00020高等数学(一)自考历年真题

合集下载

最新 浙江省2024年7月高等教育自学考试高等数学(一)试题课程代码:00020

最新 浙江省2024年7月高等教育自学考试高等数学(一)试题课程代码:00020

浙江省2024年7月高等教化自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 当x→0时,下列函数哪个是x 的高阶无穷小?( )A. sinx xB. ln(x+1)C. 1-cosxD. ()1x 1x + 2. 设f(x)=x 3-3x,则在区间(0,1)内( )A. 函数f(x)单调增加且其图形是凹的B. 函数f(x)单调增加且其图形是凸的C. 函数f(x)单调削减且其图形是凹的D. 函数f(x)单调削减且其图形是凸的 3. 若 y=f(sinx),则dy=( )A. f′(sinx)sinxdxB. f′(sinx)cosxdxC. f′(sinx)dxD. f′(sinx)dcosx 4. 下列等式计算正确的是( )A .sinxdx ⎰=-cosx+CB .3(4)x dx ⎰--=x -4+C C .2x dx ⎰=x 3+CD .x 3dx ⎰=3x+C 5.函数z=ln y x在点(2,2)处的全微分dz 为( ) A. 11dx dy 22-- B. 11dx dy 22+ C. 11dx dy 22- D. 11dx dy 22-+ 二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 设f(x)=11x-,则f [f(x)]=____________. 7. 332n 4n 1lim 6n 5n 3n→∞++-=____________. 8. 设函数f(x)的一个原函数为sinx x,则()f x dx ⎰=____________. 9. 不定积分2x 1dx 1x ++⎰=____________. 10. 设f(x)为连续函数,且()3x 10f t dt -⎰=x ,则f(7)=____________.11. 设有成本函数C(Q)=100+400Q -Q 2,则当Q=100时,其边际成本是____________.12. 定积分()22324x 1xcos x dx --+⎰的值为____________.13. 函数f(x)=x lnx 在[1,e ]上的最大值是____________. 14. 曲线y=x 2-x 在x=1 点处的切线方程是____________.15. 若函数f(x,y)=2x 2+ax+xy 2+2y 在点(1,-1)取得极值,则常数a =____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16. 已知函数f(x)=1x tan ax ,x 0x b,x 0(1x),x 0⎧<⎪⎪=⎨⎪⎪+>⎩在x=0点处连续,试确定a ,b 的值.17. 设函数y=12ln(1+e 2x )+e -x arctan e x , 求y′.18. 设曲线y=ax 3+bx 2具有拐点(1,3),求a,b.19. 计算22Dy x y d σ⎰⎰- 其中D 是由直线y=x,x=1及y=0围成的闭区域.20. 求解微分方程 dy y cos2x dx x x +=四、计算题(二)(本大题共3小题,每小题7分,共21分)21. 已知函数f(x)=asinx+13sin3x 在x=3π处取得极值,试确定a 的值.并问它是极大值还是微小值?且求出此极值. 22. 计算极限x 0tanx x limx sinx→--. 23. 计算定积分11xdx 54x --⎰.五、应用题(本题共9分)24. 设D 1是由抛物线y=2x 2和直线x=a,y=0所围成的平面区域,D 2是由抛物线y=2x 2和直线x=a ,x=2及y=0所围成的平面区域,其中0<a<2.试求:(1)D 1绕y 轴旋转而成的旋转体的体积V 1,以及D 2绕x 轴旋转而成的旋转体的体积V 2;(2)常数a 的值,使得D 1的面积与D 2的面积相等.六、证明题(本大题5分)25. 设z=xy+xF(u),u=y x,F(u)为可微函数,证明z z x y x y ∂∂+∂∂=z+xy.。

高等教育自学考试全国统一命题考试 高等数学(一)

高等教育自学考试全国统一命题考试  高等数学(一)

高等教育自学考试全国统一命题考试高等数学(一)(课程代码 00020)本试卷共3页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间。

超出答题区域无效。

第一部分选择题一、单项选择题(本大题共l0小题。

每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

未涂、错涂或多涂均无分。

Q1.方程x2-3x+2=0的根为3. 极限A.-2 B.0 C.2 D. ∞4.函数的所有间断点是A.x=0 B. x=-1 C. z=0,z=1 D.x=-1,z=16.曲线y=sinx在点(0,O)处的切线方程是A,y=x B.y=-X C.y=1/2 x D.y=-1/2 x7.设函数f(x)可导,且f’(x0)=0,则f(x)在x=x0处A.一定有极大值 B.一定有极小值C.不~定有极值 D.一定没有极值8.曲线y=x3—3x2+2的拐点为A.(0,1) B.(1,O) C.(0,2) D.(2,O)9.不定积分A.see x+x B.sec x+x+CC.tan x+x D.tan x+x+C10.设函数A.6+e B.6+e-1 C.4+e D. 4+e-1第一分非选择题二、简单计算题 (本大题共5小题,每小题4分,共20分)请在答题卡上作答。

11.判断函数f(x)=2x一2-x的奇偶性.12.求极限13.求函数,f(x)=sin(2x2+3)的导数f’(x).14.求极限15.求函数z=x2+y2—3x一5y一2的全微分dz.三、计算题(本大题共5小题,每小题5分,共25分)请在答题卡上作答。

2020年10月全国自考《00020高等数学(一)》真题和答案

2020年10月全国自考《00020高等数学(一)》真题和答案

2020年10月全国自考《00020高等数学(一)》真题和答案1、方程x3-4x=0的实根个数为A、1B、2C、3D、4正确答案C解析因为x3-4x=x(x2-4)=x(x+2)(x-2)=0,所以x1=0,x2=-2,x3=2,实根个数为3。

参见教材P21。

2、函数f(x)=(x+cosx)(1+x2)A、是奇函数B、是偶函数C、是奇函数也是偶函数D、是非奇非偶函数正确答案B解析(2+cosx)是偶函数,(1+x2)是偶函数,所以f(x)就是偶函数。

参见教材P30。

3、正确答案A解析当x趋近于0时函数的值等于0,则称函数f(x)在趋近0时时一个无穷小量,只有A符合,参见教材p59正确答案A解析因为是无穷比无穷型,可以使用洛必达法则,分子分母分别同时求导,一直求导直到求到72/1800x2的极限等于0。

