【奥赛】小学数学竞赛:操作找规律.学生版解题技巧 培优 易错 难

合集下载

小学奥林匹克竞赛——找出数列的排列规律-

小学奥林匹克竞赛——找出数列的排列规律-

找出数列的排列规律(一)找规律是我们在生活、学习、工作中经常使用的一种思想方法,在解数学题时人们也常常使用它,下面我们利用找规律的方法来解一些简单的数列问题。

(一)思路指导例1. 在下面数列的()中填上适当的数。

1,2,5,10,17,(),(),50例2. 自1开始,每隔两个整数写出一个整数,这样得到一个数列:1,4,7,10……问:第100个数是多少?例3. 已知一列数:2,5,8,11,14,……,44,……,问:44是这列数中的第几个数?试试看:数列7,11,15,……195,共有多少个数?例4. 观察下面的序号和等式,填括号。

序号1234( )等式 1236357155811247111533++=++=++=++= ( )+( )+7983=( )综上所述,括号里应填的数是:(1996) (3991)+(5987)+7983=(17961)例5. 已知数列1,4,3,8,5,12,7,16,……,问:这个数列中第1997个数是多少?第2000个数呢? 分析与解:从整体观察不容易发现它的排列规律,注意观察这个数列的单数项和双数项,它们各自的排列规律为:单数项:1,3,5,7,……双数项:4,8,12,16,……显然,它们各自均成等差数列。

为了求出这个数列中第1997个数和第2000个数分别是多少,必须先求出它们各自在等差数列中的项数,其中:第1997个数在等差数列1,3,5,7,……中是第()()199712999+÷=个数;第2000个数在等差数列4,8,12,16,……中是第()20002÷=1000个数。

所以,第1997个数是()1999121997+-⨯=。

第2000个数是()41000144000+-⨯=(二)尝试体验1. 按规律填数。

(1)1,2,4,( ),16;(2)1,4,9,16,( ),36,49;(3)0,3,7,12,( ),25,33;(4)1,1,2,3,5,8,( ),21,34;(5)2,7,22,64,193,( )。

【奥赛】小学数学竞赛:游戏与策略.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:游戏与策略.学生版解题技巧 培优 易错 难

游戏与策略教学目标1.通过实际操作寻找题目中蕴含的数学规律2.在操作过程中,体会数学规律的并且设计最优的策略和方案3.熟练掌握通过简单操作、染色、数论等综合知识解决策略问题知识点拨实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。

例题精讲模块一、探索与操作【例 1】将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为.【例 2】在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是.【巩固】在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【例 3】圆周上放有N枚棋子,如图所示,B点的那枚棋子紧邻A点的棋子.小洪首先拿走B点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A.当将要第10次越过A处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N是14的倍数,请精确算出圆周上现在还有多少枚棋子?AB【例 4】 有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【例 5】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n.如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是 .【巩固】 在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【例 6】 设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【例 7】 一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白)【巩固】 30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、L L 的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.【巩固】 在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a 和b ,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【例 8】 桌上有一堆石子共1001粒。

小学奥数竞赛案例-如何从题目中找到规律

小学奥数竞赛案例-如何从题目中找到规律

小学奥数竞赛案例-如何从题目中找到规律小学奥数竞赛案例-如何从题目中找到规律随着数学的发展,许多问题被算法化,解决问题就变成了套公式的过程,而这种方法依靠的是事实,即问题已经被完全澄清,让人们能够使用已知的规则解决问题。

然而,在很多情况下,问题的解决方法可能并不显然。

对于小学生而言,如何在奥数竞赛中找到题目中的规律和特征是十分关键的。

我们以“小升初”奥数竞赛中的一道题为例来说明。

【例题】在100以内有多少个数的个位数加上它的十位数为9?【分析】看到这个问题,很多小学生钻进了细节,花费更多的时间来计算答案。

但如果能够仔细分析题目,我们发现其中的规律,便能省去很多不必要的计算过程,更快地解决问题。

这个问题的核心在于“个位数加上它的十位数为9”。

经过简单计算,我们得知,在100以内,存在以下这些数:18,27,36,45,54,63,72,81,90共9个数的个位数加上十位数之和为9。

那么,如何找到这些数字之间共性的规律呢?【规律】在这个问题中,我们需要关注的是这个数的个位数和它的十位数。

我们可以将这个数表示为“十位数+个位数”,用代数式表示成:10a+b。

又因为题目给出的条件是“个位数加上它的十位数为9”,所以我们可以列出以下公式:a+b=9用a取代9-b,可以得出以下等式:10a+b=10a+9-b=9a+ (10-a)对于这个等式,首先,它告诉我们该等式左边的“10a+b”的个位数为b,十位数为a,因为百位数为0。

