静电唯一性定理的严格证明

合集下载

边值问题和唯一性定理(静电场)

边值问题和唯一性定理(静电场)
静电场边值问题 唯一性定理

静电场的边值问题

静电场的唯一性定律
目前可解决的静电场问题



电荷在有限区域内,电荷的分布情况已知,并 且介质为线性各向同性均匀介质中的静电场问 题。对于此类问题,一般可以先求出电位,再 计算场中各点的电场强度和电位移矢量。 电荷、介质分布具有某种对称性的问题。由于 电荷和介质的分布具有对称性,因此电位移矢 量的分布必然也具有对称性。在这种情况下, 可以先用高斯通量定理求解电位移矢量,然后 再求电场强度。 已知电场的分布求电荷分布的问题。在这种情 况下,可直接由公式计算电荷的体密度,导体 上的面电荷密度根据分界面条件确定。
2
静电场边值问题的提出

实际中对于很多电磁场的问题通常并不 知道电荷分布,如静电场中导体表面的 感应电荷分布,介质极化后极化电荷的 分布等。对于此类的问题,必须通过求 解满足给定边界条件的电位微分方程 (泊松方程或拉普拉斯方程)的电位函 数,进而再求场域中的电场强度。我们 把这种在给定边界条件下,求解泊松方 程或拉普拉斯方程的问题称为边值问题。

对于各向同性、线性的非均匀媒质,电位 满足的微分方程又是什么形式呢?
D
D E
E
( )
7
边值问题举例-直接积分法
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷 体密度为 ,试用解微分方程的方法求球体内、外的电位 及电场。(同例2-4) 解:采用球坐标系,分区域建立方程
自学)
10
反设满足场的解答有两个相异的解答1和 2,则差
场u= 1 2 满足拉普拉斯方程
2 2
u 1 2 0 根据矢量恒等式

chapter2-2 静电场的唯一性定理-2015-09-28

chapter2-2 静电场的唯一性定理-2015-09-28
n n
(2.2)
至此,对于区域 V 而言,我们还不知道外边界上 的条件。这个问题正是唯一性定理所要解决的:就是 我们还需要知道外边界上的什么条件之后,求能够唯 一确定区域内的静电场。 2)唯一性定理的内容:若
i)区域 V 内给定自由电荷分布 f x ; ii)区域的外边界 S 上给定电势 S , 或者电势的法向导数 n ,
唯一性定理定理也表明, a)唯一性定理对于静电问题的重要性在于:只要我 们得到一个满足泊松方程以及相应的边界条件的
解,那么这个解一定就是该问题的严格解。 b)从方法论上,我们根据物理直觉和物理图像可以 猜测出一些问题的解,此时唯一性定理保证了其 正确性 c)如果我们针对这类边值问题, 找到一个试探的解, 但若我们验证这个试探的解满足上述的几个条件, 包括验证它是否满足微分方程,是否满足内部的 边值关系,以及在外边界上是否满足边值关系, 如果都满足,那这个试探解就是这个问题的解; d)有时,我们在给出一个试探解的时候,可以在一 开始保留 1-2 个未知的系数(但并不影响所满足 的微分方程) , 然后根据边值关系, 来确定这些系 数。 2、有导体存在时的唯一性定理 对于导体存在的静电问题,每个导体上的总电荷 Q 与电势φ实际上是一对共轭量, 通常求解这类问题时不 可能同时预先设定每个导体上的总电荷和电势。 因此,当有导体存在时,为了确定电场,我们可以 根据这一对共轭量,将导体的静电问题设置为以下两 类问题: 第一类问题:给定每个导体上的电势 i ;
f x ;

b)在 V 的外边界 S 上给定 S ,或者电势的法向导数
n S ;
c) 势 i 亦给定, 则 V ' 内的电场唯一确定。
每个导体 i 的电
由于当给定了导体的电势后相当于给定了体系完 备的外边界条件,那么给定导体的唯一性定理就退化 成了一般形式,因此此定理的证明方法同上。 2)第二类问题的唯一性定理:

