超强吸水高分子材料与分离薄膜材料.
高吸水性功能高分子要点
![高吸水性功能高分子要点](https://img.taocdn.com/s3/m/a735280710a6f524ccbf85fa.png)
急速增长到平 稳增长的过程, 向精细化、 功 能化、 智能化 方向发展
1960
1970
1980
1990
2000
美国和日本相继成功开发, 品种、制造方法、性能及 应用领域
西欧各国:各种类型的高 吸水性树脂。 同时市场需求也影响着厂 商的技术转让。
2 高吸水性高分子简介
阴离子系 阳离子系 羧酸类、磺酸类、磷酸类 胺类、季胺类 羧酸-季胺类、磺酸-叔胺类 羟基类、酰胺基类 羟基-羧酸类、 羟基-羧酸基-酰胺基类、 磺酸基-羧酸基类 淀粉接枝、羧甲基化淀粉、 磷酸酯化淀粉、淀粉黄原酸盐 纤维素接枝、羧甲基化纤维素、 羟丙基化纤维素、黄原酸化纤维素 聚丙烯酸盐类、聚乙烯醇类、 聚氧化烷烃类、无机聚合物类
3 高吸水性高分子性能
吸液速率: 吸液速率是指单位质量的高吸水性树脂在单位时间内吸收的液体质量。 吸液速率与其本身的化学组成及物理状态有关, 如微粒的表面积、 毛细管现象、 吸液时是否形成“ 粉团”等。 一般表面积越大即微粒越小,吸液速率越快, 但微粒过小则会形成 “ 粉团”反会阻碍吸液。高吸水性树脂的吸液速率很高, 一般在几分 钟至半小时内吸收的液体已达饱和吸液量。
3 高吸水性高分子性能
热稳定性: 吸水树脂的热稳定性指两个方面, 一方面是吸水剂被加热一定时间后 再测其吸水性能是否发生改变;另一方面是指它吸水时加热, 测定不同 温度下的吸水能力。 一般高吸水性树脂随加热温度的升高, 加热时间的增加吸水能力都有 一定程度的下降, 但在130℃以下变化不是很大。所以其热稳定性较好, 而使用时一般温度都不高, 所以适应性较广。
2 高吸水性高分子简介
吸水能力:受溶液离子浓度影响
原因:属于水凝胶,能够通过和水分子连接的氢键吸收溶液
功能高分子材料-第三章-高分子分离膜..
![功能高分子材料-第三章-高分子分离膜..](https://img.taocdn.com/s3/m/d0dba045dc36a32d7375a417866fb84ae45cc399.png)
9
膜分离技术是利用膜对混合物中各组分的选 择渗透性能的差异来实现分离、提纯和浓缩的新 型分离技术。
◆ 第四道:RO逆渗透系统 美国高科技的RO逆渗透膜,去 除重金属离子杂质,有效去除过滤性病毒及细菌等有害物 质:
◆ 第五道:后置活性炭系统 高密度活性炭(T33)提高和增 加活净水口感,使水质更加甘甜可口,补充人体所需微量 元素和矿物质。
24
开发膜组件的几个基本要求:
◆ 适当均匀的流动,无静水区; ◆ 具有良好的机械稳定性、化学稳定性和热稳
分离的类型包括同种物质按不同大小尺寸的 分离;异种物质的分离;不同物质状态的分离等。
在化工单元操作中,常见的分离方法有筛分、 过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。 然而,对于高层次的分离,如分子尺寸的分离、 生物体组分的分离等,采用常规的分离方法是难 以实现的,或达不到精度,或需要损耗极大的能 源而无实用价值。
纤维素酯类材料易受微生物侵蚀,pH值适应 范围较窄,不耐高温和某些有机溶剂或无机溶剂。 因此发展了非纤维素酯类(合成高分子类)膜。
34
二、聚砜类
O
聚砜结构中的特征基团为 S
O
聚砜类树脂常用的制膜溶剂有:二甲基甲 酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲 基亚砜等。
聚砜类树脂具有良好的化学、热学和水解 稳定性,强度也很高,pH值适应范围为1~13, 最高使用温度达120℃,抗氧化性和抗氯性都十 分优良。因此已成为重要的膜材料之一。
高吸水性树脂
![高吸水性树脂](https://img.taocdn.com/s3/m/894f87387375a417866f8f8b.png)
高吸水性高分子材料材料学吕岩 1411093004摘要:在这篇综述中,探究的领域是高吸水性高分子材料,其中主要指的是高吸水性树脂。
大体概述了其发展、结构,分类,吸水原理等;及几类简单的高吸水性树脂的制备方法。
如淀粉类、纤维素类、共聚合类等。
高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水,且吸水膨胀后生成的凝胶具有优良的保水性,因而广泛地应用于农业、医疗卫生、园艺、建筑材料、食品加工等多个领域。