其次,它告诉我们,当a+b=9时,右边这个数的个位数加上它的十位数必为9。

因此,我们可以得出结论:当a+b=9时,这个数的个位数加上它的十位数为9。

【总结】在学习奥数竞赛过程中,学会从题目中找到规律和特点,是十分关键的一步。

通过理清问题本身的脉络和提取公式的方法,我们能够省去很多不必要的计算过程,更快地解决问题。

所以,我们希望小学生能够在做奥数竞赛时,不但关注题目本身,更要以一种开放的心态,寻找问题中的规律和特征,因为“规律”在奥数中扮演着非常重要的角色。

小学数学竞赛技巧选用恰当的解题方法培养逻辑推理能力提高计算速度

小学数学竞赛技巧选用恰当的解题方法培养逻辑推理能力提高计算速度

小学数学竞赛技巧选用恰当的解题方法培养逻辑推理能力提高计算速度数学竞赛技巧是小学生参加数学竞赛必备的能力和技巧。

通过合理的解题方法,能够培养孩子的逻辑推理能力,并提高计算速度。

本文将介绍数学竞赛中常用的解题方法和培养逻辑推理能力的技巧。

一、加减法运算技巧在数学竞赛中,加减法是常见的题型。

为了提高计算速度,可以使用一些技巧来简化运算过程。

1. 同除法运算:当计算两个数相除时,如果除数和被除数有相同的因数,则可以先将这个公因数约掉,再进行计算。

2. 进位相减法:当计算两个数相减时,如果减数的个位大于被减数的个位,则先将减数的个位借位后再进行相减。

3. 差法:在计算两个数的差时,可以按照单位数位对齐,先计算个位数的差,再计算十位数的差,以此类推。

二、乘除法运算技巧乘除法是数学竞赛中难度较高的题型。

为了提高计算速度,可以采用如下技巧:1. 积法:在计算两个数相乘时,可以按照单位数位对齐,先计算个位数的积,再计算十位数的积,以此类推。

2. 规律法:在计算某些乘法题时,可以观察数字的规律,找出可以直接计算的倍数关系,从而简化计算过程。

3. 划分法:在计算较大的乘法时,可以将乘数划分为更小的因数,先计算每个因数的积,再相乘得到最终结果。

三、逻辑推理能力的培养逻辑推理是数学竞赛中重要的能力之一。

通过培养逻辑推理能力,可以帮助孩子更好地理解问题,准确地选择解题方法。

1. 分析问题:在解决数学问题时,首先要仔细分析问题的要求,理清解题思路。

分析问题时,可以画出图形、列出条件等辅助分析。

2. 推理能力训练:培养孩子的逻辑推理能力可以通过进行一些逻辑思维训练。

例如,可以让孩子完成一些推理题目,锻炼他们的逻辑思维和推理能力。

3. 反思总结:在解题过程中,及时反思总结是培养逻辑推理能力的有效方法。

通过分析解题方法的合理性和优缺点,可以提高孩子的解题能力和思维水平。

四、技巧的实践与总结数学竞赛技巧的学习需要不断的实践和总结。

小学奥数找规律知识点

小学奥数找规律知识点

小学奥数找规律知识点小学奥数是指小学生参加的数学奥赛比赛,题目难度较高,常常需要运用一些找规律的方法来解题。

在小学奥数中,找规律是一种重要的解题技巧,掌握了找规律的知识点,可以在解题时事半功倍。

本文将介绍小学奥数中常用的找规律的知识点。

一、数字序列的规律在小学奥数中,经常会给出一组数字的序列,要求找出其中的规律。

在解决这类问题时,我们可以首先观察数字序列的前几个数,看是否能够找到一些明显的规律。

比如,给定数字序列:2, 4, 6, 8, 10,我们可以发现每个数字都是前一个数字加2,因此规律是“加2”。

有时候数字序列的规律可能更加复杂,我们可以根据数字之间的差异来寻找规律。

例如,给定数字序列:1, 3, 6, 10,我们可以发现每个数字相对于前一个数字的差值递增,即1, 2, 3,因此规律是“差值递增”。

二、图形的规律小学奥数中常常会出现一些图形题目,要求找出图形之间的规律。

在解决这类问题时,我们可以先观察图形的形状、颜色、数量等特征,看是否能够找到一些规律。

例如,给定以下图形序列:△ △△ △△△ △△△△我们可以发现每一行图形的数量递增,因此规律是“数量递增”。

有时候图形的规律可能与位置有关,我们可以根据图形在位置上的变化来寻找规律。

比如,给定以下图形序列:□□ □□ □ □□ □ □ □我们可以发现每一行图形的位置与数量有关,因此规律是“位置与数量相关”。

三、数学运算的规律在小学奥数中,常常会出现一些涉及数学运算的题目,要求找出运算中的规律。

解决这类问题时,我们可以先观察数学运算的过程和结果,看是否能够找到一些规律。

例如,给定以下数学运算序列:2 +3 = 53 +4 = 74 +5 = 9我们可以发现每一组的结果都比前一组的结果大2,即组数与结果之间存在着一定的关系,因此规律是“结果与组数相关”。

