于0的条件分别列方程,联立求解,代入原式求值,再根据平方根的定义即可解答.12.(2022七上·滨城期中)若单项式2xy m+1与单项式1x n―2y3是同类项,则m―n= .3【答案】―1【解析】【解答】∵单项式2xy m+1与单项式13x n―2y3是同类项∴n―2=1m+1=3,解得n=3m=2∴m―n=2―3=―1.故答案为:―1.【分析】根据同类项的定义可得n―2=1m+1=3,求出m、n的值,再将m、n的值代入m-n计算即可。

第六章实数单元测试卷

第六章实数单元测试卷

第六章 实数 单元测试卷一、选择题1. 25 的平方根是 ( )A . 5B . −5C . ±√5D . ±5 2. 下列等式正确的是 ( )A . ±√(−2)2=2B . √(−2)2=−2C . √−83=−2D . √0.013=0.1 3. 下列各数中,无理数的个数是 ( )3.141,−227,√−273,π,0,0.1010010001⋯A . 2B . 3C . 4D . 5 4. 设 7−√10 的整数部分为 a ,小数部分为 b ,则 (a +√10)(b −1) 的值是 ( ) A . 6 B . 2−√10 C . 1 D . −1 5. 若 a ,b 为实数,且满足 ∣a −2∣+√3−b =0,则 b −a 的值为 ( ) A . 1 B . 0 C . −1 D .以上都不对 6. 计算 ∣∣√6−3∣∣+∣∣2−√6∣∣ 的值为 ( )A . 5B . 5−2√6C . 1D . 2√6−1 7. 下列说法不正确的有 ( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③ a 2 的算术平方根是 a ;④ (π−4)2 的算术平方根是 π−4;⑤算术平方根不可能是负数.A . 5 个B . 4 个C . 3 个D . 2 个 8. 若 √a 2=−a ,则实数 a 在数轴上的对应点一定在 ( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧二、填空题9. 比较大小:√5−3 √5−22(填“>”“<”或“=”).10. 下列关于 √13 的说法中,正确的有 (填序号).① 13 的平方根是 √13;② √13 是 13 的算术平方根;③ √13 是无理数;④ 3<√13<4.11. 若 √2+a 的值为有理数,请你写出一个符合条件的实数 a 的值 . 12. 若 y =√x −12+√12−x −6,则 xy 的值为 . 13. 若 a <√6<b ,且 a ,b 是两个连续的整数,则 a b = .14. 大家知道 √2 是无理数,而无理数是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小林用 √2−1 来表示 √2 的小数部分.事实上,小林的表示方法是有道理的,因为 1<√2<2,即 √2 的整数部分是 1,所以将这个数减去其整数部分就是小数部分.如果 √5 的小数部分为 a ,√13 的整数部分为 b ,那么 a +b −√5= .15. 规定用符号 [m ] 表示一个实数 m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[√10+1] 的值为 .三、解答题16. 把下列各数填入相应的大括号内.√3,−2,√93,0,√−83,16113,3.1415,3−π,√144,3−√29,3√2,0.2121121112⋯ 整数集合:{ ⋯};非负数集合:{ ⋯};无理数集合:{ ⋯}.17. 计算:(1) √144−√169+√83;(2) ∣∣√3−2∣∣+√3;(3) √−13−√16−√(−6)2+∣∣√2−1∣∣.18. 求 x 的值:(1) x 2−24=25; (2) 8x 3=125; (3) (x −2)2=25.19. 计算并回答问题:(1) √169= ,√1.69= ,√0.0169= .(2) √21973= ,√2.1973= ,√0.0021973= .(3) 根据上述结果你发现了什么规律?请用语言概括出来;(4) 根据你发现的规律填空:如果 √15≈3.873,√150≈12.25,√613≈3.936,√6103≈8.481,则 √1.5≈ ,√0.0613≈ .20. 已知一个正方体的棱长是 7 cm ,要再做一个正方体,使它的体积是原正方体体积的 8倍,求新做的正方体的棱长.(提示:设未知数列方程)21. 若 √2a +b 与 √c −b 的值互为相反数,√1−3b 3 与 √b +13 互为相反数,求 a ,b ,c 的值.22. 已知 a 是 √10 的整数部分,b 是它的小数部分,求 (−a )3+(b +3)2 的值.23. 王老师给同学们布置了这样一道习题:一个数的算术平方根为 2m −6,它的平方根为±(m −2),求这个数.小张的解法如下:依题意可知,2m −6 是 m −2,−(m −2) 两数中的一个. ⋯⋯(1)当 2m −6=m −2 时,解得 m =4. ⋯⋯(2)所以这个数为 2m −6=2×4−6=2. ⋯⋯(3)当 2m −6=−(m −2) 时,解得 m =83. ⋯⋯(4)所以这个数为 2m −6=2×83−6=−23. ⋯⋯(5)综上可得,这个数为 2 或 −23. ⋯⋯(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请改正.24.先阅读,然后解答提出的问题.设a,b是有理数,且满足a+√2b=3−2√2,求b a的值.解:由题意得(a−3)+(b+2)√2=0,因为a,b都是有理数,所以a−3,b+2也是有理数,又因为√2是无理数,所以a−3=0,b+2=0,所以a=3,b=−2,所以b a=(−2)3=−8.问题:设x,y都是有理数,且满足x2−2y+√5y=10+3√5,求x+y的值.。

(完整版)人教版七年级数学下册第六章实数测试题(打印版7套)

(完整版)人教版七年级数学下册第六章实数测试题(打印版7套)

七年级数学《实数》测试卷、选择题(每小题3分,共30分)1、C 、下列说法不正确的是(丄的平方根是125 50.2的算术平方根是0.04、—9是81的一个平方根D 、—27的立方根是—32、若的算术平方根有意义,a的取值范围是一切数B 、正数、非负数D非零数3、若x是9的算术平方根,则x是(814、在下列各式中正确的是(、.(2)2=—2 B D 、22= 2 5、估计.76的值在哪两个整数之间75 和77 B6、F列各组数中,互为相反数的组是—2 与(2)2 B 、一2 和3 8)C 、一-与227、在一2, 4,‘ 2 , 3.14 ,4个B 、3个3 27,-,这6个数中,无理数共有()5、2个8、F列说法正确的是(数轴上的点与有理数对应、数轴上的点与无理数对应C、数轴上的点与整数—对应 D 、数轴上的点与实数--- 对应9、以下不能构成三角形边长的数组是()2 2A、1, 5, 2 B 、 3 , ,4 , ,5 C 、3, 4, 5 D 、3 , 4 ,5210、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则拓2- I a—b I等于()A、a B 、一a C 、2b + a D 、2b—a二、填空题(每小题3分,共18分)11、81的平方根是 _________ , 1.44的算术平方根是____________ 。

12、一个数的算术平方根等于它本身,则这个数应是_____________ 。

13、厂8的绝对值是 __________ 。

14、__________________ 比较大小:2" 4匹。

15、________________________________________________________ 若J25.36 = 5.036 , <253.6 = 15.906 ,贝y J253600 = ____________________ 。

(完整版)七年级数学下册第六章实数测试题及答案

(完整版)七年级数学下册第六章实数测试题及答案

第六章实数单元测试题一、选择题(每小题 3分,共30分)1.下列各式中无意义的是()4.1的立方根是(642 C. 2,7 3 D. 3 27.已知 3 1.51 =1.147,3 15.1 =2.472,30.151 =0.532 5 ,贝U 3 1510 的值是(A.C.心2 1D.x 2 2x2.在下列说法中:8的平方根是土 ,8 ;-3 是9的一个平方根;4-的平方根是9④0.01的算术平方根是 0.1 :⑤..a 4 其中正确的有(A.1 个B.2 个 2.下列说法中正确的是(A.立方根是它本身的数只有 C.平方根是它本身的数只有C.3 )D.4B. D.算数平方根是它本身的数只有 1和 绝对值是它本身的数只有 1和0 A.2 B.C.D.5.现有四个无理数6,,7,其中在实数--2+1与'.3+1之间的有 A.1 个 B.2 C.3 个 D.4 6.实数-7 ,-2,-3的大小关系是(A.24.72B.53.25C.11.47D.114.78. 若a 、3b | VF|,c辿2)3,则a,b,c的大小关系是()A. a b cB. c a bC. b a cD. c b a9. 已知x是169的平方根,且2x 3y x2,则y的值是()143A.11B. ± 11C. ± 15D.65 或310. 大于2\5且小于3-.2的整数有()A.9个B.8 个C .7 个D.5 个二、填空题(每小题3分,共30分)11. - 5绝对值是 ________ , - 5的相反数是.12. ,81的平方根是___________ , 3 64 的平方根是___________ ,-343的立方根是_________-256的算术平方根是13.比较大小: (1) .10 2 ;( 3)"01—;(4) .. 2 2.1014.当 时,3 2x x 2 3 5x 4有意义。

