直梁·弯曲变形
工程力学第八章 直梁弯曲
§8-5 提高梁抗弯强度的主要措施
二、选择合理的截面形状
Mw y σ= Iz
Mw——横截面上的弯矩,N·m或N·mm; y——点到中性轴z的距离,m或mm; Iz——截面对中性轴z的惯性矩,m4或mm4。
最大正应力:σ max
M w ymax M w = = Iz Wz
Wz =
Iz ymax
Wz为抗弯截面系数,单位为m3或mm3。
§8-3 弯曲正应力
工程中常见梁截面图形惯性矩和抗弯截面系数计算公式 截面图形 惯性矩 抗弯截面系数
弯曲内力——剪力和弯矩 §8-2 弯曲内力 剪力和弯矩
2.弯矩的正负规定
梁弯曲成凹面向 上时的弯矩为正 梁弯曲成凸面向 上时的弯矩为负
弯矩的计算规律:某一截面上的弯矩,等于该截面 左侧或右侧梁上各外力对截面形心的力矩的代数和。
弯曲内力——剪力和弯矩 §8-2 弯曲内力 剪力和弯矩
三、弯矩图
1.弯矩方程与弯矩图
§8-1 平面弯曲的力学模型
(1)活动铰链支座 (2)固定铰链支座 (3)固定端支座
§8-1 平面弯曲的力学模型
3.载荷的基本类型 (1)集中力
(2)集中力偶 (3)分布载荷
F1
集中力
(分布力)
§8-1 平面弯曲的力学模型
4.静定梁的力学模型
名称
简支 梁
描
述
图
示
一端为活动铰链支座, 另 一端为固定铰链支座的梁 一端或两端伸出支座外的 简支梁,并在外伸端有载 荷作用 一端为固定端,另一端为 自由端的梁
土木工程力学基础 直梁弯曲
3)外伸梁:简支梁的一端或两端伸出支座之外的梁。
。
二、梁的内力
1、外力特征及变形特点
外力特征:垂直杆轴方向作用外力,或杆轴平面内作用外力偶; 变形特点:杆轴由直变弯。
平面弯曲—荷载与反力均作用在梁的纵向对称平面内, 梁轴线在该平面内弯成一条曲线。
F
q
A
Me 纵 向
对称面
B x
y FAy
FBy
2、剪力和弯矩
突变,突变值 不变 为F
有尖点
有突变,突变值 为M
剪力突变的截 弯矩突变的某一
面
侧
2)内力FQ 、M 的变化规律,归纳如下:
q(x) 0 q C 0 q C 0 F
MO
荷载
水平直线 Q-图 + or - 上斜直线 下斜直线
F
(剪力图 无突变)
斜直线
M-图 or
下凸
上凸 F处有尖角
MOo
抛物线 抛物线
各点的正应力。
A l2
Fl
F B
C l2
h6 h2
a
b
h
c
b
a
M B ya IZ
1 FL h
2 bh3
3
12
1.65MPa
b 0
c
M B yc IZ
1 FL h
2 bh3
2
12
MB
1 2
FL
2.47MPa (压)
IZ
bh3 12
四、梁的正应力及其强度条件
4、正应力强度条件
要使梁有足够的强度,必须使梁内的最大的工作应力不超 过材料的许用应力。即
《土木工程力学基础》
直梁弯曲
本单元学习目标
工程力学第八章__直梁弯曲
(3)构件特征:具有一个以上对称面的等截
面直梁。
§8-1 平面弯曲的力学模型
二、梁的力学模型 1.梁的结构形式 工程中梁的轴 线多为直线。无论截 面形状如何,在计算 简图中的梁,一般均 用与梁轴线重合的一 段直线表示
§8-1 平面弯曲的力学模型
2.梁的支座 梁的支撑情况,要通过分析来确定在载 荷作用平面内支座对梁的约束类型以及相 应的约束反力数目。一般情况下,可将梁 的支承简化为以下三种典型支座之一:
§8-2 弯曲内力——剪力和弯矩
管钳的应用分析
在拧、卸管状零件 时,常常要使用管钳给 管件施加转矩,将管件 拧紧或卸下。当拆卸连 接牢固的管子时,常在 钳柄部分加套管,以增 大转矩。那么,在这种 情况下,钳牙是否会损 坏?
