二次根式复习课教学设计

合集下载

二次根式复习教案人教版

二次根式复习教案人教版
1.作业布置
(1)请学生完成教材第24章“二次根式的应用”中的相关习题。
(2)请学生完成教辅资料《初中数学竞赛教程》中关于二次根式的习题及解析。
(3)请学生结合《数学报》中与二次根式相关的论文和案例,深入研究二次根式的性质和应用。
(4)请学生撰写一篇关于二次根式的文章或报告,分享自己的学习心得和感悟。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对二次根式的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
(1)二次根式的平方等于它的被开方数。
(2)二次根式的乘积等于它们的被开方数的乘积。
(3)二次根式的商等于它们的被开方数的商。
答案:
(1)错误。二次根式的平方等于它的被开方数的平方。
(2)正确。二次根式的乘积等于它们的被开方数的乘积。
(3)错误。二次根式的商等于它们的被开方数的商,当且仅当被开方数不为零时。
(1)PPT:制作精美的PPT,展示二次根式的性质、运算方法和实际应用,帮助学生直观地理解知识。
(2)视频:播放一些与二次根式相关的教学视频,让学生从不同角度了解和掌握知识。
(3)在线工具:利用在线计算器、数学软件等工具,让学生进行二次根式的运算练习,提高运算速度和准确性。
(4)实际案例:收集一些与生活相关的二次根式实际问题,让学生更好地理解知识在实际中的应用。
二次根式复习教案人教版
授课内容
授课时数
授课班级
授课人数
授课地点

初中数学_二次根式(复习)教学设计学情分析教材分析课后反思

初中数学_二次根式(复习)教学设计学情分析教材分析课后反思

第九章二次根式单元复习教学设计备课人:第九章二次根式(复习)学情分析:根据八年级学生的性格特点维活跃,乐于表现,善于思考,具有了一定的动手能力。

学生在数学学习活动中的参与程度和思维水平能反应出他们的年龄特点,他们能积极主动参与各项活动,能在学习活动中进行主动思考,向老师表达自己的想法,听取老师的意见和建议,能正确地运用所学解决相关问题。

虽然学生已经对二次根式有了全面的认识,本章的学习也有了良好的基础,但是当被开方数是分数和小数时,学生的理解能力不是很好,加上部分同学的计算能力相对薄弱,更增加了对最简二次根式化简的难度,因此在教学过程中,先从知识网络入手,整体复习二次根式的相关知识点,采取由易到难,由简到繁层层推进的办法,既巩固了基础,又提升了能力。

使得学生在理解二次根式概念上有更深刻的认识,也就为后续运算的内容奠定了基础。

通过对整章内容的复习,使绝大多数学生对于化简最简二次根式以及二次根式的运算,做到有方法、有技巧、有策略!二次根式(复习)效果分析本节课教学效果分析从教学过程中学生掌握的成绩和当堂测评练习两个方面进行分析。

在教学过程中,学生复习回顾,巩固练习表现很好,正确答案在90%以上,对能力提升部分学生掌握也不错。

从当堂测评练习的分析得出:测评练习设置四块内容:其中包括跟踪练,拓展延伸,走进中考,课后思维延伸。

在教学效果分析中学生对本章知识掌握的较好。

绝大多数学生的测评成绩能达到掌握准确程度。

二次根式(复习)教材分析《二次根式》是八年级下册第九章内容,本章共分3节,概念及性质,加减法,乘除法。

不仅与实数及二次根式的概念、性质有关,而且与学生已经学过的整式、分式的基本运算有着紧密的联系。

二次根式在初中数学学科体系中的地位作用:二次根式在初中数学中具有特殊的地位.它不仅是实数运算的重要依据,而且还是学习二次方程和二次函数的基础.二次根式是在学生学习了平方根、立方根等内容的基础上进行的,是对“实数、整式”等内容的延伸和补充,对数与式的认识更加完善。

二次根式复习课教案

二次根式复习课教案

二次根式复习课教案教学目标1.进一步加深对二次根式的意义和基本性质的理解,能够娴熟的对二次根式进行化简。

2.能够精确娴熟的对二次根式进行运算。

重点:二次根式的基本概念、性质及其相关运算。

难点:综合运用二次根式的性质和法则进行运算。

教学过程:一、复习概念情境设置1:2,39,42,27,15,13,-a2-1,a2①请找出上述式子中的二次根式。

②①中的二次根式都是最简二次根式吗?最简二次根式需要满意哪些条件?③有同类二次根式吗?怎么找同类二次根式?④-a2-1为什么不是二次根式?复习二次根式的基本概念:形如a〔a≥0〕的式子叫做二次根式。

最简二次根式判别方法:根号内不含分母,分母中不含根号,被开放数不含完全平方的因数〔因式〕。

同类二次根式:几个二次根式化成最简二次根式后,假如被开方数相同,这几个二次根式叫做同类二次根式。

情境设置2:已知:△ABC中,∠C=90°,∠B=30°,AC=5师:你能求出线段AC、AB的长吗?生:可以,依据30°的直角三角形的三边之间的关系可知:BC=3AC=3×5=3×5=15AB=2AC=25也可以依据勾股定理得:AB=AC2+BC2=52+152=20=25师:已知直角三角形三边的边长你还能得到哪些结论?生:我们还可以求出直角三角形的周长和面积。