关键词:高吸水性树脂原理性能制备广泛应用Super absorbent polymer materialsMaterial science lvyan 1411093004Abstract:In this review, I explore the area about super absorbent polymer materials, mainly refers to the superabsorbent resin. Generally overview of its development, structure, classification, principle of absorbing water, etc.; And at the same time introduce some simple method of preparation of superabsorbent resin. Such as starch, cellulose, copolymerization, etc. Super absorbent resin is a kind of new functional polymer material, because it can absorb hundreds to thousands of times the mass of the water, and it has good water retention. So it has been widely used in agriculture, health care, gardening, building materials, food processing and other fields. Keywords: Super absorbent resin Principle Performance Preparation Super extensive applications引言高吸水性高分子材料(Super Absorbent Polymer简称SAP)主要指高吸水性树脂,也称为超强吸水剂、高吸水性聚合物一种具有优异吸水能力和保水能力的新型功能高分子材料。
高分子分离膜
![高分子分离膜](https://img.taocdn.com/s3/m/a27df7dc482fb4daa48d4b23.png)
超滤膜:不对称膜,形式有平板式、卷式、管式和中空纤维状等。
表面活性层:致密光滑,厚度,细孔孔径小于10nm
超滤 膜
过渡层:细孔大于10nm,厚度1-10μm
支撑层:厚度50-250μm,孔径大于10nm。起支撑作用,提高机械强度
性能主要取决于表面活性层和过渡层
超滤膜技术应用
超滤技术主要用于含分子量500-500,000的微粒溶液的分离,是目前应用最广的膜分离过程之一,应用领域涉及化 工、食品、医药、生化
3.4 高分子分离膜的制备方法
膜的制备工艺对分离膜的性能十分重要。同样的材料,由于不同的制作工艺和控制条件,其性能差别很大。 合理的、先进的制膜工艺是制造优良性能分离膜的重要保证。
制备方法
烧结法 拉伸法 径迹刻蚀法 相转化法 复合膜化法
多孔膜 最实用
1. 烧结法
将聚合物的微粒通过烧结形成多孔膜
聚合物的微粒
微孔膜的缺点: 颗粒容量较小,易被堵塞
微滤的应用
微粒和细菌的过滤。可用于水的高度净化、食品和饮料的除菌、药液的过滤、发酵工业的空气净化和除菌等。 微粒和细菌的检测。微孔膜可作为微粒和细菌的富集器,从而进行微粒和细菌含量的测定。 气体、溶液和水的净化。大气中悬浮的尘埃、纤维、花粉、细菌、病毒等;溶液和水中存在的微小固体颗粒和微生 物,都可借助微孔膜去除。
实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。
日本: 纤维素酯类膜:53%, 聚砜膜:33.3%, 聚酰胺膜:11.7%, 其他:2%
材料
纤维 素
二醋酸纤维素 (CDA)、三醋酸纤维素 (CTA)、硝化 纤维素(CN),混合纤维素(CN-CA)、乙基纤维素 (EC)等。
特点
2024年高考化学一轮复习知识清单29 高分子化合物
![2024年高考化学一轮复习知识清单29 高分子化合物](https://img.taocdn.com/s3/m/85fb8ae8f424ccbff121dd36a32d7375a517c663.png)
知识清单29高分子化合物1.高分子的合成方法、结构特点和基本性质2.高分子材料知识点1合成高分子的基本方法知识点2高分子材料知识点1合成高分子的基本方法一、高分子1.高分子与一般小分子有机物的区别高分子化合物一般小分子有机物相对分子质量只是一个平均值,通常在104以上都有一个明确的数值,一般在1000以下类别混合物纯净物结构由若干个重复结构单元组成具有单一结构2.高分子的合成(1)含义:利用有机物相互反应的性能,得到相对分子质量较大的高分子的过程。