1一固定牙 2一可动牙 3-圆螺母 4一齿条 5一弹簧 6-钳柄 7-销轴
§8-2 弯曲内力——剪力和弯矩
2.改变加载方式,在结构允许的条件下,应 尽可能把集中力改变为分散力
集中力改变为分散力
§8-5 提高梁抗弯强度的主要措施
工程应用
吊车与平板车
吊车简图
平板车过桥
§8-5 提高梁抗弯强度的主要措施
3.增加约束 如图a所示,某变速器 换挡杆1需要加工一个R8的 月牙槽,以往是把月牙槽 铣刀悬挂地装在铣床主轴 上,利用工作台的升降进 行铣削加工。
§8-3
弯曲正应力
2.中性轴与中性层
§8-3 弯曲正应力
二、正应力的分布规律
横截面上各点正应力的大小与该点到中性轴 的距离成正比:
y
max
y max
在中性轴处纤维长度不变,此处 不受力,正应力为零。
第1节 平面弯曲的概念和实例
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
二、静定梁的基本形式 梁的支座形式:工程中常见的梁的支座有以下三 种形式。 1)固定铰支座:如图a所示,固定铰支座限制梁在 支承处任何方向的线位移,其支座反力可用两个正 交分量表示,即沿梁轴线方向的 FAx 和垂直于梁轴 线方向的FAy。
第七章 直梁弯曲时的内力和应力
第一节
平面弯曲的概念和实例
一、平面弯曲 弯曲变形:当杆件受到垂直于轴线的外力作用或 受到作用面平行于轴线的外力偶作用时,杆件的 轴线会由直线变为曲线,这种变形称弯曲变形。 梁:以弯曲变形为主的杆件称作梁。 直梁:工程中常见的轴线是直线的梁。 平面弯曲:若梁的外力及支 座反力都作用在纵向对称面 内,则梁弯曲时轴线将变成 此平面内的一条平面曲线, 该弯曲变形称为平面弯曲。
或
第七章 直梁弯曲时的内力和应力 2)活动铰支座:如图b所示,活动铰支座只能限制 梁在支承处垂直于支承面的线位移,支座反力可用 一个分量FRA表示。 3)固定端支座:如图c所示,固定端支座限制梁在 支承处的任何方向线位移和角位移,其支座反力有 两个正交力FAx、FAy和一个力偶分量MA。
或
MA
第七章 直梁弯曲时的内力和应力 静定梁的形式:根据梁的支座情况,工程中常见 的静定梁可以简化成以下三种形式。 1)简支梁:梁的支座一端是 固定铰支座,另一端是活 动铰支座。 2)外伸梁:梁的支座与简支 梁相同,只是梁的一端或 两端伸出在支座之外。 3)悬臂梁:梁的一端自由, 另一端是固定支座。
第七章 直梁弯曲时的Biblioteka 力和应力三、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力F。单位 为牛顿(N)或千牛顿(kN)。 2)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶M。单位为牛 顿· 米(N· m)或千牛顿· 米(KN· m)。 3)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载 荷q。其大小用载荷集度表 示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
08第八章 弯曲变形
二、梁计算简图 1支座形式与支反力 作用在梁上的外力,包括载荷和支座反力 载荷和支座反力。工程中常见支座有以下 载荷和支座反力 三种形式: (1)固定铰支座。如图8-3(a)所示,固定铰支座限制梁在支承处 固定铰支座。 固定铰支座 任何方向的线位移,其支座反力可用2个正交分量表示,沿梁轴线方 向的XA和垂直于梁轴线方向的YA。 (2)活动铰支座。如图8-3(b)所示,活动铰支座只能限制梁在支 活动铰支座。 活动铰支座 承处垂直于支承面的线位移,支座反力可用一个分量FRA表示。 (3)固定端。如图8-3(c)所示,固定端支座限制梁在支承处的任 固定端。 固定端 何方向线位移和角位移,其支座反力可用3个分量表示,沿梁轴线方 向的XA和垂直于梁轴线方向的YA,以及位于梁轴平面内的反力偶 MA。
解:(1)列弯矩方程 选取A为坐标原点,坐标轴如图8-13所示。在截 面x处切开,取左段为研究对象,列平衡方程: (2)作弯矩图 由弯矩方程可知,弯矩M为x的一次函数,所以 弯矩图为一条斜直线。(由两点可画出一条直线)