《实数》单元测试题

《实数》单元测试题

第六章《实数》测试卷(四)一、选择题(每小题4分,共16分) 1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是( )A .1B .2C .3D .4 2.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=,则a 的值是( )A .78 B .78- C .78± D .343512- 4.若225a =,3b =,则a b +=( ) A .-8 B .±8 C .±2 D .±8或±2 二、判断题(1分×10=10分)1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5.a 是a 的算术平方根 ( )6. 64的立方根是4± ( )7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( 三、填空题(每小题3分,共18分) 5.在-52,3π3.14,01-,21中,其中: 整数有 ; 无理数有 ; 有理数有 。

6.2-的相反数是 ;绝对值是 。

7.在数轴上表示的点离原点的距离是 。

8= 。

910.1== 。

10.若一个数的立方根就是它本身,则这个数是 。

11.9 的算术平方根是 ;2)3(-的算术平方根 ;3的平方根是12.0的立方根是 ;-8的立方根是 ;4的立方根是13.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ,一个数的算术平方根等于它本身,这个数是 14.若x x =3,则=x ;若x x =3,则=x 15.比较下列各组数的大小:⑴ 5.1- 5.1 ⑵215- 21⑶ π 14.3四、解答题(本大题共66分) 11.计算(每小题5分,共20分) (1)(2)2+-0. 01);(3(4))11-(保留三位有效数字)。

(完整版)第六章实数单元测试卷及答案,推荐文档

(完整版)第六章实数单元测试卷及答案,推荐文档

9, n x x 2 - 2 2 1 - x (-2)2 a 2 x 2 + 23 y a 2 5 x -1第六章 实数单元同步测试卷二、填空题(每小题3分,共 30 分) 811、(-4)2 的平方根是, 36 的算术平方根是, - 的立方根是.125一、选择题(每小题 3 分,共 30 分)1、下列语句中正确的是( )12、3 - 8 的相反数是, - 的倒数是 .2A.49 的算术平方根是 7B.49 的平方根是-7 13、若一个数的算术平方根与它的立方根相等,那么这个数是 .C.-49 的平方根是 7D.49 的算术平方根是± 714、下列判断:① - 0.3 是0.09 的平方根;② 只有正数才有平方根;③ - 4 是- 16 的平方2、下列实数3,-7 ,0, 2,-3.15, 3中,无理数有( ) 根;④ ( 2)2 的平方根是± 2 .正确的是(写序号). 8 3 5 5A.1 个B.2 个C.3 个D.4 个3、- 8 的立方根与4 的算术平方根的和是 () 15、如果 的平方根是±3 ,则= .A. 0B. 4C. ± 2D. ± 416、比较大小: 3 2 4、下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示,共有( )个 17、满足- < x < 的整数 x 是. 是正确的。

18、用两个无理数列一个算式,使得它们和为有理数 .A. 1B. 2C. 3D. 4 19、计算: + + x 2 - 2 = .5、下列各组数中互为相反数的是()120、小成编写了一个如下程序:输入 x → x2 →立方根→倒数→算术平方根→1 ,则x 为 。

A. - 2 与B. - 2 与 3 - 8C. - 2 与- 2 6、圆的面积增加为原来的n 倍,则它的半径是原来的D. - 2 与2 2( )三.解答题(共 90 分):A. n 倍;B. n倍 2C. 倍D. 2n 倍.21. 把下列各数填人相应的集合内:(10 分)7、实数在数轴上的位置如图,那么化简 a - b - 的结果是()A. 2a - bB. bC. - bD. - 2a + b8、若一个数的平方根是它本身,则这个数是( )A 、1B 、-1C 、0D 、1 或 09、一个数的算术平方根是 x ,则比这个数大2 的数的算术平方根是 ( )整数集合{ … } 负分数集合{ …} 正数集合{…} 有理数集合{ …} A. x 2 + 2B 、 + 2 C. D. 无理数集合{…}10、若3 x + = 0 ,则 x 和y 的关系是( )22、(10 分)求 x(1) (2x - 1)2 = 4(2) 3(x + 2)3 - 81 = 0A. x = y = 0B. x 和y 互为相反数C. x 和y 相等D. 不能确定3 a - 17 53 3 (-4)34 2 2(-4)2 2a + b 2 7 7 7 2 323、(10 分)计算 27、(10 分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积(1) - + 2 (2)(-2)3 ⨯ + ⨯ (- 1)2 - 2为 216 立方厘米,求这本书的高度.24、(10 分)已知 + b 2 - 9 = 0 ,求a + b 的值.28、(10 分)已知 2a ﹣1 的平方根是±3,3a+b ﹣9 的立方根是 2,c 是的整数部分,求a+2b+c 的值.25、(10 分)若 9 的平方根是 a,b 的绝对值是 4,求 a+b 的值?29、(10 分)如图,有高度相同的 A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水, 小颖把 A 、B 两只杯子中的水全部倒进 C 杯中,C 杯恰好装满,小颖测量得 A 、B 两只杯子底面圆的半径分别是 3 厘米和 4 厘米,你能求出 C 杯底面的半径是多少吗?26、(10 分)例如∵ < < 9, 即2 < < 3 ,∴ 的整数部分为2 ,小数部分为- 2 ,如果 小数部分为a , 的小数部分为b ,求a + b + 2 的值.ABC3 2772 3 3 3 2 3 a 3 81 - 17 2 2 2 2 2 2 2 3 3 2 3一、选择参考答案26.1.5㎝ 解析:设书的高度为 x ㎝,由题意可得(4x )3 = 216,4x = 6, x = 1.527.5㎝ 解析:设圆柱的高为 h ,C 杯的底面半径为 r ㎝,1.A2.C3.A4.B5. B6.C7.C8.D9.D 10.B二、填空由题意得:⨯ 32 ⨯ h +⨯ 42 ⨯ h = ⨯ r 2 ⨯ h ,可得r = 5 .11. ± 4,13.1,06,- 25 12.2,- 214.①④ 15.4 解 析: = (±3)2 , a = 81; 3a - 17 = = 4 .16.<17.-1,0,1,218. - 1,1- (只要符合题意即可).19.-120. ± 821.⑴ x = 3 或x = - 1⑵x=12 222.⑴ ⑵-36+ 解析:原式= - + 2 2 = 3 + 1 解析:原式=-8×4+(-4)× 4 =-32-1-3=-36 23.- 3 或- 15 解析:由题意知, 2 2-3≥ 0 b 2 - 9 ≥ 0 ,所以2a + b 2 = 0, b 2 - 9 = 0 ,可得b = ±3, a = - 9 ,故①当a = - 9 , b = 3 时, a + b = - 3 ②当a = - 9, b = -3时,2 2 2 2 a + b = - 15.2 24. ± 7 或± 125.+ 解析:因为1 < < 2 ,所以 的整数部分是 1,小数部分为 - 1 ;1 < <2 ,所以 的整数部分为 1,小数部分为 - 1,所以可得 a + b + 2 = - 1 + - 1+2= + .3 22a + b 2“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

