一次函数与一元一次不等式(提高)巩固练习

合集下载

人教版初中数学第十九章第2节《一次函数》提高训练 (26)(含答案解析)

人教版初中数学第十九章第2节《一次函数》提高训练 (26)(含答案解析)

第十九章第2节《一次函数》提高训练 (26)一、单选题1.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x kg ,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元, y1,y2与x 之间的函数图象如图所示,则下列说法中错误的是( )A .甲园的门票费用是60元B .草莓优惠前的销售价格是40元/kgC .乙园超过5 kg 后,超过的部分价格优惠是打五折D .若顾客采摘12 kg 草莓,那么到甲园或乙园的总费用相同2.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n -1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)3.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .0x >B .0x <C .3x >D .3x <4.如图,直线335y x =-+与 y 轴相交于点 A ,与 x 轴相交于点 B ,点 C 为 AB 的中点,则直线 OC 的解析式为( )A .53y x =B .35y x =-C .35y x =D .53=-y x 5.已知点A (-2,1),B (2,3),若要在x 轴上找一点P ,使AP +BP 最短,由此得点P 的坐标为( ) A .(-4,0)B .(-32,0) C .(-1,0) D .(1,0)6.已知一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =3B .x =1.5C .x =-3D .x =-1.5二、填空题7.若以二元一次方程x +3y =b 的解为坐标的点(x ,y )都在直线y =﹣13x +b ﹣1上,则常数b 的值为_____.8.已知一次函数y ax b =+的图象如图,根据图中信息请写出不等式0ax b +≥的解集为___________.9.正方形111A B C O ,正方形2221A B C C ,正方形3332A B C C ,按如图所示的方式放置在平面直角坐标系中,若点1A 、2A 、3A 和1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2020B 的坐标是__________.10.某个函数具有性质:当x<0时,y 随x 的增大而减小,这个函数的表达式可以是_____________(只要写出一个符合题意的答案即可).11.直线y =﹣2x +b 过点(3,1),将它向下平移4个单位后所得直线的解析式是_____.12.若一次函数()23y k x k =-+-的图象经过第一,二,三象限,则k 的取值范围是_________;若一次函数()23y k x k =-+-的图象不经过第四象限,则k 的取值范围是___________. 13.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.14.如图放置112223334,,,A B A A B A A B A ∆∆∆都是全等的等边三角形,边11A B 在y 轴上, 点2A 在x 轴上,点123,,,A A A 都在直线1y x =-上,则点2020B 的坐标是_____.15.已知一次函数y=kx+b 的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______. 16.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.17.如图,直线1y x m =+和22y x n =-的交点是A ,过点A 分别作x 轴y 轴的垂线,则不等式2x m x n +>-的解集为________.18.已知1(2)23k y k x k -=-+-是关于x 的一次函数,则这个函数的解析式是_______. 19.在平面直角坐标系中,直线l :y =x+1与y 轴交于点A 1,如图所示,依次作正方形OA 1B 1C 1,正方形C 1A 2B 2C 2,正方形C 2A 3B 3C 3,正方形C 3A 4B 4C 4,…,点A 1,A 2,A 3,A 4,…在直线l 上,点C 1,C 2,C 3,C 4,…在x 轴正半轴上,则B n 的坐标是_____.三、解答题20.某快递公司有甲、乙两辆货车沿同一路线从A地到B地配送货物.某天两车同时从A地出发,驶向B地,途中乙车由于出现故障,停车修理了一段时间,修理完毕后,乙车加快了速度匀速驶向B地;甲车从A地到B地速度始终保持不变.如图所示是甲、乙两车之间的距离y(km)与两车出发时间x(h)的函数图象.根据相关信息解答下列问题:(1)点M的坐标表示的实际意义是什么?(2)求出MN所表示的关系式,并写出乙故障后的速度;(3)求故障前两车的速度以及a的值.21.甲、乙两个批发店销售同一种苹果.在甲批发店,不论购买数量是多少,价格均为6元/千克,在乙批发店,购买数量不越过50千克时,价格为7元千克;购买数超过50千克时,超出部分的价x>.格为5元千克.假设小王在某批发店购买苹果的数为x千克()0(1)根据题意填表:(2)假设在甲批发店购买苹果的费用为y元,求y与x之间的关系式;(3)根据题意填空①若小王在甲、乙两个批发店购买的苹果的数量相同.且花费也相同,则他购买的苹果的数量为________千克;①若小王计划购买的苹果的数量为120千克,则他去________批发店购买时的花费少; ①若小王购买苹果时花费了360元,则他去_______批发店购买的数量多. 22.已知一次函数y kx b =+(,k b 是常数,且0k≠)的图象过()A 3,5与()2,5B --两点.(1)求一次函数的解析式;(2)若点()3,a a --在该一次函数图象上,求a 的值;(3)把y kx b =+的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.23.如图1,A (0,10),B (m ,﹣2),且S ①AOB =40. (1)求m 的值;(2)如图2,直线CD 与x ,y 轴分别交于C 、D 两点,①OCD =45°,第四象限的点P (a ,b )在直线CD 上,且ab =﹣8,求OP 2﹣OC 2值;(3)如图3,点D (2,0),求①DAO+①BAO 的度数.24.请你用学习“一次函数和二次根式”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数|1|y x =-的图象: ①列表填空:①描点、连线,画出|1|y x =-的图象;(2)结合所画函数图象,写出|1|y x =-两条不同类型的性质;(31102x -=的解. 25.如图,直线22y x =-+与x 轴、y 轴分别交于A 、B 两点,直线112y x =+与x 轴、y 轴分别交于D 、C 两点,与直线AB 交于点M .(1)填空:点B 的坐标是(________,________),点D 的坐标是(________,________); (2)直线AB 与直线CD 的位置关系________; (3)线段DM 的长为________;(4)在第一象限是否存在点P ,使得ABP ∆是等腰直角三角形,请直接写出所有满足条件的点P 的坐标________.26.一次函数y =kx +b 的图象经过点(3,﹣2)和点(﹣1,6).(1)求出该一次函数的解析式;(2)求该图象与x 轴的交点A 的坐标,与y 轴的交点B 的坐标,并画出函数的图象; (3)该一次函数与正比例函数y =﹣x 的图象交于点C ,求①OAC 的面积. 27.已知:一次函数4y kx =+的图象经过点(3,2)--. (1)求这个函数的解析式;(2)若直线分别交坐标轴于A 、B 两点,O 为坐标原点,求AOB ∆的面积. 28.画出直线y =﹣2x +3的图象,根据图象解决下列问题: (1)直线上找出横坐标是+2的点的坐标; (2)写出y >0时,x 的取值范围;(3)写出直线上到x 轴的距离等于4的点的坐标.29.不论k 为何值,一次函数y =2kx -k +2的图象恒过一定点,求这个定点; 30.如图,过点A 的一次函数的图象与正比例函数y =2x 图象相交于点B . (1)求该一次函数的解析式;(2)如果点C (m ,-2)在该一次函数的图象上,请求m 的值; (3)若该一次函数的图象与x 轴交于D 点,求①BOD 的面积.【答案与解析】1.D 【解析】根据函数的图象逐一分析即可得出答案.A . 从图象可以看出,当0x =时,60y =,所以甲园的门票费用是60元,正确,故该选项不符合题意;B . 200540÷=,所以草莓优惠前的销售价格是40元/kg ,正确,故该选项不符合题意;C . 乙园超过5 kg 后,超过的部分销售价格是(400200)(155)20-÷-=元/kg ,是打五折,正确,故该选项不符合题意;D . 若顾客采摘12 kg 草莓,甲园的花费是6012400.6348+⨯⨯=(元),乙园的花费是200(125)20340+-⨯=(元),所以总费用不相同,错误,故该选项符合题意;故选:D .本题主要考查一次函数的应用,能够从图象中获取信息是解题的关键. 2.B 【解析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标. ①1(1,0)A ①11OA =①过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ①()11,2B ①2(2,0)A ①22OA =①过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ①()12,4B①点3A 与点O 关于直线22A B 对称①()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键. 3.C 【解析】根据函数图象可以直接判断本题的答案. 解:结合图象,当3x >时,函数1y kx b =+在函数2y x a =+的下方, 即不等式kx b x a ++<的解集是3x >; 故选:C .本题考查了一次函数与一元一次不等式:从函数图象的角度看,一元一次不等式的解集就是确定直线=+y kx b 在另一条直线(或者x 轴)上(或下)方部分所有点的横坐标的集合;这是数形结合的典型考查. 4.C 【解析】由直线解析式求出A 、B 两点坐标,根据两点中点坐标公式可求出C 点坐标,然后再利用待定系数法即可求出OC 直线解析式. 解:①直线335y x =-+与 y 轴相交于点 A ,与 x 轴相交于点 B , 令x=0,解得y=3,即A (0,3);令y=0,解得x=5,即B (5,0) 又C 为AB 的中点, ①C (52,32) 设OC 解析式为y=kx ,把点C 坐标代入解析式得:52k=32解得k=35, ①OC :y=35x ,故选:C .本题主要考查了求函数图像与坐标轴交点坐标,两点中点坐标,待定系数法求函数解析式,解题关键在于求出C 点坐标,利用待定系数法求OC 解析式.5.C【解析】作点A关于x轴的对称点A',则A'坐标为(-2,-1)连接B A',交x轴于点P,此时AP+BP最短.求出直线BA'解析式,进而求出点P坐标即可.解:如图,作点A关于x轴的对称点A',则A'坐标为(-2,-1),连接B A',交x轴于点P,此时AP +BP最短.设直线BA'解析式为y=kx+b,①点B、A'坐标分别为(2,3)(-2,-1),①2321 k bk b+=⎧⎨-+=-⎩,解得11 kb=⎧⎨=⎩,①直线BA'解析式为y=x+1,把y=0代入得x=-1,①点P坐标为(-1,0).故选:C本题考查了将军饮马问题,待定系数法等知识,作出点A的对称点A',求出直线BA'解析式是解题关键.6.B【解析】根据一次函数与一元一次方程的关系,结合图象即可求解.解:①关于x的方程kx+b=0可以看做求一次函数y=kx+b的图象与x轴的交点的横坐标,由图象得直线与x轴的交点为(1.5,0),①关于x的方程kx+b=0的解为x=1.5.故选:B本题考查了一次函数与一元一次方程的关系,会用函数的观点理解方程是解题的关键.7.32【解析】直线解析式乘以3后和方程联立解答即可.解:因为以二元一次方程x +3y =b 的解为坐标的点(x ,y)都在直线y =﹣13x +b ﹣1上, 直线解析式乘以3得3y =﹣x +3b ﹣3,变形为:x +3y =3b ﹣3,所以b =3b ﹣3, 解得:b =32, 故答案为:32. 本题考查了一次函数与二元一次方程问题,关键是直线解析式乘以3后和方程联立解答. 8.1x ≥-【解析】观察函数图形得到当x≥-1时,一次函数y=ax+b 的函数值不小于0,即ax+b≥0.解:根据题意得当x≥-1时,ax+b≥0,即不等式ax+b≥0的解集为x≥-1.故答案为:x≥-1.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.20202019201921,2()B ﹣【解析】根据直线解析式先求出OA 1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n 个正方形的边长,从而求得点B n 的坐标,即可求得点B 2020的坐标. 解:①直线y=x+1,当x=0时,y=1,当y=0时,x=-1,①OA 1=1,①B 1(1,1),①OA 1=1,OA=1,①①OAA 1=45°,①①A 2A 1B 1=45°,①A 2B 1=A 1B 1=1,①A 2C 1=2=21,①B 2(3,2)同理得:A 3C 2=4=22,…,①B 3(7,4);B 4(24-1,24-1),即B (15,8),①B n (2n -1,2n -1),①B (22020-1,22019)故答案为(22020-1,22019).本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解题的关键.10.y x =-【解析】根据一次函数的性质、反比例函数的性质、二次函数的性质写出一个满足条件的函数即可. 某个函数具有性质:当x<0时,y 随x 的增大而减小,这个函数的表达式可以是:y x =-,故答案为:y x =- (答案不唯一).本题考查了函数的性质,熟练掌握一次函数的性质、函数的增减性是解本题的关键.11.y =﹣2x +3【解析】将(3,1)代入y =﹣2x +b ,即可求得b ,然后根据“上加下减”的平移规律求解即可.解:将(3,1)代入y =﹣2x +b ,得:1=﹣6+b ,解得:b =7,①y =﹣2x +7,将直线y =﹣2x +7向下平移4个单位后所得直线的解析式是y =﹣2x +7﹣4,即y =﹣2x +3.故答案为:y =﹣2x +3.本题主要考查利用待定系数法确定函数关系式,一次函数图象的平移,解此题的关键在于熟练掌握其知识点.12.23k << 23k <≤【解析】根据函数图象确定关于k 的不等式组,解不等式组即可.解:①一次函数()23y k x k =-+-的图象经过第一,二,三象限,①k -2>0,3-k >0,①23k <<,①一次函数()23y k x k =-+-的图象不经过第四象限,①k -2>0,3-k≥0,①23k <≤.故答案为:23k <<;23k <≤.本题考查了一次函数的图象,能根据函数图象经过的象限判断出一次函数比例系数和常数的取值是解题关键.13.(197,0); 【解析】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题. 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =,∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫ ⎪⎝⎭. 本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.14.2020)【解析】利用一次函数图象上点的坐标特征可分别求出点1A 、2A 的坐标,利用点的坐标的变化可找出点n A的坐标为-2)n -,结合等边三角形的边长,即可得出点n B 的坐标为-,)n ,再代入2020n =即可求出点2020B 的坐标.解:当0x =时,011y -=-, ∴点1A 的坐标为(0,1)-;当0y =10-=,解得:x =∴点2A 的坐标为0).∴点n A 的坐标为-2)n -.11122A B OA ==,∴点n B 的坐标为-)n ,∴点2020B 的坐标2020).故答案为:,2020).本题考查了一次函数图象上点的坐标特征、等边三角形的性质、全等三角形的性质以及点的坐标的变化,利用全等三角形的性质及点的坐标的变化,找出点n A 的坐标为,2)n -是解题的关键.15.y=2x+2【解析】根据一次函数解析式y=kx+b ,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k 和b 的值,即得到解析式.因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b ,所以0=-x+b ,2=b ,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.16.12- 【解析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x +2y =2,再代入x=3即可求出y 的值.解:从图象可以得到,20x y =⎧⎨=⎩和01x y =⎧⎨=⎩是二元一次方程ax +by =c 的两组解, ①2a =c ,b =c ,①x +2y =2,当x =3时,y =12-, 故答案为12-. 本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.17.2x <【解析】根据两直线的交点坐标结合函数的图象直接写出答案即可.