(2)合成高分子的基本方法①加成聚合反应:一般是含有双键的烯类单体发生的聚合反应。
②缩合聚合反应:一般是含有两个(或两个以上)官能团的单体之间发生的聚合反应。
二、加成聚合反应1.含义:由含有不饱和键的相对分子质量小的化合物以加成反应的形式结合成相对分子质量大的高分子的化学反应叫加成聚合反应,简称加聚反应。
2.高分子的组成3.加聚反应的特点三、缩合聚合反应1.含义:由单体分子间通过缩合反应生成高分子的反应称为缩合聚合反应,简称缩聚反应。
2.缩聚物的结构简式3.缩聚反应的特点4.书写缩聚聚合物及反应方程式的注意事项(1)方括号外侧写出端基原子或原子团。
(2)各单体的物质的量与缩聚物结构式的下标一般要一致。
(3)小分子物质的量:①由一种单体进行的缩聚反应,生成的小分子物质的量一般为n-1②由两种单体进行的缩聚反应,生成的小分子物质的量一般为2n-1四、加聚反应1.加聚反应的常见类型(1)单烯自聚型:“断开双键,键分两端,添上括号,右下写n”①合成聚乙烯:n CH 2=CH2CH2-CH2n②合成聚氯乙烯:n CH 2=CH-Cl CH2-n③合成聚丙烯腈:n CH2=CH-CN CH2-n(2)二烯自聚型:“单变双,双变单,破两头,移中间,添上括号,右下写n”①合成顺丁橡胶:n CH2=CH-CH=CH2CH2-CH=CH-CH2n②合成天然橡胶:n CH 2=CH-CH2CH2-CH-CH2n③合成氯丁橡胶:n CH2=-CH=CH2CH2-CH-CH2n(3)多单烯共聚型:“双键打开,中间相连,添上括号,右下写n”①n CH2=CH2+n CH3-CH=CH2CH2-CH2-CH2n②n CH2=CHCl+n CH=CH2CH2--CH2n③n CF3-CF=CF2+n CF2=CF2CF2-CF2-CF2n(4)单烯二烯烃共聚型:“双键打开,中间相连,单键变双键,添上括号,右下写n”①n CH2=CH-CH2+n CH2=CH2CH2-CH-CH2-CH2-CH2n②n CH2=CH-CH=CH2+n CH2=CHCHO CH2-CH=CH-CH2-n(5)单炔烃自聚型:“叁键打开,变成双键,中间相连,添上括号,右下写n”①n CH≡CH CH=CH n②n CH3C≡CCH3n(6)环状化合物加聚型①O-CH2-CH2n②n NH-(CH2)5-n③n2.巧记加聚反应产物的书写方法(1)单烯加聚双改单,链节主链两个碳,其他部分连原碳,写成支链不改变。
高中化学人教版选修五5.3功能高分子材料解析
![高中化学人教版选修五5.3功能高分子材料解析](https://img.taocdn.com/s3/m/eae68f4465ce050877321397.png)
——能让某些物质有选择地通过,而把另外一些物 质分离掉
③.应用 ——生活用水、工业废水等废液的处理;海 水、苦咸水的淡化; 浓缩天然果汁、乳制品 加工、酿酒、各种能源的转换(传感膜、热电膜)
具有特殊分离功能的高分子材料制成的薄 膜,它的特点是能让某些物质有选择地通过, 而把另外一些物质分离掉。
思考:如何以带有强亲水性原子团的化合物 CH2=CHCOOH制得网状聚丙烯酸钠?
加交联剂的目的是什么?
高吸水性树脂加交联剂的目的是变支链型 结构为体型结构,使其既有吸水性而又不溶于 水, 耐挤压。
思考:强吸水能力的功能高分子材料除了用于 “尿不 湿”,还有哪些用途?
如旱地种植、改良土壤、改造沙漠等。
一.高吸水性材料 ——亲水性高聚物
(分子链带有许多亲水原子团)
美国《时代周刊》这份杂志在全美乃至全球都很有影响力。
以带有强亲水基的化合物为单体,均聚 一张柔软的纸,白中透出微黄,这张不起眼的“白纸”就是填补国内空白的高科技“人造皮肤”。 主治医师将他健康的心脏细胞组织切片送到一家组织实验室,即人造器官工厂。 分离膜具有神奇的魔术师般的本领,从下面的实验中不难领会。 现在不仅是婴幼儿使用,还有供特殊成人使用的,更有趣的是有些宠物也系上了“尿不湿”出门溜达,以保护公共卫生。 美国在上世纪六十年代初,航天事业崛起,如何解决宇航员的排尿问题迫在眉睫,华人唐鑫源成为“尿不湿”的发明人,后来他被誉 为美国“太空服之父”。 对天然吸水性高分子材料(淀粉、纤维素)进行改性,在它们的高分子链上再接上含强亲水性原子团的支链,形成接枝共聚物(如与丙 烯酸钠共聚) “神舟5号”、 “神舟6号”等上天的三位航天员 先后也都使用了“尿不湿” 2.几种功能高分子材料的种类 美国从1959起甄选的7位宇航员合影 发现其每个链节上都有—OH,它是一种亲水基 (分子链带有许多亲水原子团) 美国《时代周刊》这份杂志在全美乃至全球都很有影响力。 或共聚得到亲水性高聚物——如聚丙烯酸钠(同时加入交联剂) 。 