原子发射定性定量分析方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07:27:59
(2) 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以
获得准确结果,实际工作多采用内标法(相对强度法)。
在被测元素的光谱中选择一条作为分析线(强度I),再选
择内标物的一条谱线(强度I0),组成分析线对。则: I a cb
相对强度R:
I0 a0 c0b0 R I a cb Acb
07:27:59
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样; 分段暴光法:先在小电流(5A)激发光源摄取易挥发元素 光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光 摄取难挥发元素光谱; 采用哈特曼光阑,可多 次暴光而不影响谱线相对位 置,便于对比。
07:27:59
二、 光谱定量分析
I0 a0 c0b0 lg R b lg c lg A
A为其他三来自百度文库合并后的常数项,内标法定量的基本关系式。
07:27:59
内标元素与分析线对的选择:
a. 内标元素可以选择基体元素,或另外加入,含量固定; b. 内标元素与待测元素具有相近的蒸发特性; c. 分析线对应匹配,同为原子线或离子线,且激发电位相近( 谱线靠近),“匀称线对”; d. 强度相差不大,无相邻谱线干扰,无自吸或自吸小。
07:27:59
c.标准加入法
无合适内标物时,采用该法。 取若干份体积相同的试液(cX),依次按比例加入不同量的 待测物的标准溶液(cO),浓度依次为:
cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 在相同条件下测定:RX,R1,R2,R3,R4……。 以R对浓度c做图得一直线,图中cX点即待测溶液浓度。
R=Acb b=1时,R=A(cx+ci ) R=0时, cx = – ci
07:27:59
三、特点与应用
feature and applications 1. 特点
(1)可多元素同时检测 各元素同时发射各自的特征光谱; (2)分析速度快 试样不需处理,同时对十几种元素进行定 量分析(光电直读仪); (3)选择性高 各元素具有不同的特征光谱; (4)检出限较低 10~0.1gg-1(一般光源);ngg-1(ICP) (5)准确度较高 5%~10% (一般光源); <1% (ICP) ; (6)ICP-AES性能优越 线性范围4~6数量级,可测高、中 、低不同含量试样;
一、 光谱定性分析
qualitative spectrometric analysis
定性依据:元素不同→电子结构不同→光谱不同→特征光谱
1. 元素的分析线、最后线、灵敏线
分析线:复杂元素的谱线可能多至数千条,只选择其中几条 特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素都有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是最 灵敏线、最后线;
07:27:59
2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lg c lg a 发射光谱分析的基本关系式,称为塞伯-罗马金公式(经 验式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自 吸消失时,b=1。
时,将试样粉碎后放在电极的试样槽内; b. 固体试样研磨成均匀的粉末后放在电极的试样槽内; c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极
的试样槽内。液体试样可采用ICP-AES直接进行分析。 (2) 实验条件选择
a. 光谱仪 在定性分析中通常选择灵敏度高的直流电弧;狭缝宽度5 ~7m;分析稀土元素时,由于其谱线复杂,要选择色散率较 高的大型摄谱仪。
07:27:59
b. 电极
电极材料:采用光谱纯的碳或石墨,特殊情况采用铜电极; 电极尺寸:直径约6mm,长3~4 mm; 试样槽尺寸:直径约3~4 mm,
深3~6 mm;
试样量:10 ~20mg ; 放电时,碳+氮产生氰 (CN),
氰分子在358.4~ 421.6 nm产生带 状光谱,干扰其他元素出现在该区 域的光谱线,需要该区域时,可采 用铜电极,但灵敏度低。
标准谱图:将其他元素的分析线标记在铁谱上,铁谱起 到标尺的作用。
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两 谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的 分析线是否存在,并与标准谱图对比确定。可同时进行多元 素测定。
07:27:59
07:27:59
3. 定性分析实验操作技术
(1) 试样处理 a. 金属或合金可以试样本身作为电极,当试样量很少
07:27:59
(3) 定量分析方法
a. 内标标准曲线法 由 lgR = blgc +lgA 以lgR 对应lgc 作图,绘制标准曲线,在相同条件下,测定 试样中待测元素的lgR,在标准曲线上求得未知试样lgc; b. 摄谱法中的标准曲线法
S = lgR = blgc + lgA 在完全相同的条件下,将标准样品与试样在同一感光板上 摄谱,由标准试样分析线对的黑度差(S )对lgc作标准曲线(三 个点以上,每个点取三次平均值),再由试样分析线对的黑度 差,在标准曲线上求得未知试样lgc 。该法即三标准试样法。
07:27:59
2. 定性方法
标准光谱比较法: 最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
07:27:59
标准光谱比较定性法
为什么选铁谱? (1)谱线多:在210~660nm范围内有数千条谱线; (2)谱线间距离分配均匀:容易对比,适用面广; (3)定位准确:已准确测量了铁谱每一条谱线的波长。
quantitative spectrometric analysis 1. 光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范围; 应用:用于钢材、合金等的分类、矿石品位分级等大批 量试样的快速测定。 谱线强度比较法:测定一系列不同含量的待测元素标准 光谱系列,在完全相同条件下(同时摄谱),测定试样中待测 元素光谱,选择灵敏线,比较标准谱图与试样谱图中灵敏线 的黑度,确定含量范围。