①直线1y x m =+和22y x n =-的交点是A (2,3),当2x <时,直线1y x m =+在直线22y x n =-的上方,①不等式2x m x n +>-的解集为2x <,故答案为:2x <.本题考查了一次函数与一元一次不等式的知识,解题的关键是能够根据交点坐标确定不等式的解集.18.y =-4x -7【解析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.解:①1(2)23k y k x k -=-+-是关于x 的一次函数,①1120k k ⎧-=⎨-≠⎩, 解得:2k =-(负值已舍去);①这个函数的解析式是:47y x =--;故答案为:47y x =--.本题考查了一次函数的定义,解题的关键是正确求出k 的值.19.(2n ﹣1,2n ﹣1)【解析】由已知分别求出B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),…,再求点的坐标特点,可得到B n (2n ﹣1,2n ﹣1). 解:①y =x+1与y 轴交于点A 1,①A 1(0,1),①正方形OA 1B 1C 1,①OC 1=B 1C 1=1,①C 1(1,0),B 1(1,1),①A 2(1,2),①正方形C 1A 2B 2C 2,①C 1A 2=C 1C 2=2,①C 2(3,0),B 2(3,2),同理,C 3(7,0),B 3(7,4),C 4(15,0),B 4(15,8),…,①B n (2n ﹣1,2n ﹣1),故答案为(2n ﹣1,2n ﹣1).本题考查在平行直角坐标系内找点坐标的规律,解题的关键是根据一次函数图象的性质和正方形的性质求出点坐标,找到坐标的变化规律.20.(1) 当行驶4小时时,甲车到达B 地(终点),乙车距离终点还有90千米;(2) y =﹣60x +330;60千米/小时;(3) 甲车速度为70千米/小时,乙为50千米/小时,a 的值为75【解析】(1)观察图象结合题意分析可得答案;(2)设MN 所表示的关系式为y =kx +b ,用待定系数法求解得解析式;再用路程除以相应的时间可得速度;(3)设出发时甲的速度为v 千米/小时,乙速度为(v ﹣20)千米/小时,根据乙车出现故障后的(2.5﹣2)小时甲车行驶的路程加上乙车故障排除后甲乙两车所产生的距离等于90千米减去40千米,列出关于v 的方程,解得v 的值,则乙车速度也可求得,然后用40+70×0.5计算即可得出a 的值.解:(1)答:点M 的坐标表示的实际意义是:当行驶4小时时,甲车到达B 地(终点),乙车距离终点还有90千米;(2)设MN 所表示的关系式为y =kx +b ,将M (4,90),N (5.5,0)代入得:4905.50k b k b +=⎧⎨+=⎩, 解得:60330k b =-⎧⎨=⎩, ①MN 所表示的关系式为y =﹣60x +330;故障排除后乙车速度为:90÷(5.5﹣4)=60千米/小时;(3)①40÷2=20千米/小时,①设出发时甲的速度为v 千米/小时,乙速度为(v ﹣20)千米/小时,则有:(2.5﹣2)v +(4﹣2.5)(v ﹣60)=90﹣40,解得:v =70,①甲车速度为70千米/小时,乙为50千米/小时,①a 的值为40+70×0.5=75.本题主要考查从函数图象获取信息,一次函数,解此题的关键在于根据题意准确理解每段函数图象的意义,利用待定系数法确定函数关系式.21.(1)填表见解析;(2)6y x =;(3)①100;①乙;①甲.【解析】(1)根据甲、乙两批发店的价格列出式子进行计算即可得;(2)根据题意可得y 与x 之间的关系式为正比例函数,再利用待定系数法即可得;(3)①分050x <≤和50x >两种情况,根据题意分别建立方程,然后解一元一次方程即可得; ①分别求出甲、乙两批发店的费用,再比较大小即可得;①分别求出甲、乙两批发店可购买的数量,再比较大小即可得.(1)由题意,甲批发店:购买30千克的费用为306180⨯=(元),购买150千克的费用为1506900⨯=(元),乙批发店:购买30千克的费用为307210⨯=(元),购买150千克的费用为507(15050)5850⨯+-⨯=(元),则填表如下:(2)由题意得:y 与x 之间的函数关系式为正比例函数,设y kx =,将点(30,180)代入得:30180k =,解得6k =,故y 与x 之间的函数关系式为6y x =;(3)①由题意,分以下两种情况:当050x <≤时,则67x x =,解得0x =(不符题意,舍去),当50x >时,则()6750550x x =⨯+-,解得100x =,故答案为:100;①在甲批发店购买的费用为1206720⨯=(元),在乙批发店购买的费用为()507120505700⨯+-⨯=(元),因为700720<,所以他去乙批发店购买时的花费少,故答案为:乙;①在甲批发店可购买的数量为360660÷=(千克),在乙批发店可购买的数量为()50360507552+-⨯÷=(千克),因为6052>,所以他去甲批发店购买的数量多,故答案为:甲.本题考查了利用待定系数法求正比例函数的解析式、一元一次方程的实际应用等知识点,依据题意,正确建立方程和各运算式子是解题关键.22.(1)21y x =-;(2)73;(3)24y x =-,所画图像详见解析 【解析】(1)已知直线上的两点坐标,可用待定系数法把两点坐标代入一次函数y kx b =+(,k b 是常数,且0k ≠),组成二元一次方程组,可求出21k b =⎧⎨=-⎩,代入y kx b =+即可得该一次函数解析式;(2)点()3,a a --在该一次函数图象上,把该点代入(1)求得的一次函数解析式,即可求得a 的值;(3)根据图像平移规律,可知向下平移3个单位,应该是原解析式 -3,即213y x =--,整理得24y x =-;图像利用描特殊点法作出即可.证明:(1)①一次函数y kx b =+(,k b 是常数,0k ≠)的图象过()A 3,5,()2,5B --两点, ①3525k b k b +=⎧⎨-+=-⎩,得21k b =⎧⎨=-⎩, 即该一次函数的表达式是21y x =-;(2)点()3,a a --在该一次函数32y x =+的图象上,①()231a a -=--, 解得,73a =,即a 的值是73; (3)把21y x =-向下平移3个单位后可得:24y x =-;图象如下:本题主要考查了待定系数法求一次函数解析式;利用点在一次函数上的性质,确定字母的值;图形平移性质及一次函数图像的画法等知识.23.(1)8;(2)16;(3)45°.【解析】(1)S①AOB=12×AO×x B=12×10×m=40,即可求解;(2)P在直线CD上,故b=t﹣a,即点P(a,t﹣a),而ab=﹣8,即a(a﹣t)=8,即a2﹣at=8,则OP2﹣OC2=a2+(t﹣a)2﹣t2=2(a2﹣at)=16;(3)作点D关于y轴的对称点G,根据勾股定理分别计算①AGB三边的平方,根据勾股定理的逆定理可知①AGB是等腰直角三角形,可得结论.(1)S①AOB=12×AO×x B=12×10×m=40,解得m=8;(2)设点D(0,t),①①OCD=45°,则CO=DO=t,故点C(t,0),设直线CD的表达式为y=kx+b,则0kt bb t=+⎧⎨=⎩,解得1kb t=-⎧⎨=⎩,故直线CD的表达式为y=﹣x+t,①P在直线CD上,故b=t﹣a,即点P(a,t﹣a),①ab=﹣8,即a(a﹣t)=8,即a2﹣at=8,①OP2﹣OC2=a2+(t﹣a)2﹣t2=2(a2﹣at)=16;(3)如下图,作点D关于y轴的对称点G,连接GB、GA,①点D (2,0),则G (﹣2,0), ①A (0,10),B (8,﹣2),①AG 2=102+22=104,BG 2=102+22=104, ①AB 2=64+144=208, ①AG =BG ,AG 2+BG 2=AB 2, ①①AGB =90°,①①BAG =①OAG+①BAO =45°, ①①DAO =①GAO , ①①DAO+①BAO =45°.故答案为(1)8;(2)16;(3)45°.本题考查了勾股定理的逆定理,待定系数法求函数解析式,本题第(3)问的关键是做出D 关于y 轴的对称点,将①DAO 和①BAO 转化为一个角,然后在求和.24.(1)①3,2,1,0,1,2,3;①画图见解析;(2)①增减性:1x <时,y 随着x 的增大而减小,1x >时,y 随着x 的增大而增大,①对称性:图象关于1x =轴对称,①函数的最小值为0;(3)0x =和43x =. 【解析】(1)①把x 的值代入解析式计算即可;①分别以自变量及函数值为点的横、纵坐标,描出各点,即可绘制函数图象; (2)可从函数的增减性、对称性、最值等方面分析; (3)根据函数图象得出方程的解即可. 解:(1)①填表:故答案为:3,2,1,0,1,2,3;①画函数图象如图:(2)①增减性:1x <时,y 随着x 的增大而减小,1x >时,y 随着x 的增大而增大;①对称性:图象关于1x =轴对称; ①函数的最小值为0;(311101122x x x -==>-=-+,即求两函数|1|y x =-,112y x =-+交点的横坐标,由图象可得:两函数有两个交点,1102x -=有两个解,分别为0x =和43x =.也可使用分类讨论得到:0x =和43x =.此题考查的是描点法绘制函数图象及根据函数的图象描述函数的性质,函数图象交点,掌握描点法绘制函数图象注意自变量及函数的对应关系.25.(1)0,2,-2,0;(2)垂直;(3)5;(4)33,22⎛⎫ ⎪⎝⎭或()3,1或()2,3【解析】(1)令22y x =-+中0x =即可得出点B 的坐标,然后令112y x =+中0y =可得出点D 的坐标;(2)通过证明AOB COD ≅△△,然后利用全等三角形的性质和等量代换即可得出结论; (3)将两直线的解析式联立,求出交点M 的坐标,然后利用勾股定理即可求解;(4)假设存在点P (x ,y ),分两种情况:若AB 边为斜边,或者AB 边为直角边,分情况利用全等三角形的判定及性质求解即可.(1)令0x =,222y x =-+=,令0y =,则220y x =-+=,解得1x =, ①()(),1,0,20A B ; 令0x =,1112y x =+=,令0y =,则1102y x =+=,解得2x =-, ①()()0,1,2,0C D -;(2)直线AB 与直线CD 垂直,理由如下:①()()1,0,0,2,A B ()()0,1,2,0C D -,1,2OA OC OB OD ∴====.在AOB 和COD △中,90OA OCAOB COD OB OD =⎧⎪∠=∠=︒⎨⎪=⎩()AOB COD SAS ∴≅,ABO CDO ∴∠=∠.,90DCO BCM CDO DCO ∠=∠∠+∠=︒,90ABO BCM ∴∠+∠=︒, 90BMC ∴∠=︒,AB DM ∴⊥,①直线AB 与直线CD 垂直;(3)22112y x y x =-+⎧⎪⎨=+⎪⎩解得2565x y ⎧=⎪⎪⎨⎪=⎪⎩, ①点M 的坐标为26,55⎛⎫⎪⎝⎭, ①线段DM5=; (4)假设存在点P ,使得ABP △是等腰直角三角形,若AB 为斜边,过点P 分别作x 轴和y 轴的垂线,分别交x 轴于点E ,y 轴于点F ,①ABP △是等腰直角三角形,,90BP AP BPA ∴=∠=︒.90,90BPF FPA APE FPA ∠=︒-∠∠=︒-∠,BPF APE ∴∠=∠.在BFP △和PEA 中,90BFP AEP BPF APEBP AP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ()BFP PEA AAS ∴≅,FP PE ∴=.设点P 的坐标为(),x y , 则x y =.AP BP =()()222212x y x y ∴-+=+-,解得3232x y ⎧=⎪⎪⎨⎪=⎪⎩此时点P 的坐标为33,22P ⎛⎫⎪⎝⎭; 若AB 边为直角边,①过点P 作PG x ⊥轴交x 轴于点G ,①ABP △是等腰直角三角形,,90AB AP BAP ∴=∠=︒.90,90OBA OAB OAB PAG ∠+∠=︒∠+∠=︒,OBA PAG ∴∠=∠.在AOB 和PGA 中,90AOB PGA OBA PAGAB AP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ()AOB PGA AAS ∴≅, ,OA PG OB AG ∴==. 1,2OA OB ==, 1,2PG AG ∴==,3OG OA AG ∴=+=,①此时P 的坐标为()3,1,①过点P 作PH y ⊥轴交y 轴于点H ,①ABP △是等腰直角三角形,,90AB BP ABP ∴=∠=︒.90,90OBA OAB OBA PBH ∠+∠=︒∠+∠=︒,OAB PBH ∴∠=∠.在AOB 和PHB △中,90AOB PHB OAB PBHAB BP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ()AOB PHB AAS ∴≅, ,OA BH OB PH ∴==. 1,2OA OB ==, 1,2BH PH ∴==,3OH OB BH ∴=+=,①此时P 的坐标为()2,3, 综上所述,点P 的坐标为33,22P ⎛⎫⎪⎝⎭或()3,1或()2,3. 本题主要考查几何综合,掌握一次函数的图象及性质,全等三角形的判定及性质,勾股定理并分情况讨论是解题的关键.26.(1)y =﹣2x +4;(2)A (2,0),B (0,4),画出函数的图象见解析;(3)S ①AOC =4. 【解析】(1)根据待定系数法设出解析式为y =kx +b ,代入A 、B 点坐标即可求解;(2)当x=0时求出y 的值获得B 点坐标,当y=0时求出x 的值获得A 点坐标,然后根据解析式画出函数图像即可;(3)①OAC 的底为OA ,高为C 点纵坐标的绝对值,因此联立两条直线解析式求得C 点坐标代入即可.(1)设一次函数的解析式为y =kx +b ,则有326k b k b +=⎧⎨-+=⎩,解得24k b =-⎧⎨=⎩,①一次函数的解析式为y =﹣2x +4.(2)对于直线y =﹣2x +4,令x =0,得到y =4,令y =0得到x =2, ①A (2,0),B (0,4), 画出函数的图象如图所示;(3)由24y x y x =-+⎧⎨=-⎩,解得44x y =⎧⎨=-⎩,①C (4,﹣4), ①S ①AOC =12×2×4=4. 故答案为(1)y =﹣2x +4;(2)A (2,0),B (0,4),画出函数的图象如上图所示;(3)S ①AOC =4. 本题考查了待定系数法求一次函数解析式,一次函数的图像,掌握数形结合思想是解决本题的关键. 27.(1)y =2x +4;(2)4∆=AOB S . 【解析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点A 、B 的坐标,然后得到OA 和OB 的长度,即可求出面积.解:(1)①一次函数4y kx =+的图象经过点(3,2)--, ①234k -=-+, ①2k =,①解析式为:24y x =+; (2)①24y x =+, 令x=0,则y=4; 令y=0,x=2-, ①OA=4,OB=2, ①14242AOB S ∆=⨯⨯=; 本题考查了一次函数的性质,待定系数法求一次函数的解析式,解题的关键是熟练掌握一次函数的性质进行解题.28.(1)(2,﹣1);(2)x <1.5;(3)(﹣0.5,4)或(3.5,﹣4). 【解析】根据两点确定一条直线,写出直线y =−2x +3的图象与x 轴和y 轴的交点坐标,即可画出相应的函数图象;(1)将x =2代入函数解析式,即可得到直线上横坐标是+2的点的坐标; (2)根据函数图象,可以直接写出y >0时,x 的取值范围;(3)根据直线上到x 轴的距离等于4的点,可知这个点的纵坐标是4或−4,然后将y =4和y =−4代入函数解析式,求得相应的x 的值,即可得到直线上到x 轴的距离等于4的点的坐标. 解:直线y =﹣2x +3过点(0,3)、(1.5,0), 函数图象如图所示:(1)当x =2时,y =﹣2×2+3=﹣1,即直线上横坐标是+2的点的坐标是(2,﹣1); (2)由图象可得,y >0时,x 的取值范围是x <1.5;(3)当y =4时,4=﹣2x +3,解得,x =﹣0.5, 当y =﹣4时,﹣4=﹣2x +3,解得,x =3.5,即直线上到x 轴的距离等于4的点的坐标是(﹣0.5,4)或(3.5,﹣4).本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答.29.122⎛⎫ ⎪⎝⎭,【解析】由题意易得()212y k x =-+,一次函数恒过一个定点,则需210x -=即可,进而求解问题即可. 解:由题意得:()212y k x =-+,∴当210x -=时,函数图像恒过一个定点, ∴1,22x y ==, ∴定点坐标为122⎛⎫ ⎪⎝⎭,.本题主要考查一次函数,关键是根据题意得到一次函数图像恒过定点的情况,然后进行求解即可. 30.(1)3y x =-+;(2)m =5;(3)S ①BOD =3. 【解析】(1)首先求得B 的坐标,然后利用待定系数法即可求得函数的解析式; (2)把C 的坐标代入一次函数的解析式即可求出m 的值; (3)首先求得D 的坐标,然后利用三角形的面积公式求解. 解:(1)在y =2x 中,令x =1,解得y =2,则B 的坐标是(1,2), 设一次函数的解析式是y =kx +b ,根据题意,得:32b k b =⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩. 所以一次函数的解析式是y =﹣x +3;(2)当y =﹣2时,﹣m +3=﹣2,解得:m =5;(3)一次函数的解析式y=﹣x+3中令y=0,解得:x=3,则D的坐标是(3,0).①S①BOD=12OD×2=12×3×2=3.本题考查了一次函数图象上点的坐标特征、利用待定系数法求一次函数的解析式以及求一次函数与坐标轴的交点等知识,属于基本题型,熟练掌握一次函数的基本知识是解题的关键.。