例8-7图8-14(a)所示悬臂梁,在全梁上受集度 为q的均布载荷作用。作该梁的弯矩图。
例8-1:如图8-8所示悬臂梁,求图中1-1和2-2截 面上的剪力和弯矩。
解: (1) 计算1-1上的剪力和弯矩。 假想在1-1截面处把梁截开,考虑左段梁的平衡, 剪力和弯矩按正方向假设。
得:
(2) 计算2-2上的剪力和弯矩。假想在2-2截面 处把梁截开,考虑左段梁的平衡,剪力和弯矩按 正方向假设。
弯矩图如图8-11(b)所示,由于在C点处有集中力 偶Mo作用,C点左侧与C点右侧弯矩不变,有突变, 突变值即为集中力偶Me。如b>a,则最大弯矩发生 在集中力偶作用处右侧横截面上 。
例8-5:图8-12(a)所示简支梁,在全梁上受集 度为q的均布载荷,作此梁的弯矩图。
直梁的弯曲及组合变形与压杆稳定——教案
直梁的弯曲及组合变形与压杆稳定——教案一、教学目标:1. 让学生了解直梁弯曲的基本概念,掌握梁弯曲的弹性理论。
2. 使学生理解组合变形及压杆稳定的基本原理,能够分析实际工程中的相关问题。
3. 培养学生的动手实践能力,通过实例分析提高学生解决工程问题的能力。
二、教学内容:1. 直梁弯曲的基本概念:直梁、弯曲、剪力、弯矩等。
2. 梁弯曲的弹性理论:弯曲应力、弯曲变形、弯曲强度计算等。
3. 组合变形:拉伸、压缩、弯曲、剪切等组合变形的分析方法。
4. 压杆稳定的基本原理:压杆稳定条件、压杆失稳现象、压杆稳定计算等。
5. 实例分析:分析实际工程中的直梁弯曲、组合变形与压杆稳定问题。
三、教学方法:1. 采用讲授与讨论相结合的方式,让学生掌握直梁弯曲及组合变形与压杆稳定的基本理论。
2. 通过案例分析,使学生能够将理论知识应用于实际工程问题。
3. 利用动画、图片等辅助教学手段,帮助学生形象地理解抽象的概念。
4. 安排课堂讨论,鼓励学生提问、发表观点,提高学生的参与度。
四、教学安排:1. 课时:本章共计12课时。
2. 教学方式:讲授、案例分析、课堂讨论。
3. 教学进程:第1-4课时:直梁弯曲的基本概念及弹性理论。
第5-8课时:组合变形及压杆稳定的基本原理。
第9-12课时:实例分析及练习。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,给予相应的表现评价。
2. 课后作业:布置相关练习题,检验学生对知识的掌握程度。
3. 课程报告:要求学生选择一个实际工程案例进行分析,报告应包括问题分析、计算过程和结论。
通过课程报告评价学生的实践能力。
4. 期末考试:设置有关直梁弯曲、组合变形与压杆稳定的题目,考察学生的综合运用能力。
六、教学资源:1. 教材:《材料力学》、《结构力学》等相关教材。
2. 辅助材料:PPT课件、动画、图片、案例资料等。
3. 实验设备:力学实验仪、弯曲实验装置、压杆实验装置等。
4. 网络资源:相关学术期刊、在线课程、论坛等。
弯曲变形——精选推荐
第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
弯曲变形的概念
9—1 弯曲变形的概念一、弯曲与平面弯曲1、弯曲:直杆在垂直于杆轴的外力作用下,杆的轴线变为曲线,这种变形叫弯曲。
2、梁:以弯曲为主变形的构件称为梁。
其特点:a、形状:轴线是直的,横截面至少有一个对称3m m由∑x=0 ∑y=0;—Q m+R A=0 Q∑y=0∑m=0 0∑m=0;—R A+M m=0,Q m——剪力 M m——弯曲梁平面弯曲时截面产生两种内力 : 剪力Q二、Q,M正负号的规定四、讨论:1、要正确区别性质符号和运算符号。
所谓正,负Q,M是指性质符号而言2、Q x=∑左·y 或 Q x=∑右·y, M x=∑左·M 或M x=∑右·M3、可用“简便方法”计算截面内力六、求剪力和弯矩的基本规律(1)求指定截面上的内力时,既可取梁的左段为脱离体,也可取右段为脱离体,两者计算结果一致(方向,转向相反)。
一般取外力比较简单的一段进行分析(2)梁内任一截面上的剪力Q的大小,等于这截面左边(或右边)的与截面平行的各外力的代数和。
若考虑左段为脱离体时,在此段梁上所有与y轴同向的外力使该截面产生正剪力,而所有与y轴反向的外力使该截面产生负剪力;若考虑右段为脱离体时,在此段梁所有与y轴同向的外力梁上作用任意荷载q (x ):(1)取出梁中一微段d x (d x 上认为荷载是均匀的);(2)设截面内力:Q (x ),M (x )。