《电动力学第三版》chapter2_2唯一性定理

《电动力学第三版》chapter2_2唯一性定理

E2t E1t
D
2n
D1n
如果我们假设 E仍保持球对称性,即
E1
A r3
r
E2
A r3
r
(左半部) (右半部)
(A为待定常数),分界面两侧电场与界面相切,并有相同数值,因 而边值关系得到满足.
球对称的E在球面上处处与球面垂直,保证导体球面为等
势面. 为了满足内导体总电荷等于Q,我们计算内导体球面上
对于第一类边界条件,只要把导体存在的空间扣除,将导 体看成是区域边界之一,即可证明电场被唯一确定.
对于第二类边界条件,在导体外,电荷分布给定,大区域表 面上电势或电势的法向导数给定;每个导体上的总电荷给定.
设区域V 内有一些导体,给定导体之外的电荷分布x 给定
各导体上的总电荷Qi以及V的边界S上的或/n值,则V内的电
有球对称性. 试解释之.
子区域 2
子区域 4
子区域 3
i ( S i i )d S i V i i d V(1)
i
V ii( )2dVV i(i 2)dV
i
i 2dV
Vi
i S i(i )d S i S i(i n i)d S 0 (2)(3)
i S i i d S i V i i 2 d V 0
场唯一地确定. 存在唯一的解,它在导体以外满足泊松方程
2/
在第i个导体上满足总电荷条件和等势面条件
Si ndSQ i, |Sii 常量
以及在V的边界S上具有给定的|s 或/n|s值.
证明: 设有 和 同时满足上述条件. 令 '''
2 0
|si 0,
dS 0 Si n
|s 0 或
第二章 静电场

2.6 静电场边值问题 唯一性定理

2.6 静电场边值问题  唯一性定理

V/m
CQU
2.6.3 唯一性定理
1、唯一性定理 在静电场中满足给定边界条件的电位微分方程 满足给定边界条件的电位微分方程( 在静电场中满足给定边界条件的电位微分方程(泊松方 程或拉普拉斯方程)的解是唯一的, 程或拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定 理。 2. 唯一性定理的重要意义 可判断静电场问题的解的正确性 解的正确性: • 可判断静电场问题的解的正确性: 唯一性定理为静电场问题的多种解法(试探解、数值解、 • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。 解析解等)提供了思路及理论根据。
S
第三类 边界条件
(ϕ + β ∂ϕ ) = f3 ( s) ∂n S
第四类 边界条件
ϕ S = f1 ( s)
求解边值问题注意事项: 求解边值问题注意事项:
CQU
点电荷的场
1.根据求解场域内是否有 ρ 存在,决定电位满足泊松方程还是拉氏 .根据求解场域 求解场域内是否有 存在,决定电位满足泊松方程还是拉氏 泊松方程还是 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 2.正确表达边界条件,并利用它们确定通解的待定常数。 正确表达边界条件,并利用它们确定通解的待定常数。 3.若所求解的场域内有两个(或以上)的均匀介质区域,应分区求 若所求解的场域内有两个(或以上)的均匀介质区域, 分区求 场域内有两个 不能用一个电位函数表达两个区域的情况。这时会出现4 解。不能用一个电位函数表达两个区域的情况。这时会出现4个积分 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 分界面上的衔接条件来确定积分常数 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 4.对于开域问题,还需给出无限远处的自然边界条件。 4.对于开域问题,还需给出无限远处的自然边界条件。当场域有 对于开域问题 限分布时,应有: 限分布时,应有:

1.8 静电场的唯一性定理

1.8 静电场的唯一性定理

ρ ∇ U = − →泊 方 , 松 程 ε0
2
静电场 +边界条件 的边值 2 问题 or ∇ U 0 →拉 拉 方 = 普 斯 程
物理系:杨友昌 编
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
唯一性定理
• 对于静电场,给定一组边界条件,空间能否存在不同的恒 对于静电场,给定一组边界条件, 定电场分布?——回答:否! 电场分布? 回答: 回答 • 边界条件可将空间里电场的分布唯一地确定下来 边界条件可将空间里电场的分布唯一地确定下来 电场的分布唯一 • 该定理对包括静电屏蔽在内的许多静电问题的正确解释至 关重要 • 理论证明在电动力学中给出,p67 给出普物方式的论证 理论证明在电动力学中给出, • 论证分三步:引理 论证分三步:引理——叠加原理 叠加原理——证明 叠加原理 证明
§8 静电场边值问题的唯一性定理
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
物理系:杨友昌