七年级数学人教版下册《第6章 实数》 单元测试卷及答案

七年级数学人教版下册《第6章 实数》 单元测试卷及答案

人教版七年级下册数学《第6章实数》单元测试一、选择题(本大题共10小题,共40分)1. 下列式子正确的是( )A. √36=±6B. √(−7)23=−√723C. √(−3)33=−3D. √(−5)2=−52. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④算术平方根不可能是负数;⑤(π−4)2的算术平方根是4−π,其中正确的个数是( )A. 2个B. 3个C. 4个D. 5个3. 要使√(a −1)33=a −1成立,那么a 的取值范围是( )A. a ≤1B. a ≤−1C. a ≥1D. 一切实数4. 任意给定一个负数,利用计算器不断进行开立方运算,随着开立方次数增加,结果越来越趋向( )A. 0B. 1C. −1D. 无法确定5. 在实数3π,−78,0,√2,−3.14,√9,√33,0.151 551 555 1…中,无理数有( ) A. 2个 B. 3个 C. 4个 D. 5个6. |3.14−π|−π的值是( ) A. 3.14−2π B. 3.14 C. −3.14 D. 无法确定7. 下列不等式中,错误的是( ) A. −7<−5 B. 5>3 C. 1+a 2>0 D. a >−a8. 若|a −12|+(b +1)2=0,则√4a ×2√−b 的值是( )A. 2√2B. 2√6C. √3D. 4√3 9. 下列说法中正确的是( )A. ∵3的平方是9,∴9的平方根是3B. ∵−5的平方是25,∴25的负的平方根是−5C. ∵任何数的平方都是正数,∴任何数的平方根都是正数D. ∵负数的平方是正数,∴负数的平方根都是正数10. 下列说法正确的是( ) ①a 的倒数是1a ;②m 的绝对值是m ;③无理数都是无限小数;④实数可以分为有理数和无理数.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)11. 已知数轴上A 、B 两点之间的距离为√3,点A 对应的数是2,那么B 对应的数是______ .12. 若√a +b −3+√ab +4=0,则√a 2−2ab +b 2的值为______ .13. 化简|3−√10|+(2−√10)= ______ .14. 设√11的小数部分为b ,则b(b +6)的值是______ .15. √7−2的相反数是______ .16. 观察思考下列计算过程:因为112=121,所以√121=11;同样,因为1112=12321,所以√12321=111,则√1234321= ______ ,可猜想√123456787654321= ______ .三、计算题(本大题共4小题,共38分)17. 求下列各式中的未知数x 的值:(1)2x 2−8=0; (2)(x +1)3=−64; (3)25x 2−49=0; (4)−(x −3)3=8.18. 已知5+√6的小数部分是a ,4−√6的小数部分是b ,求a +b 的值.19. 若a 是(−2)2的平方根,b 是√16的算术平方根,求a 2+2b 的值.20. 当a =10时,求√(a −4)2−√(a −11)2的值,有甲、乙同学分别这样解答:甲:原式=√(10−4)2−√(10−11)2,=10−4−(10−11),=7.乙:原式=|a −4|−|a −11|,当a =10时,a −4=10−4=6>0,a −11=10−11=−1<0,所以,原式=a −4−(a −11)=7.以上两人解答对吗?为什么?四、解答题(本大题共2小题,共18分) 21. 把下列各数填在相应的括号内:√36,√15,37,π,−3.14,0,3.1⋅3⋅,0.1010010001…(每两个1之间多一个0).有理数:{______ …};无理数:{______ …};实数:{______ …}.22.23. 如图,数轴的正半轴上有A ,B ,C 三点,表示1和√3的对应点分别为A ,B ,点B 到点A 的距离与点C 到原点的距离相等,设点C 所表示的数为x .(1)x 的值为______;(2)求x(x +2)的值,并写出x(x +2)的平方根.答案和解析1.【答案】C【解析】解:A 、√36=6,故本选项错误;B 、√(−7)23=√493=√723,故本选项错误;C 、√(−3)33=−3,故本选项正确;D 、√(−5)2=√25=5,故本选项错误;故选:C .根据立方根和算术平方根的定义分别对每一项进行分析,即可得出答案.本题主要考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.2.【答案】A【解析】解:根据算术平方根概念可知:负数没有算术平方根,故此选项错误;0的算术平方根是0,故此选项错误;当a <0时,a 2的算术平方根是−a ,故此选项错误;算术平方根不可能是负数,故此选项正确;(π−4)2的算术平方根是4−π,故此选项正确.所以正确的有2个.故选:A .根据算术平方根的概念即可判断.本题考查了算术平方根,熟记定义是解题的关键.3.【答案】D【解析】解:∵要使√(a −1)33=a −1成立,∴必须a −1为一切实数,即a 为任何实数,故选:D .根据正数有一个正的立方根,负数有一个负的立方根,0的立方根是0即可得出a −1为一切实数,求出即可. 本题考查了对立方根的应用,注意:正数有一个正的立方根,负数有一个负的立方根,0的立方根是0. 4.【答案】C【解析】解:∵负数的立方根仍是负数,且两个负数绝对值大的反而小,∴结果越来越趋向−1.故选:C .由于负数的立方根仍是负数,且两个负数绝对值大的反而小,由此即可得到结果.此题主要考查了立方根的定义及性质.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.5.【答案】C【解析】解:−78,0,−3.14,√9是有理数,3π,√2,√33,0.151 551 555 1…是无理数,共有4个,故选:C .分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.6.【答案】C【解析】解:|3.14−π|−π,=π−3.14−π,=−3.14.故选:C .首先根据绝对值的性质:正数的绝对值是它的本身,负数的绝对值是它的相反数,即可去掉绝对值符号,即可化简求值.本题主要考查了绝对值的性质,正确根据绝对值的性质去掉绝对值符号是解决本题的关键.7.【答案】D【解析】解:A、−7<−5,故选项正确;B、5>3,故选项正确;C、由任何一个数的平方都是非负数,可知a2≥0,再由不等式的性质,可知1+a2≥1+0>0,故选项正确;D、当a为0或负数时,a≤−a,故选项错误.故选:D.A、B、C、D根据正数大于0,负数小于0实数大小比较的方法,结合不等式的性质,逐一进行判断即可.此题主要考查了实数大小比较的方法以及不等式的性质.本题需注意字母表示数具有任意性,D中字母a可表示一个任意的数.8.【答案】A【解析】解:∵|a−12|+(b+1)2=0,∴a−12=0,b+1=0,∴a=12,b=−1,∴√4a×2√−b=√4×12×2√1=2√2.故选:A.根据非负整数的性质得到a−12=0,b+1=0,则a=12,b=−1,然后把它们代入计算即可.本题考查了实数的运算:先进行乘法运算,再进行乘除运算,然后进行加减运算;有括号先算括号.也考查了非负整数的性质.9.【答案】B【解析】解:A、∵±3的平方是9,∴9的平方根是±3,故选项错误;B、∵−5的平方是25,∴25的负的平方根是−5,故选项正确;C、∵任何数的平方不一定正数,其中0的平方就是0,故选项错误;D、由于负数没有平方根,故选项错误.故选:B.A、B、C、D都利用平方根的定义判定即可.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.【答案】B【解析】解:a的倒数是1a ,当a=0时该结论不成立,故说法错误;m的绝对值是|m|,当m≥0时m的绝对值是m,当m<0时m的绝对值是−m,故说法错误;无理数都是无限不循环小数,故说法正确;实数可以分为有理数和无理数,故说法正确.故选:B.①根据0没有倒数即可判定;②由于正数的绝对值是它本身,负数的绝对值是其相反数,由此即可判定;③由于无理数是无限不循环小数,由此即可判定;④根据实数的分类即可判定.本题考查倒数、绝对值、有理数、无理数、实数的概念.“0没有倒数”需要特别注意;绝对值的性质“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”;实数分为有理数和无理数.11.【答案】2+√3或2−√3【解析】解:设B点对应的数是x,∵数轴上A、B两点之间的距离为√3,点A对应的数是2,∴|x−2|=√3,解得x=2+√3或x=2−√3.故答案为:2+√3或2−√3.设B点对应的数是x,再根据两点间的距离公式求出x的值即可.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.12.【答案】5【解析】解:∵√a +b −3+√ab +4=0,∴{a +b −3=0ab +4=0, 解得{a =4b =−1, ∴√a 2−2ab +b 2=√(a −b)2=|a −b|=|4+1|=5,故答案为5.根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.【答案】−1【解析】解:原式=−(3−√10)+2−√10=−3+√10+2−√10=−1.故答案为−1.利用绝对值的意义得到原式=−(3−√10)+2−√10,然后去括号、合并即可.本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.14.【答案】2【解析】解:∵3<√11<4,∴b =√11−3,∴b(b +6)=(√11−3)×(√11−3+6)=√11−3)×(√11+3)=11−9=2.故答案为:2.求出√11的范围,即可求出b 的值,最后代入求出即可.本题考查了估算无理数大小和二次根式的混合运算的应用,关键是求出b 的值.15.【答案】2−√7【解析】解:根据相反数的定义可知,√7−2的相反数是2−√7.无理数的相反数和有理数的相反数的意义相同,在一个数前面放上“−”,则该数的相反数,由此即可求解. 本题考查了实数相反数的意义,实数相反数的意义与有理数相反数的意义相同.16.【答案】1111;11111111【解析】解:∵11112=1234321,∴√1234321=1111,∵111111112=123456787654321,∴√123456787654321=11111111,故答案为:1111;11111111.根据给出的算式可以发现最中间是几,其算术平方根是几个1的平方进行解答即可.本题考查的是算术平方根的概念和数字的变化规律,根据给出的算式找出规律、根据规律正确解答是解题的关键. 17.【答案】解:(1)方程整理得:x 2=4,开方得:x =±2;(2)开立方得:x +1=−4,解得:x =−5;(3)方程整理得:x 2=4925,开方得:x =±75;(4)开立方得:x −3=−2,解得:x =1.【解析】各方程整理后,利用平方根或立方根定义开方(开立方)即可求出解.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.18.【答案】解:∵√4<√6<√9,∴2<√6<3,∴5+√6的小数部分是a ,则a =5+√6−7=−2+√6,∵4−√6的小数部分是b ,∴b =4−√6−1=3−√6,∴a +b 的值为:−2+√6+3−√6=1.【解析】首先得出√6的取值范围,进而分别得出a ,b 的值,即可得出答案.此题主要考查了估计无理数的方法,得出a ,b 的值是解题关键.19.【答案】解:根据题意知a =±√(−2)2=±2,b =√√16=√4=2,则原式=(±2)2+2×2=4+4=8.【解析】根据平方根和算式平方根得出a 、b 的值,再代入计算可得.本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义.20.【答案】解:甲错误原式=10−4−(11−10)=6−1=5,故甲错误;乙错误原式=a −4−(11−a)=a −4−11+a=5,故乙错误.【解析】根据2=a (a ≥0),可得甲的答案;根据绝对值都是非负数,可得乙的答案.本题考查了算术平方根,注意算术平方根是非负数,绝对值是非负数. 21.【答案】√36,37,−3.14,0,3.1.3., √15,π,0.1010010001…(每两个1之间多一个0), √36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0),【解析】解:有理数{√36,37,−3.14,0,3.1.3.,…}; 无理数{√15,π,0.1010010001…(每两个1之间多一个0),…}; 实数:{√36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0),…}.故答案为:√36,37,−3.14,0,3.1.3.;√15,π,0.1010010001…(每两个1之间多一个0); √36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0).整数和分数统称为有理数;无理数是无限不循环小数;有理数和无理数统称为实数.根据对应定义解答即可. 本题主要考查实数的分类,掌握有理数与无理数的概念是解决本题的关键. 22.【答案】√3−1【解析】解:(1)∵点A.B 分别表示1,√3,∴AB =√3−1,即x =√3−1;故答案为:√3−1;(2)∵x =√3−1,∴x(x +2)=(√3−1)(√3−1+2)=(√3−1)(√3+1)=3−1=2,∵2的平方根是±√2,∴x(x +2)的平方根为±√2.(1)根据数轴上两点间的距离求出AB 之间的距离即为x 的值;(2)把x 的值代入所求代数式进行计算即可.本题考查的是实数与数轴,熟知实数与数轴上的点是一一对应关系是解答此题的关键.。