参见教材P95。

5、正确答案C解析dy/dx=5(3x+2)4×3=15(3x+2)4。

参见教材P79。

6、函数f(x)=(x+1)3的区间(-1,2)内A、单调增加B、单调减少C、不增不减D、有增有减正确答案A解析因为f(-1)=0,f(2)=27,所以f(-1)7、正确答案D正确答案B解析题目中的公式先对arcsinx进行求导在积分,积分后就是arcsinx,又因为是不定积分,所有再加一个常数是arcsinx+C。

参见教材P120。

9、正确答案C10、正确答案D11、答案答案13、答案14、答案15、答案16、答案17、答案18、答案19、答案20、答案21、答案22、答案23、答案24、答案。

《高等数学(一)》(课程代码00020)

《高等数学(一)》(课程代码00020)

1、函数f(x)= 与g(x)=x表示同一函数,则它们的定义域是()• A.• B.• C.• D.参考答案:B2、设函数f(x)在[-a, a](a>0)上是偶函数,则f(-x)在[-a, a]上是()• A.奇函数• B.偶函数• C.非奇非偶函数• D.可能是奇函数,也可能是偶函数参考答案:B3、• A.1• B.0• C.∞• D.2参考答案:A4、设则m=()• A.• B.2• C.-2• D.参考答案:C5、设f(x)= ,则()• A.2• B.∞• C.1• D.4参考答案:D6、设是无穷大量,则x的变化过程是()• A.x→0+• B.x→0-• C.x→+∞• D.x→-∞参考答案:B7、函数在一点附近有界是函数在该点有极限的()• A.必要条件• B.充分条件• C.充分必要条件• D.无关条件参考答案:A8、定义域为[-1,1],值域为(-∞,+∞)的连续函数()• A.存在• B.不存在• C.存在但不唯一• D.在一定条件下存在参考答案:B9、下列函数中在x=0处不连续的是()• A.f(x)=• B.f(x)=• C.f(x)=• D.f(x)=参考答案:A10、设函数f(x)=,则() ,• A.-1• B.-∞• C.+∞• D.1参考答案:C11、设总收益函数R(Q)=40Q-Q2,则当Q=15时的边际收益是()• A.0• B.10• C.25• D.375参考答案:B12、设函数f(x)=x(x-1)(x-3),则f'(0)=()• A.0• B.1• C.3• D.3!参考答案:C13、• A.• B.• C.• D.参考答案:D14、f'(x)<0,x∈(a, b) ,是函数f(x)在(a, b)内单调减少的()• A.充分条件• B.必要条件• C.充分必要条件• D.无关条件参考答案:A15、函数y=|x-1|+2的极小值点是()• A.0• B.1• C.2• D.3参考答案:B16、函数y=2ln的水平渐近线方程为()• A.y=2• B.y=1• C.y=-3• D.y=0参考答案:C17、设f(x)在[a, b](a<b)上连续且单调减少,则f(x)在[a, b]上的最大值是( )• A.f(a)• B.f(b)• C.• D.参考答案:A18、• A.• B.• C.• D.参考答案:D19、设f(x)在(-∞,+∞)上有连续的导数,则下面等式成立的是(),• A.• B.• C.• D.参考答案:B20、• A.tgxlnsinx-x+C• B.tgxlnsinx+x+C• C.tgxlnsinx-• D.tgxlnsinx+参考答案:A21、• A.-1-3ln2• B.-1+3ln2• C.1-3ln2• D.1+3ln2参考答案:B22、• A.• B.• C.• D.参考答案:C23、经过变换,( )• A.• B.• C.• D.参考答案:D24、• A.• B.-• C.2e• D.-2e 参考答案:A25、• A.2• B.1• C.∞• D.参考答案:A26、级数的和等于 ( )• A.• B.-• C.5• D.-5参考答案:B27、下列级数中,条件收敛的是( )• A.• B.• C.• D.参考答案:C28、幂级数的收敛区间是()• A.• B.• C.• D.参考答案:A29、点(-1,-1,1)在下面哪一张曲面上 ( )• A.• B.• C.• D.参考答案:D30、设 f(u,v)=(u+v)2,则 =( )• A.• B.• C.• D.参考答案:B31、设,则( )• A.• B.1• C.2• D.0参考答案:A32、设,则 ( )• A.6• B.3• C.-2• D.2参考答案:B33、下列函数中为微分方程的解的是( )• A.• B.-• C.• D.参考答案:C34、下列微分方程中可分离变量的是( )• A.• B.• C.• D.参考答案:B35、设D:0≤x≤1,0≤y≤2,则 =( )• A.ln2• B.2+ln2• C.2• D.2ln2参考答案:D36、函数f(x)=arcsin(2x-1)的定义域是()• A.(-1,1)• B.[-1,1]• C.[-1,0]• D.[0,1]参考答案:D37、设f(x)= , 则() ,• A.0• B.1• C.-1• D.不存在参考答案:B38、设函数f(x)满足=0, 不存在, 则() ,• A.x=x0及x=x1都是极值点• B.只有x=x0是极值点• C.只有x=x1是极值点• D.x=x0与x=x1都有可能不是极值点参考答案:D39、设f(x)在[-a,a](a>0)上连续, 则()• A.0• B.• C.• D.参考答案:C40、设供给函数S=S(p)(其中p为商品价格), 则供给价格弹性是()• A.• B.• C.• D.参考答案:B41、设 ,则x=0是f(x)的()• A.可去间断点• B.跳跃间断点• C.无穷间断点• D.连续点参考答案:A42、设函数y=f(x)在点x0的邻域V(x0)内可导,如果∀x∈V(x0)有f(x)≥f(x0),则有()• A.• B.• C.• D.参考答案:C43、已知某商品的成本函数为,则当产量Q=100时的边际成本为() , ,• A.5• B.3• C.3.5• D.1.5参考答案:C44、在区间(-1,0)内,下列函数中单调增加的是()• A.• B.• C.• D.参考答案:B45、无穷限积分()• A.1• B.0• C.-• D.参考答案:D46、下列区间中,函数f (x)= ln (5x+1)为有界的区间是() ,• A.(-1, )• B.(- ,5)• C.(0, )• D.( ,+参考答案:C47、设函数g (x)在x = a连续而f (x) = (x-a)g(x),则(a) =()• A.0• B. (a)• C.f (a)• D.g (a)参考答案:D48、设函数f (x)定义在开区间I上, I,且点(x0, f (x0) )是曲线y= f (x)的拐点,则必有()• A.在点(x0,f (x0))两侧,曲线y=f (x)均为凹弧或均为凸弧.• B.当xx0时,曲线y=f (x)是凸弧(或凹弧).• C.xx0时,f(x)>f(x0).• D.xf(x0) 而x>x0时,f(x)<f(x0).< li=""></f(x0).<>参考答案:B49、设某商品的需求函数为D(P)=475-10P-P2,则当P = 5时的需求价格弹性为()• A.0.25• B.