其中一种做为_____,另外材料做为________。 在非洲一些缺水地区建立起不少海水淡化装置。 采用不同结构的逆渗透膜就可以获得工业锅炉水、饮料水、无菌水、去离子水、洗涤半导体的超纯水等。 比如烧烫伤,把水泡的水放出,用药清洗后,将“人造皮肤”敷贴在伤口上,很快“人造皮肤”就和人的身体长在一起,成了真的皮 肤。 ——具有特殊分离功能的高分子材料制成的薄膜 由于代用品相当于老人自己的器官,手术之后自然不会发生任何排斥反应,老人的生命因此而得到延续。 一张柔软的纸,白中透出微黄,这张不起眼的“白纸”就是填补国内空白的高科技“人造皮肤”。 一张柔软的纸,白中透出微黄,这张不起眼的“白纸”就是填补国内空白的高科技“人造皮肤”。 其中一种做为_____,另外材料做为________。 保水剂是一种吸水能力特强的功能高分子材料。 研究人员利用组织切片和特殊聚合物制造出代用的左心室。
功能高分子材料
![功能高分子材料](https://img.taocdn.com/s3/m/e27e453e182e453610661ed9ad51f01dc2815724.png)
×)
提示:热固性塑料不可加热熔融。
(3)高分子链越长,软化温度越高、密度越大。(
√
)
提示:高分子链越长,相对分子质量越大,高分子间的作用力越大,软化温度
越高、密度越大。
2.下列高聚物经简单处理可以从线型结构变成网状结构的是(
②
①
④ CH2—CHCl
③
A.①②
酯中无碳碳双键,含有酯基,故其能发生水解反应,不能发生加成反
应;其分子中不含亲水基团,故无吸水性。
7.角膜接触镜俗称隐形眼镜,其性能主要有良好的透气性和亲水性。
下列可以作为隐形眼镜材料的是(
A.聚乙烯
C
)
B.聚氯乙烯
解析:隐形眼镜的材料具有
透气性和亲水性,该物质中应
有亲水基团,符合要求的只有C
项。
B.用于制造CPU芯片的良好半导体材料单晶硅
C.能用于生产“尿不湿”的高吸水性树脂
D.能导电的掺杂聚乙炔
解析B项中半导体材料单晶硅,属于传统的无机非金属材料。A项中光敏高
分子材料、C项中高吸水性树脂、D项中导电高分子材料均属于功能高分
子材料。
4.新型有机高分子材料在日常生活、工农业生产和尖端科技领域中发挥着
乙烯等
(4)用途:
广泛用于海水淡化和饮用水的制取,以及果汁浓缩、乳制品加工、药
物提纯、血液透析等领域
四、常见高分子材料的化学性质
(1)所含官能团及性质
官能团
性质
碳碳双键
氧化反应、
加成反应
酯基
水解反应
羧基
酯化反应、
取代反应
肽键
水解反应
(2)常见反应
①降解:在一定条件下高分子降解为小分子,如聚苯乙烯降解为苯乙烯。常
功能高分子材料-第三章高分子分离膜PPT课件
![功能高分子材料-第三章高分子分离膜PPT课件](https://img.taocdn.com/s3/m/b660c707ff4733687e21af45b307e87101f6f896.png)
01
03
超滤膜的应用,提高了食品工业的生产效率和产品质 量,同时也为消费者提供了更加安全、健康的食品。
04
超滤膜的过滤精度高,能够有效地去除杂质和有害微 生物,同时保留原有的营养成分和口感,为食品工业 提供了一种高效、环保的加工方法。
纳滤膜在医药工业中的应用
纳滤膜是一种特殊类型的过滤膜,孔径范围在1-1纳米之间,具有较高的过滤精度和 选择性。
循环利用。
用于分离空气中的氧气、 氮气等气体,以及工业
尾气中的有害气体。
用于食品、医药、化工 等领域中物料的浓缩和
提纯。
02
高分子分离膜制备方法
相转化法
浸没沉淀相转化法
热致相分离法
将聚合物溶液流过支撑体,通过控制 溶剂蒸发速度和溶液浓度,使聚合物 在支撑体上沉淀,形成分离膜。
通过加热使聚合物溶液发生相分离, 形成分离膜。
反渗透膜技术的出现,为人类提供了 大量的淡水资源,对于解决全球水资 源短缺问题具有重要的意义。
超滤膜在食品工业中的应用
超滤膜是一种孔径范围在1-100纳米的过滤膜,能够 过滤出大分子物质和杂质,广泛应用于食品工业。
输标02入题
在食品工业中,超滤膜主要用于饮料、酒类、乳制品、 肉制品等产品的过滤澄清和除菌处理,提高产品质量 和延长保质期。
渗透速率。
高分子分离膜制备技术改进
先进的成膜技术
随着成膜技术的不断改进,高分子分离膜的 制备效率和质量得到了显著提高。例如,采 用先进的拉伸成膜技术、喷丝成膜技术、溶 胶-凝胶成膜技术等,可以制备出具有优异 性能的高分子分离膜。
新型的制膜设备
为了提高高分子分离膜的制备效率和产品质 量,不断有新型的制膜设备被研发出来。这 些设备采用了先进的控制系统和精密的机械 结构,能够实现自动化、连续化的生产,并
高分子分离膜的材料