利用 ∑y =0。
则:Q (x )+q (x )d x —[Q (x )+d Q (x )]=0d Q (x )=q (x )d x即 d Q (x )/d x =q (x )剪力对x 的一阶导数等于荷载 ∑0M =0M (x )—[M (x )+d M (x )]+Q (x )d x +q (x )d x d x /2=0即; d M (x )/d x =Q (x ) 弯矩对x 的一次导等于剪力(1) q (x )=0 (无线荷载)d Q (x )/d x =q (x )=0 说明剪力方程是常数。
力学基础-(八) 梁的弯曲
ql FQ (l ) 2
用两点式画出剪力图的斜直线。
x
4. 画弯矩图
M(0) 0
ql 2 M(l / 2)
8
M(l) 0
用三点坐标描出弯矩图的二次曲线。
13
任务八 梁的弯曲
弯曲剪力图和弯矩图
2.画剪力图和弯矩图的简便方法
(1)集中力作用处
剪力图有突变,突变幅值等于力 的大小,方向与力同向。
x
(4)集中力偶作用处 剪力图不变化。
弯矩图有突变,突变幅值等于力偶矩的大小,方向顺时针向上突变,反之 向下。
14
任务八 梁的弯曲
弯曲剪力图和弯矩图
应用举例
例 图示跨长为l的简支梁AB,中点C 作用集中力F,试用简便画法画
梁剪力图和弯矩图。
F
A
l/2 FA=F/ FQ 2 F/
C l/2
B FB=F/
MA
A FA
x
l
FQ
F
F B
x
M
Fl
x
从上例可以得出
结论1:无荷载作用的梁段上 剪力图为常量; 弯矩图为斜直线。
确定直线两点的坐标,A点的临近截 面A+的弯矩值
MA+=-Fl
B点的临近截面B -的弯矩值 MB-=-F·=0
12
任务八 梁的弯曲
弯曲剪力图和弯矩图
应用举例
例 图示的简支梁AB,作用均布荷载q,建立剪力、弯矩方程,画梁的
MA
A FA
x
l
FQ
F
M
-Fl
F
B
xC
FA
x
FQ
ql/
2
xM
l/2
ql/
梁的弯曲-变形刚度计算
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
C'
y
1'
1
Байду номын сангаас
y f ( x)
——挠曲线方程
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
1'
y
C'
1
在小变形下: 即:
dy y tan dx
——转角方程
任一横截面的转角 = 挠曲线在该截面形心处切线的斜率
2
9 ql 2 128
M max
1 2 M A ql 8
例 14 试作图示超静定梁的剪力图和弯矩图。
q
5.讨论 设MA为多余约束力 列变形几何方程
A Aq AM 0
A
A l
B 原结构
q MA A B 静定基
查表
Aq
ql M Al , AM A 24 EI 3 EI
5Fl 3 Fl 2 Fl 3 l 6 EI 3 EI 2 EI
F A l C l
Me B
yBM
A F A C B
e
BM
B
e
Me
BF
yBF
3. Me和F共同作用时
2 M e l Fl 2 B BM e BF EI 2 EI 2 M e l 2 5Fl 3 y B y BM e y BF EI 6 EI
2.确定积分常数
FBy=
l
Me l
由 y x 0 0, D 0
直梁弯曲的概念和实例
集中力作用处剪力图有突变,变化值等于集中力的大小;
弯矩图上无突变,但斜率发生突变,弯矩图上为折角点。 在集中力偶作用处,弯矩图上发生突变,突变值为该集中力 偶的大小而剪力图无改变。
2 .各种荷载下剪力图与弯矩图的形态:
向下的均布荷载
一段梁上的 外力情况
q<0
无荷载
集中力
集中力偶
F C
m
C
向右下倾斜的直线
二、 受弯构件的简化
梁的计算简图:梁轴线代替梁,将荷载和支座加到轴线上。
吊车大梁简化实例
1、梁支座的简化
a)滑动铰支座
b)固定铰支座
c)固定端
MR
FRx
FRx
FR
FRy
FRy
2、载荷的简化
(a)集中荷载
F1
集中力
M
(b)分布荷载
q(x) q
集中力偶
任意分布荷载
均布荷载
3、梁的基本形式
(a)悬臂梁
负号表示假设方向与实际方向相反。