-0.25• C.100• D.-100参考答案:A50、,• A.-1• B.1• C.-• D.参考答案:B51、设,则f (x)=()• A.• B.• C.• D.参考答案:B52、下列极限存在的是()• A.• B.• C.• D.参考答案:D53、曲线上拐点的个数是()• A.0• B.1• C.2• D.3参考答案:C54、• A.• B.0• C.• D.参考答案:B55、• A.• B.-• C.1• D.-1参考答案:A56、数列的极限是()• A.0• B.• C.1• D.不存在参考答案:C57、广义积分()• A.• B.• C.• D.0参考答案:B58、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为()• A.[0,2]• B.[0,16]• C.[-16,16]• D.[-2,2]参考答案:C59、=()• A.0• B.1• C.-1• D.不存在参考答案:A60、设f(x)为可微函数,且n为自然数,则 =()• A.0• B.• C.-• D.不存在参考答案:B61、设f(x)是连续函数,且f(0)=1,则()• A.0• B.• C.1• D.2参考答案:C62、已知某商品的产量为x时,边际成本为,则使成本最小的产量是()• A.23• B.24• C.25• D.26参考答案:B63、设f(x)=ln4,则()• A.4• B.• C.0• D.参考答案:C64、• A.16!• B.15!• C.14!• D.0参考答案:D65、• A.• B.• C.• D.参考答案:B66、已知生产某商品x个的边际收益为30-2x,则总收益函数为()• A.• B.• C.• D.参考答案:D67、函数y=1-cosx的值域是()• A.[-1,1]• B.[0,1]• C.[0,2]• D.(-∞,+∞)参考答案:C68、• A.0• B.1• C.不存在• D.参考答案:D69、下列各式中,正确的是()• A.• B.• C.• D.参考答案:D70、下列广义积分中,发散的是()• A.• B.• C.• D.参考答案:A71、() ,• A.• B.• C.• D.参考答案:B72、()• A.|x|≤1• B.|x|<1• C.0<|x|≤1• D.0<|x|<1参考答案:C73、()• A.• B.△y=0• C.dy=0• D.△y=dy参考答案:A74、()• A.0• B.1• C.-1• D.不存在参考答案:A75、()• A.• B.• C.• D.参考答案:D76、()• A.• B.• C.• D.参考答案:C77、()• A.[a,3a]• B.[a,2a]• C.[-a,4a]• D.[0,2a]参考答案:B78、()• A.1• B.• C.不存在• D.0参考答案:D79、设D=D(p)是市场对某一商品的需求函数,其中p是商品价格,D是市场需求量,则需求价格弹性是()• A.• B.• C.• D.参考答案:B80、()• A.0• B.1• C.-1• D.参考答案:C81、()• A.π• B.4• C.2π• D.2参考答案:C82、()• A.• B.• C.• D.参考答案:D83、()• A.• B.5• C.2• D.参考答案:A84、• A.0• B.1• C.-0.5• D.-4参考答案:C85、下列无穷限积分中,发散的是()• A.• B.• C.• D.参考答案:B86、• A.• B.• C.• D.参考答案:D87、( )• A.• B.• C.(0,1]• D.(0,1)参考答案:D88、• A.无定义• B.无极限• C.不连续• D.连续参考答案:D89、• A.必要条件• B.充分条件• C.充分必要条件• D.既非充分条件又非必要条件参考答案:A90、• A.• B.• C.• D.参考答案:B91、下列广义积分中,收敛的是()• A.• B.• C.• D.参考答案:C92、下列集合中为空集的是()• A.• B.• C.• D.参考答案:D 93、• A.0• B.1• C.• D.-参考答案:C 94、• A.△x• B.• C.• D.0 参考答案:D 95、• A.• B.• C.• D.参考答案:C96、• A.• B.• C.• D.参考答案:D97、• A.• B.• C.• D.参考答案:D98、• A.x(x-1)• B.x(x+1)• C.• D.(x+1)(x-2)参考答案:B99、• A.• B.• C.• D.参考答案:C100、• A.5• B.3• C.3.5• D.1.5参考答案:C101、在区间(-1,0)内,下列函数中单调增加的是()• A.y=-4x+1• B.y=5x-3• C.• D.y=|x|+2参考答案:B102、• A.1• B.0• C.• D.参考答案:D103、• A.0• B.1• C.-1• D.不存在参考答案:B104、• A.• B.• C.• D.参考答案:D105、设供给函数S=S(p)(其中p为商品价格), 则供给价格弹性是()• A.• B.• C.• D.参考答案:B106、设函数y=f (x)的定义域为(1,2),则f (ax)(a<0)的定义域是( )• A.• B.• C.(a,2a)• D.参考答案:B107、设f (x)=x|x|,则f ′(0)=( )• A.1• B.-1• C.0• D.不存在参考答案:C108、设f (x)是连续函数,且,则f (x)=( )• A.cos x—xsin x• B.cos x + xsin x• C.sin x—xcos x• D.sin x + xcos x参考答案:A109、函数f(x)=lnx— ln(x—1)的定义域是()• A.(-1,+∞)• B.(0,+∞)• C.(1,+∞)• D.(0,1)参考答案:C110、极限()• A.0• B.• C.• D.3参考答案:B111、x=0是函数f(x)= 的()• A.零点• B.驻点• C.极值点• D.非极值点参考答案:D112、初值问题的隐式特解为()• A.• B.• C.• D.参考答案:A113、函数f(x)=是()• A.奇函数• B.偶函数• C.有界函数• D.周期函数参考答案:C114、函数f(x)= —x的极大值点为()• A.x= —3• B.x= —1• C.x= 1• D.x= 3参考答案:B115、正弦曲线的一段与x 轴所围平面图形的面积为()• A.1• B.2• C.3• D.4参考答案:B116、函数f(x)= 的定义域为()• A.[-1,1]• B.[-1,3]• C.(-1,1)• D.(-1,3)参考答案:B117、设函数f(x)= 在x=0点连续,则k=()• A.0• B.1• C.2• D.3参考答案:C118、曲线y=的渐近线的条数为()• A.1• B.2• C.3• D.4参考答案:B119、设sin x 是f(x)的一个原函数,则()• A.sin x+C• B.cos x+C• C.—cos x+C• D.—sin x+C参考答案:A120、下列反常积分收敛的是()• A.• B.• C.• D.参考答案:D 121、• A.• B.• C.• D.参考答案:D。