![高分子分离膜的材料](https://img.taocdn.com/s3/m/1b155418f11dc281e53a580216fc700aba685244.png)
无机高分子材料
陶瓷膜材料
如氧化铝、氧化锆等,具有极高 的化学稳定性和热稳定性,适用 于高温、高压和强腐蚀环境下的
分离过程。
玻璃膜材料
如石英玻璃、硼硅酸盐玻璃等,具 有优异的透光性和耐酸性,常用于 光学膜和生物膜反应器等领域。
金属膜材料
如不锈钢、钛合金等,具有优良的 机械性能和导电性,但成膜性较差, 常用于特殊环境下的分离过程。
聚酰亚胺类分离膜材料
聚酰亚胺(PI)是一种高性能的 高分子材料,具有优异的耐高温 性能、机械性能和电绝缘性能。
PI分离膜具有较高的选择透过性 和耐化学腐蚀性能,适用于高温、 高压和腐蚀性环境下的分离过程。
PI分离膜在制备过程中可通过调 整聚合工艺和添加剂的种类和用
量来调控膜的结构和性能。
其他有机高分子分离膜材料
金属有机骨架分离膜材料
MOFs分离膜
金属有机骨架(MOFs)是一种由金属离子和有机配体构成的多孔晶体材料,具有 可调的孔径和化学功能,适用于气体分离、液体分离和离子交换等领域。
ZIFs分离膜
类沸石咪唑酯骨架(ZIFs)是一种类似于沸石结构的金属有机骨架材料,具有良好 的热稳定性和化学稳定性,适用于高温、高压和腐蚀性环境下的分离过程。
其他无机高分子分离膜材料
碳纳米管分离膜
由碳纳米管构成的分离膜具有极高的比表面积和优异的机 械性能,适用于气体分离和液体分离等领域。
石墨烯分离膜
石墨烯是一种由单层碳原子构成的二维材料,具有超高的 电子迁移率和机械强度,可应用于制备高性能的分离膜材 料。
无机纳米复合分离膜
将无机纳米粒子与高分子材料相结合制备而成的复合分离 膜,具有优异的力学性能和分离性能,可广泛应用于水处 理、生物医学和能源等领域。
功能高分子材料复习题
![功能高分子材料复习题](https://img.taocdn.com/s3/m/86242fb0951ea76e58fafab069dc5022abea4674.png)
《功能高分子材料》复习题一、功能高分子材料按其功能性可以分为几类?功能高分子可从以下几个方面分类:1.力学功能材料:1)强化功能材料,如超高强材料、高结晶材料等;2)弹性功能材料,如热塑性弹性体等。
2.化学功能材料:1)分离功能材料,如分离膜、离子交换树脂、高分子络合物等;2)反应功能材料,如高分子催化剂、高分子试剂;3)生物功能材料,如固定化酶、生物反应器等。
3.物理化学功能材料:1)耐高温高分子,高分子液晶等;2)电学功能材料,如导电性高分子、超导高分子,感电子性高分子等;3)光学功能材料,如感光高分子、导光性高分子,光敏性高分子等;4)能量转换功能材料,如压电性高分子、热电性高分子等。
4.生物化学功能材料:1)人工脏器用材料,如人工肾、人工心肺等;2)高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;3)生物分解材料,如可降解性高分子材料等。
二、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。
1.阳离子交换树脂。
机理:解离出阳离子、并与外来阳离子进行交换;R-SO3H+M+——R-SO3M+H+2.阴离子交换树脂。
机理:解离出阴离子、并与外来阴离子进行交换。
RN+H3OH-+X-——RN+H3X-+OH-3.应用:1)水处理:包括水质的软化、水的脱盐和高纯水的制备。
2)冶金工业:分离、提纯和回收铀、钍等超铀元素、稀土金属、重金属、轻金属、贵金属和过渡金属。
3)原子能工业:包括核燃料的分离、提纯、精制、回收等,还是原子能工业废水去除放射性污染处理的主要方法。
4)海洋资源利用:从海洋生物(例如海带)中提取碘、溴、镁等重要化工原料,用以海水制取淡水。
5)食品工业:制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛地应用。
6)医药工业:例如在药物生产中用于药剂的脱盐、吸附分离、中和及中草药有效成分的提取等。
7)化学工业:在化学实验、化工生产上是重要的单元操作,普遍用于多种无机、有机化合物的分离、提纯、浓缩和回收等。
高分子分离膜材料
![高分子分离膜材料](https://img.taocdn.com/s3/m/a022fd6ebc64783e0912a21614791711cc797999.png)
高分子分离膜材料高分子分离膜材料是一种基于高分子化合物制备的薄膜材料,用于在液体或气体中分离不同组分的一种技术。
这种膜材料具有多孔性和选择性渗透性,能够根据溶质的大小、形状和化学性质,通过膜的孔隙大小与溶质分子大小之间的相对排斥作用,实现对不同溶质物质的分离和纯化。