有时候数学运算的规律可能与数的性质有关,我们可以根据数的性质来寻找规律。

比如,给定以下数学运算序列:6 × 1 = 66 × 2 = 126 × 3 = 18我们可以发现每一组的结果都是一个等差数列,因此规律是“结果是一个等差数列”。

【奥赛】小学数学竞赛:数的整除之四大判断法综合运用(三).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:数的整除之四大判断法综合运用(三).学生版解题技巧 培优 易错 难

5-2-1.数的整除之四大判断法综合运用教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲综合系列【例 1】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例 2】有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【例 3】173□是个四位数字。

【奥赛】小学数学竞赛:操作找规律.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:操作找规律.学生版解题技巧 培优 易错 难
请你设计一个操作过程,要求:⑴操作过程中只能按红键和黄键;⑵按键次数不超过6次;⑶最后输出的数是3.
【例 23】乒乓球从高空落下,到达地面后弹起的高度是落下高度的一半,如果乒乓球从 米的高度落下,弹起后再落下,则弹起第次时它的弹起高度不足1米。
【例 24】三条直线最多可以将一个正方形分割为部分。
【例 25】24枚棋子排成三行,第一行6枚,第二行7枚,第三行11枚,每次可将一些棋子从一行移入另一行,但移动的棋子数必须等于移入那一行的棋子数,人移动三次,使每行都变成8个,把移动过程写入下表中.
【例 17】黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.
【例 18】有一副扑克牌,一开始抓若干张(小于13张),然后进行下列操作:抓和手里现有的扑克牌数目相等的扑克牌,然后若扑克牌总数超过13张,则放回其中的13张,称为一次操作。进行了777次操作后,手里有7张牌,则一开始手里有多少张?
【例 16】如左图所示,机器人从5×5方格图左上角阴影格子的中心出发,每一步都是走向与机器人所在方格有公共边的方格的中心,最终回到出发点。除去出发的方格外,机器人最多到过其它方格一次,图中的折线就是机器人走过的路径。然后我们在机器人没有到过的方格内填上数,这个数表示该方格周围的8个格子中有几个是机器人在格子内拐弯的。现在,已知在右下图所示的7×7方格图中机器人未到过的方格填上的数,请你在图中画出机器人行走的路径。
【例 30】如果一个自然数从右往左看和从左往右看都一样,则称这个数为“回文数”。例如343,2002都是回文数。现有一个十六位数2001200220032004,请你在这个数的两端或者各位数字加加上一些数字,使它变成回文数。新得到的回文数的数字和最小是。

【奥赛】小学数学竞赛:图形找规律.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:图形找规律.学生版解题技巧 培优 易错 难
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:
⑴图形数量的变化;
⑵图形形状的变化;
⑶图形大小的变化;
⑷图形颜色的变化;
⑸图形位置的变化;
⑹图形繁简的变化.
对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.
模块一、图形规律——数量规律
【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.
【例 2】请找出下面哪个图形与其他图形不一样.
【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
(3)前10个点群中,所有点的总数是。
【例 8】观察下面由点组成的图形(点群),请回答:
(1)方框内的点群包含个点;
(2)第(10)个点群中包含个点;
(3)前十个点群中,所有点的总数是。
【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:
(1)五层的“宝塔”的最下层包含多少个小三角形?
【例 36】观察下图,看看右图中哪一个图形可以代替“?”
【例 37】仔细观察下图中图形的变化规律,并在“?”处填入合适的图形.
【巩固】根是由9个小人排列的方阵,但有一个小人没有到位,请你从下面图10—2中的6个小人中,选一位小人放到问号的位置,你认为最合适的人选是几号?
【例 18】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.