七年级下-《第六章 实数》章末测试 (解析版)

七年级下-《第六章 实数》章末测试 (解析版)

七年级下册数学《第六章实数》章末测试时间:90分钟试卷满分:120分一、选择题(每小题3分,共10个小题,共30分)1.(2022•玉屏县一模)在实数0,−3,−23,|﹣2|中,最小的是()A.−23B.−3C.0D.|﹣2|【分析】首先把式子化简,根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【解答】解:|﹣2|=2,∵四个数中只有−3,−23为负数,∴应从−3,−23中选;∵|−3|>|−23|,∴−3<−23.故选:B.【点评】此题主要考查了实数的概念和实数大小的比较,得分率不高,其失分的根本原因是很多学生对数没有一个整体的概念,对实数的范围模糊不清,以至出现0是最小实数这样的错误答案.2.(2022春•鼓楼区校级期中)下列各式中,正确的是()A.(−2)2=−2B.32=−2C.−92=−3D.±9=±3【分析】根据算术平方根、平方根的概念判断即可.【解答】解:A、原式=2,不合题意;B 、原式=3,不合题意;C 、被开方数是负数,不合题意;D 、原式=±3,符合题意.故选:D .【点评】此题考查的算术平方根与平方根,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.3(2022秋•莱州市期末)π,239,−13,364,3.1416,0.3⋅,0.101101110…(每两个0之间1的个数依次加1)中,无理数的个数是()A .1个B .2个C .3个D .4个【分析】根据无理数的概念解答即可.【解答】解:364=4,故无理数有π,−13,0.101101110…(每两个0之间1的个数依次加1),共3个.故选:C .【点评】本题考查的是无理数,熟知无限不循环小数叫做无理数是解题的关键.4.(2022秋•朝阳区校级期末)下列各数中,比3大比4小的无理数是()A .3.14B .12C .310D .227【分析】根据无理数的意义,再估算出12和310的值的范围,逐一判断即可解答.【解答】解:A 、3.1是有理数,不是无理数,故A 不符合题意;B 、∵9<12<16,∴3<12<4,故B 符合题意;C 、∵8<10<27,∴2<310<3,故C 不符合题意;D 、227是有理数,不是无理数,故D 不符合题意;故选:B .【点评】本题考查了估算无理数的大小,无理数,熟练掌握估算无理数的大小是解题的关键.5.(2022春•宜秀区校级月考)下列说法正确的是()A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A 错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B 错误,无限不循环的小数是无理数,故C 错误,实数分为有理数和无理数,故D 正确.故选:D .【点评】考查了实数的概念,以及有理数和无理数概念及分类.6.(2022秋•城阳区期末)已知一个正数a 的两个平方根分别是x +5和4x ﹣15,则a =()A.49B.7C.7D.﹣7【分析】根据平方根的性质:正数有两个平方根,它们互为相反数,负数没有平方根,0的平方根是0即可求解.【解答】解:∵一个正数a的两个平方根分别是x+5和4x﹣15,∴x+5+4x﹣15=0,∴x=2,∴a=(x+5)2=(2+7)2=49,故选:A.【点评】本题主要考查了平方根,掌握平方根的性质是解题的关键.7.(2022秋•莱州市期末)如图,面积为3的正方形ABCD的顶点A在数轴上,且表示的数为﹣1,若AD=AE,则数轴上点E所表示的数为()A.3−1B.3+1C.−3+1D.3【分析】先求出张方形的边长AD,再根据向右动就用加法计算求解.【解答】解:正方形ABCD的边长为:3,∴点E所表示的数为:﹣1+3,故选:A.【点评】本题考查了实数与数轴,正方形是面积公式是解题的关键.8.(2022春•五华区校级期中)下列判断:①0.25的平方根是0.5;②只有正数才有平方根;③(25)2的平方根是±25;④﹣7是﹣49的一个平方根.其中正确的有()个.A.1B.2C.3D.4【分析】根据平方根的定义解答即可.【解答】解:①0.25的平方根是±0.5,原说法错误;②只有正数才有平方根,0也有平方根,原说法错误;③(25)2的平方根是±25,原说法正确;④﹣7不是﹣49的平方根,负数没有平方根,原说法错误.所以正确的有1个;故选:A.【点评】本题考查了平方根.解题的关键是掌握平方根的定义,注意负数不能开平方.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.9.(2022春•景县期末)一个自然数的一个平方根是a,则与它相邻的下一个自然数的平方根是()A.±�+1B.a+1C.a2+1D.±�2+1【分析】先用a表示该自然数,然后再求出这个自然数相邻的下一个自然数的平方根.【解答】解:由题意可知:该自然数为a2,∴该自然数相邻的下一个自然数为a2+1,∴a2+1的平方根为±�2+1.故选:D.【点评】本题考查算术平方根,解题的关键是求出该自然数的表达式,本题属于基础题型.10.(2021春•商河县校级期末)已知4m+15的算术平方根是3,2﹣6n的立方根是﹣2,则6�−4�=()A.2B.±2C.4D.±4【分析】利用算术平方根,立方根定义求出m与n的值,代入原式计算即可求出值.【解答】解:∵4m+15的算术平方根是3,∴4m+15=9,解得m=﹣1.5,∵2﹣6n的立方根是﹣2,∴2﹣6n=﹣8,解得n=5 3,∴6�−4�=10+6=4.故选:C.【点评】本题考查了算术平方根、立方根的定义.解题的关键是掌握算术平方根、立方根的定义.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.二、填空题(每小题3分,共8个小题,共24分)11.(2022秋•浑南区月考)25的平方根为;6的算术平方根为;﹣64的立方根为.【分析】根据平方根、算术平方根以及立方根的定义进行计算即可.【解答】解:∵(±5)2=25,∴25的平方根为±25=±5;6的算术平方根为6;﹣64的立方根为3−64=−4;故答案为:±5,6,﹣4.【点评】本题考查平方根、算术平方根,立方根,理解平方根、算术平方根以及立方根的定义是正确解答的前提.12.(2022秋•莲湖区校级月考)计算16的平方根结果是.【分析】根据算术平方根以及平方根的定义解决此题.【解答】解:∵16=4,∴16的平方根是±4=±2.故答案为:±2.【点评】本题主要考查算术平方根以及平方根,熟练掌握算术平方根以及平方根的定义是解决本题的关键.13.已知368.8=4.098,36.88=1.902,则36880=.【分析】把6.88的小数点向右移动3位得出数6880.即可得出答案.【解答】解:∵36.88=1.902,∴36880=19.02,故答案为:19.02.【点评】本题考查了立方根的应用,注意:被开方数的小数点每移动3位,立方根的小数点移动一位.14.(2022•南京模拟)有一个数值转换器,原理如下:当输入的x=9时,输出的y等于.【分析】根据算术平方根的概念计算即可.【解答】解:∵9=3,3为3的算术平方根,且是无理数,∴输出的y等于3,故答案为:3.【点评】本题主要考查算术平方根及无理数的概念,熟练掌握其算术平方根及无理数的概念是解题的关键.15.(2022秋•龙岗区期中)若m,n满足�−1+|n+15|=0,则�−�的平方根是.【分析】根据非负数的性质求出m和n的值,再代入�−�计算可得答案.【解答】解:由题意得,m﹣1=0,n+15=0,解得m=1,n=﹣15,∴�−�=1+15=4,∴�−�的平方根是±2.故答案为:±2.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.16.(2022春•永定区校级月考)已知点A与数轴上表示−3的点重合,若一只蚂蚁从点A 出发沿数轴向右爬行一个单位长度后到达点B,则点B表示的数为.【分析】根据题意可知,点A表示的数为−3,根据数轴上的点表示的数右边>左边,向右爬行一个单位长度,则将点A表示的数加1即可.【解答】解:∵点A表示的数为−3,∴点B表示的数=−3+1,故答案为:−3+1.【点评】本题主要考查了数轴上的点和无理数的加法,掌握数轴上的点表示的数右边>左边是解题的关键.17.