北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)

北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)

12.【2019·常德】某生态体验园推出了甲、乙两种消费卡, 设入园次数为x时所需费用为y元,选择这两种卡消费时, y与x的函数关系如图所示,解答下列问题: (1)分别求出选择这两种卡消费时,y关于x的函数表达式;
解:设y甲=k1x,根据题意得5k1=100, 解得k1=20,∴y甲=20x; 设y乙=k2x+100, 将点(20,300)的坐标代入得20k2+100=300, 解得k2=10.∴y乙=10x+100.
4.如图,直线y1=x+b与y2=kx-1相交于点P,点 P的横坐标为-1,则关于x的不等式x+b>kx-1 的解集在数轴上表示正确的是( A )
*5.如图,已知正比例函数 y1=ax 与一次函数 y2=12x+b 的图象交于点 P.下面有四个结论:①a<0;②b<0; ③当 x>0 时,y1>0;④当 x<-2 时,y1>y2.其中正 确的是( ) A.①② B.②③ C.①③ D.①④
(2)该药店四月份计划一次性购进两种型号的口罩共10 000 只,其中B型口罩的进货量不超过A型口罩的1.5倍,设 购进A型口罩m只,这10 000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?
解:根据题意得, W=0.5m+0.6(10 000-m)=-0.1m+6 000, 由题知10 000-m≤1.5m,解得m≥4 000. ∵-0.1<0,∴W随m的增大而减小. ∴当m=4 000时,W取最大值, W最大=-0.1×4 000+6 000=5 600, 即药店购进A型口罩4 000只、B型口罩6 000只,才能使 销售总利润最大,最大总利润为5 600元.
【点拨】由图象知,对于 y1=ax,y1 随 x 的增大而减小, ∴a<0,故①正确;直线 y2=12x+b 与 y 轴交于正半轴, ∴b>0,故②错误;当 x>0 时,y1<0,故③错误;当 x<-2 时,直线 y1=ax 在直线 y2=12x+b 的上方,

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<14.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A.x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.2C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A.x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________.11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________.12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________.13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.14.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是_________.15.已知ax+b=0的解为x=﹣2,则函数y=ax+b与x轴的交点坐标为_________.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为______,当x______时,kx+b<0.17.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________的横坐标.19.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.20.一次函数y1=kx+b与y2=x+a的图象如图,则方程kx+b=x+a的解是_________.21.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为_________.22.一次函数y=ax+b的图象过点(0,﹣2)和(3,0)两点,则方程ax+b=0的解为_________.23.方程3x+2=8的解是x=_________,则函数y=3x+2在自变量x等于_________时的函数值是8.24.一次函数y=ax+b的图象如图所示,则一元一次方程ax+b=0的解是x=_________.25.观察下表,估算方程1700+150x=2450的解是_________.x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m,n)在线段AB上移动,则m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1 C.0<x<1 D.x>132.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,﹣1),则不等式kx+b≥0的解集是()A.x≥2 B.x≤2 C.0≤x≤2 D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0()A.x=B.x≤C.x>D.x≥﹣34.已知函数y=8x﹣11,要使y>0,那么x应取()A.x>B.x<C.x>0 D.x<035.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.336.如图,直线y=ax+b经过点(﹣4,0),则不等式ax+b≥0的解集为_________.37.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是_________.38.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_________.39.如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d <2的解集为_________.40.如图,直线y=kx+b经过点(2,1),则不等式0≤x<2kx+2b的解集为_________.41.一次函数y=kx+b的图象如图所示,由图象可知,当x_________时,y值为正数,当x_________时,y为负数.42.如图,直线y=kx+b经过A(1,2),B(﹣2,﹣1)两点,则不等式x<kx+b<2的解集为_________.43.如果直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x≥kx+b≥﹣2的解集为:_________.44.如图,直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),则2x﹣7<kx+b≤0的解集_________.45.已知一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为_________.46.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,O),则关于x的不等式a(x﹣l)﹣b >0的解集为_________.47.如图,直线y=ax+b经过A(﹣2,﹣5)、B(3,0)两点,那么,不等式组2(ax+b)<5x<0的解集是_________.48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2,5),则不等式y1>y2的解集是_________.49.如图,直线y=kx+b经过A(2,0),B(﹣2,﹣4)两点,则不等式y>0的解集为_________.50.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象回答下列问题:(1)当﹣2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0;(3)当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;(3)求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并回答下列问题:(1)当x为什么值时,y>0;(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A(2,m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________.56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________;的解集是_________;的解集是_________.57.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________;(3)当x_________时,y2<0.(4)当x_________时,y2<﹣2(5)当x_________时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大,y将_________填“增大”或“减小”)(2)它的图象从左到右_________(填“上升”或“下降”)(3)图象与x轴的交点坐标是_________,与y轴的交点坐标是_________(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0?(6)当x取何值时,y>0?参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B8.联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B9.从图象上得出,当y1<y2时,x<2.故选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过(﹣,1),即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,则y=b,令y=0,则x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0)15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为(﹣2,0),故答案为:(﹣2,0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知点P(﹣2,﹣5)在函数y=2x+b的图象上,∴﹣5=﹣4+b,解得,b=﹣1;又点P(﹣2,﹣5)在函数y=ax﹣3的图象上,∴﹣5=﹣2a﹣3,解得,a=1;∴由方程2x+b=ax﹣3,得2x﹣1=x﹣3,解得,x=﹣2;故答案是:x=﹣218.∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2,故答案为:x轴交点.19.根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1,0),∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0,﹣2)和(3,0)两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽,∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2,故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2,故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2,∴长方形的面积=长×宽=(a+b )(a+3b ),由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2,0),与y 轴的交点的坐标为(0,1),且y 随x 的增大而增大.(1)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(2)函数经过点(0,1),则当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x ≤2,当﹣2≤m ≤2时,函数值y 的范围是0≤y ≤2, 则0≤n ≤2.30. 函数y=﹣2x+7中,令y=﹣2,则﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3. 故:y=﹣,∵0<2x <﹣,解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k ≠0)的图象过点(2,0),且函数值y 随x 的增大而增大,∴不等式kx+b ≥0的解集是x ≥2.故选A33.函数y=3x ﹣8的值满足y >0,即3x ﹣8>0,解得:x >.故选C34.函数y=8x ﹣11,要使y >0,则8x ﹣11>0,解得:x >.故选A .35. 由图象可知,a >0,故①正确;b >0,故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方,即x >﹣2是不等式3x+b >ax ﹣2,故③正确.故选D .36.由图象可以看出:当x ≥﹣4时,y ≥0,∴不等式ax+b ≥0的解集为x ≥﹣4,故答案为:x ≥﹣437.∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d<2的解集为(0,2).40.由直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),根据图象即可知不等式组ax+b<cx+d<2的解集为(0,2),故答案为:(0,2).41. 一次函数y=kx+b的图象如图所示,由图象可知,当x x>﹣3时,y值为正数,当x x<﹣3时,y为负数.42.由图形知,一次函数y=kx+b经过点(﹣3,0),(0,2)故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A(2,1)和B(﹣1,﹣2)两点,可得:,解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣147.把A(﹣2,﹣5)、B(3,0)两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2(x﹣3)<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A(2,0),所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点(0,﹣4)和点(2,0),过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;(1)当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;(3)∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过(0,1)和(﹣,0)两点作直线即可得函数y=2x+1的图象,如图:(1)由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点(0,4)和点(﹣,0),过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点(0,10)和点(﹣5,0),过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点(0,12)和点(﹣4,0),过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4,0),并且函数值y随x的增大而增大,因而当x>﹣4时y>0;(2)函数经过点(﹣6,﹣6)和点(﹣2,6)并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1,3)和(3,1)两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A(4,0),∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如图所示:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.(4)解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.(5)解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1,0),与y轴的交点坐标是(0,2).(4)由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5)由图象知:当x=1时,y=0.(6)由图象知:当x<1时,y>0.。

