幂级数练习题
幂级数展开式例题
幂级数展开式是一个重要的数学概念,下面是一个例题,用1500字回答:【例题】利用幂级数展开式求下列函数的近似值(取$n = 20$):$f(x) = \frac{1}{1 + x} \approx \frac{1}{2} + x + \frac{x^{2}}{2} + \frac{3x^{3}}{3} + \frac{6x^{4}}{4} + \ldots$【解答】首先我们要理解题目中提到的幂级数展开式:$f(x) = \frac{1}{1 + x} = \sum_{n = 0}^{\infty}(- 1)^{n + 1} \cdot x^{n}$在求解近似值时,我们可以利用这个公式进行近似计算。
为了求解函数的近似值,我们需要先计算幂级数的和函数。
将式子变形,可以得到:$\frac{1}{1 + x} = 1 - x + x^{2} - x^{3} + \ldots$即:$f(x) = \sum_{n = 0}^{\infty}a_{n}x^{n}$其中,$a_{n}$是第$n$项的系数。
接下来,我们根据题目要求,取$n = 20$,即取幂级数的第$20$项及其以后的项。
根据幂级数展开式,可以得到第$n$项的系数为:$a_{n} = (- 1)^{n + 1}$而幂级数的和函数为:$f(x) = \sum_{n = 0}^{20}a_{n}x^{n}$根据题目要求,我们可以直接代入计算:$f(x) \approx 1 - x + x^{2} - \frac{5}{3}x^{3} + \frac{46}{7}x^{4}$为了求出更精确的近似值,我们可以通过插值法求出第$n$项的值,再将其代入到和函数中。
具体方法为:令幂级数的第$n$项等于一个已知值(例如$x = 0.5$),再求出该项的系数,即可得到近似值。
在求解近似值时,我们需要注意以下几点:1. 幂级数展开式是一个重要的数学概念,需要熟练掌握其性质和公式。
解析函数的幂级数展开的题及答案
解:可直接求出函数 1 z 在 z 0 的各阶导数值,
f (0) 1 f '(0) (1 z )
1z 0源自z 0f ''(0) ( 1)(1 z ) 2
( 1)
f ( n ) (0) ( 1) ( n 1)(1 z ) n
zn (1) 3 (并讨论在收敛圆周上的敛散性); n 1 n n ( z 1) (2) (并讨论在 z 0, 2 点处的敛 n n 1
散性).
n 1 1, an lim 解:(1) 因为 lim 所以该级 3 n a n n n 1 数的收敛半径为 R 1 ;在收敛圆周上,幂级数变为: ein n3 , 易知该级数绝对收敛因而也收敛. n 1 2
3
n 1 1, an lim (2) 易得: lim 故该级数 n a n n n 1 的收敛半径为 R 1 . 因 z 0, 2 均位于收敛圆周上, 故需要进一步讨论起敛散性.对于 z 0, 原级数变为
(1) 交错级数 , (由交错级数的 Lebniz 判别法) n n 1 易知其收敛但不绝对收敛.对于 z 2, 该幂级数变为
z
所以:
ez 1 2 1 1 3 1 2 z 1 1 z 1 1 z , z 1. 1 z 2! 2! 3!
10
例4.7:证明级数 z 在 z r (0 r 1)上一致收敛 .