(2) 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以
获得准确结果,实际工作多采用内标法(相对强度法)。
在被测元素的光谱中选择一条作为分析线(强度I),再选
择内标物的一条谱线(强度I0),组成分析线对。则: I a cb
相对强度R:
I0 a0 c0b0 R I a cb Acb
07:27:59
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样; 分段暴光法:先在小电流(5A)激发光源摄取易挥发元素 光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光 摄取难挥发元素光谱; 采用哈特曼光阑,可多 次暴光而不影响谱线相对位 置,便于对比。
07:27:59
二、 光谱定量分析
I0 a0 c0b0 lg R b lg c lg A
A为其他三来自百度文库合并后的常数项,内标法定量的基本关系式。
07:27:59
内标元素与分析线对的选择:
a. 内标元素可以选择基体元素,或另外加入,含量固定; b. 内标元素与待测元素具有相近的蒸发特性; c. 分析线对应匹配,同为原子线或离子线,且激发电位相近( 谱线靠近),“匀称线对”; d. 强度相差不大,无相邻谱线干扰,无自吸或自吸小。
07:27:59
c.标准加入法
无合适内标物时,采用该法。 取若干份体积相同的试液(cX),依次按比例加入不同量的 待测物的标准溶液(cO),浓度依次为:
cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 在相同条件下测定:RX,R1,R2,R3,R4……。 以R对浓度c做图得一直线,图中cX点即待测溶液浓度。
R=Acb b=1时,R=A(cx+ci ) R=0时, cx = – ci
07:27:59
三、特点与应用
feature and applications 1. 特点
(1)可多元素同时检测 各元素同时发射各自的特征光谱; (2)分析速度快 试样不需处理,同时对十几种元素进行定 量分析(光电直读仪); (3)选择性高 各元素具有不同的特征光谱; (4)检出限较低 10~0.1gg-1(一般光源);ngg-1(ICP) (5)准确度较高 5%~10% (一般光源); <1% (ICP) ; (6)ICP-AES性能优越 线性范围4~6数量级,可测高、中 、低不同含量试样;
一、 光谱定性分析
qualitative spectrometric analysis
定性依据:元素不同→电子结构不同→光谱不同→特征光谱
1. 元素的分析线、最后线、灵敏线
分析线:复杂元素的谱线可能多至数千条,只选择其中几条 特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素都有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是最 灵敏线、最后线;
07:27:59
2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lg c lg a 发射光谱分析的基本关系式,称为塞伯-罗马金公式(经 验式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自 吸消失时,b=1。
时,将试样粉碎后放在电极的试样槽内; b. 固体试样研磨成均匀的粉末后放在电极的试样槽内; c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极
的试样槽内。液体试样可采用ICP-AES直接进行分析。 (2) 实验条件选择
a. 光谱仪 在定性分析中通常选择灵敏度高的直流电弧;狭缝宽度5 ~7m;分析稀土元素时,由于其谱线复杂,要选择色散率较 高的大型摄谱仪。
07:27:59
b. 电极
电极材料:采用光谱纯的碳或石墨,特殊情况采用铜电极; 电极尺寸:直径约6mm,长3~4 mm; 试样槽尺寸:直径约3~4 mm,
深3~6 mm;
试样量:10 ~20mg ; 放电时,碳+氮产生氰 (CN),
氰分子在358.4~ 421.6 nm产生带 状光谱,干扰其他元素出现在该区 域的光谱线,需要该区域时,可采 用铜电极,但灵敏度低。
标准谱图:将其他元素的分析线标记在铁谱上,铁谱起 到标尺的作用。
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两 谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的 分析线是否存在,并与标准谱图对比确定。可同时进行多元 素测定。
07:27:59
07:27:59
3. 定性分析实验操作技术
(1) 试样处理 a. 金属或合金可以试样本身作为电极,当试样量很少
07:27:59
(3) 定量分析方法
a. 内标标准曲线法 由 lgR = blgc +lgA 以lgR 对应lgc 作图,绘制标准曲线,在相同条件下,测定 试样中待测元素的lgR,在标准曲线上求得未知试样lgc; b. 摄谱法中的标准曲线法
S = lgR = blgc + lgA 在完全相同的条件下,将标准样品与试样在同一感光板上 摄谱,由标准试样分析线对的黑度差(S )对lgc作标准曲线(三 个点以上,每个点取三次平均值),再由试样分析线对的黑度 差,在标准曲线上求得未知试样lgc 。该法即三标准试样法。
07:27:59
2. 定性方法
标准光谱比较法: 最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
07:27:59
标准光谱比较定性法
为什么选铁谱? (1)谱线多:在210~660nm范围内有数千条谱线; (2)谱线间距离分配均匀:容易对比,适用面广; (3)定位准确:已准确测量了铁谱每一条谱线的波长。
quantitative spectrometric analysis 1. 光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范围; 应用:用于钢材、合金等的分类、矿石品位分级等大批 量试样的快速测定。 谱线强度比较法:测定一系列不同含量的待测元素标准 光谱系列,在完全相同条件下(同时摄谱),测定试样中待测 元素光谱,选择灵敏线,比较标准谱图与试样谱图中灵敏线 的黑度,确定含量范围。