(2022秋•丰泽区校级期末)已知31−2�与33�−7互为相反数,则x=.【分析】直接利用相反数的定义结合立方根的性质得出等式求出答案.【解答】解:∵31−2�与33�−7互为相反数,∴1﹣2x+3x﹣7=0,解得:x=6.故答案为:6.【点评】此题主要考查了实数的性质,正确掌握立方根的性质是解题关键.18.(2022秋•九龙坡区期末)正方形ABCD在数轴上的位置如图所示,点A、B对应的数分别为﹣2和﹣1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C所对应的数为0;则翻转2022次后,点C所对应的数是.A.B.2021C.2022D.2023【分析】结合数轴发现根据翻折的次数与点C应的数字的关系即可做出判断.【解答】解:正方形ABCD每翻转4次为一个循环,第一次翻转C在0,第五次翻转到了4,第九次翻转到了8,依次类推,第2022次翻转到了2021,转2022次点C所对应的数为2020.故答案为:2020.【点评】本题考查和数轴有关的规律变化问题,关键是明白正方形ABCD每翻转4次为一个循环.三、解答题(共8个小题,共66分)19.(每小题4分,共8分)(2022秋•龙口市期末)计算:(1)(2)2−(−3)2+(3−9)3+364.(2)﹣12020+(−2)2−327+|2−3|【分析】(1)先计算平方根、立方根、平方和立方,最后计算加减.(2)首先计算乘方、开方和绝对值,然后从左向右依次计算即可.【解答】解:(1)(2)2−(−3)2+(3−9)3+364=2﹣3﹣9+4=﹣6.(2)﹣12020+(−2)2−327+|2−3|=﹣1+2﹣3+2−3=−3.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.20.(每小题4分,共8分)(2022秋•北碚区校级月考)解方程:(1)5(x+1)2﹣125=0;(2)(3x+2)3﹣1=61 64.【分析】(1)根据平方根的定义得出答案;(2)根据立方根的定义得出答案.【解答】解:(1)∵5(x+1)2﹣125=0,∴5(x+1)2=125,∴(x+1)2=25,∴x+1=±5,∴x=4或﹣6;(2)∵(3x+2)3=6164+1,∴(3x+2)3=12564,∴3x+2=54,∴x=−14.【点评】本题考查了平方根,立方根,注意一个正数的平方根有2个是解题的关键.21.(8分)(2021春•饶平县校级期末)已知3�−2+2=x,且33�−1与31−2�互为相反数,求x,y的值.【分析】已知第一个等式变形得到立方根等于本身确定出x的值,再利用相反数之和为0列出等式,将x的值代入即可求出y的值.【解答】解:∵3�−2+2=x,即3�−2=x﹣2,∴x﹣2=0或1或﹣1,解得:x=2或3或1,∵33�−1与31−2�互为相反数,即33�−1+31−2�=0,∴3y﹣1+1﹣2x=0,即3y﹣2x=0,∴x=2时,y=43;当x=3时,y=2;当x=1时,y=2 3.【点评】此题考查了立方根,以及实数的性质,熟练掌握立方根的定义是解本题的关键.22.(8分)(2022秋•萧县期中)已知实数a,b,c满足(a﹣2)2+|2b+6|+5−�=0.(1)求实数a,b,c的值;(2)求�−3�+�的平方根.【分析】(1)直接利用非负数的性质结合偶次方的性质、绝对值的性质、算术平方根的性质得出a,b,c的值;(2)直接利用平方根定义得出答案.【解答】解:(1)∵(a﹣2)2+|2b+6|+5−�=0,∴a﹣2=0,2b+6=0,5﹣c=0,解得:a=2,b=﹣3,c=5;(2)由(1)知a=2,b=﹣3,c=5,则�−3�+�=2−3×(−3)+5=4,故�−3�+�的平方根为:±2.【点评】此题主要考查了非负数的性质,正确掌握相关性质得出a,b,c的值是解题关键.23.(8分)(2022秋•北仑区期中)如图,一只蚂蚁从A点沿数轴向右直爬2个单位长度到达点B,点A表示−2,设点B所表示的数为m,(1)求m的值.(2)求|m﹣3|+m+2的值.【分析】(1)根据数轴上的点运动规律:右加左减的规律可求出m的值;(2)主要将m的值代入到代数式中即可,只要注意运算的顺序和绝对值的计算方法即可.【解答】解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位到达点B,∴点B所表示的数比点A表示的数大2,∵点A表示−2,点B所表示的数为m,∴m=−2+2;(2)|m﹣3|+m+2=|−2+2+3|−2+2+2=5−2−2+4=9﹣22.【点评】此题主要考查了实数运算以及实数与数轴,根据已知得出m的值是解题关键.24.(8分)(2022秋•新泰市期末)已知4a﹣11的平方根是±3,3a+b﹣1的算术平方根是1,c是20的整数部分.(1)求a,b,c的值;(2)求﹣2a+b﹣c的立方根.【分析】(1)根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,根据4<20<5可得c的值;(2)把a、b、c的值代入所求代数式的值,再根据立方根的定义计算即可.【解答】解:(1)∵4a﹣11的平方根是±3.∴4a﹣11=9,∴a=5,∵3a+b﹣1的算木平方根是1,∴3a+b﹣1=1,∴b=﹣13;∵c是20的整数部分,4<20<5,∴c=4.(2)3−2�+�−�=3(−2)×5+(−13)−4,=3−27,=﹣3,∴﹣2a+b﹣c的立方根是﹣3.【点评】本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.25.(8分)(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【分析】(1)设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=52,而面积为400平方厘米的正方形的边长为20厘米,由于152>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为2:3;(2)根据(1)中的长方形纸片的长和宽即可得出结论.【解答】解:(1)解:设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得,3x•2x=300,6x2=300,x2=50,∵x>0,∴x=50=52,∴长方形纸片的长为152cm,答:长方形纸片的长是152cm,宽是102cm;(2)不同意小于同学的说法.理由:∵50>49,∴52>7,∴152>21.∴长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长,∴不能用这块纸片裁出符合要求的长方形纸片.【点评】本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.26.(10分)(2022春•铁东区期末)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来.于是小明用(2−1)来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵4<7<9,即∵2<7<3,∴7的整数部分是2,小数部分为(7−2).(1)17的整数部分是,小数部分是.(2)5的小数部分为a,13的整数部分为b,则a+b−5的值;(3)已知:10+3=x+y,其中x是整数,且0<y<1,求x﹣y的值.【分析】(1)根据算术平方根的定义估算无理数17的大小即可;(2)估算无理数5,13的大小,确定a、b的值,再代入计算即可;(3)估算10+3的大小,结合题意得出x、y的值,代入计算即可.【解答】解:(1)∵16<17<25,即4<17<5,∴17的整数部分为4,小数部分为17−4,故答案为:4,17−4;(2)∵2<5<3,3<13<4,∴5的小数部分a=5−2,13的整数部分b=3,∴a+b−5=5−2+3−5=1,答:a+b−5的值为1;(3)∵1<3<2,∴11<10+3<12,又∵10+3=x+y,其中x是整数,且0<y<1,∴x=11,y=10+3−11=3−1,∴x﹣y=11−3+1=12−3.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是正确估算的前提,理解不等式的性质是得出答案的关键.。