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;①函数y ax d =+ 不经过第一象限;①不等式ax b cx d ++> 的解集是3x < ;①()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .12.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是( )A .2x -≤B .2x ≥-C .2x <-D .2x >-3.如图,一次函数y kx b =+的图象经过A 、B 两点,则不等式0kx b +<的解集是( )A.1x>B.01x<<C.1x<D.0x<4.若一次函数y kx b=+(k b、为常数,且0k≠)的图象经过点()01A-,,()11B,,则不等式1kx b+>的解为()A.0x<B.0x>C.1x<D.1x>5.一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x0<B.x0>C.x2<D.x2>.6.如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4B.x≤4C.x≥1D.x≤17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;①a>0;①当x<3时,y1<y2;①当y1>0且y2>0时,﹣a<x<4.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣1评卷人得分 二、填空题 9.如图,已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),则关于x 的不等式ax+b≤kx <1的解集为______.10.如图,直线()0y kx b k =+>交x 轴于点()30A -,,交直线y x =于点B ,则根据图象可知,()0x kx b +<不等式的解为_______.11.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.12.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.13.如图,一次函数y=﹣x ﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为_____.14.函数2y x =和4y ax =+的图象相交于点(),2A m ,则不等式24x ax -≤的解为__________.15.如图,一次函数y kx b =+的图象与x 轴的交点坐标为()2,0-,则下列说法:y ①随x 的增大而减小;0b <②;③关于x 的方程0kx b +=的解为2x =-;④当1x =-时,0.y <其中正确的是______.(请你将正确序号填在横线上)16.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.评卷人得分三、解答题 17.如图:已知直线y kx b =+经过点()5,0A ,()1,4B .(1)求直线AB的解析式;(2)若直线24y x=-与直线AB相交于点C,求点C的坐标;(3)根据图象,直接写出关于x的不等式240x kx b->+>的解集.18.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点()1,P b.(1)求关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)已知直线2l经过第一、二、四象限,则当x______时,1x mx n+>+.19.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A (1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;20.如图,直线1:1l y x=+与直线22 :3l y x a=-+相交于点(1,)p b;(1)求出a,b的值;(2)根据图象直接写出不等式2013x x a<+<-+的解集;(3)求出ABP∆的面积.参考答案:1.A【解析】【分析】仔细观察图象:①a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;①c 的正负看函数y 2=cx +d 从左向右成何趋势,d 的正负看函数y 2=cx +d 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】由图象可得:a <0,b >0,c >0,d <0,①ab <0,故①正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故①正确,由图象可得当x <3时,一次函数y 1=ax +b 图象在y 2=cx +d 的图象上方,①ax +b >cx +d 的解集是x <3,故①正确;①一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,①3a +b =3c +d①3a−3c =d−b ,①a−c =13(d−b ),故①正确, 故选:A .【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.2.A【解析】【详解】试题分析:当2x ≤-时,直线11y k x b =+都在直线22y k x =的上方,即12y y ≥.故选A . 考点:一次函数与一元一次不等式.3.A【解析】由图象可知:B (1,0),且当x >1时,y <0,即可得到不等式kx+b <0的解集是x >1,即可得出选项.【详解】解:①一次函数y=kx+b 的图象经过A 、B 两点,由图象可知:B (1,0),根据图象当x >1时,y <0,即:不等式kx+b <0的解集是x >1.故选A .【点睛】本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.4.D【解析】【分析】可直接画出图像,利用数形结合直接读出不等式的解 【详解】如下图图象,易得1kx b +>时,1x >故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题 5.A【解析】根据题意在函数图像中寻找3y >时函数图像所在的位置,发现此时函数图像对应的x 范围是小于零,从而得出答案【详解】解:①由函数图象可知,当x <0时函数图象在3的上方,①当y >3时,x <0.故选A .【点睛】本题考查的是一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键. 6.D【解析】【详解】根据函数图像可得:当1x ≤时,21y y ≥,即3ax b x +≥+.故选D考点:一次函数与不等式7.B【解析】【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;①a 看y 2=x +a 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】①①y 1=kx +b 的图象从左向右呈下降趋势,①k <0正确;①①y 2=x +a ,与y 轴的交点在负半轴上,①a <0,故①错误;①当x <3时,y 1>y 2,故①错误;①y 2=x +a 与x 轴交点的横坐标为x =﹣a ,当y 1>0且y 2>0时,﹣a <x <4正确;故正确的判断是①①,正确的个数是2个.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象与性质,利用数形结合是解题的关键.8.D【解析】【详解】解:①函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-,得: 1m =-,①点A (-1,2),①当1x <-时,12y x =-的图象在23y ax =+的图象上方,①关于 x 的不等式﹣2x >ax +3 的解集是1x <-.故选:D.9.﹣4≤x <2【解析】【分析】先利用待定系数法求出y =kx 的表达式,然后求出y =1时对应的x 值,再根据函数图象得出结论即可.【详解】解:①已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),①﹣4k =﹣2,解得:k =12,①解析式为y =12x ,当y =1时,x =2,①由函数图象可知,当x≥﹣4时一次函数y =ax+b 在一次函数y =kx 图象的下方, ①关于x 的不等式ax+b≤kx <1的解集是﹣4≤x <2.故答案为:﹣4≤x <2.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.10.-3<x <0【解析】【分析】先把()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩然后利用函数图像分别解两个不等式组即可. 【详解】解:由题意得:不等式()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩得00x kx b >⎧⎨+<⎩无解,00x kx b <⎧⎨+>⎩的解集 -3<x <0 故答案为:-3<x <0【点睛】本题考查了一次函数与一元一次不等式组的解,正确将一元二次不等式转化为一元一次不等式组是解题的关键.11.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.1x ≤【解析】【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2),①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.13.﹣2<x <2【解析】【分析】先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可. 【详解】①一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),①﹣4=﹣n ﹣2,解得n=2,①P (2,﹣4),又①y=﹣x ﹣2与x 轴的交点是(﹣2,0),①关于x 的不等式组2220x m x x +--⎧⎨--⎩<<的解集为22x -<<. 故答案为22x -<<.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出 n 的值,是解答本题的关键.14.1x ≤【解析】【分析】函数2y x =和4y ax =+的图象相交于点(),2A m ,求出m 的值,然后解不等式即可.【详解】解:①函数y=2x 的图象经过点A (m ,2),①2m=2,解得:m=1,①点A (1,2),当x≤1时,2x≤ax+4,即不等式2x-4≤ax 的解集为x≤1.故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.③【解析】【分析】根据一次函数的性质,一次函数与一元一次方程的关系对个小题分析判断即可得解.【详解】由图可知:①y 随x 的增大而增大,错误;①b >0,错误;①关于x 的方程kx +b =0的解为x =﹣2,正确;①当x =﹣1时,y >0,错误.故答案为①.【点睛】本题考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.16.3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,①0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.17.(1)5y x =-+;(2)点C 的坐标为()32,;(3)35x <<【解析】【分析】 (1)将A 、B 坐标代入解析式中计算解答即可;(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线24y x =-高于直线y kx b =+部分的x 值即可.【详解】解:(1)因为直线y kx b =+经过点()5,0A ,()1,4B所以将其代入解析式中有504x b x b +=⎧⎨+=⎩,解得15k b =-⎧⎨=⎩, 所以直线AB 的解析式为5y x =-+;(2)因为直线24y x =-与直线AB 相交于点C所以有524y x y x =-+⎧⎨=-⎩,解得32x y =⎧⎨=⎩ 所以点C 的坐标为()32,; (3)根据图像可知两直线交点C 的右侧直线24y x =-高于直线y kx b =+且大于0,此时x的取值范围是大于3并且小于5,所以不等式240x kx b ->+>的解集是35x <<.【点睛】本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.18.(1)1x =,2y = (2)1x >【解析】【分析】(1)方程组的解即为两条直线的交点P 的坐标,将x =1,代入直线l 1求出P 点坐标即可;(2)不等式x +1>mx +n 的解集即直线l 1在直线l 2的上方时x 的取值范围.【详解】解:(1)由题意可得,关于x ,y 的方程组的解即为两条直线的交点P 的坐标, 当x =1时,代入直线l 1,求得y =2,即P (1,2)即方程组的解为12x y =⎧⎨=⎩; (2)由题意可知,x +1>mx +n 时,直线l 1在直线l 2的上方,由函数图象可得,此时x >1,故答案为x >1.【点睛】本题主要考查一次函数与二元一次方程组及一元一次不等式的关系,熟悉一次函数的图象并熟练应用数形结合的思想是解答本题的关键19.(1)a =﹣3,k =1;(2)x <1;(3)当x >2时,y <2.【解析】【分析】(1)把A (1,a )代入y =﹣x +4求得a 的值,再把将A (1,3)代入y =kx +k +1即可求得k 的值;(2)观察函数图象即可解答;(3)当x =2时,y =2,观察图象,x >2时,图象在x =2的右侧,在y =2的下面,即可解答.【详解】(1)把A (1,a )代入y =﹣x +4得a =﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)根据图象可得:不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.【点睛】本题考查的是一次函数与不等式的解集,掌握利用函数图象求不等式解集的方法是关键.20.(1) a=83,b=2;(2)-1<x<1;(3)5.【解析】【分析】(1)把P点坐标代入y=x+1可得b的值,继而代入23y x a=-+可求a的值;(2)根据两函数图象的交点坐标及y=x+1与x轴的交点可得答案;(3)首先求出点A、B的坐标,由此计算AB的长,再由点P的坐标,即可计算出ABP∆的面积.【详解】解:(1)①直线l1:y=x+1过点P(1,b),①b=1+1=2;把点P(1,2)代入23y x a=-+中得a=8 3(2)①y=x+1与x轴交于点(-1,0),①在x=-1的左边x=1的右边的图象满足不等式2013x x a<+<-+,①不等式2013x x a<+<-+的解集是-1<x<1(3)在2833y x=-+中,当y=0时,x=4①点B的坐标是(4,0)又A(-1,0),①AB=4+1=5,①点P(1,2),①ABP∆的面积为:12×5×2=5.【点睛】此题主要考查了一次函数与二元一次方程组,关键是掌握待定系数法求一次函数解析式,掌握凡是函数图象经过的点必能满足解析式即可.。

一元一次不等式与一次函数练习题

一元一次不等式与一次函数练习题

• (一题多变题)x为何值时,一次函数 y=-2x+3的值小于一次函数y=3x-5的值? (1)一变:x为何值时,一次函数y=-2x+3 的值等于一次函数y=3x-5的值; (2)二变:x为何值时,一次函数y=-2x+3 的图象在一次函数y=3x-5的图象的上方? (3)三变:已知一次函数y1=-2x+a, y2=3x-5a,当x=3时,y1>y2,求a的取 值范围.
• 5.直线L1:y=k1x+b与直线L2:y=k2x 在同一平面直角坐标系中的图象如图 所示,则关于x的不等式k1x+b>k2x的 解为( ) A.x>-1 B.x<-1 C.x<-2 D.无法确定
(2008,沈阳,3分)一次函数 y=kx+b的图象如图所示,当y<0时, x的取值范围是( ) • A.x>0 B.x<0 C.x>2 D.x<2
堂清作业

• 某学校需刻录一批光盘,若在电脑公 司刻录每张需8元(包括空白光盘费); 若学校自制,除租用刻录机需120元外, 每张还需成本4元(包括空白光盘 费).问刻录这批电脑光盘到电脑公 司刻录费用省,还是自制费用省?请 你说明理由.
• 解:设需刻录x张光盘,学校自刻的总费用 为y1元,电脑公司刻录的总费用为y2 元.由题意,得y1=4x+120,y2=8x. (1)当y1>y2时,即4x+120>8x,解得x<30; (2)当y1=y2时,即4x+120=8x,解得x=30; (3)当y1<y2时,即4x+120<8x,解得 x>30. 所以,当刻录光盘小于30张时,到电脑公司 刻录费用省;当刻录光盘等于30张时,两 个地方都行;当刻录光盘大于30张时,学 校自刻费用省.

一次函数与一元一次不等式(张娜)

一次函数与一元一次不等式(张娜)

数缺形时,少直观 形缺数时,难入微 -------华罗庚
感谢各位老师指导
教学中的问题
将不等式两边的表达式分看成两个函 数解析式,可以以不同的方式表现一元一 次不等式和一次函数的联系,使学生能够 用函数的观点认识解一元一次不等式的实 质。在教学过程中,学生会感觉这种方法 比化成ax+b>0的方式更麻烦,但是从多种角 度分析问题可以更好的提升学生感知事物 的层次,为以后各种问题的解决奠定良好 的基础。
一次函数是最初步的数学模型,将 数学工具应用到实际问题的解决中能让 学生感到学有所知,学有所用。
巩固提升:如图,直线y=k1x+b1与直线y=k2x +b2交于点(-2,1),则不等式k1x+b1>1 x < -2 的解集 是_______,不等式k2x+b2>1的解集 x > -2 是_______,不等式k1x+b1>k2x+b2的解集是 _________. x < -2
不等式刻画了现实世界中数量的不等关系,而 函数刻画了现实世界中数量间的变化关系。当已知 函数中某个变量的变化范围,就可以利用不等式确 定另个变量的变化范围。因此函数和不等式是相互 渗透的。
问题1、观察图象,x取何值时,函数y=x+1的 函数值y>0?
y
3 2 1
x>-1
x
1 2
-2
-1
O
-1 -2
字母系数的引入可以让学生更深的体会 到用函数观点解决一元一次不等式的便利, 从而激发学生对本节知识运用的兴趣。
例3、如图,先观察图形,然后填空 >a (1)当x______时,y1 >0; >c (2)当x______时,y2 <0; ≥b (3)当x______时,y1≥ y2.

第二章 一元一次不等式与一元一次不等式组(提高卷)(解析版)

第二章 一元一次不等式与一元一次不等式组(提高卷)(解析版)