n n 1
证: z r n,且级数 r n (0 r 1)收敛
例:用唯一性定理证明 2 z cos2 z 1. sin 解: f1 ( z ) sin 2 z cos2 z f 2 ( z) 1 f1 ( z )与f 2 ( z )在全平面上解析,而在 实轴上f1 ( x) f 2 ( x) 故在全平面上 1 ( z ) f 2 ( z ),即 f sin 2 z cos2 z= 1
第四章 级数(答案)
复变函数练习题 第四章 级数系 专业 班 姓名 学号§1 复数项级数 §2 幂级数23521242211(1)1(1)sin ()3!5!(21)!(1)cos 1()2!4!2!1()2!!n n n n nn zz z z z zz z z z z z n z z z z z n z z e z z n +=+++++<--=-+-++<+∞+-=-+-++<+∞=+++++<+∞L L L L L L L L 一些重要的级数一、选择题:1.下列级数中绝对收敛的是 [ ](A)11(1)n in n ∞=+∑ (B)1(1)[]2n n n i n ∞=-+∑ (C) 2ln n n i n ∞=∑ (D)1(1)2n n n n i ∞=-∑ 2.若幂级数nn n c z∞=∑在12z i =+处收敛,那么该级数在2z =处的敛散性为 [ ](A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定()122i Abel +=>,由定理易得3.幂级数10(1)1n n n z n ∞+=-+∑在||1z <内的和函数为 [ ] (A) ln(1)z + (B )ln(1)z - (C ) 1ln1z + (D ) 1ln 1z- '100'110000(1)1(1)11(1)(1)1=ln(1)111n n n nn n n n z z n n n n z z n z z z dz dz z n n z∞∞+==∞∞++==⎧⎫⎛⎫-=-=⎪⎪⎪++⎪⎪⎝⎭⎨⎬⎛⎫⎪⎪--==+ ⎪⎪⎪+++⎝⎭⎩⎭∑∑∑∑⎰⎰ 二、填空题:1.设(1)2nn i α-=+,则lim n n α→∞= 0 。
2.设幂级数nn n c z ∞=∑的收敛半径为R ,那么幂级数0(21)n n n n c z ∞=-∑的收敛半径为2R 3.幂级数!nn n n z n ∞=∑的收敛半径是 e 。
无穷级数练习题
无穷级数习题一、填空题1、设幂级数的收敛半径为3,则幂级数的收敛区间为nn n a x∞=∑11(1)n nn na x ∞+=-∑。
2、幂级数的收敛域为 。
0(21)nn n x∞=+∑3、幂级数的收敛半径 。
211(3)2n n nn n ∞-=-+∑R =4、幂级数的收敛域是 。
n ∞=5、级数的收敛域为 。
21(2)4nnn x n ∞=-∑6、级数的和为 。
(ln 3)2nnn ∞=∑7、。
111()2n n n ∞-==∑8、设函数 的傅里叶级数展开式为2()f x x x π=+()x ππ-<<,则其系数的值为。
1(cos sin )2n n n a a nx b nx ∞=++∑3b 9、设函数 则其以为周期的傅里叶级数在点处的21,()1,f x x -⎧=⎨+⎩0,0,x x ππ-<≤<≤2πx π=敛于。
10、级数的和 。
11(1)(2)n n n n ∞=++∑11、级数的收敛域为 。
21(2)4nnn x n ∞=-⋅∑参考答案:1、 2、 3、 4、 5、(2,4)-(1,1)-R =[1,1)-(0,4)6、7、8、9、10、11、22ln 3-423π212π14(0,4)二、选择题1、设常数,而级数收敛,则级数是( )。
0λ>21n n a ∞=∑1(1)nn ∞=-∑(A )发散 (B )条件收敛(C )绝对收敛(D )收敛与有关λ2、设,,,则下列命题中正确的是()。
2n n n a a p +=2n nn a a q -= 1.2n = (A )若条件收敛,则与都收敛。
1nn a∞=∑1nn p∞=∑1nn q∞=∑(B )若绝对收敛,则与都收敛。
1nn a∞=∑1nn p∞=∑1nn q∞=∑(C )若条件收敛,则与的敛散性都不一定。
1nn a ∞=∑1nn p ∞=∑1nn q∞=∑(D )若绝对收敛,则与的敛散性都不定。
无穷级数练习题
无穷级数练习题无穷级数题一、填空题1、设幂级数 $\sum\limits_{n=1}^{\infty}ax^n$ 的收敛半径为3,则幂级数 $\sum\limits_{n=1}^{\infty}na(x-1)^n(n+1)$ 的收敛区间为 $(-2,4)$。
2、幂级数 $\sum\limits_{n=0}^{\infty}(2n+1)x^n$ 的收敛域为 $(-1,1)$。
3、幂级数 $\sum\limits_{n=1}^{\infty}\dfrac{( -3)^n}{n+2}(2n-1)x^n$ 的收敛半径 $R= \dfrac{1}{3}$。
4、幂级数$\sum\limits_{n=1}^{\infty}\dfrac{x^n}{(n+1)(x-2)^{2n}}$ 的收敛域是 $(-\infty。
2) \cup (2.\infty)$。
5、级数 $\sum\limits_{n=1}^{\infty}\dfrac{n}{n^4(\ln3)^n}$ 的收敛域为 $(0,4)$。
6、级数 $\sum\limits_{n=1}^{\infty}\dfrac{1}{n^2}$ 的和为 $\dfrac{\pi^2}{6}$。
7、级数 $\sum\limits_{n=2}^{\infty}\dfrac{1}{n(n-1)}$ 的和为 $1$。
8、设函数 $f(x)=\pi x+x(-\pi<x<\pi)$ 的___级数展开式为$a_0+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)$,则其系数 $b_3$ 的值为 $0$。
9、设函数 $f(x)=\begin{cases} -1.& -\pi<x\leq 0 \\ 1+x。
& 0<x\leq \pi \end{cases}$,则其以 $2\pi$ 为周期的___级数在点$x=\pi$ 处的收敛于 $1$。
习题课2幂级数
1 内容及要求 (1) 熟练掌握幂级数的收敛半径、收敛域的求法
(2) 会利用幂级数的运算法则求一些幂级数的和函数
(3) 熟悉 1 、e x、sin x、cos x、ln(1 x)、(1 x)m 1 x
麦克劳林展开式,并会利用间接展开法将一些函数 展开成幂级数.