全国2002年4月高等教育自学考试高等数学(一)试题参考答案

全国2002年4月高等教育自学考试高等数学(一)试题参考答案

全国2002年4月高等教育自学考试高等数学(一)试题参考答案课程代码:00020一、单项选择题(每小题1分,共40分)1.B2.D3.D4.C5.A6.D7.A8.C9.D 10.A11.C 12.C 13.C 14.B 15.D16.C 17.B 18.B 19.A 20.B21.A 22.D 23.C 24.C 25.C26.D 27.B 28.C 29.A 30.C31.D 32.A 33.A 34.C 35.B36.B 37.A 38.C 39.C 40.D二、计算题(一)(每小题4分,共12分)41.解 令u=4x ,有原式=4u 2u lim 22u --→ =2u 1lim 2u +→ =41 42.解 方程两边对x 求偏导数,有2x+2z xz 4x z ∂∂=∂∂ (4-2z)xz ∂∂=2x x z ∂∂=z2x - 43.解 p=-ctgx,q=2xsinx,于是y=⎰+⎰⎰-)c dx qe (e pdx pdx =sinx()c xdx 2+⎰=(x 2+c)sinx三、计算题(二)(每小题7分,共28分)44.解 )x s e c x t g x (s e c t g xx s e c 1)t g x x (s e c t g x x s e c 1y 2++='++=' =secx45.解 设x=tg θ,则dx=sec 2θd θ,x=1时,θ=4π;x=3,θ=3π,于是原式=⎰ππθθθθ3422sec tg d sec=⎰ππθθ342sin sin d =-θsin 134ππ=3322-46.解 令a n =n)3(5nn -+,则 R=))3(5(n ))3(5)(1n (lim a a lim 1n 1n n n n 1n n n ++∞→+∞→-+-++= =1n n n )53(1)53(5151lim +∞→-+-+ =51 于是此级数的收敛半径为51 47.解 令x=rcos θ,y=rsin θ,则原式=⎰⎰πππθ202rdr sin r d =-2⎰πππ2r cos rd =-⎰ππππ-π22)rdr cos r cos r (2 =-62π四、应用题(每小题8分,共16分)48.解方程组⎩⎨⎧=-=x2y x 3y 2得交点(-3,-6),(1,2).S=()d x x 2)x 3(132⎰--- =〔3x-23x x 31-〕1-3 =332 49.解 总利润函数为L (x )=R(x)-C(x)=(20x-x 2)-()15x 29x 6x 3123++- =-20x 5,15x 9x 5x 3123≤≤--+ 令9x 10x )x (L 2-+-='=-(x-1)(x-9)=0,得驻点x=9,x=1(舍去)由台时利润最大故知当每批生产900,08)9(L ,10x 2)x (L <-=''+-=''。

2020年10月00020高等数学(一)自考试卷(含答案)

2020年10月00020高等数学(一)自考试卷(含答案)