建议:求截面FS和M时,均按规定正向假设, 这样求出的剪力为正号即表明该截面上的剪力为 正的剪力,如为负号则表明为负的剪力。对于弯 矩正负号也作同样判断。
§4-4 剪力方程和弯矩方程 剪力图和弯矩 图
FS FS ( x) 剪力、弯矩方程: M M ( x)
解:1.求支座反力
0, FA FB F 0 l M A ( F ) 0, FB l F 3 0 2 1 得 FA F , FB F 3 3
y
F
2.求截面1-1上的内力
FS D
2 FA F 3
2 M D FA a Fa 3
第13讲第7章-直梁的弯曲-
主要内容:
1.直梁平面弯曲的概念 2.梁的类型及计算简图 3.梁弯曲时的内力(剪力和弯矩) 4.梁纯弯曲时的强度条件 5.梁弯曲时的变形和刚度条件梁纯弯曲源自的强度条件1.梁纯弯曲的概念
剪力弯曲 平面弯曲
纯弯曲
剪力FQ≠0 弯矩M ≠ 0
剪力FQ=0 弯矩M ≠ 0
在梁的纵向对称面内,两端施加等值、反 向的一对力偶。在梁的横截面上只有弯矩 而没有剪力,且弯矩为一常数,这种弯曲 为纯弯曲 。
2.梁纯弯曲时横截面上的正应力
1)变形特点 :
横向线仍为直线,只是 相对变形前转过了一个 角度,但仍与纵向线正 交。纵向线弯曲成弧线, 且靠近凹边的线缩短了, 靠近凸边的线伸长了, 而位于中间的一条纵向 线既不缩短,也不伸长。
平面假设:梁弯曲变形后,其横截面仍为平面,并垂 直于梁的轴线,只是绕截面上的某轴转动了一个角度。
由平面假设可知,纯弯 曲时梁横截面上只有正 应力而无切应力。由于 梁横截面保持平面,所 以沿横截面高度方向纵 向纤维从缩短到伸长是 线性变化的,因此横截 面上的正应力沿横截面 高度方向也是线性分布 的。以中性轴为界,凹 边是压应力,使梁缩短, 凸边是拉应力,使梁伸 长,横截面上同一高度 各点的正应力相等,距 中性轴最远点有最大拉 应力和最大压应力,中 性轴上各点正应力为零。
弯矩图的规律
1.梁受集中力或集中力偶作用时,弯矩图 为直线,并且在集中力作用处,弯矩发生转 折;在集中力偶作用处,弯矩发生突变,突 变量为集中力偶的大小。
2.梁受到均布载荷作用时,弯矩图为抛物 线,且抛物线的开口方向与均布载荷的方向 一致。
3.梁的两端点若无集中力偶作用,则端点 处的弯矩为0;若有集中力偶作用时,则弯 矩为集中力偶的大小。
工程力学梁的变形教学PPT
Fbl 2 16 EI
0.0625
Fbl 2 EI
26
可见在集中荷载作用于右支座附近这种极端情况下,跨中
挠度与最大挠度也只相差不到3%。因此在工程计算中,只要 简支梁的挠曲线上没有拐点都可以跨中挠度代替最大挠度。
当集中荷载F作用于简支梁的跨中时(b=l/2),最大转角
qmax和最大挠度wmax为
A
B 即选择A端固定B端自由的悬臂梁
L
FBy 作为基本静定梁。
MA
q
A
L
(2)解除A端阻止转动的支座反力
B
矩 M作A 为多余约束,即选择两端简
支的梁作为基本静定梁。
39
基本静定基选取可遵循的原则: (1) 基本静定基必须能维持静力平衡,且为几何不变 系统; (2) 基本静定基要便于计算,即要有利于建立变形协 调条件。一般来说,求解变形时,悬臂梁最为简单, 其次是简支梁,最后为外伸梁。
x3 6
C1x
C2
该梁的边界条件为:在 x=0 处 w 0,w =0
于是得
C1 0,C2 0
16
从而有 转角方程 q w Fxl Fx2
EI 2EI 挠曲线方程 w Fx2l Fx3
2EI 6EI
当x=L时:
qmax q
|xl
Fl 2 EI
Fl 2 2EI
Fl 2 2EI
静定梁(基本静定基) — 将超静定梁的多余约束解除,得到
相应的静定系统,该系统仅用静力平衡方程就可解出所有反力
以及内力。
多余约束 — 杆系在维持平衡的必要约束外所存在的多余约
束或多余杆件。
q
多余约束的数目=超静定次数
B 多余约束的数目=1
材料力学第四章弯曲变形
习题: 182页,5-11、13、15
第4章
弯曲变形
叠加法
§4-4 梁的刚度校核提高梁的刚度 的措施
1、梁的刚度校核
保证梁的正常工作除要满足强度条件外,产生 的变形也不能太大,应满足刚度条件,即有:
wmax w l l
w 其中, 与 l
qmax q
第4章
弯曲变形
叠加法
2、提高刚度措施