2 典型例题
例1 填空
4
x [1,1)且x 0 x0 x 1
(5)
2n 1 x2n ,
并求
(2n 1)2n的和.
n0 n!
n0
n!
解(5):易知所给幂级数的收敛半径R=+∞,设其 和函数为s (x),则
x
s( x)dx
x 2n1
x
( x 2 )n xe x2
0
n0 n!
n0 n!
s( x) ( xe x2 ) (1 2x 2 )e x2
设s(x)
n1
2n 1 2n
x 2n2
n1
1 2n
( x 2n1 )
1 (
2n
n1
x 2n1 )
x
(x 2
x3 22
)
( 1
2 x2
)
2 x2 (2 x2 )2
,
x (
2,
2 ).
2
(3) n( x 1)n;
n1
解(3): 易知幂级数的收敛域为(0,2)
令x-1=t , n( x 1)n nt n t nt n1
2n 1 x2n2;
2n
n1
xn
(3)
;
n1 n(n 2)
(4)
n1
n( x
1)n;
(5)
n0
第十四章幂级数练习题(2021
第十四章 幂级数(2021.1)一、单选题1、21∞=∑nn x n 的收敛域为( ). AA 、 (-1,1)B 、(-1,1]C 、 [-1,1)D 、[-1,1]2、级数21∞=∑nn x n的收敛域为( ). DA 、 (-1,1)B 、(-1,1]C 、 [-1,1)D 、[-1,1]3、级数1∞=∑nn x n的收敛域为( ). CA 、 (-1,1)B 、(-1,1]C 、 [-1,1)D 、[-1,1] 4、∑∞=-1)1(1n n x n的收敛域为( ). C A 、 (-1,1) B 、 (0,2] C 、 [0,2) D 、 [-1,1)5、nx n)1(+∑的收敛域为( ). CA. )1,1[-B. ]0,2[-C. )0,2[-D. )2,0[6、若nn n a x∞=∑在00≠x 收敛,则在区间00(,)-x x 内nn n a x∞=∑ ( ). AA .绝对收敛B .条件收敛C .发散D .不能确定 7、若()01nn n a x ∞=-∑在3x =处收敛,在1x =-处发散,则该级数的收敛半径R ( ). A A .等于2 B .小于2 C .大于2 D .不能确定 8、已知1∞=∑nn n a x在2x =处收敛, 则在32x =-处此级数( ). A A 、绝对收敛 B 、条件收敛 C 、发散 D 、不能确定 9、若nn x a )1(+∑在3-=x 处收敛,则该级数在0=x 处( ). A A 、绝对收敛 B 、条件收敛 C 、发散 D 、不能确定 10、若nn x a )1(-∑在1-=x 处收敛,则该级数在2=x 处( ). BA. 条件收敛B. 绝对收敛C. 发散D. 不能确定 11、若幂级数nn nx a)1(0-∑∞=在1-=x 处条件收敛,则级数∑∞=0n n a ( ). BA .条件收敛B .绝对收敛C .发散D . 不能确定12、级数211(1)(1)nn n n x ∞=+-∑的收敛半径R =( ). CA 、1B 、eC 、1e -D 、2e -13、幂级数212-∑n n x 的收敛半径是 ( ). BA.21B. 2C. 21D. 214、22∑n nx的收敛半径是 ( ). AA.21B. 2C. 21D. 215、若n nn a x∞=∑收敛半径为1R ,nn n b x∞=∑ 的收敛半径为2R (1R <2R )则()0nn nn ab x ∞=+∑的收敛半径为( ). DA .1R +2RB .12R R +C .2RD .1R16、级数)32(n nnnx x +∑的收敛半径是 ( ) AA.21 B. 31C. 2D. 3 17、)35(n nn n x x +∑的收敛半径是( ) DA.51 B. 31C. 5D. 3 18、幂级数n n x n)1211(1+++∑∞= 的收敛域是( ). A A .()1,1- B .(]1,1- C .[)1,1- D .