CΔABC=AB+BC+AC=25+5+15=35+15SΔABC=12AC·BC=12×5×15=12×5×15=523师:能够求出AB边上的高吗?生:可以,利用面积法:SΔABC=12AB·hh=2SAB=52325=5435=154师:在上述解题过程中,我们用到了二次根式的哪些性质和法则?生:分别用到了:a·b=a·bab=ab〔要留意被开方数为非负数〕a2=a〔a≥0〕师:特别留意a2和a2两个式子的取值范围。

二次根式全章复习教学设计

二次根式全章复习教学设计

二次根式全章复习重难突破一、二次根式的概念及性质1、二次根式的概念:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.备注:二次根式的两个要素:①必须含有,②被开方数可以是数、字母和代数式,但必须大于等于0) 2、代数式的概念:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.3、二次根式的性质及双重非负性(1)二次根式双重非负性:a ≥0,(a ≥0); (2)二次根式的性质:(1)(a ≥0);(2).备注:1)二次根式(a ≥0)的值是非负数。

一个非负数可以写成它的算术平方根的形式,即2()(0a a a =≥). 22a 2()a 要注意区别与联系:1)a 的取值范围不同,2a 中a ≥02a a 为任意值。

2)a ≥0时,2a 2a a ;a <0时,2a 2a a -.3)二次根式有意义情况:1)单个二次根式如A有意义的条件是0≥A;2)多个二次根式相加如++⋅⋅⋅+A B N有意义的条件:≥⎧⎪≥⎪⎨⋅⋅⋅⎪⎪≥⎩ABN;3)二次根式作为分式分母时如BA有意义的条件是0>A;二、二次根式的乘除1、二次根式的乘法(1)乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.备注:1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).2)该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…≥0).3)若二次根式相乘的结果能写成的形式,则应化简,如.2、积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.备注:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.3、二次根式的除法(1)除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.。

二次根式复习教学案

二次根式复习教学案

二次根式复习教学案教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的混合运算。

教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子. 复习过程:一、复习引入:第五章《二次根式》主要掌握哪些重点知识?1、二次根式的概念及性质;2、二次根式的化简;3、二次根式的运算与计算。

二、快乐自学:阅读教材小结与回顾,了解下列知识点:1、二次根式的概念及其性质:(1)两个重要公式:(a )2= a (a ≥0) 2a =|a|=()()⎩⎨⎧-≥00 a a a a(2)两条重要性质:积的算术平方根性质b a ⨯=b a ⨯(a ≥0,b ≥0) 商的算术平方根性质a b =a b(a ≥0,b>0) 要注意满足的条件。

(3)两条重要法则:二次根式的乘法法则: a ·b =ab .(a ≥0,b ≥0)二次根式的除法法则: a b =a b (a ≥0,b>0) 2、二次根式的化简与运算:(1)同类二次公式的概念(2)最简二次根式的概念(3)分母有理化的概念。

3、二次根式的混合运算顺序与实数的运算顺序相同,先算乘方、开方,再算乘除、最后算加减,如果有括号的就先算括号内。

三、合作探究1、若x 54+有意义,则x 的取值范围是 .2、下列各式一定是二次根式的是: 1-x 、52+x 、 2x - x 33、若12-=aa ,则a 的取值范围是 . 4、x <-2时,2)2(+x =( )A .x+2B .-x-2C .-x+2D .x-25、()()的值,则mb a m b a +=-+-++,021232 6、下列二次根式中,和32是同类二次根式的是( ) A.12 B.50 C.27 D. 247、)(2223)32(-⨯+的计算结果是 . 8、已知m 、n 为实数,且满足m=349922-+-+-n n n ,求6m-3n 的值。

九年级下二次根式复习课教案(20200602074834)

九年级下二次根式复习课教案(20200602074834)

二次根式复习课教学目标1•理解和掌握二次根式的有关概念以及二次根式的意义。

2.巩固二次根式的性质。

3•熟练掌握含有二次根式的运算。

过程与方法1•师生一起回顾归纳二次根式的有关知识点。

(学生口述,教师板书)2.根据考点给出典例精析。

(先请学生上台演示,后请其他学生讲评。

)3.通过练习进一步巩固二次根式的有关知识点。

4.课后5分钟小测。

教学重点和难点重点:1 .二次根式的意义2 .含二次根式的式子的混合运算.难点:1•对a (a>0)是一个非负数的理解;对等式(一a )2= a (a>0)及、.a2 = a的理解及应用.2 •综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式的有关概念,以及二次根式的意义。