【奥赛】小学数学竞赛:植树问题(一).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:植树问题(一).学生版解题技巧 培优 易错 难

1.封闭与非封闭植树路线的讲解及生活运用。

2.掌握空心方阵和实心方阵的变化规律. 3.几何图形的设计与构造一、植树问题分两种情况: (一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-) 株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距; 株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+). 全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数. 全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别. (2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

知识点拨教学目标5-1-3.植树问题(一)例题精讲【例 1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。

两端都植,共植树多少棵?【例 2】一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种树___________棵。

【例 3】一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米?【例 4】贝贝要去外婆家,他家门口有一根路灯杆,从这根杆开始,他边走边数,每50步有一根路灯杆,数到第10根时刚好到外婆家,他一共走了_____步.【例 5】校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8,一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?【例 6】从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共种53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【巩固】从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔60米安装一根电线杆.求还需要多少根电线杆?【例 7】马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【巩固】马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树,问汽车每小时走多少千米?【例 8】一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树)【例 9】晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【巩固】丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【例 10】有一座高楼,小红每上登一层需1.5分钟,每下走一层需半分钟,她从上午8:45开始不停地从底层往上走,到了最高层后又立即往下走,中途也不停留,上午9:17第一次返回底层。

【奥赛】小学数学竞赛:接送问题.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:接送问题.学生版解题技巧 培优 易错 难

接送问题教学目标1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清2、理解运动过程,抓住变化规律3、运用行程中的比例关系进行解题知识精讲一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

模块一、汽车接送问题——接一个人【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【巩固】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。

【例 2】李经理的司机每天早上7点30分到达李经理家接他去公司。

有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。

则李经理乘车的速度是步行速度的倍。

(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)模块二、汽车接送问题——接两个人或多人(一)、车速不变、人速不变【例 3】(难度级别※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【例 4】(难度级别※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【例 5】 海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?1份【例 6】 甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?A B C D了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【例 8】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上B地,那么【例 9】A、B两地相距22.4千米.有一支游行队伍从A出发,向B匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A、B两地同时出发.乙向A步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B地,那么此时乙距A地还有______千米.(二)车速不变、人速变【例 10】(难度级别※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

【奥赛】小学数学竞赛:差倍问题(二).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:差倍问题(二).学生版解题技巧 培优 易错 难
【巩固】有两匹马和一副鞍,白马配鞍售价800元,黑马配鞍售价600元,两匹马售价1000元,那么一副鞍售价__________元。
【例 19】48名学生参加聚会,第一个到会的男生和全部女生握手,第二个到A的男生只差一名女生没握过手,第三个到会的男生只差2名女生没握过手,……最后一个到会的男生同9名女生握过手,这48名学生中共有名女生。
【例 14】图6知,小芳原来有球个。
图6
【例 15】国庆游园会上,有一个100人的方队.方队中每个人的左手要么拿红花,要么拿黄花;每人的右手要么拿红气球,要么拿绿气球.已知拿红花的有42人,拿红气球的有63人,左手拿黄花、右手拿绿气球的有28人.则左手拿红花.右手拿红气球的有________人.
【例 16】“六一”儿童节,几位同学一起去郊外登山。男同学都背着红色的旅行包,女同学都背着黄色的旅行包。其中一位男同学说,我看到红色旅行包个数是黄色旅行包个数的1.5倍。另一位女同学却说,我看到的红色旅行包个数是黄色旅行包个数的2倍。如果这两位同学说的都对,那么女同学的人数是。
年龄问题的和差问题主要利用的年龄差不变。
【例 1】为了过冬,小白兔和小黑兔都储藏了一些胡萝卜。已知小白兔储藏的胡萝卜数量是小黑兔储藏数量的3倍。它们各吃了5个胡萝卜后,小白兔剩下的胡萝卜数量是小黑兔剩下数量的4倍。那么它们剩下的胡萝卜共有个。
【例 2】某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变为公鸡只数的4倍,则养鸡场原来一共养了___________只鸡。
【例 3】兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这时兄妹俩人剩下的钱正好相等,哥哥带了________元钱,妹妹带了________元钱.
【巩固】兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去300元,妹妹用去40元,这时兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.

【奥赛】小学数学竞赛:几何计数(三).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:几何计数(三).学生版解题技巧 培优 易错 难
【例 20】一张长方形纸片,长是宽的2倍,先对折成正方形,再对折成长方形,再对折成正方形,……,共对折7次,将纸打开展平,数一数用折痕分割成的正方形共有多少个?
【巩固】将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作后,剪去所得的小正方形的左下角.问:当展开这张正方形纸后,一共有多少个小洞孔?
【例 5】如图所示,在边长为1的小正方形组成的4×4方格图中,共有25个格点。在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有个。
【例 6】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?
【例 7】下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?
【巩固】图中每个小正方形的边长都是l厘米,则在图中最多可以画出面积是3平方厘米的格点三角形(顶点在图中交叉点上的三角形)____个。
【例 11】九个大小相等的小正方形拼成了右图.现从点A走到点B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从点A走到点B共有________种不同的走法.
【例 12】国际象棋中“马”的走法如图所示,位于○位置的“马”只能走到标有×的格中.在5×5个方格的国际象棋棋盘上(如右图)放入四枚白马(用○表示)和四枚黑马(用●表示).要求将四枚白马移至四枚黑马的位置,将四枚黑马移至四枚白马的位置,而且必须按照国际象棋的规则,棋子只能移动到空格中,每个格最多放一枚棋子.那么最少需要__________步.