首先,高分子分离膜材料具有以下特性:1.多孔性:高分子膜具有丰富的孔隙结构,可以根据需要调控孔径和孔隙分布,以实现对溶质分子的排斥和选择性渗透。
2.溶质选择性:由于高分子材料中的孔隙大小和形状可以调控,使其对不同大小和化学性质的溶质具有不同的渗透性能。
这种选择性使得高分子分离膜可以实现溶质的高效分离和纯化。
3.物理化学稳定性:高分子分离膜具有良好的物理化学稳定性,可以在不同的工艺条件下使用,耐受高温、酸碱环境以及极端的操作条件。
4.可控性:通过改变高分子材料的组成和结构,可以调控膜的性能和分离效果,满足不同分离要求。
其次,高分子分离膜的制备方法:1.相间共混法:通过溶液浸渍、溶剂蒸发、热压等方法,将两种或多种高分子材料在非溶剂条件下混合制备成膜。
2.拉伸法:将高分子材料在溶剂处理下抽拉成膜,通过拉伸过程中的分子排列和取向来改善膜的性能。
3.相转移法:通过介于溶液和固体界面处的相转移过程,将高分子材料从液相转移到固相形成膜。
4.合成法:通过聚合反应或交联反应,将高分子制备成膜。
再次,高分子分离膜材料的应用领域:1.饮用水净化:高分子分离膜可以用于去除水中的悬浮物、微生物、重金属和有机物质等,提高水质。
2.污水处理:高分子分离膜可用于工业和城市污水的过滤、浓缩、脱盐和回用,实现水资源的循环利用。
3.海水淡化:高分子分离膜用于海水淡化可以去除盐分和杂质,将海水转化为可用于灌溉和饮用的淡水。
4.气体分离:高分子分离膜可以用于气体的分离纯化,例如二氧化碳的捕集和聚焦。
5.生物分离:高分子分离膜可用于分离纯化蛋白质、细胞和其他生物分子,广泛应用于生物科技领域。
功能高分子化学-4(吸水吸油树脂)
![功能高分子化学-4(吸水吸油树脂)](https://img.taocdn.com/s3/m/b6ab3c18227916888486d771.png)
二、光变形功能高分子凝胶
制备光可逆性变换的中性凝胶↔离子凝胶高分子。 利用分子设计将光离子解离感应基化合物导入高分子凝胶。
H 3C N H 3C C N
CH3
hγ △
H 3C N H 3C CH3 N
CH3 + Z Z :-O H , -C N
CH3 Z
CH3
光变形功能高分子凝胶几种用途 1、光驱动高分子凝胶开关
概述-膜分离过程的驱动力
1、浓度差 驱动力的大小称为渗透压。 渗析膜 2、压力差 为外源性驱动力,常用到微滤、超滤、纳滤和反渗透膜的 分离过程。 3、电场 电场驱动力与施加电场和电极形状有关,与被分离物质的 所带电荷有关。
高分子功能膜的制备方法
膜制备原料的合成 成膜工艺 膜功能的形成
膜的制作工艺:聚合物合成、聚合物溶液(或熔体)的制备、 膜成型、膜功能化。
膜的透过性:测定物质单位时间透过单位面积分离膜的绝对量。 膜的选择性:测定物质透过量与参考物质透过量之比。 一、过筛分离机制 被分离物质是否通过筛网取决于物质颗粒尺寸和网孔的大小。 是微滤膜和超滤膜主要分离机制 二、溶解扩散机制 与膜接触,分子溶解在膜中,在推动力的作用下溶解的分子 在膜中扩散,分子在膜的另一侧离开分离膜。 溶解性的和扩散性的差异是分离的基础。
四、农业薄膜、温室及无土栽培
五、灭火剂
灭火剂的主要种类
类型
气体灭火剂 液体灭火剂
种类
二氧化碳(干冰)、氮气等 水、水凝胶型等
泡沫灭火剂
低膨胀型和高膨胀型
灭火剂需要易表面活性降低表面张力,以产生稳定泡沫。
低膨胀型泡沫:现多采用天然亲水性高分子蛋白质衍生物作为石油灭火 剂的表面活性剂。
高膨胀型泡沫:主要成分是十二烷基硫酸酯铵盐或三乙醇铵盐类的 表面活性剂。为适用特殊火灾,加入吸水性水凝胶。
超强吸水高分子材料
![超强吸水高分子材料](https://img.taocdn.com/s3/m/d905798bc77da26925c5b0f3.png)
也称为高吸水性树脂、超强吸水剂、高吸水性聚合物,
Super 是一种具有优异吸水能力和保水能力的新型功能高分子材料。
2020/9/26
Ab s o rb e nt po lym e r
超强吸水高分子材料综述
既然安上super这个头衔, 那我们就要看看它们和传统吸水材料的区别何在了^_^
Super 普通吸水材料
弱,水分子不再受到束缚。
➢按这种结构计算,每克高吸水性树脂所吸收
的水合水的重量约为6~8 g,加上疏水性基 团所冻结的水分子,也不过15 g左右。
➢这个数字,与高吸水性树脂的吸水量相比,
相差1~2个数量级,而与棉花、海绵等的吸 水量相当。
➢显然,还有更重要的结构因素在影响着树脂
的吸水能力。
研究发现,高吸水性树脂中的网状结构对
脂是分子中含有亲水性基团和疏水性基团
的交联型高分子。
➢从直观上理解,当亲水性基团与水分子
接触时,会相互作用形成各种水合状态。
一、吸 水 原 理
1.