2.二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.3.二次根式的加减、乘法及除法的法则是什么?用式子表示出来.指出:二次根式运算的最终结果如果是根式,要化成最简二次根式二、典例精析例1 : x取什么值时,下列各式在实数范围内有意义:考点:二次根式的意义分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;⑵题中,式子的分母不能为零,即器不能职使1^=0的值,(3)题是两个二次根式的和,x 的取值必须使两个二次根式都有意义;(4)题的分子是二次根式, 分母是含x 的单项式,因此x 的取值必须使二次根式有意义,同时使分母的值不等于零.fS ⑴要使J3-掘有意义*必须?即要便4% - 2有意义,必须盘-2》山即呂〉2・所以使式子73-x 有意义的澹为2=辰3・(和因为i- 4^ =・[签|,当耳=±1^? 叮原式没有意义$所叹当话±1时F⑶因为使压有意义的趁值为使厲有意义的諏值为曲山所以便辰⑷因为使JW2有意义的蛊取值为髯+ 2>0『即冗而分母3s#0F 即只弄①所以使式子 ―_2有意义的x 的取值为x > -2且x丰0.3x考点:最简二次根式,分母有理化。

《二次根式复习》教学设计

《二次根式复习》教学设计
6.当时听课的老师或者专家对你这节课有什么评价?对你有什么启发?
复习本章知识框架,做PPT课件上6道判断题用时10分钟。做课前小测及讲评用时约8分钟,做典型题组及讲评用时约22分钟(主要针对中下生)。所有练习均为学生先做后学(难题、易错题老师讲评)。多数同学能在堂上完成到题组训练部分。
总的来说本课能完成既定的目标,但细节上个别题目的安排可能要作修改,如小测题第3小题“不改变根式的大小把根式外的因式移到根号内”难度跨度大,在此处可暂时不做此类题,改为做分母有理化的题,如 等化简是学生的难点,要重点解决,保证基本题过关。这样也使到在做问题2(2)小题时可顺利一些。另外在复习知识框架时穿插问题1的练习,可避免概念复习的抽象化,也节约了时间。对问题1的第(3)题在重点班可去掉“最简二次根式”的条件,要求会写出求a值的过程,且不限一个解答。训练中三个层次:最基本题组、基本题组、变式题组的难度相应为A组、B组、C组,可在卷上注明,或老师堂上说明,学生可按自己水平选做相应的题组,重点班要求全做。
针对不同的学生,不同的问题进行不同的检测
堂清检测
实现面向全体教学的目标
七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)
根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。为此,对于A类学生应能运用新知解决相关程度的问题(巩固提高第1、2、3、4、5题);而B类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试;
八、板书设计(本节课的主板书)
1.二次根式:式子 ( ≥0)叫做二次根式。(当 ≥0时, ≥0;当 ≥0时, 在实数范围内有意义。)
2.最简二次根式:必须同时满足下列条件:

人教八下数学《二次根式》复习教案

人教八下数学《二次根式》复习教案

人教八下数学《二次根式》复习教案【教学目标】1. 复习二次根式的概念和性质;2. 复习二次根式的计算方法;3. 引导学生理解二次根式的实际意义和应用;4. 提高学生解决实际问题的能力。

【教学重难点】1. 二次根式的计算方法;2. 二次根式的意义和应用。

【教学准备】教材、课件、笔记、习题、工具书等。

【教学过程】一、复习导入(10分钟)1. 让学生回顾二次根式的定义;2. 复习二次根式的性质:乘法性质、开方性质等。

二、概念解释与示例演练(20分钟)1. 解释二次根式的概念:如果a>0,那么形如√a的式子就叫做二次根式;2. 给出一些简单的例子,让学生计算并写成简化形式;3. 引导学生观察和总结计算二次根式的方法。

三、题目讲解与练习(30分钟)1. 分析教材中的例题,引导学生理解二次根式的实际意义和应用;2. 讲解解答题的思路和方法,包括合并同类项、化简等;3. 给学生一些练习题,让学生独立解答,并讲解答案。

四、拓展与应用(10分钟)1. 引导学生思考二次根式的实际应用,如计算面积、体积和边长等;2. 提供相关的应用题,让学生思考如何应用二次根式解决问题。

五、总结归纳(5分钟)1. 让学生总结本节课所学的内容及知识点;2. 强调重点和难点,提醒学生进行复习。

【板书设计】二次根式的复习概念:形如√a的式子二次根式计算方法:合并同类项、化简等性质:乘法性质、开方性质等实际应用:计算面积、体积、边长等【课后作业】1. 完成教材习题;2. 思考并解答一道具体的二次根式应用题;3. 复习并总结本节课所学的知识点和解题方法。