四年级奥数找规律填数的技巧与方法总结

四年级奥数找规律填数的技巧与方法总结

四年级奥数找规律填数的技巧与方法总结奥数作为一项智力竞赛,对于学生们的逻辑思维和数学能力提出了挑战。

在四年级的阶段,学生们需要掌握一些找规律填数的技巧与方法,以应对奥数的考验。

本文将总结四年级奥数找规律填数的技巧与方法,帮助学生们更好地解题。

一、数列规律的识别在找规律填数的题目中,经常会给出一组数列,要求我们找出这个数列的规律并填写接下来的数字。

这时,我们可以通过以下几种方法来帮助我们识别数列规律:1. 看数之间的关系:观察给出的数列中,每个数与前一个数之间是否有相同的差值或倍数关系,例如等差数列(公差为一个常数)、等比数列(公比为一个常数)等。

2. 找重复的数:如果数列中存在重复的数字,那么这个数字很可能就是数列的规律。

3. 观察数字的变化规律:有些数列中的数字变化不是很明显,可以通过仔细观察每个数字的变化情况来找出规律。

二、常见规律填数的方法在解决奥数找规律填数题时,有几种常见的方法可以帮助我们找出规律并填写正确的数字:1. 逆向思维法:有时,我们可以从题目给出的答案入手,逆向考虑规律,试着将答案反推回去找到规律。

2. 表格法:将数列中的数字按照一定的顺序排列在一个表格中,观察数字之间的规律,填写接下来的数字。

3. 分解法:将数列中的数字进行分解,观察每个数字的组成部分是否存在规律,并根据规律填写接下来的数字。

4. 假设法:设想一个可能的规律,然后试验这个规律是否能够适用于其他的数字,如果能够适用,那么这个假设就是正确的。

5. 倒推法:如果找不到数列的规律,我们可以试着从后往前倒推,观察前面数字与后面数字之间的关系,从而找到规律。

三、练习与应用为了更好地掌握奥数找规律填数的技巧与方法,我们需要进行大量的练习,并将所学应用于实际问题中。

可以通过以下几种途径来提高自己的能力:1. 完成奥数题目:多做一些奥数题目,尝试应用所学的技巧和方法,逐渐提高解题的能力。

2. 参加竞赛活动:报名参加奥数竞赛活动,与其他学生进行切磋和比拼,激发自己的学习兴趣和动力。

【奥赛】小学数学竞赛:溶液浓度问题(一).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:溶液浓度问题(一).学生版解题技巧 培优 易错 难
【巩固】 千克浓度为 的溶液和多少千克浓度为 的溶液能混合成 的溶液?
【例 3】甲种酒精溶液中有酒精 千克,水 千克;乙种酒精溶液中有酒精 千克,水 千克;要配制成 的酒精溶液 千克,问两种酒精溶液各需多少千克?
【例 4】将75%的酒精溶液32克稀释成浓度为40%的稀酒精,需加入水多少克?
【巩固】浓度为10%,重量为80克的糖水中,加入多少克水就能得到浓度为8%的糖水?
【巩固】现有浓度为10%的盐水8千克,要得到浓度为20%的盐水,用什么方法可以得到,具体如何操作?
【例 2】有浓度为20%的盐水300克,要配制成40%的盐水,需加入浓度为70%的盐水多少克?
【巩固】现有浓度为10%的盐水20千克,在该溶液中再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?
【例 12】甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。第二次将乙容器中的混合液倒入甲容器。这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精的含量为40%。那么第二次从乙容器中倒入甲容器的混合液是多少升?
【巩固】甲杯中有纯酒精 克,乙杯中有水 克,第一次将甲杯中的部分纯酒精倒入乙杯,使酒精与水混合.第二次将乙杯中的部分混合溶液倒入甲杯,这样甲杯中纯酒精含量为 ,乙杯中纯酒精含量为 .问第二次从乙杯倒入甲杯的混合溶液是多少克?
【例 5】浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?.
【例 6】A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中________克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.
【例 7】买来蘑菇10千克,含水量为99%,晾晒一会儿后,含水量为98%,问蒸发掉多少水份?