绝密★启用前全国2020年10月自学考试高等数学(一)试题课程代码:00020请考生按规定用笔将所有试题的答案涂、写在答题纸上。

注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

选择题部分一、单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1. 方程x2-3x + 2 = 0的根为A. X}=1,X2=2B. X J=-1,X2=2C. x l=l9x2=-2D. X1=-1,X2=-22. 设函数f(x + 2) = x2,则f(x) =A. X2-2B. (X-2)2C. x2+2D. (X+ 2)23. 极限A. -2B. 0C. 2D.4. 函数的所有间断点是A. x = 0B. x = -1C. x = 0, x = lD.x = -l,x = l5. 设函数f(x)可导,则极限6.曲线在(0,0)处的切线方程是7.设函数f(x)可导,且处A.—定有极大值B. —定有极小值C.不一定有极值D. 一定没有极值8.曲线Y = X3-3X2+2的拐点为A. (0,1)B. (1,0)C. (0, 2)D. (2,0)9 .不定积分A. secx + xB. secx + x + CC. tanx + xD. tanx + x + C10.设函数,则f(2,1) =非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、简单计算题(本大题共5小题,每小题4分,共20分)11. 判断函数的奇偶性.12. 求极限13. 求函数f(x) = sin(2x2 +3)的导数.14. 求极限15. 求函数的全微分dz.三、计算题(本大题共5小题,每小题5分,共25分)16. 确定常数a的值,使得函数在x = 0处连续.17. 已知某商品的价格函数为P(Q)= 200-0.01Q (元/件),其中Q为销售量(件).(1)求总收益函数R(Q);(2)求Q = 50时的边际收益.18.求函数f(x) = x3 -3x + 5的单调区间.19.设函数,求导数.20.求微分方程的通解.四、综合题(本大题共4小题,共25分)21.(本小题6分)设工厂生产Q吨某产品的总成本函数为(万元),(1)求平均成本函数;(2)问产量为多少时平均成本最低?并求最低平均成本.22.(本小题6分)设曲线与直线x = l及x轴所围成的平面图形为D.(1)求D的面积A(2)求D绕x轴一周的旋转体体积.23.(本小题6分)24.(本小题7分)计算二重积分,其中D是由直线x = l、y = l及x轴、y轴所围成的平面区域.一、单项选择题1.A2.B3.D4.C5.C6.A7.C8.B9.D 10.A二、简单计算题11.解:()()2222x x x x f x -----=-=-(22)()x x f x -=--=-故函数()f x 为奇函数12.解:原式=43444224452125lim lim 313115005100x x x x x x x x x x x x→∞→∞+-+-==+-+-+-==+- 13.解:22()cos(23)(23)f x x x ''=+⋅+2()4cos(23)f x x x '∴=+14.[解法1]:原式=11ln(2)ln[1(1)]lim lim 11x x x x x x →-→-+++=++ 11lim 11x x x →-+=+ [解法2]:11ln(2)ln[1(1)]lim lim 11x x x x x x →-→-+++=++ 11111lim ln[1(1)]1lim ln[1(1)]ln 1x x x x x x e →-+→-=+++=++==15.解:23,25x y z x z y =-=-(23)(25)x y dz z dx z dy x dx y dy ∴=+=-+-三、计算题16.解:因为函数在x=0处连续由连续函数的定义知:0lim ()(0)x f x f →= 2323003lim ()lim(1),(0)x x x f x x e f a a e →→=+==∴=又17.解(1):()2000.01P Q Q =-2()()(2000.01)2000.01R Q Q P Q Q Q Q Q=⋅=-=- 解(2):()2000.02R Q Q '=-(50)2000.0250199R '∴=-⨯=元18.解:2()33f x x '=-2()330f x x '=-=令得:1,1x x =-=19.解:21ln(1)1dy x dx x=-++. 20.解:2(1)dy y dx=+ 21dy dx y =+变量分离得 21ln(1)2dy dx y y x C =+∴+=+⎰⎰两边不定积分 或:21x y Ce =-四、综合题21.解:(1)21()81004C Q Q Q =++ ()1100()84C Q C Q Q Q Q∴==++,其中0Q ≥解:(2) 21100()4C Q Q'=- 21100()04C Q Q'=-=由得20Q = 故当20Q =吨时平均成本最低。

高等数学(一)00020_历年试卷_真题及答案

高等数学(一)00020_历年试卷_真题及答案

;
z
两边关于 y 求偏导 e
3 z
z z 3xy 3 0 y y
z 3xy 所以 。因此: y 1 e y z z dx dy dz= x y 1 e
3 z
dx
3xy 2 1 ez
dy

6.解:ex= xn!
n n0

x ( ,),
x 0
)
A. 2a2x C. 2xa2x-1 15.下列式子中正确的是(
B. a2xlna D. 2a2xlna )
A. e dx e C. e dx e
1 x 1 0 0 1 x 1 0 0
1
x2
dx dx
x2
B. e dx e dx D.以上都不对
1 x 1 x2 0 0
yylnlnxxxxx????????????1122lnxxxxxxx???????111222lnxxxxxxx???????1111222lnxxxx????11223
浙江省 2002 年 1 月高等教育自学考试 高等数学(一)试题 课程代码:00020 一、单项选择题(在每小题的四个备选答案中,选出一个正确 答案,并将正确答案的序号填 在题干的括号内。第 1—10 题,每小题 1 分,第 11—20 小题,每小题 2 分,共 30 分) 1.函数 y= 5 x +ln(x-1)的定义域是( ) A. (0,5] B. (1,5] C. (1,5) D. (1,+ ∞) 2. lim sinx2 x 等于( )
x

n 1
四、应用题(每小题 8 分,共 16 分) 1.某商店以每条 100 元的价格购进一批牛仔裤,已知市场 的需求函数为 Q=400-2P, 问怎样选择牛仔裤的售价 P(元 /条),可使所获利润最大,最大利润是多少。 1 2.设抛物线 y2=2x 与该曲线在 ,1 处的法线所围成的平面图 2 形为 D,求 D 的面积。 五、证明题(4 分) 证明:xln (x 1 x ) 1 x 1, (x 0) 。

00020高等数学(一)0604

00020高等数学(一)0604

2006年4月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的。

请将其代码填写在题后的括号内。

错选、多选或未选均无分。

二、填空题(大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
22.将一长为l的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形
与圆形面积之和最小,问这两段铁丝的长应各为多少?
五、应用题(本大题9分)
六、证明题(本大题5分)。

全国2023年04月自考[00020]《高等数学(一)》试题

全国2023年04月自考[00020]《高等数学(一)》试题

绝密★启用前2023年4月高等教育自学考试全国统一命题考试高等数学( 一)( 课程代码 00020)注意事项:1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。

2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。

3. 涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。

第一部分选择题一、单项选择题:本大题共10小题,每小题3分,共30分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.In√3=A. B.C. 3In2D. 2In32. 设函, 则A. B.C. 1D.3. 极限A. B.C. D.高等数学( 一)试题第1页(共4页)4. 函数在点x=0 处A. 无定义但有极限B. 无定义且无极限C. 有定义但无极限D. 有定义且有极限5. 已知某产品产量为q时的总成本, 则q=900 时的边际成本为A. 0B. 0.5C. 1D. 1.56. 设f(0)=0 且f(0)=1, 则极限A.0B.C.1D. 37. 函数f(x)=(x- 1)* 在区间(,+)内A. 单调减少B. 单调增加C. 不增不减D. 有增有减8 . 设, 则f(x)=A.-e'm* cosxB. eincosxC.-einxD. einr9. 反常积分A.- 1B. 0C. 1D.+0010. 下列各点中是函数f(x,y)=x³-4x²+2xy-y²驻点的为A.(2,2)B.(1,1)C.(1,0)D.(0,1)高等数学(一)试题第2页(共4页)第二部分 非选择题二、简单计算题:本大题共5小题,每小题4分,共20分。

11.设函数f(x)=1g5, 求f(x+1)-f(x+2). 12. 求极限13.设函数y= √ 1-x²,求微分dy,14. 求不定积分15. 计算定积分三、计算题:本大题共5小题,每小题5分,共25分。