一. 典型的静电问题
–给定导体系中各导体的电量或电势 给定导体系中各导体的电量或电势 给定导体系中各导体的 以及各导体的形状、相对位置( 以及各导体的形状、相对位置(统 称边界条件),求空间电场分布, ),求空间电场分布 称边界条件),求空间电场分布, 即在一定边界条件下求解 泛 定 方 程
Q Q ' r' Q ' + = 0⇒ = ⇒r'Q= −rQ' r r' r Q
2
R b R ' - 有b = ⇒Q = ± Q= ± Q 取 ? a a a cos θ的系数 三角形
相似
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。

第2节唯一性定理

第2节唯一性定理
o R 0
M 在圆心缩为一点,条件不变,解不变。
由此得出
Q 4 0 r
1
r R0
请说明原因,并画出电力线图示。
例:求偶极子在远区的场。 偶极子:1 其线度 l r 2 电荷线度线度 l 定义——偶极矩 P ql
(r ) 1
q q q r r' r' ( ) 4 0 r r' 4 0 rr ' q l cos 1 Pr 2 3 q l q 4 0 r 4 0 r

u
n s
0
使等式左端=0,则右端
2 2 ( u ) 0 u 0 ( u ) dV 0
v
u 0
V内 u =常数 1)若 u 0即1 2,同一个势,对应同一 个场。 2)1 , 2 可相差一个常数,不影响场分布。 电场分布唯一确定。
r
1 Pr 1 1 E 3 ( P ) 4 0 r 4 0 r 1 3( P r )r P ( 3) 5 4 0 r r 1 P cos ( E ) r E er 2 0 r3 1 P sin ( E ) E e 3 4 r 0 (E) E e 0
2 s'
2u 0
s'
uu dS uu dS uu dS
s si

v'
(u ) dV uu dS
2 s'
在 Si 表面上 u 常数
u u dS u u dS u dS 0 su si si n i
E1 E2 n

静电场边值问题的唯一性定理

静电场边值问题的唯一性定理

静电场边值问题的唯一性定理摘要:静电场边值问题及其唯一性定理是一重要知识点,定理的表述和证明都涉及较多的数学知识。

由于唯一性定理的概念对于许多问题(如静电屏蔽)的确切理解有很大帮助,所以我们将给此定理一个物理上的论证,期待大家能从中有所受益. 关键词:静电场;边值;唯一性;静电屏蔽1、问题的提出实际中提出的静电学问题,大多不是已知电荷分布求电场分布,而是通过一定的电极来控制或实现某种电场分布。

这里问题的出发点(已知的前提),除给定各带电体的几何形状、相互位置外,往往是在给定下列条件之一;(1) 每个导体的电势U K ; (2) 每个导体上的总能量Q K ;其中K=1,2,……为导体的编号。

寻求的答案则是在上述条件(称为边界条件)下电场的恒定分布。

这类问题称为静电场的边值问题。

这里不谈静电场边值问题如何解决,而我们要问:给定一组边界条件,空间能否存在不同的恒定电场分布?唯一性定理对此的回答是否定的,换句话说,定理宣称:边界条件可将空间里电场的恒定分布唯一地确定下来。

2、几个引理在证明唯一性定理之前,先作些准备工作——证明几个引理。

为简单起见,我们暂把研究的问题限定为一组导体,除此之外的空间里没有电荷。

(1)引理一 在无电荷的空间里电势不可能有极大值和极小值。

用反证法。

设电势U 在空间某点P 极大,则在P 点周围的所有邻近点上梯度U ∇ρ必都指向P 点,即场强U E ∇-=ρρ的方向都是背离P 点的(见图1-1a 。

)这时若我们作一个很小的闭合面S 把P 点包围起来,穿过S 的电通量为0)(>⋅=⎰S d E S E ρρϕ (1)根据高斯定理,S 面内必然包含正电荷。

然而这违背了我们的前提。

因此,U 不可能有极大值。

用同样的方法可以证明,U 不可能有极小值(参见图1-1b )。

(2)引理二 若所有导体的电势为0,则导体以外空间的电势处处为0。

因为电势在无电荷空间里的分布是连续变化的,若空间有电势大于0(或小于0)的点,而边界上又处处等于0,在空间必然出现电势的极大(或极小)值,这违背引理一。

电动力学二二(唯一性定理)