《阳光测评》2020-2021学年下学期八年级数学单元提升卷【北师大版】第二章一元一次不等式与一元一次不等式组(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0,其中不等式有()A.2个B.3个C.4个D.5个【答案】C【分析】不等式就是含有不等号,表示不等关系的式子,据此即可判断.【解答】解:其中是不等式的有:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0.共4个.故选:C.【知识点】不等式的定义2.下列不等式的变形中,不正确的是()A.若a>b,则a+1>b+1B.若﹣a>﹣b,则a<bC.若﹣x<y,则x>﹣3y D.若﹣3x>a,则x>﹣a【答案】D【分析】根据不等式的基本性质,逐项判断即可.【解答】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵﹣a>﹣b,∴a<b,∴选项B不符合题意;∵﹣x<y,∴x>﹣3y,∴选项C不符合题意;∵﹣3x>a,∴x>﹣a,∴选项D符合题意.故选:D.【知识点】不等式的性质3.不等式5x﹣1≤2x+5的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:不等式移项合并得:3x≤6,解得:x≤2,表示在数轴上,如图所示:,故选:D.【知识点】在数轴上表示不等式的解集、解一元一次不等式4.如图,L1:y=x+2与L2:y=ax+b相交于点P(m,4),则关于x的不等式x+2≥ax+b的解集为()A.x≥2B.x≤2C.x≤4D.x≥4【答案】A【分析】首先把P(m,4)代入y=x+2可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.【解答】解:把P(m,4)代入y=x+2得:m=2,则P(2,4),根据图象可得不等式x+2≥ax+b的解集是x≥2,故选:A.【知识点】两条直线相交或平行问题、一次函数与一元一次不等式5.对有理数x,y定义运算:x※y=ax+by,其中a,b是常数.如果2※(﹣1)=﹣4,3※2>1,那么a,b的取值范围是()A.a<﹣1,b>2B.a>﹣1,b<2C.a<﹣1,b<2D.a>﹣1,b>2【答案】D【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:2a﹣b=﹣4①,3a+2b>1②由①得:b=2a+4③∴3a+2(2a+4)>1,解得a>﹣1,把a>﹣1代入得,b>2,∴a>﹣1,b>2故选:D.【知识点】解一元一次不等式、有理数的混合运算6.已知一次函数y=kx+b(k≠0,k,b为常数),x与y的部分对应值如下表所示,x﹣2﹣10123y3210﹣1﹣2则不等式kx+b<0的解集是()A.x<1B.x>1C.x>0D.x<0【答案】B【分析】由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.【解答】解:当x=1时,y=0,根据表可以知道函数值y随x的增大而减小,故不等式kx+b<0的解集是x>1.故选:B.【知识点】一次函数的性质、一次函数与一元一次不等式7.不等式组的解集为()A.x≥2B.﹣3≤x≤2C.x<﹣3D.﹣3<x≤2【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+1>0,得:x>﹣3,解不等式2﹣x≥0,得:x≤2,则不等式组的解集为﹣3<x≤2,故选:D.【知识点】解一元一次不等式组8.不等式组有3个整数解,则a的取值范围是()A.﹣2≤a≤﹣1B.﹣2<a≤﹣1C.﹣2≤a<﹣1D.﹣2<a<﹣1【答案】C【分析】先求出不等式组的解集,根据不等式组的整数解即可得出答案.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,∴不等式组的解集是a<x<2,∵不等式组有3个整数解,∴﹣2≤a<﹣1,故选:C.【知识点】一元一次不等式组的整数解9.对于整数a、b、c、d,符号表示运算ac﹣bd,已知关于x的不等式组有4个整数解,则a的取值范围为()A.﹣≤a≤﹣B.﹣3<a<﹣C.﹣3≤a≤﹣D.﹣≤a<﹣【答案】D【分析】先变形,再求出不等式组的解集,再得出关于a的不等式组,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵不等式组有4个整数解,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:D.【知识点】有理数的混合运算、一元一次不等式组的整数解10.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.【知识点】一元一次不等式组的应用二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.不等式组有2个整数解,则实数a的取值范围是.【答案】8≤a<13【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【知识点】一元一次不等式组的整数解12.今年4月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t的取值范围是.【答案】2≤t≤8【分析】这一天的气温应该大于或等于最低气温而小于或等于最高气温.【解答】解:因为最低气温是2℃,所以2≤t,最高气温是8℃,t≤8,则今天气温t(℃)的范围是2≤t ≤8.故答案为:2≤t≤8.【知识点】不等式的定义13.非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.【答案】9【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a=3推出c的最小值与a 的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;∴c=3时y最小,即y最小=12,即n=12;∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;∴a=9时y最大,即y最大=21,即m=21;∴m﹣n=21﹣12=9,故答案为:9【知识点】不等式的性质14.若关于x的一元一次不等式组有解,则m的取值范围为﹣.【答案】m>-1.5【分析】求得不等式①和不等式②的解集,然后根据不等式组有解以及不等式组解集的判断口诀求解即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥﹣2m.∵不等式组有解,∴﹣2m<3.解得:m>﹣1.5.故答案为:m>﹣1.5.【知识点】不等式的解集15.关于x的方程3k﹣5x=9的解是非负数,则k的取值范围是.【答案】k≥3【分析】求出方程的解,根据题意得出≥0,求出不等式的解集即可.【解答】解:3k﹣5x=﹣9,﹣5x=﹣9﹣3k,x=,∵关于x的方程3k﹣5x=﹣9的解是非负数,∴≥0,解不等式得:k≥3,∴k的取值范围是k≥3.故答案是:k≥3.【知识点】一元一次方程的解、解一元一次不等式16.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.【答案】x<3【分析】观察函数图象得到当x<3时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.【知识点】一次函数与一元一次不等式三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.若关于x、y的方程组的解满足x+y≤6,求k的取值范围.【分析】先把k当作已知表示出x、y的值,再根据x+y≤6列出不等式,求出k的取值范围即可.【解答】解:解方程组得,,∵x+y≤6,∴3k+1﹣k﹣2≤6,解得k≤.∴k的取值范围为k≤.【知识点】二元一次方程组的解、解一元一次不等式18.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组19.(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.【分析】(1)先在x>y的两边同乘以﹣3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)根据题意,在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【解答】解:(1)∵x>y,∴不等式两边同时乘以﹣3得:(不等式的基本性质3)﹣3x<﹣3y,∴不等式两边同时加上5得:5﹣3x<5﹣3y;(2)∵x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.即a的取值范围是a<3.【知识点】不等式的性质、整式的加减20.如图,已知直线y=x+5与x轴交于点A,直线y=﹣x+b与x轴交于点B(1,0),且这两条直线交于点C.(1)求直线BC的解析式和点C的坐标;(2)直接写出关于x的不等式x+5>﹣x+b的解集.【分析】(1)将点B的坐标代入y=﹣x+b即可求得直线BC的解析式,然后联立两个函数求得交点C的坐标即可;(2)根据函数的图象确定不等式的解集即可.【解答】解:(1)∵直线y=﹣x+b与x轴交于点B(1,0),∴﹣1+b=0 解得:b=1,∴直线BC的解析式为y=﹣x+1,,解得:,∴C(﹣2,3)(2)∵直线y=﹣x+b与y=﹣x+1,交于点C(﹣2,3),∴根据图象得到关于x的不等式x+5>﹣x+b的解集x>﹣2.【知识点】一次函数与一元一次不等式、待定系数法求一次函数解析式、两条直线相交或平行问题21.已知:x,y满足3x﹣4y=5.(1)用含x的代数式表示y,结果为;(2)若y满足﹣1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.【答案】3x-54【分析】(1)解关于y的方程即可;(2)利用y满足﹣1<y≤2得到关于x的不等式,然后解不等式即可;(3)解方程组得由x>2y得不等式,解不等式即可.【解答】解:(1)y=;故答案为:;(2)根据题意得﹣1<≤2,解得<x≤;(3)解方程组得∵x>2y,∴>2×,解得a<10.【知识点】不等式的性质、列代数式22.(1)解方程组:;(2)解不等式组:,并将不等式组的解集在数轴上表示出来.【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1),①×3+②,得:5x=10,解得x=2,将x=2代入①,得:2+y=1,解得y=﹣1,则方程组的解为;(2)解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式>x﹣1,得:x<2,则不等式组的解集为﹣1≤x<2,将解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解二元一次方程组、解一元一次不等式组23.如图,直线y=﹣x+m与x轴交于点B(4,0),与y轴交于点A,点C为x轴上一点,且已知S△ABC=4.又直线y=x+b与直线AB交于点M,M点横坐标为2.(1)求直线AB的解析式;(2)求C点坐标;(3)结合图形写出不等式x+b≥﹣x+m的解集.【分析】(1)先把B点坐标代入y=﹣x+m求出m的值,从而得到直线AB的解析式为y=﹣x+4,(2)求出A点坐标,接着利用三角形面积公式计算出BC,即可得到C(2,0)或(6,0);(3)根据图象即可求得;【解答】解:(1)把B(4,0)代入y=﹣x+m得﹣4+m=0,解得m=4,所以直线AB的解析式为y=﹣x+4;(2)当x=0时,y=﹣x+4=4,则A(0,4),∵S△ABC=4,∴BC•4=4,解得BC=2,∴C(2,0)或(6,0);(3)由图象可知,不等式x+b≥﹣x+m的解集为x≥2.【知识点】待定系数法求一次函数解析式、两条直线相交或平行问题、一次函数与一元一次不等式24.在抗击新冠肺炎疫情期间,市场上防护口罩岀现热销,某药店售出一批口罩.已知3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个.(1)求儿童口罩和成人口罩的每包各是多少个?(2)某家庭欲购进这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个,①有哪几种购买方案?②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?【分析】(1)设儿童口罩每包x个,成人口罩每包y个,根据:“3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个”列方程组求解即可;(2)①设购买儿童口罩m包,根据“这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个”列出不等式组,确定m的取值,进而解决问题;②分别求出每个方案的费用即可解决问题.【解答】解:(1)设儿童口罩每包x个,成人口罩每包y个,根据题意得,,解得,,∴儿童口罩每包2个,成人口罩每包10个;(2)①设购买儿童口罩m包,则购买成人口罩(5﹣m)包,根据题意得,,解得,2≤m≤3,∵m为整数,∴m=2或m=3,∴共有两种购买方案:方案一:购买儿童口罩2包,则购买成人口罩3包;方案二:购买儿童口罩3包,则购买成人口罩2包.②方案一的总费用为:2×8+3×25=91元;方案二的总费用为:3×8+2×25=74元.∵91>74,∴方案二的总费用最少.【知识点】一元一次不等式组的应用、二元一次方程组的应用25.哈六十九中校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求本次乙种笔记本最多购买多少个?【分析】(1)首先设甲种笔记本的单价是x元,乙种笔记本的单价是y元,根据题意可得:①20个甲种笔记本的价格+10个乙种笔记本的价格=110元;②甲种笔记本30个的价格+10=乙种笔记本20个的价格,根据等量关系列出方程组,再解即可;(2)设乙种笔记本购买a个,由题意得不等关系:3×甲种笔记本的数量+5×乙种笔记本的数量≤320元,根据不等关系列出不等式,再解即可.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元,由题意得:,解得.答:甲种笔记本的单价是3元;乙种笔记本的单价是5元;(2)设乙种笔记本购买a个,由题意得:3(2a﹣10)+5a≤320,解得:,∵a为整数,∴a取31.答:本次乙种笔记本最多购买31个.【知识点】一元一次不等式的应用、二元一次方程组的应用。

14.3.2一次函数与一元一次不等式

14.3.2一次函数与一元一次不等式

y Y=2x-5
分类思想:y=0\y>0\y<0, 类比学习:直线三部分x交点,x上方,x下方
o -5
2.5
x
课堂练习:第126页第1、2题.
第1道题用方程和不等式可以解决函数的问题; 第2道题用函数可以解决方程和不等式的问题; 加强对函数的认识。
小结反思
说出你的收获
X为何值时y=ax+b的值大于0 X为何值时y=ax+b的值小于0
1\理解一次函数与一元一次不等式的关系,会用函数图像法解一元一 次不等式;2\学习用函数观点看待不等式的方法,进一步感受数形结 合的思想,用联系的观点看待数学问题。3\学生经历图像法解不等式 的探究过程,通过合作交流,体验自己和他人的想法,掌握知识, 发展机能,获得愉快的心理体验。
教学目标
教学的 重点难点
Y=2x+10 4 -5 -0.8 o Y=5x+4 2 x
例2拓展:
利用图象解答下列问题: y (2,14) 10
(1)当x取何值时,5x+4=0 ; (2)当x为何值时,2x+10<0; Y=2x+10 (3) x为何值时,不等式 5x+4>2x+10; (4) X取何值时,不等式 5x+4=2x+10.
算机可以代替手工制作图象,只要输入函数解析式,就可以得到精确的图象。
P129第3、4题
加深对整个图象的整体认识。
-5 -0.8 o Y=5x+4
4 2 x
新知应用:
函数可以帮助解决 方程、不等式;反 之,方程、不等式 根据函数y=2x-5图像,观察图像回答以下问题 可以可以帮助研究 • (1)x取何值时,2x-5=0; 函数问题,三者是 紧密联系的整体。

1.7一元一次不等式与一次函数7

1.7一元一次不等式与一次函数7

一元一次不等式与一次函数1班 学号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆1.7一元一次不等式与一次函数(2)课前准备重点难点:一元一次不等式与一次函数在实际问题中的运用。

一、预习导学1、(1)x_____________时,一次函数y=-x+5的值大于y=4x-3的值; (2)x_____________时,一次函数y=-x+5的值小于y=4x-3的值; (3)x_____________时,一次函数y=-x+5的值等于y=4x-3的值;2、同学们,我们已经学习了不等式的解法及应用,但是它的应用远不止于我们前面学过的这些,它的应用很广泛.比如,随着国家的富裕,人民生活水平的提高,人们的消费观念也在逐渐转变,在放假期间很多人热衷于旅游,而旅行社瞅准了这个商机,会打着各式各样的优惠政策来诱惑你,那么究竟应该选哪一家呢?人们犹豫了,有时感觉到上当了.如果你学了今天的课程,那么你以后就不会上当了.下面我们一起来探究这里的奥妙.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?二、.探究,总结归纳知识与方法由此看来,你选哪家旅行社不仅与旅行社的优惠政策有关,而且还和参加旅游的人数有关,那么在以后的旅行中,大家一定不要想当然,而是要精打细算才能做到合理开支,现在,你学会了吗?下面,我们要到商店走一趟,看看商家又是如何吸引顾客的,我们又应该想何对策呢? 某学校计划购买若干台电脑,现从两家商场了解到同型号电脑每台报价均为6000元,并且多买都有一定的优惠。

鲁教版七年级一元一次不等式与一次函数练习50题及参考答案(难度系数0.65)

鲁教版七年级一元一次不等式与一次函数练习50题及参考答案(难度系数0.65)