人教版八年级数学下册---《二次根式复习》教案设计

人教版八年级数学下册---《二次根式复习》教案设计

人教版八年级数学下册---《二次根式复习》教案设计知识框架图:二次根式有关的定义:()2a与2a之间的联系:二次根式的化简与运算:例1.当x取何值时,下列各式在实数范围内有意义?10a a-且<0.∴原式=-a -a a -a ˙2a -a=2()2256⎡⎤-⎢⎥⎣⎦=192.变式.把两张面积都为18的正方形纸片各剪去一个面积为2的正方形,并把这两张正方形纸片按照如图所示叠合在一起,做出一个双层底的无盖长方体纸盒.求这个纸盒的侧面积(接缝忽略不计).解:S =[(18-2)×2]×4 =[(32-2)×2]×4 =22×2×4 =16.解:S =[(18-2)×2]×4 =(336-4)×4 =(6-2)×4 =16.在二次根式的运算中,一般要把最后结果化为最简二次根式,二次根式复习(第二课时)次方程”,“二次函数”等内容的重要基础.知识框架图:二次根式有关的定义:()2a与2a之间的联系:二次根式的化简与运算:例1.当x取何值时,下列各式在实数范围内有意义?10a a-且<0.∴原式=-a -a a -a ˙2a -a解:S=[(18-2)×2]×4=[(32-2)×2]×4=22×2×4=16.解:S=[(18-2)×2]×4=(336-4)×4=(6-2)×4=16.在二次根式的运算中,一般要把最后结果化为最简二次根式,。

《二次根式》复习-教学设计

《二次根式》复习-教学设计
结果正确吗
题目
如何更正
有几种方法
通过练习题的解答,加深对二次根式相加减乘除法则的理解与应用。
当堂训练过关检测(6分钟左右)
学生练习
学生独立完成练习,教师巡回辅导,学生组内说解题过程,体会方法,形成规律,集体交流评价
通过变式,使学生灵活应用二次根式与等式的性质.
知识梳理形成结构(2分钟左右)
1.本节课复习 “二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
横沥中学九年级数学教案
课题
《二次根式》复习课
课型
复习课
授课时间
2016-09-20
教学目标
知识与能力
(1)了解二次根式的概念和性质,了解二次根式的运算法则,会用它们进行简单的四则运算;
(2)以二次根式的运算为基础,引导学生观察、分析、运算,培养学生建立解决计算问题的基本策略和基本方法;
二、过程与方法
2.二次根式的运算.
教学难点
二次根式的运算及 化简.
教学准备
导学案,课件
教学方法
动手操作法,探究法、练习法
教学课时1课时教学过程教学环节教师活动
学生活动
活动设计意图
温故知新明确任务(10分钟)
1、检查学生自主梳理把本章知识点画成思维导图.
2、学生组内互助,形成小组成果,上台展示成果.
3、组间互动,共同找准找全知识点,补全思维导
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

二次根式复习教案

二次根式复习教案

二次根式复习教案教案标题:二次根式复习教案一、教学目标:1. 知识目标:复习二次根式的定义、性质和运算规律。

2. 能力目标:培养学生对二次根式的理解和运用能力,提高解决实际问题的能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维和创新意识。