电动力学二二(唯一性定理)
V
= ∫ ′ (∇ϕ ) dV + ∫ ′ ϕ∇ ϕdV
2 2 V V
14
上式左边的面积分包括V的边界 以 上式左边的面积分包括 的边界S以 的边界 及每个导体的表面Si上的积分。 及每个导体的表面 上的积分。 在Si上的积分

Si
ϕ∇ϕ ⋅ dS = −ϕ i ∫
Si
∂ϕ dS = 0 ∂n
2
在S上的积分 上的积分 由此
令 由 得
ϕ = ϕ ′ − ϕ ′′
∇ 2ϕ ′ = − ρ ε i , ∇ 2ϕ ′′ = − ρ ε i
∇ ϕ = 0.
2
(each of regionsV) i
5
ϕi = ϕ j ,
在两均匀区 界面上有
∂ϕ ∂ϕ εi = ε j . ∂n i ∂n j
S1 S2
将电场值代入得
2π (ε 1 + ε 2 ) A = Q
解出
Q A= 2π (ε 1 + ε 2 )
20

v v Qr E1 = , ( Left) 3 2π (ε 1 + ε 2 )r v v Qr E2 = , ( Right ) 3 2π (ε 1 + ε 2 )r
此解满足唯 一性定理的 所有条件, 所有条件, 因此是唯一 正确的解。 正确的解。
第二节 唯一性定理
1
一、静电问题的唯一性定理
区域V可以分为若干个均匀区域 区域 可以分为若干个均匀区域Vi,每 可以分为若干个均匀区域 一均匀区域的电容率为ε 一均匀区域的电容率为εi 。设V内有给 内有给 定的电荷分布ρ 电势φ在均匀区域 定的电荷分布ρ(x) 。电势 在均匀区域 Vi内满足泊松方程

静电场边值问题唯一性定理

静电场边值问题唯一性定理

场分布。
02
指导数值计算
在数值计算中,唯一性定理为我们提供了判断计算结果正确性的依据。
如果计算结果不满足唯一性定理,则说明计算过程中存在错误或近似方
法不够精确。
03
简化问题求解
在某些情况下,唯一性定理可以帮助我们简化问题的求解过程。例如,
在某些对称性问题中,我们可以利用唯一性定理直接得出部分解或特殊
01 02 03
深入研究复杂边界条件下的静电场边值问题
目前的研究主要集中在简单边界条件下的问题,对于复杂 边界条件的研究相对较少。未来可以进一步探讨复杂边界 条件下的静电场边值问题,为实际应用提供更广泛的理论 支持。
发展高效稳定的数值计算方法
尽管现有的数值计算方法已经取得了显著的进展,但在处 理大规模、高维度问题时仍面临挑战。未来可以致力于发 展更高效稳定的数值计算方法,以应对日益复杂的实际问 题。
导体表面的电荷分布
导体表面电荷分布的特点
在静电平衡状态下,导体表面电荷分布是不 均匀的,电荷密度与导体表面的曲率有关, 曲率越大电荷密度越大。
导体表面电荷与电场的关系
导体表面电荷产生的电场与导体内部电荷产生的电 场相互抵消,使得导体内部电场为零。
导体表面电荷分布的求解 方法
可以通过求解泊松方程或拉普拉斯方程得到 导体表面的电荷分布。
数值计算方法的改进
针对静电场边值问题的求解,提出了一系列高效的数值计算方法,如有限元法、有限差分法等,这些方法在保持计算 精度的同时,显著提高了计算效率。
实际应用领域的拓展
将静电场边值问题唯一性定理应用于多个实际领域,如电子工程、生物医学等,成功解决了一系列具有 挑战性的实际问题。
对未来研究的展望
解,从而简化计算过程。