物理吸附 棉花、纸张、海绵等。
吸
毛细管的吸附原理。
水
有压力时水会流出。
实
质 化学吸附 通过化学键的方式把水和亲水
性物质结合在一起成为一个整
体。加压也不能把水放出。
酰胺等)接枝聚合,然后用交联剂交联的产物, 是由日本三洋化成公司首开先河的。
➢80年代我国开始了对淀粉系高吸水性树脂的研
究。
淀粉改性的高吸水性树脂的优点:
➢原料来源丰富,产品吸水倍率较高,通常都
在千倍以上。
➢缺点是吸水后凝胶强度低,长期保水性差,
在使用中易受细菌等微生物分解而失去吸水、 保水作用。
纤维素系超高吸水高分子材料
分离膜材料及其特点
![分离膜材料及其特点](https://img.taocdn.com/s3/m/e1dac43a376baf1ffc4fad1d.png)
分离膜材料及其特点0708010225 万栋1.引言膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。
【1】膜分离是在某种推动力(压力差、浓度差、电位差等)作用下,利用天然或人工制备的、具有选择透过性能的薄膜对双组分或多组分液体或气体进行分离、分级、提纯或富集。
【2】膜是膜分离技术的核心,通常衡量一种分离膜是否具有实际应用价值,应看它是否符合如下标准:①分离效果要好,即要有高的分离系数;②处理能力大,通量高;③要有较好的抗化学和微生物侵蚀的性能;④要有好的柔韧性和足够的机械强度;⑤适用pH范围广,使用寿命长;⑥成本低,制备方便,便于工业化生产。
【3】2.膜材料及其特点膜材料主要有两类:高分子膜材料和无机膜材料。
高分子膜材料分为:有机高分子膜材料和无机高分子膜材料。
无机膜材料有:陶瓷膜材料、金属膜材料、玻璃膜材料、分子筛膜材料等。
【4】2.1.高分子膜材料高分子有机膜的性能与高分子材料的特性有密切关系。
聚合物的结构特征主要由以下几个因素决定。
⑴相对分子质量;⑵有机高分子的化学结构与空间排列;⑶不同的大分子间的相互作用。
常用高分子膜材料及其基本特点如下所述。
2.1.1.纤维素类纤维素类膜材料主要包括:天然纤维素、再生纤维素、二醋酸纤维素、三醋酸纤维素、硝酸纤维素、乙基纤维素、混合纤维素等。
醋酸纤维素的特点是:来源广泛,价格便宜,制备较容易,成膜性好,耐游离氯,膜表面光洁,不易结垢,耐污染,但是pH值使用范围窄(pH3~7),使用温度低,不耐化学试剂,但是低级醇除外,易水解,易被压密,抗菌能力差,操作压力要求偏高,性能衰减较快;亲水性好、保水性好、通量大、无毒。
醋酸纤维素类的溶剂一般为非质子有机溶剂,如丙酮、氯代烃或二甲基甲酰胺等。
2.1.2.聚烯烃类聚烯烃类膜材料主要包括:聚乙烯、聚丙烯、聚丙烯腈、聚氯乙烯、聚苯乙烯、聚丁烯、聚乙烯醇、聚甲基丙烯酸甲酯等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高吸水性树脂
高吸水性树脂(Super Absorbent Polymer简称SAP)
也称为高吸水性树脂、超强吸水剂、高吸水性聚合物, 是一种具有优异吸水能力和保水能力的新型功能高分 子材料。
二、分
类
甲壳质衍生物
淀粉系
SAP
合成高分子系
汽车、家具等制品电泳涂装淋洗水的处理。汽车、家具等制 品的电泳涂装淋洗水中常含有1%-2%的涂料(高分子物质), 用超滤装置可分离出清水重复用于清洗,同时又使涂料得到浓缩 重新用于电泳涂装。 果汁、酒等饮料的消毒与澄清。应用超滤技术可除去果汁的 果胶和酒中的微生物等杂质,使果汁和酒在净化处理的同时保持 原有的色、香、味,操作方便,成本较低。 在医药和生化工业中处理热敏性物质,分离浓缩生物活性物 质,从生物中提取药物等。
管式膜
中空纤维膜
核径蚀刻膜
3.5 典型的膜过程及应用
分离膜的主要用途: 利用膜对不同物质透过性不同对混合物分离
半透性
对被分离物质的透过性(透过率)
评价 标准
对不同物质的选择性透过(透过选择性)
(1)典型膜过程- 微滤
• 微滤:当压力推动流体透过膜或其他过滤介质,从流体中分离 微米大小的粒子时,这个过程为微滤。 • 孔径:0.025~10nm;推动力为0.01~0.2MPa • 微孔膜:均匀多孔薄膜,厚度90~150 nm • 原理:在压力差的作用下,利用膜的孔径的大小对微粒进行机 械筛分和截留。
多糖类(琼脂糖、壳多糖)、蛋白质类等
纤维素类
其它
超强吸水高分子材料综述
首先看看它们和传统吸水材料相比
普通吸水材料
SAP
超强吸水高分子材料综述
SAP优点