二、教学重点和难点:1. 重点:二次根式的定义和性质,二次根式的加减乘除运算。

2. 难点:二次根式的运算规律和实际问题的应用。

三、教学内容和安排:1. 复习二次根式的定义和性质:引导学生回顾二次根式的定义,以及二次根式的性质,如同底数、同指数的二次根式可以合并为一个二次根式等。

2. 二次根式的加减运算:通过例题讲解,引导学生掌握二次根式的加减运算规律,特别是要注意化简和合并同类项。

3. 二次根式的乘除运算:通过例题讲解,引导学生掌握二次根式的乘除运算规律,特别是要注意分子分母的有理化和化简。

4. 实际问题的应用:通过实际问题的讨论和解答,引导学生将二次根式的知识应用到实际生活中,培养学生的问题解决能力。

四、教学方法和手段:1. 讲授法:通过讲解和示范,引导学生理解和掌握二次根式的定义、性质和运算规律。

2. 练习法:设计一定数量和难度的练习题,让学生巩固和应用所学知识。

3. 实践法:引导学生通过实际问题的讨论和解答,将二次根式的知识应用到实际生活中。

五、教学评价和反馈:1. 课堂练习:布置一定数量和难度的练习题,让学生在课后进行练习,及时发现和纠正错误。

2. 课堂表现:通过课堂讨论和练习的表现,及时评价和反馈学生的学习情况,鼓励优秀,帮助落后。

六、教学资源准备:1. 教学课件:准备相关的教学课件,包括二次根式的定义、性质和运算规律的示意图和例题。

2. 教学工具:准备黑板、彩色粉笔、教学实物等教学工具。

七、教学反思和改进:1. 教师要及时总结课堂教学的得失,反思教学方法和手段的有效性,不断改进教学内容和安排,提高教学质量。

2. 学生的学习情况要及时反馈给家长,与家长密切合作,共同关注学生的学习进步。

八年级数学二次根式复习课教学设计

八年级数学二次根式复习课教学设计
1、进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子。
2、熟练地进行二次根式的加、减、乘、除混合运算。
3、知道二次根式与整式、分式都属于代数式,整式满足的运算律与乘法公式可推广至代数式。
数学素养:培养类比思想、数形结合思想、整体思想与举一反三的能力。
教学重点难点
重点:含二次根式的式子的混合运算。
同心合力
1、已知x=1- ,y=1+ ,求x2+y2-xy-2x+2y的值。
2、已知三角形的两边长分别为3和5,第三边长为c,化简: - .
6、二次根式的运算
每题限时1分钟。由每小组成绩较差的同学自由选择挑战对手。答对+1分,答错不扣分。
这一部分指定班里学习较弱的同学来PK,帮助他们巩固知识同时提高学习兴趣。
2V2团队赛
1、二次根式的概念
2、二次根式的非负性
3、二次根式的双重非负性
4、二次根式的性质
5、二次根式混合运算
6、二次根式运算化简求值
二次根式复习课教学设计
年级
八年级
学科
数学
主备教师
复备教师
课题
二次根式复习课
课型
复习课
教材分析
本章内容包括二次根式的概念、性质,二次根式的加、减、乘、除运算,以及运用这些概念和运算解决实际问题。
学情分析
学生在已经掌握了基本知识的基础上,需要进行巩固和应用练习,尤其是运算能力和性质的灵活使用。
教学
目 标
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子。
教学策略
竞赛法、合作探究
课前准备
教师
Ppt
学生
教学活动过程设计(第1课时)

二次根式的复习教案

二次根式的复习教案

二次根式的复习教案二次根式是数学中的一种运算形式,也是中学数学中的重要内容。

学生对于二次根式的理解和掌握程度直接影响到其对于数学整体的理解和应用能力。

因此,本教案将围绕二次根式的概念、性质和运算法则展开,帮助学生对二次根式有一个全面的复习和加深理解。

一、概念回顾1.二次根式的定义:如果a是正实数,那么形如√a的数就叫做二次根式。

其中,√a叫做二次根号,a叫做被开方数。

2.二次根式的简化:一个二次根式,如果被开方数a的因数中有一个是平方数,那么这个二次根式就可以简化。

3.二次根式的分解:一个二次根式,如果可以分解成两个因数的二次根式的乘积形式,那么这个二次根式就可以进行分解。

二、性质回顾1.二次根式的大小比较:如果a和b都是正实数且a<b,那么√a<√b。

2.二次根式的相加减:如果a和b都是非负实数,那么√a±√b=√(a±b)。

3. 二次根式的乘法:如果a和b都是非负实数,那么(√a)(√b)=√(ab)。

4.二次根式的除法:如果a和b都是非负实数,且b≠0,那么(√a)/(√b)=√(a/b)。

三、运算法则复习1.化简二次根式:将一个二次根式化简成最简形式。

2.合并同类项:将含有相同被开方数的二次根式合并为一个二次根式。

3.分解二次根式:将一个二次根式分解成两个因数的二次根式乘积形式。

4.有理化分母:将一个二次根式的分母有理化,即将其分母中的二次根式化简成有理数。

四、练习题设计1.计算以下二次根式的值:(1)√9;(2)√16;(3)√25;(4)√362.简化以下二次根式:(1)√8;(2)√18;(3)√32;(4)√753.计算以下表达式的值:(1)√16+√9;(2)√25-√16;(3)(2√5+√2)(√5-√2);(4)(√3+√2)²。

4.将以下二次根式分解为两个因数的乘积形式:(1)√40;(2)√98;(3)√252;(4)√725.有理化以下二次根式的分母:(1)1/√3;(2)2/(√2+√5);(3)(3+√2)/(√2-1);(4)1/(√2-√3)。

二次根式复习课教学设计

二次根式复习课教学设计

第十六章二次根式章节复习导教案(第一课时)执教陈雄伟一、教课目的【知识与技术】(1)理解二次根式的观点,二次根式的性质及运算法例。

(2)娴熟运用二次根式的性质及运算法例。

【过程与方法】(1)夯实二次根式的性质、运算法例(2)在解决问题的过程中,让学生学会倾听、学会思虑,同时发展学生归纳和归纳能力。

【感情、态度与价值观】培育学生勇于探究的精神,激发学生的学习兴趣和学习踊跃性。

【教课要点】二次根式的性质与运算法例【教课难点】利用数形联合的思想解决问题。

【教课方法】典例分析法二、教课方案(一)知识回首1.二次根式:式子(≥ 0)叫做二次根式。

(当≥ 0 时,≥ 0;当≥ 0 时,在实数范围内存心义。

)2.最简二次根式:一定同时知足以下条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

2a a>04.二次根式的性质:( 1)(2) a2a0 a 0aa a 0 ;a a<0(3) = (≥ 0,b ≥0);(4)5.二次根式的运算:(1)二次根式的乘除运算:a b ab( a0, b0)a a(a0,b0) b b(2)二次根式的加减运算:先把二次根式化成最简二次根式,而后归并同类二次根式即可。