电动力学uniquenesstheorem唯一性定理完全解读

电动力学uniquenesstheorem唯一性定理完全解读
们都能满足同一种泊松方程和边界条件,下面我们将证明 它们只能是同一种解.
引入标量函数Φ ,令Φ = '- ″
2 , 2 , 2 0
i
i
在区域边界面S 上
S
S
0 S
(给定第一类边界条件)
或 ,
n S n S
0
n S
(给定第二类边界条件)
下面需要证明旳是,满足以上方程和边界条件旳'和
1) 绝缘介质静电问题旳唯一性定理及证明 在有限旳边界区域V 内有几种均匀旳绝缘介质Vi 、εi
(i = 1、2、3 …) ,V 中旳自由电荷分布(ρ或σ) 为已知,那
么,当V 旳边界面S 上旳电势 给 定(或电势旳法向导数边
界条件) ,则V 内旳电场有唯一拟定旳解。
数学表述如下:
2 i
i
(在每个小区Vi)
V′旳全部内、外表面上都有一定旳值或 值,应用有关绝缘介
质旳唯一性定理,则V′内旳电场必有唯一解. n
b)区域V 内有若干导体,假设除导体以外旳区域V′内旳自由电荷分
布ρ已知,V′旳外表面S 上有已知旳值或 值,另外,若每个导
n 体所带旳总电量Qi 为已知,则区域V′内旳电场有唯一解。
数学表达为:
场有唯一解。这么,有导体存在时静电问题旳唯一性定理 也得到证明。
最终需要强调一点,尽管唯一性定理并不给出求解泊松方程旳详细措 施与环节,但它对于处理实际旳边值问题有着主要旳意义. 首先,它明 确了在哪些条件下能够唯一地拟定一种静电场,即给出了求解静电场 旳根据;其次,它使我们能够灵活地选用最简朴、最合适旳解题措施, 甚至能够猜一种解(即提出尝试解) . 只要这个解确实满足了问题中 旳场方程和全部定解条件,那么,根据唯一性定理我们就能够肯 定地说,它就是该问题中旳唯一正确旳解.

静电唯一性定理

静电唯一性定理

静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。

这就是静电唯一性定理。

下面我们证明这一定理并初步介绍它的应用。

在由边界面s 包围的求解区域V 内,若:1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数s n ϕ∂∂, 则V 内的电势唯一确定。

以上的表述就是静电唯一性定理。

下面,我们用反证法证明静电唯一性定理。

证: 假定在区域V 内的电荷密度分布为ρ(x ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数s n ϕ∂∂)。

即: 2212,ρρϕϕεε∇=-∇=- 并有12s s s ϕϕϕ==或12ss s n n n ϕϕϕ∂∂∂==∂∂∂ 式中s ϕ和sn ϕ∂∂为给定的边界条件。

令φ = φ1 – φ2,则在区域V 内各点: 2212()0φϕϕ∇=∇-= (2-2-1)及在边界s 上各点:120s s s φϕϕ=-= (2-2-2)或120s s sn n n ϕϕφ∂∂∂=-=∂∂∂ (2-2-3) 利用公式22d d ()d V V sV V φφφφφ∇+∇=∇⎰⎰⎰s 将式(2-2-1)带入上式得:2d ()d d V ss V s n φφφφφ∇=∇∂=∂⎰⎰⎰s (2-2-4)若在边界s 上各点无论是给定了电势或给定了电势法向偏导数均有:2d 0V V φ∇=⎰ (2-2-5)因|∇φ|2 ≥ 0,满足上式的条件只能是在求解区域V 内各点∇φ = 0。

因此,φ1 - φ2= 常数如果在边界上(或部分边界上)给定了电势φ|s ,则因φ1|s = φ2|s ,此常数为零;若全部边界条件给出的不是电势,而是(∂φ/∂n )|s ,此常数不一定为零。