六年级一元一次不等式与一次函数(0.65)一、单选题(共17题;共34分)1.如图,一次函数y=kx+b的图像经过A,B两点,则kx+b>0解集是()A. x>0B. x>2C. x>-3D. -3<x<2【答案】C【考点】一次函数与不等式(组)的综合应用2.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A. x>﹣2B. x<﹣2C. x>﹣5D. x<﹣5【答案】A【考点】一次函数与不等式(组)的综合应用3.如图,一次函数y1=k1x+b与一次函数y2=k2x+4的图象交于点P(1,3),则关于x的不等式k1x+b>k2x+4的解集是()A. x>1B. x>0C. x>﹣2D. x<1【答案】A【考点】一次函数与不等式(组)的综合应用4.如图,一次函数y=kx-b(k≠O)的图象经过点(2,0),则关于x的不等式k(x-3)-b>0 的解为()A. x<5B. x>5C. x<2D. x>2【答案】A【考点】一次函数与不等式(组)的综合应用5.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A. x>2B. x<2C. x>﹣1D. x<﹣1【答案】 D【考点】一次函数与不等式(组)的综合应用6.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k的取值范围是()A. ﹣1≤k<0B. 1≤k≤3C. k≥1D. k≥3【答案】C【考点】一次函数与不等式(组)的综合应用7.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是( )A. 1<x< 54B. 1<x< 43C. 1<x< 53D. 1<x<2 【答案】 C【考点】一次函数与不等式(组)的综合应用8.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( )A. y >0B. y <0C. -2<y <0D. y <-2【答案】 D【考点】一次函数与不等式(组)的综合应用9.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象相交于点A ,则不等式0<2x <kx+b 的解集是( )A. x <1B. x <0或x >1C. 0<x <1D. x >1【答案】 C【考点】一次函数与不等式(组)的综合应用10.如图,已知直线 y =mx 过点 A(−2,−4) ,过点 A 的直线 y =nx +b 交 x 轴于点 B(−4,0) ,则关于的不等式组 nx +b ≤mx <0 的解集为( )A. x≤−2B. −4<x≤−2C. x≥−2D. −2≤x<0【答案】 D【考点】一次函数与不等式(组)的综合应用11.已知一次函数y=kx+b的图象如图所示,则不等式kx+b>﹣1的解集是()A. x>﹣2B. x<﹣2C. x>0D. x<0【答案】 D【考点】一次函数与不等式(组)的综合应用12.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A. ﹣5B. ﹣4C. ﹣3D. ﹣1【答案】C【考点】一次函数与不等式(组)的综合应用13.函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集是( )A. x<2B. x>2C. x<3D. x>3【答案】A【考点】一次函数与不等式(组)的综合应用14.如图,一次函数的图象经过A、B两点,则关于x的不等式的解集()A. B. C. D.【答案】C【考点】一次函数与不等式(组)的综合应用15.一次函数(是常数,)的图象如图所示,则不等式的解集是()A. B. C. D.【答案】A【考点】一次函数与不等式(组)的综合应用16.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )A. x>0B. x<0C. x>1D. x<1【答案】B【考点】一次函数与不等式(组)的综合应用17.已知函数y=8x-11,要使y>0,那么x应取( )A. x>118B. x<118C. x>0D. x<0【答案】A【考点】一次函数与不等式(组)的综合应用二、填空题(共25题;共27分)18.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集是________.【答案】x<5【考点】一次函数与不等式(组)的综合应用19.一次函数y1=mx+n 与y2=﹣x+a 的图象如图所示,则0<mx+n≤﹣x+a 的解集为________.【答案】2<x£3【考点】一次函数与不等式(组)的综合应用20.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3),(3,3),若直线y=nx与线段AB有公共点,则n的值可以为________(写出一个即可)【答案】2【考点】一次函数与不等式(组)的综合应用21.已知y1=5+x,y2=−2x+2,当x________ 时,y1>y2.【答案】x>-1【考点】一次函数与不等式(组)的综合应用22.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为________.【答案】x<32【考点】一次函数与不等式(组)的综合应用23.“双11”当天,重庆顺风快递公司出动所有车辆分上午、下午两批往成都送件,该公司共有甲、乙、丙三种车型,其中甲型车数量占公司车辆总数的14,乙型车辆是丙型车数量的2倍,上午安排甲车数量的23,乙车数量的12,丙车数量的34进行运输,且上午甲、乙、丙三种车型每辆载货量分别为15吨,10吨,20吨,则上午刚好运完当天全部快件重量的58;下午安排剩下的所有车辆运输完当天剩下的所有快件,且下午甲、乙、丙三种车型每辆载货量分别不得超过20吨,12吨,16吨,下午乙型车实际载货量为下午甲型车每辆实际载货量的23.已知同种货车每辆的实际载货量相等,甲、乙、丙三种车型每辆车下午的运输成本分别为50元/吨,90元/吨,60元/吨.则下午运输时,一辆甲种车、一辆乙种车、一辆丙种车总的运输成本最少为________元.【答案】2700【考点】一次函数与不等式(组)的综合应用24.如图,直线y1=k1x+b 和直线y2=k2x+b 交于y 轴上一点,则不等式k1x+b>k2x+b 的解集为________.【答案】x>0【考点】一次函数与不等式(组)的综合应用25.如图,直线与轴交于点,则时,的取值范围是________。

2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)1.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣12.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣2,2),则关于x的不等式x+a>kx+b 的解集是()A.x<﹣2B.x>﹣2C.x<2D.x>23.如图,已知函数y=kx+b图象如图所示,则不等式kx+b<0的解集为()A.x>5B.x<5C.x>4D.x<44.一次函数y=kx+b(k,b为常数)的图象如图所示,则不等式kx+b<1的解集是()A.x<﹣2B.x<1C.x>﹣2D.x<05.如图,直线l1:y1=ax(a≠0)与直线l2:y2=x+b(b≠0)交于点P,有四个结论:①a<0②a>0③当x>0时,y1>0④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D.②③6.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b<0的解集是()A.x>0B.x<0C.x>2D.x<27.一次函数y1=kx+b与y2=mx+n的图象如图所示,则以下结论:①k>0;②b>0;③m >0;④n>0;⑤当x=3时:y1>y2.正确的个数是()A.1个B.2个C.3个D.4个8.如图,已知一次函数y1=x+b与正比例函数y2=kx的图象交于点P.四个结论:①k>0;②b>0;③当x<0时,y2>0;④当x<﹣2时,kx<x+b.其中正确的是()A.①③B.②③C.③④D.①④9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1B.﹣3C.﹣4D.﹣510.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则()A.x>0B.x>﹣3C.x>﹣6D.x>﹣911.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是()A.x<1B.x<2C.x>0D.x>212.在平面直角坐标系中,正比例函数y=2x的图象与直线y=kx+b交于A(﹣1,﹣2).直线y=kx+b,还经过点(﹣2,0).则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<0C.﹣2<x<﹣1D.﹣1<x<0 13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是.14.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为.15.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为.16.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为.17.一次函数y=kx+b的图象如图所示,则关于x的不等式kx﹣m+b>0的解集是.18.函数y=2x和y=ax+4的图象相交于点A(m,2),则不等式2x﹣4≤ax的解集.19.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣1)﹣b>0的解集为.20.已知直线y1=2x与直线y2=﹣2x+4相交于A,有以下结论:①A的坐标为(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④y1,y2在平面直角坐标系中的位置关系是平行,其中正确的是.21.如图,直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,则不等式k1x+b>k2x+b的解集为.22.在平面直角坐标系xOy中,一次函数y=ax和y=kx+7的图象如图所示,则关于x的一元一次不等式ax>kx+7的解集是.23.已知一次函数y=kx+b经过点A(3,0),B(0,3).(1)求k,b的值.(2)在平面直角坐标系xOy中,画出函数图象;(3)结合图象直接写出不等式kx+b>0的解集.24.在给出的网格中画出一次函数y=2x﹣3的图象,并结合图象求:(1)方程2x﹣3=0的解;(2)不等式2x﹣3>0的解集;(3)不等式﹣1<2x﹣3<5的解集.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=结合上面经历的学习过程,现在来解决下面的问题:在函数y=||(k>0)中,当x=﹣4时,y=1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=x||x 的解集.26.在平面直角坐标系中,直线y=2x向右平移1个单位长度得到直线y1.(1)直接写出直线y1的解析式;(2)直线y1分别交x轴,y轴于点A,B,交y2=kx于点C,若A为BC的中点.①请画图并求k的值;②当0<y1<y2时,请直接写出x的取值范围.27.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.28.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.29.如图,过点C(0,﹣2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m),且直线l1与x轴交于点B,直线l2与x轴交于点A.(1)直接写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式;(3)若点M在x轴的正半轴上运动,点M运动到何处时△ABP与△BPM面积相等?求出此时△BPM面积.30.如图,函数y1=2x和y2=kx+4(k为常数,且k≠0)的图象都经过点A(m,3).(1)求点A的坐标及k的值;(2)结合图象直接写出)y2≥y1时x的取值范围.31.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.32.设函数f(x)=|x+2|﹣|x﹣1|.(1)画出函数y=f(x)的图象;(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.参考答案1.解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选:D.2.解:因为直线y1=x+a与y2=kx+b相交于点P(﹣2,2),当x>﹣2时,x+a>kx+b,所以不等式x+a>kx+b的解集为x>﹣2.故选:B.3.解:∵从图象可知:一次函数图象和x轴的交点坐标为(4,0),y随x的增大而减小,∴不等式kx+b<0的解集是x>4,故选:C.4.解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(0,1),并且函数值y随x的增大而增大,因而则不等式kx+b<1的解集是x<0.故选:D.5.解:∵直线l1:y1=ax(a≠0)从左往右呈下降趋势,∴a<0,故①正确,②错误;由函数图象可得当x>0时,y1<0,故③错误;∵两函数图象交于P,∴x<﹣2时,y1>y2,故④正确,故选:C.6.解:由图可知:当x>2时,y<0,即kx+b<0;故关于x的不等式kx+b<0的解集为x>2.故选:C.7.解:∵一次函数y1=kx+b的图象经过第一、三象限,∴k>0,所以①正确;∵一次函数y1=kx+b的图象与y轴的交点在y轴的负半轴上,∴b<0,所以②错误;∵一次函数y2=mx+n的图象经过第二、四象限,∴m<0,所以③错误;∵一次函数y2=mx+n的图象与y轴的交点在y轴的正半轴上,∴n>0,所以④正确;∵x>2时,y1>y2,∴当x=3时:y1>y2.所以⑤正确.故选:C.8.解:∵直线y2=kx经过第二、四象限,∴k<0,故①错误;∵y1=x+b与y轴交点在正半轴,∴b>0,故②正确;∵正比例函数y2=kx经过原点,且y随x的增大而减小,∴当x<0时,y2>0;故③正确;当x<﹣2时,正比例函数y2=kx在一次函数y1=x+b图象的上方,即kx>x+b,故④错误.故选:B.9.解:当y=0时,nx+4n=0,解得x=﹣4,所以直线y=nx+4n与x轴的交点坐标为(﹣4,0),当x>﹣4时,nx+4n>0;当x<﹣2时,﹣x+m>nx+4n,所以当﹣4<x<﹣2时,﹣x+m>nx+4n>0,所以不等式组﹣x+m>nx+4n>0的整数解为x=﹣3.故选:B.10.解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>x,即kx﹣x>﹣b的解集为x>﹣9.故选:D.11.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故选:D.12.解:画出函数y=2x与y=kx+b如图,由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1,﹣2),∴不等式2x<kx+b的解集是x<﹣1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2,0),∴不等式kx+b<0的解集是x>﹣2,∴不等式2x<kx+b<0的解集是﹣2<x<﹣1,故选:C.13.解:一次函数y=(m﹣1)x﹣m+4中,令x=0,解得:y=﹣m+4,与y轴的交点在x轴的上方,则有﹣m+4>0,解得:m<4.故本题答案为:m<4且m≠1.14.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为x>﹣1.15.解:从图象可看出当x≥﹣1,直线l2的图象在直线l1的上方,不等式ax+b>kx.故答案为:x≥﹣1.16.解:∵一次函数y=kx+b的图象经过(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b<﹣3的解集是x>4.故答案是:x>4.17.解:当x<﹣3时,y=kx+b>m,所以关于x的不等式kx﹣m+b>0的解集为x<﹣3.故答案为:x<﹣3.18.解:∵函数y=2x的图象经过点A(m,2),∴2m=2,解得:m=1,∴点A(1,2),当x≤1时,2x≤ax+4,即不等式2x﹣4≤ax的解集为x≤1.故答案为x≤1.19.解:把(3,0)代入y=kx+b得3k﹣b=0,则b=3k,所以k(x﹣1)﹣b>0化为k(x﹣1)﹣3k>0,即kx﹣4k>0,因为k<0,所以x<4,故答案为:x<4.20.解:解方程组得,∴两直线的交点坐标为(1,2),所以①②正确;当y1<y2,即2x<﹣2x+4,解得x<1,即当x<1时,y1<y2;所以③正确;∵直线y1=2x与直线y2=﹣2x+4相交于A,∴y1,y2在平面直角坐标系中不平行,所以④错误.故答案为:①②③.21.解:∵直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,∴交点的横坐标为0∵从图象看,当x>0时,直线y1=k1x+b的图象位于直线y2=k2x+b的上方;当x<0时,直线y1=k1x+b的图象位于直线y2=k2x+b的下方∴当x>0时,k1x+b>k2x+b故答案为:x>0.22.解:因为当x>2时,ax>kx+7,所以关于x的一元一次不等式ax>kx+7的解集为x>2.故答案为x>2.23.解:(1)∵一次函数y=kx+b经过点A(3,0),B(0,3).∴,解得;(2)函数图象如图:;(3)不等式kx+b>0的解集为:x<3.24.解:(1)由图象可知,方程2x﹣3=0的解是x=,(2)由图象可知,不等式2x﹣3>0的解集是x>;(3)由图象可知,不等式﹣1<2x﹣3<5的解集是:1<x<4.25.解:(1)∵在函数y=||(k>0)中,当x=﹣4时,y=1,||1,解得k=4,∴这个函数的表达式是y=||;(2)∵y=||,∴y=,列表:x﹣4﹣2﹣1123y124421…描点、连线,画出该函数的图象如图所示:由图象可知,函数的图象关于y轴对称;(3)由函数图象可得,||x的解集是0<x≤2或x<0.26.解:(1)由“左加右减”的原则可知:把直线y=2x向右平移1个单位长度后,其直线解析式为y=2(x﹣1),即y=2x﹣2.故直线y1的为y=2x﹣2;(2)①如图,由直线y1的为y=2x﹣2可知A(1,0),B(0,﹣2),∵A为BC的中点,∴C(2,2),把C(2,2)代入y2=kx得,2=2k,∴k=1;②当0<y1<y2时,x的取值范围是1<x<2.故答案为1<x<2.27.解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B (2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x>1,∵AB=3,∴S△ABC=•y C==.28.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).29.解:(1)当x<2时,y1<y2;(2)把点P(2,m)代入y2=x+1中,得m=2+1=3,∴点P的坐标为(2,3).把点C(0,﹣2)、P(2,3)分别代入y1=kx+b中,得,解得,∴直线l1的解析式为y1=x﹣2;(3)由(2)得点P的坐标为(2,3),∵△ABP与△BPM有相同的高,即h=3.要使△ABP与△BPM面积相等,且点M在x 轴正半轴上.∴在x轴上取点M,当AB=BM时,△ABP与△BPM面积相等.∵在直线中,当y=0时,,即点B的坐标是(,0),∴AB=1+=,BM=OM﹣OB=,∴OM=,则点M运动到(0,)时△ABP与△BPM面积相等.∴S△BPM=.30.解:(1)把A(m,3)代入y1=2x得2m=3,解得m=,∴A(,3),把A(,3)代入y2=kx+4得3=k+4,解得k=﹣;(2)当x≤时,y2≥y1.31.解:(1)联立两函数解析式可得方程组,解得:,∴点A的坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,解得:x=﹣2,∴B(﹣2,0),当y2=0时,x﹣4=0,解得:x=4,∴C(4,0),∴CB=6,∴△ABC的面积为:6×3=9;(3)由图象可得:y1≤y2时x的取值范围是x≥1.32.解:(1)函数f(x)=,所以其图象如图:(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,即(|x+2|﹣|x﹣1|+4)的最大值≥|1﹣2m|,故|x+2|﹣|x﹣1|+4的最大值大于或等于|1﹣2m|,利用绝对值的意义可得|x+2|﹣|x﹣1|+4的最小值为3+4=7,∴|1﹣2m|≤7,解得﹣3≤m≤4。