【设计企图】经过对知识的梳理,让学生对本章知识有个系统的认知,理清知识点之间的联系,掌握注意的地方,加深对知识的全面理解。

(二)典例分析(ppt )例3、计算 1 、402、 3 m6 n5 5 m4 n245【重申】商的算术平方根的性质是二次根式除法法例的逆运用,商的算术平方根的性质是二次根式化简的一个重要公式,利用这个公式能够化去根号内的分母(即分母有理化)例5、计算 1 、2 12 4148 27【点拨】二次根式加减本质上是归并同类二次根式。

归并同类二次根式的方法和归并同类项的方法相同,把它们的系数相加减,被开方数和根指数不变。

(完整版)二次根式复习教案.doc

(完整版)二次根式复习教案.doc

二次根式复习课第一课时一、学习目标:1、能够比较熟练应用二次根式的性质进行化简.2、能够比较熟练进行二次根式的运算.3、会运用二次根式的性质及运算解决简单的实际问题.二、学习重、难点重点:二次根式的性质的应用,二次根式的运算,二次根式的应用. 难点:二次根式性质的应用三、知识回顾1. 下列各式是二次根式的有()个5 , 3 , 2 7 , 3 , a2, m3A.2B.3 C 。

4 D.52、x 1有意义,则 x 的范围。

x3、若2a 1 2 1 2a ,则 a 。

4、写出一个24 的同类二次根式。

( 6) 2 =______ ()0.4 = ()56 = 5、(1) 2 14( 4 )2 3 2 ( 5 )49m2= ( 6 )9c 33 2 2000g 3 22001______________四、典型例题例 1:能使等式x x 成立的 x 的取值范围是()x 2 x 2A. x 2B. x 0C.x>2D. x 2例 2:当 1≤ x≤ 5 时,2x 1x 5 _____________ 。

例 3:已知 xy<0, 化简二次根式 xy) - 2的正确结果为(xA 、 yB 、 -yC 、- yD 、- -y例 4:计算( 1) 31 2755 (2) 9a × a1 ÷ 1 a 33 5153a2a(3) 2 3 32- 1 233 1 3 1 (4)( 3 + 2 ) + ( - 2) + - 8(5)先化简再求值: a21 a22a 1,期中 a2 1a1a1第二课时一、学习目标:1、能够比较熟练应用二次根式的性质进行化简.2、能够比较熟练进行二次根式的运算.3、会运用二次根式的性质及运算解决简单的实际问题.二、学习重、难点重点:二次根式的性质的应用,二次根式的运算,二次根式的应用. 难点:二次根式性质的应用一、选择:1.下列选项中,对任意实数 a 都有意义的二次根式是( )A . a- 1B . 1- a C. (1- a)2 D.1 1- a2.下列式子中正确的是()A. 5 2 7B. a2 b2 a bC. a x b x a b xD. 6 83 4 3 2 23.已知 x、 y 为实数, y= x- 2+2- x + 4,则 y x的值等于()A . 8 B. 4 C. 6 D. 164.下列根式中,是最简二次根式的是()A. 0.2bB. 12a 12bC. x2 y2D. 5ab25.等式x 3 x 3成立的条件是()x 5 x 5A 、 x≠ 5 B、 x≥ 3 C、 x≥ 3 且 x≠ 5 D 、 x>56.若 a<0,则化简a3得()A 、a a B、a a C、a a D、a a7.若a 1 , b 5 , 则()5 5A 、 a、 b 互为相反数B、 a、 b 互为倒数C、 ab=5 D、 a=b9.若(a 1) 2 a 2 1 2a ,则|1 a | | a | ( )A、1 2a B 、 1 C 、 1 D 、以上答案都不对二、填空:、10a+4 + a+2b- 2 =0 , ab=11、若最二次根式 3 4a2 1与26a2 1 是同二次根式, a ______ 。

二次根式的复习教案

二次根式的复习教案

二次根式的复习教案教案标题:二次根式的复习教案教学目标:1. 复习二次根式的基本概念和性质。

2. 强化学生对二次根式计算和简化的能力。

3. 提高学生对二次根式在实际问题中的应用能力。

教学步骤:引入活动:1. 引入二次根式的概念:将一个非负实数a开平方得到的结果称为二次根式,通常用√a表示。

知识讲解:2. 回顾二次根式的性质:a. √a * √b = √(a * b)b. √(a / b) = √a / √b,其中b ≠ 0c. (a ± b)² = a² ± 2ab + b²d. (√a ± √b)² = a ± 2√(ab) + b示例分析与练习:3. 通过示例,解释和计算二次根式的加减乘除运算。

a. 如√2 + √3 = √(2 + 2√6 + 3) = √(5 + 2√6)b. 如√5 - √2 = √(5 - 2√10 + 2) = √(7 - 2√10)c. 如(√2 + √3)(√2 - √3) = 2 - 3 = -1d. 如(√5 + 2)(√5 - 2) = 5 - 4 = 1应用拓展:4. 将二次根式应用到实际问题中,如:问题1:甲班有10个学生,乙班有12个学生,那么两个班一共有多少学生?问题2:一个正方形的边长为√5 cm,求正方形的面积。