但由式E = -∇φ,区域V 内的电场唯一确定,一个常数并不改变电场的基本特性,通常为了方便,此常数可选择为零。

静电场微分方程及唯一性定理

静电场微分方程及唯一性定理

2 0
泊松方程和拉普拉斯方程统称为微分方程。 二、泊松方程与拉普拉斯方程适用条件 只适用于各向同性、线性的均匀媒质。(?)
§2.8.2
唯一性定理(Uniquness Theorem)
一、定理内容
在静电场中,满足给定边界条件的微分方程(泊松方程或
拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定理。
2 2 2 式中: ( ex ey ez ) ( ex ey ez ) 2 2 2 2 x y z x y z x y z
2
泊松方程(针对场源点)
拉普拉斯方程(针对场点,ρ=0)
《电磁场理论》
主讲教师:李志刚 辽宁科技大学电信学院通信系 2012年05月
§2.8 静电场边值问题 唯一性定理
§2.8.1 泊松方程与拉普拉斯方程 一、静电场微分方程
D
E E E
E
E 0
常数
二、物理角度理解
场源相同、场分布相同,则场一定相同。
三、数学角度理解
方程相同、边界条件相同,则解一定相同。
四、唯一性定理的作用
1、确定何为相同场的判定条件;
2、可以采用等效方法进行问题的求解,只要保证满足唯一
性定理的条件,则解法不同,但解却一

2-2 唯一性定理

2-2 唯一性定理

2. 带电荷Q 的半径为a 的导体球放在均匀无限大介质中, 求空间电势和电场分布。 解:导体球具有球对称性,电荷只分布在外表面上。 假定场也具有球对称性,则电势与坐标 , 无关。 因电荷分布在有限区,外边界条件 0 导体表面电荷Q已知,电场唯一确定。
A R A 3 A R 0 R R R3 满足 2 0 , R R 0
i j, i j n i n j 并在V的边界S上有给定的 S 或 值。 n S
二、有导体存在时的唯一性定理
当有导体存在时,由实践经验可知,为了确定电场,
除了上面的条件,还需要两种类型条件:一类是给定每个
( R a)
例:无限长圆柱导体,半径为a,单位长度 带电量为,求导体柱外的电势和电场。 解:在柱坐标系中
1 1 2 2 2 (r ) 2 2 2 r r r r z
导体柱外的泊松方程 方程的解为 边界条件为:
1 (r ) 0, (r a ) r r r
0
( R0 a )
C2 ln R0 2 0
E
最后求得
R0 ln 2 0 r
er 2 0 r
例: 两同心导体球壳之间充以两种介质,左半部 电容率为ε1,右半部电容率为ε2,设内球壳带总 电荷Q,外球壳接地,求电场和球壳上的电荷分 布。
解:设两介质内的电势、电场强 度和电位移分别为
导体上的电势ϕi;另一类是给定每个导体上的总电荷Qi。 此时场被唯一地确定。 也就是说,存在唯一的解,它在导体以外满足泊 松方程
i
2
在第i个导体上满足总电荷条件:
Qi dS Si n 和等势面条件: S i 常量

第二章第二节 唯一性定理

第二章第二节 唯一性定理

ϕi ' = ϕ j '
∂ϕ j ' ∂ϕ i ' εi =εj ∂n ∂n
ϕi ' ' = ϕ j ' '
∂ϕ j ' ' ∂ϕ i ' ' εi =εj ∂n ∂n
Vj
因此,在介质分界面上, 因此,在介质分界面上,ϕ也满足
Vi
ϕi = ϕ j
∂ϕ j ∂ϕ i εi =εj ∂n ∂n
——(2.5)
运用唯一性定理讨论几个问题
例一: 例一:有一个中性的导体球壳 A,在此球壳内放 置一带电体 M,其荷电为 Q。证明: 1) 球壳外的电场只与 Q有关, 与 M在球壳内的位置无关; 2) 球壳 A的外表面上的电荷为 均匀分布,与 M在球壳内的 位置无关。
S
M
证明: 证明: 所研究的区域为球壳外的区域, 其界面为 S∞ 和 S 。 边界 S∞ 上的电势为零; 而对于界面S,由于感应使得 S的内表面的电量为 -Q,则界面 S上的总电量为 +Q,这一结论不 论M在球壳内何处,只要在球壳 内即成立。