一元一次不等式与一次函数习题精选(含答案)

一元一次不等式与一次函数习题精选(含答案)

一元一次不等式与一次函数1.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x <ax+4的解集为(的解集为( )(5) A . x <B . x <3 C . x >D . x >3 2.已知一次函数y=ax+b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x ﹣1)﹣b >0的解集为(的解集为( )A . x <﹣1 B . x >﹣1 C . x >1 D . x <1 3.如图,直线y 1=k 1x+a 与y 2=k 2x+b 的交点坐标为(1,2),则使y 1<y 2的x 的取值范围为(的取值范围为()A . x >1 B . x >2 C . x <1 D . x <2 4.直线l 1:y=k 1x+b 与直线l 2:y=k 2x+c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b <k 2x+c 的解集为(的解集为( )A . x >1 B . x <1 C . x >﹣2 D . x <﹣2 5.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b >0解集是(解集是( )A . x >0 B . x >﹣3 C . x >2 D . ﹣3<x <2 6.如图,函数y=kx 和y=﹣x+3的图象相交于(a ,2),则不等式kx <﹣x+3的解集为(的解集为( )A .x <B . x >C . x >2 D . x <2 7.(如图,直线l 是函数y=x+3的图象.若点P (x ,y )满足x <5,且y >,则P 点的坐标可能是(点的坐标可能是( )A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)A.x<5 B.x>5 C.x<﹣4 D.x>﹣4 (10) (11) A.x<2 B.x>2 C.x<3 D.x>3 A.0B.1C.2D.3的解集为 _________.的解集为利(收入>成本)时,销售量必须 .利(收入>成本)时,销售量必须(13) 的解集为 _________.的解集为的解集为 _________.的解集为的解集是 _________.的解集是16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为的解集为 _________.(17) (18) 17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为的解集为 _________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是的解集是 _________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴对称.轴交于点B,点A与点B恰好关于x轴对称.的坐标;(1)求点B的坐标;的解析表达式;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△P AB的面积的的点M的坐标;的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)的值;(1)求a,b的值;的取值范围;(2)求使得y1、y2的值都大于0的取值范围;的面积是多少?(3)求这两条直线与x轴所围成的△ABC的面积是多少?的坐标. (4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).的解析式;(1)求直线AB的解析式;的坐标;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;的解集.(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD >﹣ ﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20. 解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),轴对称,∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△P AB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.可求得: (4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。

不等式与一次函数专题练习

不等式与一次函数专题练习

不等式与一次函数专题练习题型一:方程、不等式的直接应用典型例题1:初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.典型例题2:李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资为b 元. (1)求a ,b 的值;(2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件? 配套练习:练习3、自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?4、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)100%=⨯利润成本题型二:方案设计典型例题5、迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?典型例题6:“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。

强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合训练试题(含答案解析)

强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合训练试题(含答案解析)

第二章一元一次不等式和一元一次不等式组综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列选项正确的是()A.a不是负数,表示为0a>B.a不大于3,表示为3a<C.x与4的差是负数,表示为40x-<D.x不等于34,表示为34x>2、如果a<b,c<0,那么下列不等式成立的是()A.a+c<b B.a﹣c>b﹣cC.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)3、下列变形中,错误的是()A.若3a+5>2,则3a>2-5 B.若213x->,则23x<-C.若115x-<,则x>﹣5 D.若1115x>,则511x>4、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有()个.A .1B .2C .3D .45、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣26、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .47、已知三角形两边长分别为7、10,那么第三边的长可以是( )A .2B .3C .17D .58、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣19、对于不等式4x +7(x -2)>8不是它的解的是( )A .5B .4C .3D .210、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.2、已知不等式(a﹣1)x>a﹣1的解集是x<1,则a的取值范围为______.3、如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)4、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg.5、已知函数yx的取值范围是_________.三、解答题(5小题,每小题10分,共计50分)1、已知函数y=2﹣1|1|2x-,当x≥2时,y=﹣132x+则:(1)当x<2时,y=;根据x<2时y的表达式,补全表格、如图的函数图象(2)观察(1)的图象,该函数有最值(填“大”或“小”),是,你发现该函数还具有的性质是(写出一条即可);(3)在如图的平面直角坐标系中,画出y =16x +13的图象,并指出2﹣|12x ﹣1|>16x +13时,x 的取值范围.2、解下列不等式,并将其解集表示在数轴上.(1)23x <x +1. (2)x -1>3x +5.3、解不等式()()()()11851x x x x +-+>+-.4、解不等式组:(1)3(2)8131322x x x x --<⎧⎪⎨-<-⎪⎩ (2)2361452x x x x -<-⎧⎨-≤-⎩5、某商店销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?-参考答案-一、单选题1、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A.a不是负数,可表示成0a,故本选项不符合题意;B.a不大于3,可表示成3a,故本选项不符合题意;C.x与4的差是负数,可表示成40x-<,故本选项符合题意;D.x不等于34,表示为34x≠,故本选项不符合题意;故选:C.【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.2、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以32-,不等号的方向改变得到32x<-,故B符合题意;C、不等式的两边都乘以(﹣5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.4、B【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0;③x<3,有2个.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.5、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①② 解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.6、B先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.7、D【分析】根据三角形三边关系分析即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.解:设第三边长为x,由题意得:∵三角形的两边分别为7,10,∴10−7<x<10+7,解得:3<x<17,符合条件的只有D.故选:D.【点睛】本题考查了解一元一次不等式组,三角形的三边关系,掌握三角形的三边关系是解题的关键.8、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.9、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.解:当x =5时,4x +7(x -2)=41>8,当x =4时,4x +7(x -2)=30>8,当x =3时,4x +7(x -2)=19>8,当x =2时,4x +7(x -2)=8.故知x =2不是原不等式的解.故A ,B ,C 不符合题意,D 符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.10、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n , ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.二、填空题1、x >1【分析】利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.【详解】解:由图可知:不等式kx >﹣x +3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x >1.故此不等式的解集为x >1.故答案为:x >1.【点睛】本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.2、a <1【分析】根据不等式的性质3,可得答案.【详解】解:∵(a﹣1)x>a﹣1的解集是x<1,不等号方向发生了改变,∴a﹣1<0,∴a<1.故答案为:a<1.【点睛】本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变.3、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.4、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.5、2021x≥【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,-20210x≥,解得,2021x≥,故答案为:2021x≥.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.三、解答题1、(1)112x+,表格及图像见详解;(2)大,2,关于直线2x=对称;(3)24x-<<【分析】(1)根据绝对值的性质化简得到1112|1|2(1)1222y x x x=--=--=+;根据解析式补全表格,然后根据两点补全图象;(2)根据图象即可求得;(3)在同一平面直角坐标系中,画出1163y x =+的图象,根据图象即可求得.【详解】解:(1)当2x <时,1112|1|2(1)1222y x x x =--=--=+.补全表格:利用两点画出函数图象如图:(2)由图象可知:该函数有最大值,是2.该函数还具有的性质是关于直线2x =对称;故答案为:大,2,关于直线2x =对称;(3)在同一平面直角坐标系中,画出1163y x =+的图象如图:由图象可知:1112|1|263x x -->+时,x 的取值范围24x -<<,【点睛】本题考查了一次函数的图象,一次函数与一元一次不等式的关系,一次函数的性质,数形结合是解题的关键.2、(1)x>-3,数轴表示见解析(2)x<-3,数轴表示见解析【分析】(1)按照去分母、移项、合并同类项、系数化为1的步骤求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集;(2)按照移项、合并同类项、系数化为1的步骤求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集.(1)解:23x<x+1,去分母,得2x<3x+3移项,得2x-3x<3合并同类项,得-x<3系数化为1,得x>-3,解集在数轴上表示为:(2)解:x-1>3x+5,移项,得x-3x>5+1,合并同类项,得-2x>6,系数化为1,得x<-3,解集在数轴上表示为:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.3、x<3【分析】利用平方差公式、多项式乘多项式法则计算,移项合并,把x系数化为1,即可求出解集.【详解】解:去括号得:x2-1+8>x2+4x-5,移项合并得:4x<12,解得:x<3.【点睛】本题考查了平方差公式、多项式乘多项式,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4、(1)-1<x<2;(2)13≤x<3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)解不等式x-3(x-2)<8,得:x>-1,解不等式12x-1<3-32x,得:x<2,则不等式组的解集为-1<x<2;(2)解不等式2x-3<6-x,得:x<3,解不等式1-4x≤5x-2,得:x≥13,则不等式组的解集为13≤x<3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,10206400 20105600x yx y+=⎧⎨+=⎩,解得160240xy=⎧⎨=⎩.∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,据题意得,y=160x+240(100﹣x),即y=﹣80x+24000,②∵100﹣x≤2x,∴x≥3313,∵y=﹣80x+24000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.。

北师大版八年级下数学《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组研讨说课复习课件指导

北师大版八年级下数学《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组研讨说课复习课件指导

连接中考
(2020•湘潭)如图,直线y=kx+b(k<0)经过点p(1,1),当
kx+b≥x时,则x的取值范围为( A )
A.x≤1
B.x≥1
C.x<1
D.x>1
课堂检测
基础巩固题
1.在一次函数y=-2x+8中,若y>0,则 ( B )
A.x>4
B.x<4
C.x>0
D.x<0
2. 如图,直线y=ax+b(a≠0)过点A,B,则不等式ax+b>0的解 集是 ( C )
探究新知
由上述讨论易知: “关于一次函数的值的问题” 可变换成 “关于一元一次
不等式的问题” ; 反过来,“关于一元一次不等式的问题”可变换成 “
关于一次函数的值的问题”.
因此,我们既可以运用函数图象解不等式 ,也可以运用 解不等式帮助研究函数问题 ,二者相互渗透 ,互相作用.
不等式与函数 、方程是紧密联系着的一个整体 .
课堂检测
基础巩固题
5.如图,直线l1:y1=2x+1与直线l2:y2=mx+4相交于点P(1,b). (1)求b和m的值.
(2)结合图象,直接写出当y1>y2时x的取值范围. 解:(1)对于直线y1=2x+1,当x=1时,y1=3, ∴P(1,3),b=3, 把P(1,3)代入y2=mx+4中,得3=m+4, 解得m=-1. (2)观察图象可知:当y1>y2时x的取值范围是x>1.
探究新知
所以当顾客每个月的通话时长等于100分钟时,选择甲 乙两种业务一样合算;如果通话时长大于100 分钟,选择甲 种业务比较合算;如果通话时长小于100 分钟,选择乙种业 务比较合算.

2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练练习题

2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练练习题

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <22、下列不等式是一元一次不等式的是( )A .23459x x >-B .324x -<C .12x < D .4327x y -<-3、若不等式组4101x m x x m -+<+⎧⎨+>⎩解集是4x >,则( ) A .92m ≤ B .5m ≤ C .92m = D .5m =4、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x ,根据题意得( )A .5x ﹣2(20﹣x )≥80B .5x ﹣2(20﹣x )≤80C .5x ﹣2(20﹣x )>80D .5x ﹣2(20﹣x )<805、在数轴上表示不等式﹣1<x 2,其中正确的是()A.B.C.D.6、若不等式﹣3x<1,两边同时除以﹣3,得()A.x>﹣13B.x<﹣13C.x>13D.x<137、已知三角形两边长分别为7、10,那么第三边的长可以是()A.2 B.3 C.17 D.5 8、已知一次函数y=ax+b(a、b是常数),x与y的部分对应值如下表:下列说法中,正确的是()A.图象经过第二、三、四象限B.函数值y随自变量x的增大而减小C.方程ax+b=0的解是x=2D.不等式ax+b>0的解集是x>-19、适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2 B.4 C.8 D.16 10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C .若﹣2a >2b ,则a <bD .若ac 2<bc 2,则a <b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的不等式组3x x a>⎧⎨<⎩有解,则a 的取值范围是______. 2、当|x ﹣4|=4﹣x 时,x 的取值范围是___.3、已知点P (x ,y +1)在第二象限,则点Q (﹣x +2,2y +3)在第 ___象限.4、不等式组1023x x +>⎧⎨<⎩的解集为_______. 5、如果不等式(b +1)x <b +1的解集是x >1,那么b 的范围是 ___.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.2、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?3、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a 盒,小健如何选择方案更划算?4、有一批产品需要生产装箱,3台A 型机器一天刚好可以生产6箱产品,而4台B 型机器一天可以生产5箱还多20件产品.已知每台A 型机器比每台B 型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A 型机器和2台B 型机器生产,需几天完成?(3)若每台A 型机器一天的租赁费用是240元,每台B 型机器一天的租赁费用是170元,可供租赁的A 型机器共3台,B 型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、求一元一次不等式组的解集,并把它的解集表示在数轴上.()3241213x x x x ⎧--≥-⎪⎨+>-⎪⎩-参考答案-一、单选题1、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.2、B【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A 、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B 、是一元一次不等式,故此选项符合题意;C、1x是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B.【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.3、C【分析】首先解出不等式组的解集,然后与x>4比较,即可求出实数m的取值范围.【详解】解:由①得2x>4m-10,即x>2m-5;由②得x>m-1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.4、C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5、A【分析】不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.【详解】解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选A.【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣13.故选:A.【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.7、D【分析】根据三角形三边关系分析即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.【详解】解:设第三边长为x,由题意得:∵三角形的两边分别为7,10,∴10−7<x<10+7,解得:3<x<17,符合条件的只有D.故选:D.【点睛】本题考查了解一元一次不等式组,三角形的三边关系,掌握三角形的三边关系是解题的关键.8、D【分析】利用待定系数法求一出函数解析式,把表格数据代入两组数值得02a b b -+=⎧⎨=⎩,解方程组求出一次函数解析式,根据一次函数性质可判断选项.【详解】解:设一次函数解析式为y kx b =+,由表格可知,一次函数过点(-1,0),(0,2),则:02a b b -+=⎧⎨=⎩, 解得:22a b =⎧⎨=⎩, ∴一次函数解析式为:22y x =+,∴2020a b =>=>,,故函数经过第一、二、三象限,故选项A 错误;∴=20a >,故函数值y 随x 增大而增大,故选项B 错误;令220x +=,得x=-1,故选项C 错误;令220x +>,得1x >-,故选项D 正确;故选:D .【点睛】本题主要考查了一次函数的图象和性质,待定系数法求根一次函数解析式,表格信息,解方程组是解题的关键.9、B【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.【详解】解:(1)当2a+7≥0,2a﹣1≥0时,可得,2a+7+2a﹣1=8,解得,a=12解不等式2a+7≥0,2a﹣1≥0得,a≥﹣72,a≥12,所以a≥12,而a又是整数,故a=12不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,﹣2a﹣7﹣2a+1=8,解得,a=﹣7 2解不等式2a+7≤0,2a﹣1≤0得,a≤﹣72,a≤12,所以a≤﹣72,而a又是整数,故a=﹣72不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,2a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣72,a≤12,所以﹣72≤a≤12,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选:B.【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D 、若ac 2<bc 2,则a <b ,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、a >3【分析】由题意直接根据不等式组的解集的表示方法进行分析可得答案.【详解】解:由题意得:a >3,故答案为:a >3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.3、一【分析】根据第二象限的点坐标特征,求出x 和y 的范围,然后确定出Q 点横纵坐标的范围,即可得出结论.【详解】解:∵点P (x ,y +1)在第二象限,∴x <0,y +1>0,∴y >﹣1,∴﹣x >0,2y >﹣2,∴﹣x +2>2,2y +3>1,即:﹣x +2>0,2y +3>0,∴点Q (﹣x +2,2y +3)在第一象限,故答案为:一.【点睛】本题考查平面直角坐标系中象限内点的特征,以及不等式的计算,理解平面直角坐标系中点坐标的特征,掌握不等式的求解方法是解题关键.4、312x -<<【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由10x +>,得:1x >-,由23x <,得:32x <,∴不等式组的解集为312x-<<.故填:312x-<<.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5、b<-1【分析】根据不等式的基本性质3可知b+1<0,解之可得答案.【详解】解:∵(b+1)x<b+1的解集是x>1,∴b+1<0,解得b<-1,故答案为:b<-1.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3:不等式两边同时乘以或除以同一个负数,不等号的方向改变.三、解答题1、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.2、(1)甲种文具需要20元,一个乙种文具需要10元(2)20【分析】(1)设购买一个甲种文具需要x元,一个乙种文具需要y元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x元,一个乙种文具需要y元,依题意得:1218420 1614460x yx y+=⎧⎨+=⎩,解得:2010xy=⎧⎨=⎩,答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.3、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.4、(1)60件;(2)6天;(3)A 型机器前2天租3台,第3天租2台;B 型机器每天租3台【分析】(1)设每箱装x 件产品,根据“每台A 型机器比每台B 型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A 型机器6台次,B 型机器12台次,其中3天中共租A 型机器8台次,B 型机器9台次(如A 型机器前两天租3台,第3天租2台,B 型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、x ≤1,解集在数轴上的表示见解析【分析】先求出两个一元一次不等式的解集,再求两个解集的公共部分即得不等式组的解集,然后把解集在数轴上表示出来即可.【详解】()3241213x x x x ⎧--≥-⎪⎪⎨+⎪>-⎪⎩①② 解不等式①得:x ≤1,解不等式②得:x <4,∴不等式组的解集为x≤1.不等式组的解集在数轴表示如下:【点睛】本题考查了解一元一次不等式组,关键是求出每一个一元一次不等式的解集,注意当不等式两边同除以一个负数时,务必记住:不等号的方向要改变.。