自考历年试题汇总

自考历年试题汇总

第 1 页 共 71 页 -全国2003年10月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共40小题,每小题1分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列集合中为空集的是( ) A.{x|e x =1} B.{0} C.{(x, y)|x 2+y 2=0} D.{x| x 2+1=0,x ∈R}2.函数f(x)=2x 与g(x)=x 表示同一函数,则它们的定义域是( )A.(]0,∞-B.[)+∞,0C.()+∞∞-,D.()+∞,03.函数f(x)==π-⎩⎨⎧≥<)4(f ,1|x |,01|x ||,x sin |则( )A.0B.1C.22D.-22 4.设函数f(x)在[-a, a](a>0)上是偶函数,则f(-x)在[-a, a]上是( ) A.奇函数 B.偶函数 C.非奇非偶函数 D.可能是奇函数,也可能是偶函数 5.=+→)2x (x x2sin lim 0x ( )A.1B.0C.∞D.26.设2x10x e )mx 1(lim =-→,则m=( )A.21 B.2 C.-2D.21-7.设f(x)=⎩⎨⎧=≠2x ,12x ,x 2,则=→)x (f lim 2x ( )A.2B.∞第 2 页 共 71 页 -C.1D.48.设x1ey -=是无穷大量,则x 的变化过程是( )A. x →0+B. x →0-C. x →+∞D. x →-∞9.函数在一点附近有界是函数在该点有极限的( ) A.必要条件 B.充分条件 C.充分必要条件 D.无关条件10.定义域为[-1,1],值域为(-∞,+∞)的连续函数( ) A.存在 B.不存在 C.存在但不唯一 D.在一定条件下存在 11.下列函数中在x=0处不连续的是( )A. f(x)=⎪⎩⎪⎨⎧=≠0x ,10x ,|x |xsinB. f(x)=⎪⎩⎪⎨⎧=≠0x ,00x ,x1sin x C. f(x)=⎩⎨⎧=≠0x ,10x ,e xD. f(x)=⎪⎩⎪⎨⎧=≠0x ,00x ,x1cos x 12.设f(x)=e 2+x,则当△x →0时,f(x+△x)-f(x)→( ) A.△x B.e 2+△xC.e 2D.013.设函数f(x)=⎪⎩⎪⎨⎧<-≥0x ,1x 0x ,e 2x,则=---→0x )0(f )x (f lim 0x ( )A.-1B.-∞C.+∞D.114.设总收益函数R(Q)=40Q-Q 2,则当Q=15时的边际收益是( ) A.0 B.10 C.25 D.375 15.设函数f(x)=x(x-1)(x-3),则f '(0)=( ) A.0 B.1 C.3 D.3!16.设y=sin 33x,则y '=( )A.3x sin32B.3xsin2C.3x cos 3x sin 32D.3x cos 3x sin 2 17.设y=lnx,则y (n)=( )A.(-1)n n!x -nB.(-1)n (n-1)!x -2n第 3 页 共 71 页 -C.(-1)n-1(n-1)!x -nD.(-1)n-1n!x -n+118.=)x (d )x (sin d 2( ) A.cosx B.-sinx C.2xcosD.x2xcos 19.f '(x)<0,x ∈(a, b) ,是函数f(x)在(a, b)内单调减少的( ) A.充分条件 B.必要条件 C.充分必要条件 D.无关条件 20.函数y=|x-1|+2的极小值点是( ) A.0 B.1 C.2 D.3 21.函数y=2ln3x3x -+的水平渐近线方程为( ) A. y=2 B. y=1 C. y=-3 D. y=022.设f(x)在[a, b](a<b)上连续且单调减少,则f(x)在[a, b]上的最大值是( ) A. f(a) B. f(b) C.)2ba (f +D.)3a2b (f + 23.=-⎰2)3y 2(dy( )A.C )3y 2(613+--B.C )3y 2(613+-C.C 3y 21+-D.C )3y 2(21+--24.设f(x)在(-∞,+∞)上有连续的导数,则下面等式成立的是( ) A.⎰+='C )x (f dx )x (f x 22B.⎰+='C )x (f 21dx )x (f x 22C.⎰=')x (f 21)dx )x (xf (22D.⎰=)x (f dx )x (xf 2225.⎰=)tgx (xd sin ln ( ) A. tgxlnsinx-x+CB. tgxlnsinx+x+C第 4 页 共 71 页 -C. tgxlnsinx-⎰x cos dxD. tgxlnsinx+⎰x cos dx26.=+⎰--21dx 3x x( ) A.-1-3ln2 B.-1+3ln2 C.1-3ln2D.1+3ln227.⎰=π210dx )x 2(tg ( ) A.2ln 21- B.2ln 21 C.2ln 1πD.2ln 1π-28.经过变换x t =,⎰=-94dx 1x x ( )A. ⎰-94dt 1t tB. ⎰-942dt 1t t 2 C. ⎰-32dt 1t tD.⎰-322dt 1t t 2 29.⎰∞+-=1x dx e x1 ( )A.e2 B.-e2 C.2eD.-2e30.⎰=-211x dx( )A.2B.1C.∞D.32 31.级数∑∞=-1n nn25)1(的和等于 ( )A.35B.-35C.5D.-5 32.下列级数中,条件收敛的是( ) A.∑∞=--1n n 1n )32()1( B.∑∞=-+-1n 21n 2n n )1(第 5 页 共 71 页 -C.∑∞=--1n 31n n1)1( D.∑∞=--1n 31n n51)1(33.幂级数 ∑∞=---1n n1n n)1x ()1( 的收敛区间是( ) A.(]2,0 B.(]1,1- C.[]0,2-D.()+∞-∞,34.点(-1,-1,1)在下面哪一张曲面上 ( ) A.z y x 22=+ B.z y x 22=- C.1y x 22=+D.z xy =35.设 f(u,v)=(u+v)2,则 )yx,xy (f =( )A.22)x1x (y + B.22)y1y (x +C.2)y1y (x +D.2)x1x (y +36.设 )x2yx ln()y ,x (f +=,则=')0,1(f y ( ) A.21 B.1 C.2D.037.设22y xy 3x 2z -+=,则=∂∂∂yx z2( ) A.6 B.3 C.-2 D.238.下列函数中为微分方程0y y =+'的解的是( ) A.x e B.-x e C.x e - D.x e +x e - 39.下列微分方程中可分离变量的是( ) A.2x x ydx dy += B.y xydx dy += C.)0k (1)b y )(a x (k dxdy≠+++=, D.x y sin dxdy=-第 6 页 共 71 页 -40.设D :0≤x ≤1,0≤y ≤2,则⎰⎰+Ddxdy x1y=( ) A.ln2 B.2+ln2 C.2 D.2ln2二、计算题(一)(本大题共3小题,每小题4分,共12分) 41.求极限xsin 2e e lim2x x 0x -+-→.42.设)y 21x (cos 2u 2-=,求xu∂∂,y u ∂∂.43.求微分方程x ytgx y =-'的通解.三、计算题(二)(本大题共4小题,每小题7分,共28分) 44.设)ctgx x ln(csc y -=,求y '. 45.求定积分dx x cos x cos 203⎰π-.46.将函数(1+x )ln(1+x)展开成x 的幂级数,并指出其收敛域. 47.设f(x,y)是连续函数.改变⎰⎰xx 2102dy )y ,x (f dx的积分次序.四、应用题(本大题共2小题,每小题8分,共16分)48.求由圆面 22)b y (x -+≤)b a 0(a 2<< 绕x 轴旋转一周所形成的物体的体积.49.设某商品每周生产x 单位时,总成本为C (x )=100+2x ,该产品的需求函数为x=800-100p (p 为该商品单价),求能使利润最大的p 值.五、证明题(本题共4分)50.证明方程01x 3x 3=+-在区间(0,1)内有唯一实根.全国2004年1月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共40小题,每小题1分,共40分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题干后的括号内。