Si
ϕ∇ϕ ⋅ dS = −ϕ i ∫ ∇ϕ ⋅ dS
Si
V V’
=0
而对于外边界面 S,根据(2.13) 外边界面 可知,
i
Si
∫ ϕ ∇ ϕ ⋅ dS = 0
S
n S
对于区域 V 的外表面 S
ϕ S = 0 或者 ∂ϕ ∂n S = 0 ——(2.13)
V
因此,对 V’ 的整个界面
V’
∫ ϕ ∇ ϕ ⋅ dS = 0
2 i Vi i
Vj
但是被积函数始终满足
Vi

静电场唯一性定理

静电场唯一性定理
关于静电场唯一性定理
王向斌 静电场唯一性定理的部分内容表述
若真空区域所有边界面的条件确定了,则该真空区域的静电场 就唯一确定了. 根据此定理,不论真空区域以外(含边界)的电荷分布如何变化, 只要边界条件维持不变,则真空区域电场维持不变. (但是区域 以外的电场可能会发生变化.) 换言之,不论真空区域以外的实 际点荷分布如何,我们可以在真空区域之外构造一种简单的电 荷分布,只要它能够满足给定的真空区域边界面条件,我们就可 以按这种人为构造的电荷分布计算真空区域内的电场. (但不能 用此法计算真空区域以外的电场.) 根据此定理,只要找到一个电势函数, 能满足区域真空条件和 边界条件的要求,则真空区域内的电场可由该函数算出. (真空区域以外的电场不可以.)
思考题: 上述封闭面S在引理和定理中,是否必需是导体面? 还是任何满足面上电势要求的数学面都可以? 思考题: 在哪里用到或者隐含用到了势函数满足区域真空条件?
应用
静电屏蔽,电像法, 其他计算问题 思考题: 电像法中,像电荷为什么必需在真空区域以外? 思考题: 课本的电像法例题中,利用了唯一性定理.究竟是怎样与 唯一性定理的边界条件一一对应的? 即,接地的无限大金属板以及 题中的点电荷应该理解成唯一性定理的哪一个边界面?
引理2: 引理1中,若封闭面S是带电量为0的等势面,结论依然成立.
唯一性定理的部分内容的证明
条件: 静电场情况; 封闭面S, 该面电势函数确定;S面内部最多有3类区域: 真空区域, 电势确定的的导体区域,和带电量确定的导体区域.
依据唯一性定理, 上述真空区域的电场唯一确定. 思路: 真空区域若有两个势函数,函数1和函数2都满足边界条件 和区域真空条件, 把这两个势函数之差看成第三个势函数,由于 每个势函数边界条件都一样, 第三个势函数的边界条件必然是 引理1中的边界条件,因而第三个势函数在真空区域是等势区域, 此即说明函数1和函数2在真空区域最多只相差一个常数,因此给 出相同的电场. 思考题: 为什么两个电势函数之差这样一个数学函数一定可以 看成一个电势函数?

3.1 唯一性定理

3.1 唯一性定理

y
U0
( x,0) 0, ( x, b) U 0
o
a
y
b
U0
x
(第一类边值问题)
例:
0 x
0 x
o
20:14:58
a
x
2 2 2 0 2 x y x 0 0, xa 0 x x ( x,0) 0, ( x, b) U 0
V ( )dV S n dS
2
V
3.1
唯一性定理
S
对于第一类边界条件: * S 1 S 2 S 0
1和2 我们在引入电位函数时就曾指出,电位 的绝对值无意义, 代表的是同一电场,所以 2和2 C 实际上是一个解,亦即解 20:14:58 8 是唯一的。
第一类边值问题或狄里赫利问题已知场域边界面上的位函数的法向导数值即已知场域一部分边界面上的位函数值而另一部分边界面上则已知位函数的法向导数值即第三类边值问题或混合边值问题第二类边值问题或纽曼问题有限值自然边界条件无界空间周期边界条件衔接条件不同媒质分界面上的边界条件如二唯一性定理内容
第三章 静态场边值问题的解法
2
a
Q
因而腔内场唯一确定。 已知点电荷产生的电位为
1
Q 4 0 r Q 4 0 a
但它在边界上 1 |S
20:14:58
不满足 |S 0
12
3.1

Q 4 0 r
唯一性定理
Q 4 0 a
要使边界上任何一点电位为0,可设
2 它满足 0 |S 0
根据唯一性定理,它是腔内的唯一 解。
E Q 4 0 r r (r a) 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档