四年级奥数用规律填数的技巧

四年级奥数用规律填数的技巧

四年级奥数用规律填数的技巧四年级奥数(奥林匹克数学竞赛)是一项旨在培养孩子们数学思维和解决问题的能力的竞赛活动。

在这个年龄阶段,学生在奥数竞赛中常常会遇到填数题,这些题目要求他们根据规律填写正确的数字。

本文将介绍几种填数题常见的规律和解题技巧,帮助四年级学生提高填数题的解题效率和准确性。

一、顺序递增或递减的填数题顺序递增或递减是填数题中最基本也最常见的规律。

当我们在解答这类题目时,应该首先观察给出的数字,找出递增或递减的规律,然后根据规律填写正确的数字。

例如,给出数字序列:2, 4, 6, 8, __。

观察可知,每个数都比前一个数大2。

因此,下一个数字是10。

所以正确的答案是2, 4, 6, 8, 10。

二、倍数规律的填数题倍数规律是填数题中另一种常见的规律。

在解答这类题目时,我们需要观察给出的数字,找到倍数之间的关系,然后根据规律填写正确的数字。

例如,给出数字序列:3, 6, 9, 12, __。

观察可知,每个数都是前一个数的倍数。

因此,下一个数字是15。

所以正确的答案是3, 6, 9, 12, 15。

三、数位规律的填数题数位规律是填数题中稍微复杂一些的规律。

在解答这类题目时,我们需要观察给出的数字,找到数位之间的关系,然后根据规律填写正确的数字。

例如,给出数字序列:12, 23, 34, 45, __。

观察可知,个位数是十位数加1,十位数是个位数加1。

因此,下一个数字是56。

所以正确的答案是12, 23, 34, 45, 56。

四、规律连续变化的填数题在填数题中,有些题目的规律是连续变化的,也就是说,每个数字都和前面的数字有一个特定的关系。

在解答这类题目时,我们需要观察给出的数字,找到这种连续变化的规律,然后根据规律填写正确的数字。

例如,给出数字序列:1, 1, 2, 3, 5, __。

观察可知,从第3个数字开始,每个数字都是前两个数字之和。

因此,下一个数字是8。

所以正确的答案是1, 1, 2, 3, 5, 8。

【奥赛】小学数学竞赛:加法原理之分类枚举(二).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:加法原理之分类枚举(二).学生版解题技巧 培优 易错 难

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲知识要点教学目标7-1-2.加法原理之分类枚举(二)分类枚举——找规律【例 1】有一个电子表的表面用2个数码显示“小时”,另用2个数码显示“分”。

【奥赛】小学数学竞赛:等差数列的认识与公式运用.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:等差数列的认识与公式运用.学生版解题技巧 培优 易错 难

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。

要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。

一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.知识点拨教学目标等差数列的认识与公式运用③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LL L和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧 培优 易错 难

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

【奥赛】小学数学竞赛:组合的基本应用(二).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:组合的基本应用(二).学生版解题技巧 培优 易错 难
1.使学生正确理解组合的意义;正确区分排列、组合问题;
2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;
3.掌握组合的计算公式以及组合数与排列数之间的关系;
4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;
通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.
【例 15】某池塘中有 三只游船, 船可乘坐 人, 船可乘坐 人, 船可乘坐 人,今有 个成人和 个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们 人乘坐这三支游船的所有安全乘船方法共有多少种?
【例 16】有蓝色旗 面,黄色旗 面,红色旗 面.这些旗的模样、大小都相同.现在把这些旗挂在一个旗杆上做成各种信号,如果按挂旗的面数及从上到下颜色的顺序区分信号,那么利用这些旗能表示多少种不同信号?
【例 9】将三盘同样的红花和四盘同样的黄花摆放成一排,要求三盘红花互不相邻,共有__________种不同的方法.
【例 10】在一次合唱比赛中,有身高互不相同的8个人要站成两排,每排4个人,且前后对齐.而且第二排的每个人都要比他身前的那个人高,这样才不会被挡住.一共有多少种不同的排队方法?
【例 11】在一次考试的选做题部分,要求在第一题的 个小题中选做 个小题,在第二题的 个小题中选做 个小题,在第三题的 个小题中选做 个小题,有多少种不同的选法?
从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.
从 个不同元素中取出 个元素( )的所有组合的个数,叫做从 个不同元素中取出 个不同元素的组合数.记作 .