综合练习:5. 给学生一些综合练习题,帮助学生巩固对二次根式的计算、简化和应用能力。

概念复习与总结:6. 复习和总结二次根式的基本概念和运算规则,强调学生需要多做练习来提高能力。

扩展活动:7. 鼓励学生寻找更多关于二次根式的实际应用例子,并与同学分享。

课堂作业:8. 布置一些二次根式的作业题,要求学生综合运用所学知识解决问题。

教学资源:- 黑板/白板和书写工具- 二次根式的示例题和练习题- 教材和参考书籍这个教案的撰写目的是为了引导学生对二次根式进行复习和巩固,以提高他们的理解和应用能力。

人教版教科书数学八年级下册《二次根式复习》教学设计

人教版教科书数学八年级下册《二次根式复习》教学设计

《二次根式复习》教学设计例2:若实数满足 则的值是_______.知识点: 考点三:二次根式性质的运用 例3:如图21-1所示是实数a 、b 在数轴上的位置,化简:a 2-()b 2-(a -b )2. (图21-1) 知识点:考点四:二次根式的化简与求值例4:计算(1)(2) 知识点:(1)乘法法则(2)除法法则(3)最简二次根式的两个条件: ①被开方数不含分母;②被开方数中不含能开得尽方的 因数或因式;(4)同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根就叫做同类二次根式(5)二次根式加减:先化简,再合并。

小组交流,解答,并书写解答过程。

学生独立思考,探索,在小组内对子互帮,小组交流,学生展示讲解并点评,修正,补充,拓展。

学生回忆知识点,独立完成计算题,个别学生上黑板板书例题。

这一类问题主要利用非负数的和为0,进而得出每一个非负数的式子为0构造方程求未知数的解。

通过活动,既锻炼了学生的自主能力,又通过对子互助小组交流,培养了团队协作的能力。

二次根式的运算是实数运算中的一种,运算顺序与运算律都遵循有理数的运算顺序与运算律。

(双重非负性).0,0≥≥a a a a =2).(1)0(≥a ⎩⎨⎧-=a a a 2.2)0(≥a )0(≤a )0,0(≥≥=⋅b a ab b a )0,0(>≥=b a b a ba真题演练1.下列根式中是最简二次根式的是( )2.计算的结果是()3.函数中,自变量x的取值范围是()4.计算:5.若,则代数式x2-6x+9的值为____.6. 在数轴上表示实数a的点如图所示,化简学生先独立思考,然后小组进行交流探讨,最后解答并书写过程,互相纠正并规范做题过程。

通过让课堂留出一定时间让学生独立完成测评任务,达到对学情准确掌握,使我对下一节的目标和学习任务安排得当,更科学、更合理,更具有针对性。

课堂小结一路下来,我们结识了很多新知识,你能谈谈自己的收获吗?说一说,让大家一起来分享.学生各抒己见,畅所欲言通过对知识的梳理,让学生对已学知识有系统的认识,理清知识点之间的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次根式复习课》教学设计
---- 黄州中学马利民
教学背景
《二次根式》是人教版《数学》初中九年级上册第一章的内容,属于“数与代数”领域。

它是在学生学习了平方根、立方根等内容的基础上进行的,是对“实数”“代数式”等内容的延伸和补充。

本章的主要内容有二次根式的概念、性质、运算和应用。

二次根式的性质的依据是算术平方根的概念。

二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。

这些都说明了前后知识之间的内在联系。

本章的学习将为今后进一步学习根式奠定基础,本章的内容在日常生活和生产实际中有着广泛的应用。

复习目标
1、知识与技能目标
(1)了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则。

(2)用二次根式的意义和性质进行求取值范围化简和运算。

(3)会初步运用二次根式的性质及运算解决简单的实际数学问题。

2、过程与方法目标
(1)经历应用性质解决问题的过程,发展运算能力,体验数学的严谨性。

(2)经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力。

(3)经历本章的学习过程,渗透转化、分类讨论和类比等数学思想方法。

3、情感与态度目标
(1)通过常见的情境资料,吸引学生注意力,激发学生学习兴趣,拉近师生之间情感距离,为完成本复习课打下良好的基础。

(2)通过老师的及时表扬,鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,让学生体验成功的喜悦,增加学生学习数学的兴趣的信心。

(3)通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又反过来应用于实际的辩证唯物主义思想。

重点难点
教学重点:运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系。

教学难点:运用分类讨论数学思想解决本节的有关问题要求学生有严密的数学思维,是本节复习课的难点.
教学过程
一、情境引入
【答一答】
如图是由边长为m
1的正方形地砖铺设的地面示意图,
小明要沿着如图所示的路线前进,请问从B
A→所走的路程为m;
若a
BE=,则从C
B→所走的路程为m(结果保留根号)。