一次函数与一元一次不等式的关系复习

一次函数与一元一次不等式的关系复习
从数的角度看
求ax+b=0(a, b是 常数,a≠0)的解
从形的角度看
X为何值时 y= ax+b的值为0
求ax+b=0(a, b是 常数,a≠0)的解
求直线y= ax+b 与X轴交点的横坐标
一次函数与一元一次不等式的关系
从数的角度看:
x为何值时 求ax+b>0或ax+b y=ax+b的值 < 0 (a, b是常数, 大于0或小 a≠0)的解 于0 从形的角度看: 直线y=ax+b 求ax+b>0或 在x轴上方或 ax+b < 0 (a, b是 下方的图象 常数,a≠0)的解 所对应的x值
② x取什么值时,-2x-5>0?
③ x取什么值时,-2x-5≤0? ④ x取什么值时,-2x-5<3
; / 聚星娱乐
mqx93jop
起,相互用力地拍打着对方的后背,都流下了男子汉不轻弹的热泪,久久不想分开„„耿老爹站起来,先紧紧地抱抱他俩,又放开自己的双臂 同时拍一拍他俩的后背,说:“娃儿们,你们这两个打小儿形影不离的好兄弟终于又可以每天见面了!好啦,都坐下说话哇!”耿英给俩人各 倒上一杯热茶„„„„大壮说:“有什么需要俺做的,哥你尽管说!”耿正说:“一定!哥有什么为难的,首先就会想到找你的!”„„“兄 弟啊,俺跟秀儿商量过了,等俺们把那两件大事办好之后,再考虑操办自己的终身大事!不知道你和英子商量过了没有?”“俺俩也是这个意 思!为了这两件大事,你们吃了多少苦哇!咱们这么多年都等了„„”“太好了,咱们想到一起了!”耿老爹和妻子在一旁听着,泪水一直在 眼眶子里打转儿„„三更已过,大壮终于站起来,深情地望望自己的心上人耿英,再和耿正互相拉着胳膊紧紧地握握手,抬头对耿老爹夫妇说: “叔,婶儿,天儿不早了,俺该回去了!”25第百十七回 相见唯有热泪流|(昔日毛头大小子,如今堂堂男子汉;多少情意藏在心,相见唯有 热泪流。)却说大壮和青山风风火火地往家里赶。青山先一步快步回家去了,剩下大壮连走带跑两步就冲到了自家门口。他一把推开门儿进院 儿就喊:“爹,娘,是不是俺耿叔他们回来了?”董家成赶快打开屋门说:“壮子,是他们回来了,你耿叔还多带回来一个义子呢!”刘氏也 赶快从丈夫身旁挤了出来,双手合十说:“阿弥陀佛,这宝贝们可回来了!你快去看看他们哇,人家耿正和秀儿早就见面了呢!”“那俺这就 去了!”大壮说着话转身就往门口跑去,董家成赶快叫住儿子:“壮子,你站一站,爹还有重要的话要和你说呢!”大壮吃惊地站住了。略顿 一顿,他才转回身来很不安地问:“爹,你要和俺说什么?”董家成走到大壮跟前,如此这般说了几句话。大壮听着,不住地“唔,唔”点头。 临了,董家成又嘱咐:“千万别忘记说啊!”大壮说:“爹你放心,俺忘不了的!”董家成这才拍拍大儿子的肩膀,说:“去哇!见过大家以 后,再和英子好好儿地拉呱拉呱哇!晚饭俺们就不等你了,你婶儿肯定会留你和他们一起吃的!”“好,那俺去了!”说完,大壮一转身几步 就跨出门来,随手“咣当”一声磕上院门,一眨眼已经冲到了隔壁耿老爹家的院门前。但是冲到门口时,大壮突然站住了。他抬起自己那一双 颤抖着的大手压压“怦怦怦”急跳的胸膛。努力定定神后,他这才轻轻地推开院门走进去,又反手轻轻掩上门,慢慢往院里走去„„抬眼望去, 堂屋和两边厢房里都已经透出了明亮的灯光。想着自己日思夜想的心上人就在那一片灯光下,大壮的眼泪流下来了。再定定神,大壮擦把眼泪 大步往前走去。走到当院时,他大声
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与一元一次不等式(提高)巩固练习
【巩固练习】
一.选择题
1.(2014春•玉环县期中)如图,已知一次函数y=kx+b 的图象,当x <0,y 的取值范围是( )
A .y >0
B .y <0
C .y <﹣2
D .2<y <0
2. 已知一次函数y ax b =+的图象经过一、二、三象
限,且与x 轴交于点(-2,0),则不等式ax b >的解集为( )
A .x >-2
B .x <-2
C .x >2
D .x <2
3. 观察下列图象,可以得出不等式组3100.510x x +>⎧⎨-+>⎩
的解集是( )
A .x <13
B .13
-<x <0 C .0<x <2 D .13
-<x <2
A.x<-2 B.-2<x<-1 C.-2<x<0 D.-1<x<0
二.填空题
7. 如图,直线y kx b
=+与y轴交于(0,3),则当x<0时,y的取值范围是______.
8. 一次函数y kx b
=+的图象如图,则当x______时,y<4.
9. 一次函数y ax b
=+(a,b都是常数)的图象过点P(-2,1),与x轴相交于A(-3,0),则根据图象可得关于x的不等式组0≤ax b+<-
1
x的解集为________.
2
10.如图,函数2y x =和4y ax =+的图象相交于点A (m ,
3),则不等式24x ax <+的解集为___________.
11.(2014•杭州模拟)已知直线y 1=x ,,的图象如图,若无论x 取何值,y 总取
y 1、y 2、y 3中的最小值,则y 的最大值为 .
12.如图,直线1y
kx b =+过点A (0,2),且与直线2y mx =交于点P (1,m ),则不等式组2mx kx b mx >+>-的解集是__________.
三.解答题
13. 如图,直线1l :2y x =与直线2
l :3y kx =+在同一平面直角坐标系内交于点P .
(1)写出不等式2x >3kx +的解集:
(2)设直线2
l 与x 轴交于点A ,求△OAP 的面积.
14.(2015•济宁)小明到服装店进行社会实践活
动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??
(2)在(1)的条件下,该服装店对甲种服装
以每件优惠a (0<a <20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
15.已知一次函数y kx b =+的图象经过点(-1,-
5),且与函数112y x =+的图象相交于点A(83
,a ). (1)求a 的值;
(2)求不等式组0<kx b +<112
x +的正整数解; (3)若函数y kx b =+图象与x 轴的交点是B ,函数112y x =+的图象与y 轴的交点是C , 求四边形ABOC 的面积.
【答案与解析】
一.选择题
1. 【答案】C ;
【解析】解:由函数图象可以看出,当x <0时,y <﹣2,故选C .
2. 【答案】C ;
【解析】把点(-2,0),代入即可得到:2a b
-+=0.即2a b -=0.不等式ax b >的解集
就是求函数
y ax b =->0,y ax b =-与y ax b =+平行,与x 轴交于(2,0),故当x >2时,不等式ax b >成立.则不等式ax b >的解集为x >2.
3. 【答案】D ;
【解析】31x +>0的解集即为31y x =+的函数值
大于0的对应的x 的取值范围,第二个不等式的即为直线0.51y x =--的函数值大于0的对应的x 的取值范围,求出它们的公共解集即可.
4. 【答案】A ;
【解析】由已知得,当x =-2时,两函数值
相等,将x =-2代入1y 或2y 中得:1y =2y =3,∴两直线交点坐标为(-2,
3).
5. 【答案】B ;
【解析】①④正确;根据1y kx b =+和2y x a =+的图
象可知:k <0,a <0,所以当x <3时,相应的x 的值,1y 图象均高于2y 的图象.根据交点坐标的值也就是满足函数解析式组成方程组的值,所以方程组的解也就是交点的坐标.
6.【答案】B;
【解析】由图象可知A(-1,-2)是直线y kx b
=+
与直线2
y x
=的交点,当x<-1时2x<kx b
+,当x>-2时,kx b+<0,所以-2<
x<-1是不等式2x<kx b+<0的解集.
二.填空题
7. 【答案】y>3;
【解析】x<0所对应的图象在y轴的左边,即y>3.
8. 【答案】x>-2;
【解析】y<4,对应的函数图象是在直线y=4下方的部分,这部分的图象自变量
x>-2.
9. 【答案】-3≤x<-2;
【解析】先用待定系数法求出一次函数的待定系数,然后再将a、b的值代入不等
式组中进行求解.
10.【答案】3
2
x<;
【解析】∵函数2
y x
=和4
y ax
=+的图象相交于点A(m,3),∴3=2m,3
2
m=,∴点A
的坐标是(3
2,3)∴不等式24
x ax
<+的
解集为32
x <. 11.【答案】2;
【解析】解:根据题意,y 的最大值为直线y 2与y 3的交点的纵坐标, 联立

解得, 所以,当x=3时,y 的值最大,为2. 故答案为:2.
12.【答案】1<x <2;
【解析】由图象可知k <0,b =2,m >0,k b m +=,
即2m k -=,由mx kx b >+得()m k x b ->,即2x >2,x >1.由2kx b mx +>-得()2m k x b -<+,即x <2.故所求解集为1<x <2.
三.解答题
13.【解析】
解:(1)从图象中得出当x >1时,直线1l :2y x =在
直线2
l :3y kx =+的上方, ∴不等式2x >3kx +的解集为:x >1;
(2)把x =1代入2y x =,得y =2,∴点P (1,
2),
∵点P 在直线3y kx =+上,∴2=k +3,解得:k =-1,
∴3y x =-+,当y =0时,由0=-x +3得x =3,
∴点A (3,0),
∴OAP S △=12
×3×2=3. 14.【解析】
解:(1)设甲种服装购进x 件,则乙种服装购进(100﹣x )件,
根据题意得:

解得:65≤x ≤75,
∴甲种服装最多购进75件;
(2)设总利润为W 元,
W=(120﹣80﹣a )x+(90﹣60)(100﹣x )
即w=(10﹣a )x+3000.
①当0<a <10时,10﹣a >0,W 随x 增大而增大,
∴当x=75时,W 有最大值,即此时购进甲种服装75件,乙种服装25件; ②当a=10时,所以按哪种方案进货都可以;
③当10<a <20时,10﹣a <0,W 随x 增大而减小.
当x=65时,W 有最大值,即此时购进甲种服装65件,乙种服装35件.
15.【解析】
解:(1)把(83,a )代入解析式112
y x =+ 得到:73
a =; (2)由(1)得2k =,3
b =-,
∴0<12312
x x -<+ 解得:3823
x <<, ∴正整数解为2x =;
(3)直线112
y x =+与y 轴交于点C (0,1),直线23y x =-与x 轴交于点B(3
02
,),
∴137183712232312AOB AOC ABOC S S S =+=⨯⨯+⨯⨯=△△四边形.。

相关文档
最新文档