【奥赛】小学数学竞赛:和倍问题(二).学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:和倍问题(二).学生版解题技巧 培优 易错 难

6-1-5.和倍问题(二)教学目标1.学会分析题意并且熟练的利用线段图法能够分析和倍问题2.掌握寻找和倍的方法解决问题.知识点拨知识点说明:和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。

和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数或和一小数=大数如果要求两个数的差,要先求1份数:l份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。

例题精讲【例 1】一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?【例 2】三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。

黑猫钓上条鱼。

【例 3】甲、乙、丙三人的年龄和为30岁,乙的年龄是甲、丙年龄和的一半.乙()岁.【例 4】红、黄、蓝三个纸盒里共有彩票56张.其中红色纸盒里的彩票是黄色纸盒的2倍,蓝色纸盒里的彩票是红色纸盒的2倍,红、黄、蓝三个纸盒里各有多少张彩票?【例 5】在一道减法算式中,已知被减数、减数、差的和是240,而减数是差的5倍.求差是多少?【例 6】被除数、除数、商3个数的和是212。

已知商是2,被除数和除数各是多少?【例 7】两个正整数相除,商是7,余数是5,如果被除数、除数都扩大到原来的4倍,那么被除数、除数、商、余数的和等于1039.原来的被除数是,除数是.【例 8】学校买来篮球、足球、排球共49个,其中篮球的个数是足球的3倍.排球比足球多4个.问学校买来的篮球、足球、排球各多少个?【巩固】一筐苹果、一筐梨、一筐香蕉共重112千克.已知苹果的重量是梨的3倍,香蕉的重量比梨少3千克.一筐苹果、一筐梨、一筐香蕉各重多少千克?【巩固】玩具厂生产红、黄、白气球共125个,其中红气球的个数是黄气球的3倍,白气球比黄气球少25个.问三种气球各生产了多少个?【例 9】小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只.白鸡的只数是黄鸡的2倍,白鸡、黄鸡、黑鸡一共有多少只?【例 10】商店运来橘子、苹果、香蕉共53千克,橘子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,橘子重多少千克?【巩固】果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?【巩固】某养殖厂养鸡、鸭、鹅共1462只,鸡的只数比鸭的4倍多132只,鹅的只数比鸭的2倍少70只.这个养殖厂养的鸡、鸭、鹅各有多少只?【例 11】有100块糖,分给甲乙丙三位小朋友,甲比乙多分了3块,乙比丙多分了5块,三位小朋友各分得多少块糖?【例 12】王奶奶家养了鸡、鸭、鹅共250只,其中鸭比鹅的2倍少10只,鸡比鸭的3倍多20只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例 17】黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.
【例 18】有一副扑克牌,一开始抓若干张(小于13张),然后进行下列操作:抓和手里张,则放回其中的13张,称为一次操作。进行了777次操作后,手里有7张牌,则一开始手里有多少张?
【例 26】如图,有一个边长为1的正三角形,第一次去掉三边中点连线围成的那个正三角形;第二次对留下的三个正三角形,再分别去掉它们中点连线围成的三角形;…做到第四次后,一共去掉了________个三角形.去掉的所有三角形的边长之和是________.
【例 27】观察下列正方形数表:表1中的各数之和为1,表2中的各数之和为17,表3中的各数之和为65,…(每个正方形数表比前一个正方形数表多一层方格,增加的一层方格中所填的数比前一数表的最外层方格的数大1).如果表 中的各数之和等于15505,那么 等于_________.
【例 30】如果一个自然数从右往左看和从左往右看都一样,则称这个数为“回文数”。例如343,2002都是回文数。现有一个十六位数2001200220032004,请你在这个数的两端或者各位数字加加上一些数字,使它变成回文数。新得到的回文数的数字和最小是。
【例 21】将一个两位数的数字相乘,称为一次“操作”.如果积仍是二个两位数,重复以上操作,直到得到一个一位数.例如: (停止)共经历两次操作.一个两位数经过3次如上操作,最终得到一位数.这个两位数最小是().
【例 22】一个特别的计算器,只有蓝、红、黄三个键.蓝键为“输入/删除”键(按它一下可输入一个数,再按它一下则将显示屏上的数删除).每按一个红键,则显示屏上的数变为原来的2倍;每按一下黄键,则显示屏上的数的末位自动消失.现在先按蓝键输入21.
【例 4】有一串数1,1,2,3,5,8,…,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有_________个是5的倍数。
【例 5】小明按1~5循环报数,小花按1~6循环报数,当两个人都报了600个数时,小花报的数字之和比小明报的数字之和多________________。