(2008—2013)自考全国卷高等数学(一)试题及部分答案大全(1)

(2008—2013)自考全国卷高等数学(一)试题及部分答案大全(1)

全国2008年1月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51) D.(51,+∞) 2.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( D ) A.0 B.g '(a) C.f (a)D.g (a)3.设函数f (x)定义在开区间I上,∈0x I ,且点(x 0, f (x 0) )是曲线y= f (x)的拐点,则必有( B ) A.在点(x 0,f (x 0))两侧,曲线y=f (x)均为凹弧或均为凸弧. B.当x<x 0时,曲线y=f (x)是凹弧(或凸弧), 则x>x 0时,曲线y=f (x)是凸弧(或凹弧). C.x<x 0时,f (x)<f(x 0) 而x>x 0时,f(x)>f(x 0). D.x<x 0时,f (x)>f(x 0) 而x>x 0时,f(x)<f(x 0).4.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为( A ) A. B. C.100 D.-1005.无穷限积分⎰+∞xe -x dx =( B )21 D.21 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

y =x1x1-+的定义域是___________. 0lim→h h3x )h x (33-+=___________. 0x lim →2xx2cos 1-=___________. 9.已知某商品的成本函数为C(q )=20 -10q+q 2(万元),则q =15 时的边际成本为___________.10.抛物线y = x 2上点(2,4)处的切线方程是___________.⎰=+)x 1(x dx___________.331xx dx +⎰=___________.xydx+2x 1-dy = 0的通解是___________. 14.设z = arctan (xy),则xz∂∂=___________. 15.dx⎰1⎰+122x xxydy=___________.三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设y = xarctanx-ln 2x 1+,求y ''(1) 17.求极限x cos 1120x )x 1(lim -→+⎰dx xx ln19.计算定积分I=⎰π20( sin x -sin 3x )dx20.设z = z (x,y)是由方程x 2-z 2+lnzy=0确定的函数,求dz 四、计算题(二)(本大题共3小题,每小题7分,共21分) y = x 2x ,求y '' I=dx x21x21210⎰+- 23.计算二重积分I =⎰⎰σD22d y x ,其中D 是由直线x = 2,y = x 和双曲线xy = 1围城的区域 . 五、应用题(本大题共9分)24.求内接于半径为R 的半圆而周长最大的矩形的各边边长. 六、证明题(本大题共5分)25.证明:当函数y = f (x)在点 x 0 可微,则f ( x )一定在点x 0可导.全国2008年7月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

全国2012年04月自学考试00020《高等数学(一)》历年真题与答案

全国2012年04月自学考试00020《高等数学(一)》历年真题与答案

全国2012年4月自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.函数y=f(x)的图形如图所示,则它的值域为( ) A.[1,4) B.[1,4] C.[1,5) D.[1,5]2.当x →0时,下列变量为无穷小量的是( ) A.21sin x xB.1sin x xC.xe -3.设函数f(x)可导,且0(1)(1)lim1x f f x x→--=-,则曲线y=f(x)在点(1,f(1))处的切线斜率为( )A.1B.0C.-1D.-24.曲线21(1)y x =-的渐近线的条数为 ( )A.1B.2C.3D.45.下列积分中可直接用牛顿-莱布尼茨公式计算的是( ) A.111dx x -⎰B.111d x x -⎰2(2+1)C.1211d x x-⎰D.1x -⎰二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数2,||1(),1,||1x f x x ≤⎧=⎨⎩>则f [f(1)]=______.7.已知33lim 1nkn e n -→∞⎛⎫+= ⎪⎝⎭,则k=______.8.若级数1n n u ∞→∑的前n 项和1121n S n =-+,则该级数的和S=______. 9.设函数f(x)可微,则微分d[e f(x)]=______. 10.曲线y=3x 5-5x 4+4x-1的拐点是______.11.函数()arctan f x x x =-在闭区间[-1,1]上的最大值是______.12.导数20d sin 2d d xu u x ⎰=______.13.微分方程2()20x y xy y '''-+=的阶数是______. 14.设22{(,)|4}D x y x y =+≤,则二重积分d d Dx y =⎰⎰______.15.设函数(,)ln()2y f x y x =+,则偏导数(0,1)y f ='______. 三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设函数21()cos x f x e x-=,求导数()f x '. 17.求极限0tan limsin x x xx x→--.18.求函数3212()2333f x x x x =-++的极值.19.计算无穷限反常积分231=d 610I x x x +∞-++⎰.20.计算二重积分=(32)d d DI x y x y +⎰⎰,其中D 是由直线x+y=1及两个坐标轴围成的区域,如图所示.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.确定常数a,b 的值,使函数3sin ,0()ln(1)0x x f x a x b x <⎧=⎨++≥⎩在点x=0处可导.22.设某商品的需求函数为Q(P)=12-0.5P (其中P 为价格). (1)求需求价格弹性函数. (2)求最大收益.23.计算定积分2=I x .五、应用题(本题9分) 24.设曲线1y x=与直线y=4x,x=2及x 轴围成的区域为D ,如图所示.(1)求D 的面积A.(2)求D 绕x 轴一周的旋转体体积V x . 六、证明题(本题5分)25.设函数z=xy+f(u),u=y 2-x 2,其中f 是可微函数. 证明:22z zyx x y x y∂∂+=+∂∂.全国2012年4月自考《高等数学(一)》试题答案详解课程代码:00020试卷总体分析:试卷详解:一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