吸水能力高:可达自身重量的几百倍至几千倍。
吸水前
吸水后
超强吸水高分子材料综述
保水能力高:即使受压也不易失水
SAP优点
超强吸水高分子材料综述
用途
根据 材料 来源
根据 膜的 结构
根据 膜的 功能
固 体 膜
液 体 膜
天 然 膜
合 成 膜
多 孔 膜
致 密 膜
离 子 交 换 膜
渗 析 膜
微 孔 过 滤 膜
超 过 滤 膜
反 渗 透 膜
渗 透 汽 化 膜
气 体 渗 透 膜
无机材料膜
有机高分
固体膜
对称膜
根据膜断面 的物理形态
不对称膜 复合膜
平板膜 根据固体 膜的形态
纤维素系
纯合成高分子
聚丙烯酸类 聚丙烯酸钠交联物 丙烯酸—乙烯醇共聚物 丙烯腈聚合皂化物 其它
聚乙烯醇类
聚乙烯醇交联聚合物 乙烯醇—其它亲水性单体接枝共聚物 其它
天然高分子加工产物
淀粉类 淀粉—丙烯腈接枝聚合水解物 淀粉—丙烯酸共聚物 淀粉—丙烯酰胺接枝聚合物 其它 纤维素接枝共聚物 纤维素衍生物交联物 其它
吸水剂微球吸水过程的体积变化示意图
1.高分子分离膜的定义 2.分离膜的种类
3.ห้องสมุดไป่ตู้型分离膜过程的应用
膜简介
定义: 具有选择性分离功能的薄 膜材料。
水小分子 大分子
料液 膜 渗透液
“21世纪的多数工业中,膜技术扮演着战略的角色”
“谁掌握了膜技术,谁就掌握了21世纪化工的未来”
膜的种类
根据 膜的 材质
超滤膜技术应用
超滤技术主要用于含分子量500-500,000的微粒溶液的分离, 是目前应用最广的膜分离过程之一,应用领域涉及化工、食 品、医药、生化
• 纯水的制备。超滤技术广泛用于水中的细菌、病毒和其他异 物的除去,用于制备高纯饮用水、电子工业超净水和医用无 菌水等。 • 食品工业。在牛奶加工厂中用超滤技术可从乳清中分离蛋白 和低分子量的乳糖。
(2)典型膜过程-超滤
• 超滤:按分子大小而去除的压力推动膜过程 • 孔径:2 ~ 50nm
• 截留物质:能够截留分子量300~500000的物质。糖、生物分子、 高分子聚合物、胶体物质 • 操作压力: 0.1 ~ 0.5MPa。 • 原理:筛分,小于孔径的微粒随溶剂一起透过膜上的微孔,而 大于孔径的微粒则被截留 • 膜材料:聚砜、聚酰胺、聚丙烯腈和醋酸纤维素
超强吸水高分子材料综述
用途
植物养护泥
各式吸潮剂
2.SAP的吸水原理
较慢。通过毛细管吸附和分散作用吸水。 水分子通过氢键与树脂的亲水基团作用, 亲水基团离解, 离子之间的静电排斥力使 树脂的网络扩张。
(外)
H2O
网络内外产生渗透压, 水份进一步渗入.
(内)
吸水树脂的离子型网络
决定性作用
随着吸水量的增大,网络内外的渗透压差趋向于零; 而网络扩张的同时,其弹性收缩力也在增加,逐渐抵 消阴离子的静电排斥,最终达到吸水平衡。
(3)典型膜过程-反渗透
P > 盐溶液 纯水
H2O
渗透 平衡
反渗透
反渗透技术的应用
(1)海水、苦咸水的淡化 • 反渗透过程已成功使用30多年,据统计,在全世界所有淡化 过程生产1.15×107m3/d的饮用水中,反渗透占23.4%。 • 优点:能耗和投资运行费用低,占地小,设备腐蚀轻,易建 造、操作、维修,建厂时间短。
微滤的应用
• 微粒和细菌的过滤。可用于水的高度净化、食品和饮料的除菌、 药液的过滤、发酵工业的空气净化和除菌等。 • 微粒和细菌的检测。微孔膜可作为微粒和细菌的富集器,从而 进行微粒和细菌含量的测定。 • 气体、溶液和水的净化。大气中悬浮的尘埃、纤维、花粉、细 菌、病毒等;溶液和水中存在的微小固体颗粒和微生物,都可 借助微孔膜去除。
• 海水淡化在沙特至少有6套,产水2300-57000 m3/d,苦咸水 淡化13套,3500-53000 m3/d。
海水
液氯灭菌
硫酸铝絮凝
反渗透 二级反渗透
硫酸调pH=6
砂滤 饮用水
活性炭脱氯
(2)在医药、食品工业中用以浓缩药液、果汁、咖啡浸液等。 与常用的冷冻干燥和蒸发脱水浓缩等工艺比较,反渗透 法脱水浓缩成本较低,而且产品的风味和营养不受影响。 (3)印染、食品、造纸等工业中用于处理污水,回收利用废
液中有用的物质等。
气体分离膜
分离机理 致密膜:没有宏观的孔洞,溶解-扩散作用 多孔膜:有固定孔洞,孔径,筛分 膜材料 H2的分离:醋酸纤维素、聚砜、聚酰亚胺等 O2的分离富集:聚二甲基硅氧烷及其改性产品和含三甲硅烷 基的高分子 CO2分离:富氧膜可作为CO2分离膜,在膜材料中引入亲CO2 的基团,可大大提高CO2的透过性。 SO2的分离:引入亲SO2的亚砜基团分离性能。