人教版七年级下册数学第六章实数 单元测试训练卷含答案

人教版七年级下册数学第六章实数 单元测试训练卷含答案

22.方案一可行.
因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为 4=2(m).
如图所示,沿着 EF 裁剪,因为 BC=EF=2 m,所以只要使 BE=CF=3÷2=1.5(m)就满足条
件.
方案二不可行.理由如下: 设所裁长方形装饰材料的长为 3x m、宽为 2x m. 则 3x·2x=3,
11. 1- 2 的相反数是_______,绝对值是_________.
12. 我们可以利用计算器求一个正数 a 的算术平方根,其操作方法是按顺序进行按键输入:
3 a = .小明按键输入 3 1 6 = 显示结果为 4,则他按键输入
3 1 6 0 0 = 显示结果应为____. 13. 计算:| 2- 3|+ 2=________. 14. 一个正数的平方根分别是 x+1 和 x-5,则 x=________. 15. 有两个正方体纸盒,已知小正方体纸盒的棱长是 5 cm,大正方体纸盒的体积比小正方体 纸盒的体积大 91 cm3,则大正方体纸盒的棱长是__ __cm. 16. 现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为 1 000 cm3,小正方体茶叶 罐的体积为 125 cm3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点 A 到地 面的距离是________cm.
()
A.2 倍 B.3 倍
C.4 倍 D.5 倍
7. 实数 a,b 在数轴上对应点的位置如图所示,则化简 (a-1)2- (a-b)2+b 的结果
是( )
A.1
B.b+1
C.2a
D.1-2a
8. 制作一个表面积为 30 cm2 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )
A. 6 cm B. 5 cm

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。

部编数学七年级下册【单元测试】第六章实数(综合能力拔高卷)(解析版)含答案

部编数学七年级下册【单元测试】第六章实数(综合能力拔高卷)(解析版)含答案

人教版七年级数学下册【单元测试】第六章实数(综合能力拔高卷)(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。

在每小题给出的四个选项中只有一项是符合题目要求的。

a-是16的平方根,则a的值为()1.(2021·全国·七年级期末)若3A.4B.4±C.256D.1-或7【答案】D【分析】根据平方根的定义得到a-3=4,或a-3=-4,即可求出a的值.a-是16的平方根,【详解】解:∵3∴a-3=4或a-3=-4,∴a=7或a=-1.故选:D【点睛】本题考查了平方根的定义,熟知16的平方根是±4是解题关键.2.(2020·江苏昆山·七年级期中)下列各数:1,π3数的个数为()A.2B.3C.4D.5【答案】A【分析】根据无理数的定义:“无限不循环的小数是无理数”逐个分析判断即可.【详解】解:1,3p ==13,是有理数,,p 2个,故选A【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有p 的数.3.(2022·江苏无锡·七年级期末)下列各式中,正确的是( )A .4=±B 3=±C 3=D 4=-【答案】A【分析】根据平方根、算术平方根、立方根的定义逐项分析即可.【详解】解:A.4±,正确;3=,故不正确;3=-,故不正确;4=,故不正确;故选A .【点睛】本题考查了平方根、算术平方根、立方根的定义,熟练掌握定义是解答本题的关键.4.(2021·广西三江·七年级期中)若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数【答案】B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B .【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.5.(2021·广东·深圳市沙井中学七年级期中)下列判断中,你认为正确的是( )A .0的倒数是0B .2p是分数C .34D 3【答案】C【分析】根据倒数的概念即可判断A 选项,根据分数的概念即可判断B 选项,根据无理数的估算方法即可判断C 选项,根据算术平方根的概念即可判断D 选项.【详解】解:A 、0不能作分母,所以0没有倒数,故本选项错误;B 、2p属于无理数,故本选项错误;C 、因为 9<15<16,所以 34,故本选项正确;D 3,故本选项错误.故选:C .【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.6.(2021·福建福安·七年级期中)点A 在数轴上的位置如图所示,则点A 表示的数可能是( )A B C D 【答案】A 【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A 表示的数在4至4.5之间,A 、∵16<18<20.25,∴,故该选项符合题意;B 、∵9<10<16,∴,故该选项不符合题意;C 、∵20.25<24<25,∴,故该选项不符合题意;D 、∵25<30<36,∴,故该选项不符合题意;故选:A .【点睛】本题考查实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.7.(2021·广西港口·七年级期中)﹣π,﹣3A .3p -<-<<B .3p -<-<<C .3p -<-<<D .3p -<-<<【答案】B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430p -»-<-<,1.5<=,1.5>=,则3p -<-<<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.8.(2021·吉林珲春· )A .3与4B .4与5C .5与6D .12与13【答案】B【分析】估算即可得到结果.【详解】解:162225<<Q ,\45<<,故选:B .【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.9.(2021·河南伊川·七年级期中)有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A B.2C D.【答案】C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2,即y=.故选:C.【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.10.(2022·北京·七年级期末)我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a的值是()A.5B.4C.3D.2【答案】A【分析】根据“铺地锦”的定义计算即可.【详解】解:设3下面的数字为x根据“铺地锦”的定义310a x a =+,解得5a x =∵5ax =必须是正整数,且a 为十位上的数字∴5a =故选:A【点睛】本题考查新定义;能够理解新定义,3a 的结果用各位数字正确表示出来是解题的关键.二、填空题:本题共8个小题,每题3分,共24分。

人教版数学七年级下册-第六章《实数》单元测试(含答案)

人教版数学七年级下册-第六章《实数》单元测试(含答案)