除外加载荷外,梁的位移w、q还与梁的弯曲刚 度EI成反比,与跨长l的n次方成正比,因此,提高 刚度的措施有:
1)升高EI。 各种钢材E相差不大,主要提高I,在截面面积 A不变时,尽可能使面积分布远离中性轴。 如工字形、箱形等截面。
2)减少梁的跨度或增加支承。 如下图所示结构:
从以上两例题知: 转角及挠度方程中的积分常数C,D的几何意义为: C EIw ' x 0 EIq 0
D EIw0
θ0和w0分别代表坐标原点处截面的转角和挠度。 梁的刚度条件
wmax w
q max q
其中[q]称为许用转角;[w]称为许用挠度。
习题: 180页,5-2、3、5
Fl q B1 q C1 2 EI
2
(顺时针)
第4章
弯曲变形
叠加法
对图b,可得D截面的挠度和转角为:
F
·
(b)
wD2
直线
wD 2
wD2
F 2l 3EI
F 2l 2 EI
3
qD2
qD2 BD qB 2
wB2
2
qD2
同理可得此时B截面的挠度和转角为:
wB 2
8Fl3 4 Fl 2 14Fl3 wD 2 q D 2 BD l (向下) 3EI 2 EI 3EI
3.3梁的弯曲变形分析
单位为M Pa
MM-和y截面上的弯矩 均以绝对值代入,至于弯曲 (N.mm) 正应力是拉应力还是压应力,则 y--计算点到中性轴距离(mm) 由欲求应力的点处于受拉侧还是 4 受压侧来判断。受拉侧的弯曲正 Iz--横截面对中性轴惯性矩 mm 应力为正,受压侧的为负。
推导过程
1)沿y轴线性分布,同 一坐标y处,正应力相 等。中性轴上正应力为 零。
梁发生平面弯曲时,横截面上一般产生两种 内力,即剪力和弯矩。
d A dA
dA
dA FS dA M M FS
dA M dA FS
在横截面上,只有法向内力元素dN=σdA才能合成
弯矩M,只有切向内力元素d FS =τdA才能合成剪力 FS
• 在横截面上,只有弯矩M,没有剪 力Fs,这种弯曲称为纯弯曲; • 横截面上同时有弯矩M和剪力Fs, 这种弯曲称为横力弯曲。
0.2L
M
qL2 8
x
M
qL2 40 qL2 50
+
x
+
qL2 50
合理布置载荷
F=qL q
L
L
M
qL2 4
x +
M
qL2 8
x +
合理布置载荷
F=qL F=qL
对称
L/5 4L/5
M
qL2 4
M x +
qL2/10
x
合理布置载荷
2. 合理选择梁的截面,用最小的截面面积得 到大的抗弯截面模量。
推论:
梁在弯曲变形时,上面部分纵向纤维缩短, 下面部分纵向纤维伸长,必有一层纵向纤维 既不伸长也不缩短,保持原来的长度,这一纵 向纤维层称为中性层。 中性层与横截面的交线称为中性轴
第7章 直梁弯曲
第7章直梁弯曲本章要点●理解弯曲的概念和实例●掌握截面法求剪力和弯矩●掌握剪力方程和弯矩方向,剪力图和弯矩图●掌握横力弯曲(剪切弯曲)时正应力和切应力的计算●掌握横力弯曲变形的计算●掌握提高弯曲强度的措施,7.1梁的类型及计算简图7.1.1对称弯曲的概念承受设备及起吊重量的桥式起重机的大梁(图7-1)、承受转子重量的电机轴(图7-2)等,在工作时最容易发生的变形是弯曲。
其受力特点是:杆件都是受到与杆轴线相垂直的外力(横向力)或外力偶的作用。
其变形为杆轴线由直线变成曲线,这种变形称为弯曲变形。
图7-1 桥式起重机的大梁图7-2 承受转子重量的电机轴工程中的梁,其横截面通常都有一纵向对称轴。
该对称轴与梁的轴线组成梁的纵向对称面(图7-3)。
外力或外力偶作用在梁的纵向对称平面内,则梁变形后的轴线在此平面内弯曲成一平面曲线,这种弯曲称为对称弯曲。
图7-3 对称弯曲7.1.2梁上的载荷作用在梁上的载荷可以简化为以下三种类型:(1)集中力;(2)集中力偶;(3)分布载荷,如图7-4a所示。
7.1.3梁的基本形式1.简支梁梁的一端为固定铰链支座,另一端为活动铰链支座。
如图7-4a所示。
2.外伸梁梁的支座和简支梁相同,只是梁的一端或两端伸出在支座之外。
如图7-4b所示。
3.悬臂梁梁的一端固定,另一端自由。
如图7-4c所示。
在对称弯曲的情况下,梁的主动力与约束反力构成平面力系。
上述简支梁、外伸梁和悬臂梁的约束反力,都能由静力平衡方程确定,因此,又称为静定梁。
在工程实际中,有时为了提高梁的强度和刚度,采取增加梁的支承的办法,此时静力平衡方程就不足以确定梁的全部约束反力,这种梁称为静不定梁或超静定梁。