【例 6】已知一列数:5,4,7,1,2,5,4,3,7,1,2,5,4,3,7,1,2,5,4,,3,……,由此可推出第2008个数是____________。
请你设计一个操作过程,要求:⑴操作过程中只能按红键和黄键;⑵按键次数不超过6次;⑶最后输出的数是3.
【例 23】乒乓球从高空落下,到达地面后弹起的高度是落下高度的一半,如果乒乓球从 米的高度落下,弹起后再落下,则弹起第次时它的弹起高度不足1米。
【例 24】三条直线最多可以将一个正方形分割为部分。
【例 25】24枚棋子排成三行,第一行6枚,第二行7枚,第三行11枚,每次可将一些棋子从一行移入另一行,但移动的棋子数必须等于移入那一行的棋子数,人移动三次,使每行都变成8个,把移动过程写入下表中.
【例 28】从1999这个数里减去253以后,再加上244;然后再减去253,再加上244;……这样一直算下去,当减去第_________次时,得数恰好第一次等于0。
【例 29】在左下表中,在有公共边的两格内的数同时加上1或同时减去1叫做一次操作.经过有限次操作后由左下表变为右下表,那么右下表中 处的数是.
【例 16】如左图所示,机器人从5×5方格图左上角阴影格子的中心出发,每一步都是走向与机器人所在方格有公共边的方格的中心,最终回到出发点。除去出发的方格外,机器人最多到过其它方格一次,图中的折线就是机器人走过的路径。然后我们在机器人没有到过的方格内填上数,这个数表示该方格周围的8个格子中有几个是机器人在格子内拐弯的。现在,已知在右下图所示的7×7方格图中机器人未到过的方格填上的数,请你在图中画出机器人行走的路径。
【例 14】如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有多少个小洞孔?
【例 15】如右图,一把密码锁上有25个按钮,必须将所有的按钮都按一遍才能将锁打开;而当我们按一个按钮后,只能按照这个按钮上的提示按下一个按钮。比如,当我们按第一行的第二个按钮“下2”后,按照提示“下2”,向下2格,只能按第三行的第二个按钮“左1”,接着只能按第三行的第一个按钮“下l”……为了打开这个密码锁,请你选择第一个按钮,并将这个按钮涂上阴影。
【例 13】对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换.如对18和42可作这样的连续变换:18,42→18,24→18,6→12,6→6,6
直到两数相同为止.问:对1234和4321作这样的连续变换最后得到的两个相同的数是.
【巩固】将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是与.
【例 7】50名同学围成一圈做游戏:从某一个同学开始顺时针从1开始依次连续报数,报含有数字7的数(如7,17,71等)或7的倍数的同学击1次掌.如此进行下去,当报到100时,所有同学共击掌___________次.
【例 8】某班43名同学围成一圈。由班长起从1开始连续报数,谁报到100,谁就表演一个节目;然后再由这个同学起从1开始连续报数,结果第一个表演节目的是小明,第二个演节目的是小强。那么小明和小强之间有________名同学。
知识点说明
在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。这类题主要考查孩子们的发现能力。
模块一,周期规律
【例 1】四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)
【例 19】有20堆石子,每堆都有2006粒石子.从任意19堆中各取一粒放入另一堆,称为一次操作.经过不足20次操作后,某一堆中有石子1990粒,另一堆石子数在2080到2100之间.这一堆石子有
粒.
【例 20】若干个硬币排成下图。每个硬币所在行的硬币数与所在列的硬币数相减得出一个差(大数或小数),如对于a,差为7-5=2。所有差的总和为()。
【例 9】二十多位小朋友围成一圈做游戏.他们依顺时针顺序从小赵报1开始连续报数,但7的倍数或带有数字7的数都要跳过去不报;报错的人表演一个节目.小明是第一个报错的人,当他右边的同学报90时他错报了91.如果他第一次报数报的是19,那么这群小朋友共有人.
【例 10】50位同学围成一圈,从某同学开始顺时针报数.第一位同学报l,跳过一人第三位同学报2,跳过两人第六位同学报3,……这样下去,报到2008为止.报2008的同学第一次报的是______
【例 2】在1989后面写一串数字。从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。这样得到一串数字:1 9 8 9 2 8 6 8 8 4 2 ……那么这串数字中,前2005个数字的和是____________。
【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。
【例 11】如果一个自然数的各位数字中有偶数个偶数,则称之为“希望数”。例如,26,201,533是希望数,8,36,208不是希望数,那么,把所有的希望树从小到大排列,第2010个希望数是____。
模块二,递推规律
【例 12】有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2, ,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2, , ,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?
相关文档
最新文档