第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。

人教版七年级下册数学第六章实数-测试题含答案

人教版七年级下册数学第六章实数-测试题含答案

人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。

12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。

第六章《实数》单元测试卷

第六章《实数》单元测试卷

第六章《实数》单元测试卷(全卷共四个大题,满分150分,考试时间120分钟)一.选择题(每小题4分,共48分)1.在0,2π,3.14151617…,16 )A .1B .2C .3D .42 ) A .3B .3-C .3±D .53.0.49的算术平方根的相反数是( ) A .0.7-B .0.7±C .0.7D .04.下列等式成立的是( )A 7=±B 7=-C .37=- D .(27=-5.下列说法正确的是( ) A .一个数的算术平方根一定是正数 B .1的立方根是1±C 5=±D .2是4的平方根6.若2a =,则( ) A .10a -<<B .01a <<C .12a <<D .23a <<7.下列说法正确的是( ) A .有理数与数轴上的点一一对应 B .任意一个无理数的绝对值都是正数C .两个整数相除,如果永远都除不尽,那么结果一定是一个无理数D 是一个近似值,不是准确值8.代数式()21m +)0m ≥,21x + 2 )A .1个B .2个C .3个D .4个9.若M =,12N =,则M ,N 的大小关系是( ) A .M N > B .M N <C .M N =D .无法比较10.如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴 上,(点E 在点A 的右侧)且AB AE =,则E 点所表示的数为( )AB .1+C D 211.实数a 、b 在数轴上对应点的位置如图,则a b - )A .2a b -B .2b a -C .bD .b -12()230y +=,则()2019x y +等于( )A .1-B .1C .20193-D .20193二.填空题(每小题4分,共16分) 13.若264x =,则x = .14.若5+5a ,b ,则a b += .152= .16.任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,2=,现对69进行如下操作:69【2】=1,这样对69只需进行3次操作后变为1.(1)对200进行 次操作后变为1;(2)对正整数p 只进行三次操作后的结果是1,则p 的最大值是 .三.解答题(每小题8分,共16分) 17.计算:(134+ (2(2122++.18.求下列各式中的x 的值:(1)381250x +=; (2)()2390x --=.四.解答题(每小题10分,共70分)19.已知31a -的立方根是2,2a b -的平方根是3±,求a b -的值.20.已知:一个数有两个平方根,分别是3a +和212a -,求这个数.21是无理数,而无理数是无限不循环小数,因22212<<,∴12.于是可以1的小数部分,又例如:∵22223<<,即23的整数部分是22.请解答下列问题:(1的整数部分是 ,小数部分是 .(2)已知a 是3的整数部分,b 是其小数部分,求a b -的值.222160y -=. (1)求x 、y 的值;(223.若一个正数的两个平方根分别是21m -和2m -,n 是8的立方根,c 的整数部 分,求m n c ++的算术平方根.24.观察如图1所示图形,每个小正方形的边长为1.(1)则图中阴影部分的面积是 ,边长是 .(2)已知x 为阴影正方形边长的小数部分,y 求:①x ,y 的值: ②()2x y +的算术平方根.25.操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示1-的点重合,则表示2-的点与表示 的点重合;(2)折叠纸片,使表示1-的点与表示3的点重合,回答以下问题: ①表示5的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为13(A 在B 的左侧),且A 、B 两点经折叠后重合,此时点A 表示的数是 ;点B 表示的数是 .③ 的点重合;(3)已知数轴上P ,Q 两点表示的数分别为1-和3,有一只电子小蜗牛从P 点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P 的距离是到点Q 的距离的2倍?《实数》单元测试卷答案(全卷共四个大题,满分150分,考试时间120分钟)一.选择题(每小题4分,共48分)1.在0,2,3.14151617…,6)A.1B.2C.3D.4【答案】D【解答】解:在0,2π,3.14151617…,16这些数中,无理数有,2π,3.14151617,共4个.故选:D.2)A.3B.C.D.5【答案】A【解答】解:∵239=,3=,故选:A.3.0.49的算术平方根的相反数是()A.B.C.0.7D.0【答案】A【解答】解:0.490.7=,则0.49的算术平方根的相反数为:0.7-.故选:A.4.下列等式成立的是()A B C.D.【答案】C【解答】77=≠±,故选项A不成立;77==≠-,故选项B不成立;3-3±0.7-0.7±7=±7=-37=-(27=-,故选项C 成立;(277=≠-,故选项D 不成立;故选:C .5.下列说法正确的是( ) A .一个数的算术平方根一定是正数 B .1的立方根是 CD .2是4的平方根【答案】D【解答】A 、0的平方根是0,0不是正数,故本选项不符合题意; B 、1的立方根是1,故本选项不符合题意; C 5=,故本选项不符合题意; D 、2是4的平方根,故本选项符合题意. 故选:D .6.若,则( )A .B .C .D . 【答案】B【解答】23,∴021<, 即, 故选:B .7.下列说法正确的是( ) A .有理数与数轴上的点一一对应 B .任意一个无理数的绝对值都是正数C .两个整数相除,如果永远都除不尽,那么结果一定是一个无理数D 是一个近似值,不是准确值 【答案】B【解答】解:A .实数与数轴上的点一一对应,因此选项A 不符合题意; B .任意一个无理数的绝对值都是正数,因此选项B 符合题意;37=-1±5=±2a =10a -<<01a <<12a <<23a <<01a <<C .两个整数相除,结果可能是循环小数,而循环小数是有理数,因此选项C 不符合题意; D.是一个无理数,是准确值,不是近似值,因此选项D 不符合题意.故选:B .8.代数式,中一定是正数的( )A .1个B .2个 C .3个D .4个【答案】B【解答】解:∵当1m =-时,()210m +=, ∴()210m +≥; 当0m≥0≥,210x +>20>0,∴代数式,, 中一定是正数的有:,,共2个.故选:B . 9.若,,则M ,N 的大小关系是( ) A . B .C .D .无法比较【答案】A 【解答】解:111234244--==, ∵109>, 3, 30>,∴304>, ∴1142>. ()21m +)0m ≥21x +2()21m +)0m ≥21x +221x +214M =12N =M N >M N <M N =∴. 故选:A .10.如图,面积为5的正方形的顶点A 在数轴上,且表示的数为1,若点E 在数轴 上,(点E 在点A 的右侧)且,则E 点所表示的数为( )AB .C .D【答案】B【解答】解:∵正方形的面积为5,且AD AE =,∴AD AE ==∵点A 表示的数是1,且点E 在点A 右侧, ∴点E 表示的数为.故选:B .11.实数a 、b 在数轴上对应点的位置如图,则 )A .B .C .D .【答案】C【解答】解:根据题意得:0a b <<, ∴0a b -<,∴()()a b a b a b a a b -=--=---=.故选:C .12,则等于( )A .B .1C .D .【答案】AM N >ABCD AB AE =1+22+2ABCD 1+a b -2a b -2b a -b b -()230y ++=()2019x y +1-20193-20193【解答】,∴2x=,3y=-,∴=()201923-=.故选:A.二.填空题(每小题4分,共16分)13.若264x=,则x=.【答案】8±【解答】解:∵()2864±=,∴8x=±.故答案为:8±.14.若5+5a,b,则a b+=.【答案】1【解答】解:∵34,∴859+<,152-<,∴583a==,514b=-=,∴341a b+=+=.故答案为:1.152=.【答案】9【解答】2()230y+=()2019x y+1-=423+=9故答案为:916.任何实数a ,可用表示不超过a 的最大整数,如,,现对69进行如下操作:69】=1,这样对69只需进行3次操作后变为1.(1)对200进行次操作后变为1;(2)对正整数p 只进行三次操作后的结果是1,则p 的最大值是. 【答案】3;255【解答】解:(1)第一次操作:14=,第二次操作后:3=.第三次操作后:1=.故答案为:3; (2)最大的是255,∵15=,3=,1=,而16=,4=,2=,1=, 即只需进行3次操作后变为1的所有正整数中,最大的正整数是255, 故答案为:255.三.解答题(每小题8分,共16分) 17.计算:(1 (2.【答案】(1)2-;(2)4【解答】解:(1)原式()343+- =13- =2-;[]a []44=2=234(2122++(2)原式=213+=4.18.求下列各式中的x 的值:(1); (2).【答案】(1)52x =-;(2)16x =,20x = 【解答】解:(1)∵∴38125x =-∴31258x -=解得,52x =-;(2)∵ ∴()239x -= ∴33x -=±,解得,16x =,20x =.四.解答题(每小题10分,共70分)19.已知31a -的立方根是2,2a b -的平方根是3±,求a b -的值. 【答案】6【解答】解:由题意得,33128a -==,()2239a b -=±=. ∴3a =,3b =-. ∴()336a b -=--=.20.已知:一个数有两个平方根,分别是3a +和212a -,求这个数. 【答案】36【解答】解:∵一个数有两个平方根分别是3a +和212a -, ∴32120a a ++-=, 解得3a =, ∴3336a +=+=,381250x +=()2390x --=381250x +=()2390x --=∴这个数是2636=.21是无理数,而无理数是无限不循环小数,因的小数部分我们不可能全部写出来,∵,∴.于是可以的小数部分,又例如:∵,即的整数部分是2.请解答下列问题: (1的整数部分是,小数部分是 .(2)已知a是的整数部分,b 是其小数部分,求的值. 【答案】(1)44;(2)7 【解答】解:(1)∵45,44; 故答案为:44; (2)∵23, ∴536+<,∴的整数部分5a =,小数部分352b =+=, ∴)527a b -=-=22. (1)求x 、y 的值; (2是有理数还是无理数,并说明理由.【答案】(1)2x =,4y =±;(2)见解析 【解答】解:(1. ∴280x y -=,2160y -=, ∴2x =,4y =±;22212<<12122223<<2323a b -3+2160y -=2160y -=(24===,4是有理数;==是无理数,是有理数或无理数.23.若一个正数的两个平方根分别是和,n 是8的立方根,c的整数部 分,求的算术平方根. 【答案】2【解答】解:∵一个正数的两个平方根分别是和, ∴2120m m -+-=, 解得:1m =-, ∵n是8的立方根, ∴2n =, ∵91116<<, ∴34, 的整数部分是3, ∴3c =,∴1234m n c ++=-++=, ∴的算术平方根为2.24.观察如图1所示图形,每个小正方形的边长为1. (1)则图中阴影部分的面积是 ,边长是 . (2)已知x 为阴影正方形边长的小数部分,y 求:①x ,y 的值: ②的算术平方根.21m -2m -m n c ++21m -2m -m n c ++()2x y +【答案】(1)13(2)①3x =,3y =;【解答】解:(1)设阴影部分面积为1554232512132⨯-⨯⨯⨯=-=, ∵阴影部分为正方形,∴阴影部分的面积为13故答案为:13(2)①∵34,3,即3x =,又∵34,3, 即3y =,故3x =,3y =; ②当3x =,3y =时,())223313x y +=+=.所以25.操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示1-的点重合,则表示2-的点与表示 的点重合;(2)折叠纸片,使表示1-的点与表示3的点重合,回答以下问题: ①表示5的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为13(A 在B 的左侧),且A 、B 两点经折叠后重合,此时点A 表示的数是 ;点B 表示的数是 .()2x y +③ 的点重合;(3)已知数轴上P ,Q 两点表示的数分别为1-和3,有一只电子小蜗牛从P 点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P 的距离是到点Q 的距离的2倍?【答案】(1)2;(2)①3-;②112-,152;③2;(3)4秒或43秒 【解答】解:(1)∵表示1的点与表示1-的点重合, ∴纸片是沿着0点进行折叠的, ∴表示2-的点与表示2的点重合, 故答案为:2;(2)①∵表示1-的点与表示3的点重合, 又∵1312-+=, ∴纸片是沿着表示1的点进行折叠的, ∴表示5的点与表示3-的点重合, 故答案为:3-;②设点A 表示的数是x ,则点B 表示的数是13x +, ∵A 、B 两点经折叠后重合,∴1312x x ++=, 解得112x =-,∴11151322-+=,∴点A 表示的数是112-,点B 表示的数是152, 故答案为:112-,152;③∵纸片是沿着表示1的点进行折叠的,2-的点重合,故答案为:2;(3)设运动时间为t 秒,小电子小蜗牛运动的点表示的数为x , ∴12x t =-+,∵它到点P 的距离是到点Q 的距离的2倍, ∴123x x +=-,解得7x =或53x =, 当53x =时,5213t -=,解得43t =,当7x =时,217t -=,解得4t =, ∴运动4秒或43秒时,它到点P 的距离是到点Q 的距离的2倍。