00020高等数学(一)0610

00020高等数学(一)0610

2006年10月高等教育自学考试全国统一命题考试高等数学(一)试题(课程代码 0020)一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.函数y=1-cosx 的值域是( )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞)2.设2a 0π<<,则=→xx sin lim a x ( ) A.0 B.1C.不存在D.a asin3.下列各式中,正确的是( ) A.e )x 11(lim x0x =++→ B.e )x 1(lim x 10x =-→ C.e )x 11(lim x x -=-∞→ D.1x x e )x 11(lim -∞→=-4.下列广义积分中,发散的是( ) A.⎰+∞1x dx B.⎰+∞+12x 1dxC.⎰+∞-1x dx e D.⎰+∞12)x (ln x dx5.已知边际成本为x 1100+,且固定成本为50,则成本函数是()A.100x+x 2B.100x+x 2+50C.100+x 2D.100+x 2+50二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.函数y=arcsin(x-3)的定义域为___________。

7.设n n 16121x 2n ++++= ,则=∞→n n x lim ___________。

8.=+-∞→x2x 4lim 2x ___________。

9.设⎩⎨⎧>≤-=0x ,x 0x ,e 1)x (f 2x ,则-'f (0)=___________。

10.设y=f(secx),f ′(x)=x ,则4x dx dyπ==___________。

11.函数y=2x 3-3x 2的极小值为___________。

12.曲线1x x y 22-=的水平渐近线为___________。

全国2006年07月自学考试00020《高等数学(一)》历年真题与答案

全国2006年07月自学考试00020《高等数学(一)》历年真题与答案

2006年7月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
本试卷共8页,满分100分,考试时间150分钟。

一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分
三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
五、应用题(本大题共l小题,每小题9分,共9分)
六、证明题(本大题共l小题,每小题5分,共5分)
浩翔教育https:// QQ:3327535168。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

00020高等数学(一)自考历年真题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
2
2012年10月高等教育自学考试《高等数学(一)》试题
课程代码:00020
一、单项选择题(本大题共5小题,每小题2分,共10分) 1.在区间),0(+∞内,下列函数无界的是( B )。

A .x sin B .x x sin C .x x cos sin + D .)2cos(+x
2.已知极限2
211lim e x bx
x =⎪

⎫ ⎝⎛
+∞
→,则=b ( D )。

A .1
B .2
C .3
D .4
3.设函数)(x f 二阶可导,则极限=⎪⎭

⎝⎛∆-∆-→∆bx
x x x f x x f )(')2('lim 000( C )。

A .)(''0x f -
B .)(''0x f
C .)(''20x f -
D .)(''20x f 4.函数C x F dx x f +=⎰)()(,则=⎰xdx x f cos )(sin ( C )。

A .C x x F +sin )(sin
B .
C x x f +sin )(sin
C .C x F +)(sin
D .C x f +)(sin
5.函数),(y x f z =在点),(00y x 处偏导数存在,则该函数在点),(00y x 处必( A )。

A .有定义
B .极限存在
C .连续
D .可微
二、填空题(本大题共10小题,每小题3分,共30分)
6.已知函数x x x f +=12)(,则复合函数=)]([x f f x x
314+。

7.极限()=⋅+∞→x
x x 1
sin 1ln lim 0 。

8.某产品产量为q 时总成本2
200
1200)(q q C +=,则100=q 时的边际成本为
1 。

9.极限=-→x
x x x ln 1
lim
1 1 。

10.设函数x
x
y +=1sin 的铅直渐近线为1-=x 。

11.已知直线l 与X 轴平行且与曲线x e x y -=相切,则切点坐标为 (0,-1) 。

12.函数)1ln()(2x x f +=在区间[-1,2]上最小值为 0 。

13.设函数⎰=Φx
tdt t x 20cos )(,则=Φ)('x x x 2cos 4。

14.求函数)arcsin(22y x z +=的定义域为122≤+y x 。

15.设函数)(2e x z +=,则
=∂∂)
0,1(y
z 4 。

三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.求极限x
x
x x sin 11lim 0--+→。

解:原极限x
x x x
x sin )11(2lim 0
-++=→ (3分)
=1. (5分)
17.已知函数)(x f 可导,且)(sin )(,)0('x f x g a f ==,求)0('g 。

解:x x f x g cos )(sin ')('=, (3分) a f g ==)0(')0('。

(5分)
18.设函数)0(1>=x x y x
,求dy 。

19.设函数)(x f 在区间I 上二阶可导,且0)(''>x f ,判断曲线)
(x f e
y =在区间
I 上的凹凸性。

3
20.计算不定积分⎰+dx x x )1cos(2。

四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.设函数x
x
x y -=ln 的单调区间与极值。

22.求微分方程0)(=--dy dx y x 满足初始条件10
-==x y
的特解。

23.计算二重积分⎰⎰=D
dxdy y x
y I sin
,其中 区域D 由其线1,0,===y x x y 围成。

五、应用题(本大题9分)
24.过点(1,2)作抛物线12+=x y 的切线,设该切
线
与抛物线及y 轴所围的平面区域为D. (1)求D 的面积A ;
(2)求D 绕x 轴一周的旋转体体积x V 。

4
六、证明题(本大题5分)
25.设函数)(x f 可导,且0)0(,cos sin )(sin '2
=-
=f x x x f ,证明1ln 2
1
)(2-=x x f 。

相关文档
最新文档