7.2梁弯曲时的内力7.2.1剪力和弯矩现以图7-5所示的简支梁为例来研究各横截面上的内力。
P1、P2和P3为作用于梁上的载荷,R A和R B为两端的支座反力。
为了显示出横截面上的内力,沿截面mm假想地把梁分成两部分,并以左段为研究对象。
建筑力学—组合变形及答案讲解
第六章直梁弯曲弯曲变形是杆件比较常见的基本变形形式。
通常把以发生弯曲变形为主的杆件称为梁。
本章主要讨论直梁的平面弯曲问题,内容包括:弯曲概念和静定梁的力学简图;弯曲内力及内力图;弯曲应力和强度计算;弯曲变形和刚度计算。
其中,梁的内力分析和画弯矩图是本章的重点。
第一节平面弯曲的概念和力学简图一、弯曲概念和受力特点当杆件受到垂直于杆轴的外力作用或在纵向平面内受到力偶作用(图6-1)时,杆轴由直线弯成曲线,这种在外力作用下其轴线变成了一条曲线。
这种形式的变形称为弯曲变形。
工程上通常把以弯曲变形为主的杆件称为梁。
图 6-1 弯曲变形是工程中最常见的一种基本变形。
例如房屋建筑中的楼面梁和阳台挑梁,受到楼面荷载和梁自重的作用,将发生弯曲变形,如图6-2所示。
一些杆件在荷载作用下不仅发生弯曲变形,还发生扭转等变形,当讨论其弯曲变形时,仍然把这些杆件看做梁。
图6-2工程实际中常见到的直梁,其横截面大多有一根纵向对称轴,如图6-3所示。
梁的无数个横截面的纵向对称轴构成了梁的纵向对称平面,如图6-4所示。
图 6-3 图6-4若梁上的所有外力(包括力偶)作用在梁的纵向对称平面内,梁的轴线将在其纵向对称平面内弯成一条平面曲线,梁的这种弯曲称为平面弯曲,它是最常见、最基本的弯曲变形。
本章主要讨论直梁的平面弯曲变形。
从以上工程实例中可以得出,直梁平面弯曲的受力与变形特点是:外力作用于梁的纵向对称平面内,梁的轴线在此纵向对称面内弯成一条平面曲线。
二、梁的受力简图为了便于分析和计算直梁平面弯曲时的强度和刚度,需建立梁的力学简图。
梁的力学简图(力学模型)包括梁的简化、荷载的简化和支座的简化。
1、梁的简化由前述平面弯曲的概念可知,载荷作用在梁的纵向对称平面内,梁的轴线弯成一条平面曲线。
因此,无论梁的外形尺寸如何复杂,用梁的轴线来代替梁可以使问题得到简化。
例如,图6-1a和图6-2a所示的火车轮轴和桥式起重机大梁,可分别用梁的轴线AB代替梁进行简化(图6-1b和图6-2b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在上一章推导梁的弯曲正应力公式时,得到了在纯弯曲情况下梁的轴线的曲率表达式
(6.6),即
1= M ρ EIz 纯弯曲时,上式中的弯矩 M 为常数,若 EIz 不变,则ρ 为常数,即挠曲线是半径为ρ 的 圆弧线。 而横力弯曲时,由于剪力对弯曲变形的影响很小,通常忽略不计,因此上式也可用于横 力弯曲时的情形。此时,弯矩 M 和曲率半径ρ 都不再是常量,而是截面位置 x 的函数,根据
θ
(
x
)
=
dw dx
=
∫
M (x) EI
dx
+
C
(7.5)
再积分一次,可得挠曲线方程
w(
x)
=
∫
∫
M (x) EI
dxdx
+
Cx
+
D
(7.6)
·149·
材料力学
式中,C 和 D 为积分常数,其值可由梁横截面的已知边界
位移条件和光滑连续条件来确定。
以上应用二次积分求出挠曲线方程的方法称为二次
积分法,它是计算梁变形的最基本方法。
略去不计。 (2)转角:横截面绕中性轴所转过的角位移称为转角,通常用θ 表示。不同横截面的转
角不同,因此转角θ 也是截面位置 x 的函数,即
θ =θ (x)
(7.1b)
式(7.1b)称为梁的转角方程。转角的单位是弧度 rad 或度(°)。
7.1.3 挠度和转角的关系
挠度 w 和转角θ 都是截面位置 x 的函数,由图 7.1 可知它们之间存在以下关系
在外力作用下,梁变形后各横截面的位置将发生改变,梁的横截面将产生线位移和角位 移,故工程上常用这两个量来反映弯曲变形。
(1)挠度:横截面形心在垂直于梁轴线方向的线位移称为挠度,通常用 w(或 y、f)表 示。不同横截面的挠度不同,因此挠度 w 是截面位置 x 的函数,即
w = w(x)
(7.1a)
式(7.1a)称为梁的挠曲线方程,简称挠曲线方程。挠度的常用单位为 mm。 工程中梁的变形一般都很小,梁弯曲后都比较平坦,因此沿轴线方向的线位移通常可以