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。

人教版七年级数学下册第6章《实数》单元测试题

人教版七年级数学下册第6章《实数》单元测试题

《实数》单元测试卷一、选择题(24分)1.在﹣,﹣,0,1四个数中,最大的数是()A.1B.0C.﹣D.﹣2.9的平方根为()A.3B.﹣3C.±3D.3.下列各式正确的是()A.(﹣3)2=6B.C.﹣14=﹣1D.4.下列各数中是无理数的是()A.﹣3B.πC.9D.﹣0.115.估算的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.下列各数:3.141592,,0.16,﹣π,2.010010001…(相邻两个1之间0的个数逐次加1),,,是无理数的有()个.A.5B.6C.3D.47.下列说法正确的是()A.无限小数都是无理数B.8没有立方根C.数轴上的所有点与有理数一一对应D.平方根等于本身的数是08.如图,在数轴上,点A表示,点B表示5.1,则A,B之间表示整数的点共有()A.6个B.5个C.4个D.3个二、填空题(28分)9.请你写出两个无理数,使其和为,这两个无理数可以是.10.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.11.已知一个x平方根是a+3和3a﹣15,则这个正数x=.12.若|3x﹣2y+1|+=0,则xy的算术平方根是.13.如果=1.264,=2.723,那么=.14.已知﹣1<a<,则a可取的整数值为.15.比较大小:π+1 4.142;﹣1 1.6;+3 0;0.61.16.如果的小数部分为a,的整数部分为b,小数部分为c,则a﹣b+c﹣的值为(精确到0.01).17.对于实数x,我们规定[X)表示大于x的最小整数,如[4)=5,[)=2,[﹣2.5)=﹣2,现对64进行如下操作:64[)=9[)=4[)=3[[)=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是.三、解答题(49分)18.把下列各数填入相应的括号里.,,0,,,﹣0.5,3.1415,0.02002000,﹣0.2121121112⋯(相邻两个2之间1的个数逐次加1).(1)正实数:{…};(2)负实数:{…};(3)有理数:{…};(4)无理数:{…}.19.计算:(1).(2).(3).20.计算.(1)已知(x﹣2)2=16,求x的值.(2)已知3(x+1)3=81,求x的值.21.已知2b﹣2a的立方根是﹣2,4a+3b的算术平方根是3.(1)求a、b的值;(2)求5a﹣b的平方根.22.观察下列两组算式,解答问题:第一组:=2,=2,、,=0第二组:=2,=3,=9,=16,=0(1)由第一组可得结论:对于任意实数a,=.(2)由第二组可得结论:当a≥0时,=.(3)利用(1)和(2)的结论计算:=,=.23.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a,b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果(a﹣2)+b+3=0,其中a,b为有理数,那么a=,b=.(2)如果a﹣(1﹣)b=5,其中a,b为有理数,求a+2b的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数单元测试题试卷一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个B .2个C .3个D .4个 2.已知253.6=15.906,25.36=5.036,那么253600的值为( )A .159.06B .50.36C .1590.6D .503.6 3.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=± 4.在-2,117,0,23π,3.14159265,9有理数个数( ) A .3个 B .4个 C .5个 D .6个5.下列各式正确的是( )A .164=±B .1116493=C .164-=-D .164=6.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤7.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②8.下列各组数中,互为相反数的是( ) A .2-与2 B .2-与12- C .()23-与23- D .38-与38-9.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .310.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上 B .线段BC 上 C .线段CD 上 D .线段DE 上二、填空题11.一个正数的平方根是21x -和2x -,则x 的值为_______.12.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).13.若()221210a b c -+-=,则a b c ++=__________.14.规定运算:()a b a b *=-,其中b a 、为实数,则154)15+=____15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.27的立方根为 .17.3是______的立方根;81的平方根是________32=__________.18.若x <0323x x ____________.19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________. 20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫ ⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值. 22.下面是按规律排列的一列数:第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.23.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫ ⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) . (2)若 5,2a ⎛⎫- ⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).24.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯= 计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F (2)=12,故①正确; ∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小 ∴F (24)=42=63,故②是错误的; ∵27=1×27=3×9,且3和9的绝对值差最小∴F (27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.D解析:D【分析】根据已知等式,利用算术平方根性质判断即可得到结果.【详解】,=×100=503.6,故选:D.【点睛】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.3.C解析:C【分析】A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.【详解】A2=,故选项错误;B、13=±,故选项错误;C、2(=5,故选项正确;D2,故选项错误.故选:C.【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.4.C解析:C【分析】根据有理数包括整数和分数,无理数包括无限不循环小数、开方开不尽的数、含π的数,逐一判断,找出有理数即可得答案.【详解】-2、0是整数,是有理数,117、3.14159265是分数,是有理数, 23π是含π的数,是无理数,,是整数,是有理数,综上所述:有理数有-2,117,0,3.141592655个, 故选C.【点睛】本题考查实数的分类,有理数包括整数和分数;无理数包括无限不循环小数、开方开不尽的数、含π的数. 5.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】4=,故原选项错误;=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.6.D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.7.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.8.C解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.9.D解析:D【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x1-,解得.故选D.10.B解析:B【分析】+1的取值范围进而得出答案.【详解】<<解:∵实数m,23∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.【点睛】二、填空题11.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.12.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b)※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.13.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a、b、c的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用解析:1 2【分析】先根据绝对值、算术平方根、偶次方的非负性求出a、b、c的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 14.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算17.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.20.-4【分析】(1)根据正实数平方根互为相反数即可求出m的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键. 三、解答题21.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.22.(1)12,32,52;(2)2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+4037(1)4038-)=40372. 【分析】根据有理数的运算法则,即可求解;按照规律,写出第2019个数:2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+()4037-14038 ),化简后,算出结果,即可.【详解】解:(1)12,32,52(2)第2019个数:2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+()4037-14038)=2019-1436523456⨯⨯⨯⨯×…×4038403740374038⨯=2019-12=40372 【点睛】 本题主要考查有理数的乘方和四则混合运算,关键是观察分析出前几个数之间的变化规律,写出第2019个数的形式,并进行计算.23.(1)不是;是;(2)a=37-;(3)见解析;(4)(4,35)或(6,57)【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题;【详解】解:(1)-2-1=-3,-2×1+1=1,∴-2-1≠-2×1+1,∴(-2,1)不是“共生有理数对”,∵3-12=52,3×12+1=52, ∴3-12=3×12+1, ∴(3,12 )是“共生有理数对”; 故答案为:不是;是;(2)由题意得: a-5()2- =512a -+, 解得a=37-. (3)是.理由:-n-(-m )=-n+m ,-n•(-m )+1=mn+1∵(m ,n )是“共生有理数对”∴m-n=mn+1∴-n+m=mn+1∴(-n ,-m )是“共生有理数对”,(4)3344155-=⨯+; 5566177-=⨯+ ∴(4,35)或(6,57)等. 故答案为:是,(4,35)或(6,57) 【点睛】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1) =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.25.(1)2550;(2)50505150a m +【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.26.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>= ∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。

相关文档
最新文档