设计意图:二次根式是由于实际计算的需要而产生的,计算“行径路程”需要二次根式的知识。

该具体情境的引入,学生既觉得非常熟悉又倍感亲切,结合“勾股定理”全体学生不难回答。

这样的低起点设置,首先能引发全体学生的学习兴趣和积极性、启发他们的探索欲望。

本章知识
1、二次根式的【概念】:
定义1:形如)0
(≥
a
a的代数式叫做二次根式.
强调:二次根式被开方数不小于0。

2、二次根式的【性质】:
(1))0()(2≥=a a a ; (2)⎩⎨⎧<-≥==)
0(,)0(,2
a a a a a a
(3))0,0(≥≥⨯=
⨯b a b a b a (4)
)0,0(>≥=b a b
a b a 3、二次根式的【运算】: 二次根式乘法法则:)0,0(≥≥⨯=
⨯b a b a b a
二次根式除法法则:
)0,0(>≥=b a b a
b
a
二次根式加减运算:类似于合并同类项,把相同二次根式的项合并.
二次根式混合运算:原来学习的运算顺序,运算律(结合律、交换律、分配律),乘法公式(如
22))((b a b a b a -=-+,2222)(b ab a b a +±=±)等仍然适用.
4、二次根式的【化简】:
二次根式计算或化简的结果(即最简二次根式)应符合两点要求: (1)分母中不含根号;
(2)根号内不含分母、小数和能开得尽方的因数.
二、典型例题 【辩一辩】
例1:下列各式中哪些是二次根式那些不是为什么①2
1;
23x ;
)1(1<-a a ;⑧)1(1≥-a a 。

设计意图:判断是否是二次根式的活动,既能调动全班每一位学生积极愉快地参与到数学学习活动,又能使教师在最短的时间内了解到全班每一位学生对二次根式概念的掌握情况,设计这一环节体现了“面向全体学生”和“有效教学”的教学理念。

【求一求】
例2:求下列二次根式中字母的取值范围:
(1)a 5;(2)32-x ;(3)a
-12
;(4)
x
x --
+315
设计意图:通过例题使学生回忆二次根式有意义的定义,判断学生对此知识点的掌握情况,巩固学生对二次根式取值范围的掌握。

【用一用】
例3:利用二次根式的双重非负性求值。

(1)若0)(62
=++-y x x ,求y x -的值;
(2)若522+-+-=x x y ,求
x
y
的值。

设计意图:(1)使学生学会有限个非负数的和等于0,则每个非负数都必须是0,所以求解这类问题常转化为方程或方程组。

再次体验转化的数学思想方法。

(2)设置【例3(2)】是巩固已有经验,第(2)道设置增加了题目的隐含条件的挖掘这方面能力的培养。

【想一想】例4:化简下列各式,并分别说明化简依据。

①2)2(; ②2
)21(-; ③29⨯; ④
4
3。

设计意图:使学生通过二次根式的化简及化简依据的说明,引导学生回忆二次根式的四个性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质。

三、能力训练
【填一填】练1:计算填空。

(1)._______38=⨯(2)
.
_______216
6=(3)._______94423= 设计意图:(1)(2)两道均有两种解法:先乘除再化简和先化简再乘除,教师在这里可以
展开一题不同解法的讨论。

可以对(2
讲解“短除分解法化简二次根式”;(3)注意区分:带分数中的整数和真分数连写表示加法运算,而一个数与二次根号的连写表示乘法运算。

也有两种解法:从里到外或从外到里。

【做一做】练2:计算下列各式。

(1)2
2
)23()3(-+-; (2)2324⋅÷; (3))3
1
3
12(27--; (4) )13)(26(-+. 设计意图:(1)考察二次幂的算术平方根与积(因式含二次根式)的平方幂的和混合运算;(2)考察二次根式除乘混合运算,强调从左到右的顺序,学生可能先化简的前提下,强调可以一步到位更快;(3)考察去括号法则,化简和合并同类二次根式;(4)回顾多项式乘多项式法则,再次体验类比思想方法。

【选一选】练3:选择正确的答案。

(1)2
2
-=
-x x
x x
成立的条件是( ) 02
.
≥-x x
A ; 2.≠x
B ; 0.≥x
C ; 2.>x
D . (2)化简22)(x x -+,结果正确的是( )
x A 2.-; 0.B 或x 2; x C 2.-或x 2; x D 2..
设计意图:(1)巩固性质4,特别要注意根号内的字母的条件限制;(2)综合考察性质1和2,特别是要学生学会二次根式中隐含条件的挖掘。

【试一试】练4:若a ,b 为实数,且022=-+-b a ,
(1)求2
2
222b a a ++-的值。

(2)若满足上式的a ,b 为等腰三角形的两边,求这个等腰三角形的面积.
设计意图:(1)再次运用“二次根式本身的非负性”解决“确定字母的值”的问题,进而用求的的值解决“求代数式的值”的问题,本题还可以先因式分解再代人求值更快;(2)让学生运用所学的二次根式的知识(结合勾股定理)解决“求线段的长度”问题,让学生体验分类讨论数学思想方法。

四、小结提升 【说一说】
通过本节课的复习,说说你有何收获心里还有何疑虑
五、作业自测 《二次根式复习作业》。

相关文档
最新文档