左端横截面的纵向对称轴为 w 轴,向上为正。
挠度 w 的正负号规定:向上为正,向下为负。
转角θ 的正负号规定:逆时针转向为正,顺时针
转向为负。 [专业差别提示④]:土建类:向下的挠度为正,
图 7.1 挠度、转角的定义
向上的挠度为负;顺时针转向的转角为正,逆时针转向的转角为负;w 轴向下为正。
7.2 梁的挠曲线近似微分方程
tanθ = dw dx
由于变形很小,梁的挠曲线是一条连续、光滑、平坦的曲线,转角θ 极小,根据 taylor 级数展开可知 tanθ≈θ ,从而得
θ≈tanθ = dw dx
(7.1c)
·147·
材料力学
式(7.1c)反映了挠度 w 和转角θ 之间的关系,它表明梁内任一横截面所转过的角度θ 约等于 其挠曲线方程 w(x)对 x 一阶导数在该截面处的取值。根据一阶导数的几何意义可得,在数值 上转角的大小等于梁的挠曲线在该点变形前后的切线所转过的角度。
由此可见,计算梁的变形(w 和θ ),关键在于找到梁的挠曲线方程,将它对 x 求一次 导数,便可得到转角方程。若将某个横截面位置坐标 x 代入上面的两个方程,便可求得该截 面的挠度和转角。
7.1.4 挠度与转角的正负号规定
建立如图 7.1 所示的坐标系,其原点一般在梁的左
端。并规定以变形前的梁轴线为 x 轴,向右为正;以梁
1 = ± d2w ρ(x) dx2
(7.2)
将式(7.2)代入式(6.6),得
·148·
第 7 章 直梁·弯曲变形
M (x) = ± d2w
EI z
dx2
(7.3)
式(7.3)右边的正负号的选取与坐标系的选择和弯矩正负号的规定有关,如果弯矩的正
负号按前面机械类的规定,并选用 w 轴向上为正的坐标系。那么,当弯矩 M > 0 时,挠曲线
【例 7.1】 图 7.3 所示悬臂梁,受集度为 q 的均布载
荷作用,EI 为常量,试用积分法求梁的最大挠度及最 大转角。
图 7.3 例 7.1 图
【解】:建立坐标系如图 7.3 所示,x 轴沿梁轴,向右为正,w 轴向上为正。
(1)列出弯矩方程
M ( x) = 1 q(l − x)2
2 (2)列出挠曲线近似微分方程并积分
为方便计算,对于等截面梁,通常将式(7.4)改写成
EI
d2w dx2
=
M
(x)
积分一次得
EIw′′ = 1 q(l − x)2 2
再积分一次得
EIw′ = EIθ = − 1 q(l − x)3 + C 6
EIw = 1 q(l − x)4 + Cx + D 24
第 7 章 直梁·弯曲变形
第 7 章 直梁·弯曲变形
7.1 梁的挠度和转角
7.1.1 梁的挠曲线
在外力作用下,梁的轴线由直线变成曲线,弯曲变形后的梁轴线称为梁的挠曲轴,它是 一条连续、光滑的曲线,亦称挠曲线。对于平面弯曲,挠曲线是一条位于梁的同一纵向对称 平面内的平面曲线。本章只涉及平面弯曲。
7.1.2 横截面的位移
[专业差别提示⑤]:土建类规定:则式(7.3)右端应保留负号。机械类与土建类的此处 的差异对比如图 7.2 所示。
图 7.2 机械类与土建类符号规定差异对比图
7.3 用积分法求梁的弯曲变形
利用公式(7.4)求梁的变形时,由于弯矩 M 仅是 x 的函数,故用逐次积分法便可求解。 对于等直梁 EIz 为常量,通常将其用 EI 来表示,将公式(7.4)积分一次,可得转角方程
高等数学可知,平面曲线 w = w( x) 上任意一点的曲率 1 可表示为
ρ(x)
d2w
1 ρ(x)
=
±
⎡ ⎢1 + ⎢⎣
⎛ ⎜⎝
dx2 dw ⎞2 dx ⎟⎠
⎤3/2 ⎥ ⎥⎦
梁的挠曲线是一条连续、光滑的曲线,因此 dw = tanθ≈θ 的数值很小,在等号右边的分 dx
母中,θ 2 与 1 相比甚小,可以略去不计,于是上式变成
向下凹,如图
7.2(a)所示,此时
d2w当弯矩
M
<
0 时,挠曲线向上凸,此时
d2w dx2
<
0
,
由图 7.2(a)可见,在机械类中弯矩 M 与 d2w 的符号总是同号,因此式(7.3)右端应保留 dx2
正号,可得:
d2w = M (x) dx2 EIz
(7.4)
式(7.4)为梁的挠曲线近似微分方程。由于在计算中进行了一些近似,故又称为挠曲线 近似微分方程。求解这一微分方程,即可得到梁的挠曲线方程,从而求得梁任意横截面的挠 度和转角。