[]1,1-19、幂级数nn n x ∑∞=--21)2(,(2<x )的和函数为 ( ). AA. x x 2122+-B. x x 2122+C. x x 21+D. xx21-20、幂级数∑∞=--112)1(n nnn x ,(2<x )的和函数为( ). C A.x -22 B. x +22 C. x x +2 D. xx -2 21、幂级数∑∞=02n n nx ,(2<x )的和函数为 ( ). AA.x-22B. x 211-C. x +22D. x 211+22、幂级数1(1)2nnn n x ∞=-∑,(2<x )的和函数为( ). CA .2x x + B. x -22 C. 2x x-+ D. x x -223、幂级数∑∞=-02)1(n n nnx ,(2<x )的和函数为( ). CA.x 211+ B. x 211- C. x +22 D. x -2224、下述展开式正确的是( ) . CA 、212nx x x e x n-=+++++x R ∈B 、21(1)2n xn x x e x n-=-+-+-+ x R ∈C 、21(1)2!!nx nx x e x n -=-+-+-+x R ∈D 、212!!n xx x ex n -=+++++ x R ∈25、函数2()x f x e -=展开成x 的幂级数为( ). DA 、2312!3!x x x ++++ x R ∈B 、2312!3!x x x -+-+ x R ∈C 、46212!3!x x x ++++ x R ∈D 、46212!3!x x x -+-+ x R ∈26、函数()2x f x xe =展成x 的幂级数是( ). AA .210!n n x n +∞=∑B .10!n n x n +∞=∑C .20!nn x n ∞=∑ D .()21021!n n x n +∞=+∑ 27、函数()()ln 1f x x =+展成x 的幂级数是( ). BA .()()1011!+∞=-+∑n nn x n ; (1,1)∈-x B .()1011n n n xn +∞=-+∑; (1,1)∈-xC .()11∞=-∑nn xn ; (1,1)∈-x D .1∞=∑n n x n . (1,1)∈-x28、将xx f 1)(=展开成)3(-x 的幂级数为( ). B A .03(1)()(06)3nnn x x ∞=--<<∑ B .013(1)()(06)33n nn x x ∞=--<<∑C .(1)(3)(24)nnn x x ∞=--<<∑ D .01(1)(3) (24)3n n n x x ∞=--<<∑29、设()()20(0,1)2!n nn a x f x a n ∞==≠-∑,则()f x ''=( ). AA .()af xB .()2a f x C .()1f x aD .()f x30、幂级数1nn x n∞=∑在1x <的和函数()S x =( ). BA .()ln 1x -B .ln(1)x --C .11x -D .11x -二 填空题1、设幂级数∑∞=0n nn x a 的收敛区间()3,3-,则幂级数()∑∞=--011n n n x na 的收敛区间为_________.答案:()4,2-. 2、 若∑nnxa 的收敛半径为R ,则nnx a )2(+∑的收敛区间为_________.答案:R R +---2,2()3、 若∑nnxa 的收敛半径为R ,则nnx a )2(-∑的收敛区间为_________.答案:)2,2(R R +-4、 幂级数2nx n∑的收敛域是_________.答案: ]1,1[- 5、 幂级数n nx n ∑的收敛域是_________.答案: )1,1(-6、 幂级数nnx ∑的收敛域是_________.答案:)1,1(-7、 幂级数nx n∑的收敛域是 _________.答案:)1,1[-8、 幂级数nx n)1(+∑的收敛域为_________.答案:[2,0)-9、 幂级数()∑∞=-151n nn x 的收敛域是_________.答案: (4,6)-10、 幂级数()n n x n 2112-∑∞=的收敛域是_________. 答案:[1,3]11、级数()∑∞=--111n n n x n的收敛域是_________.答案:(1,1]-12、幂级数11nn n x ∞=-的收敛域是_________.答案:(3,3]-13、幂级数∑∞=++02)1()1(n nnn x 收敛域是_________. 答案:[3,1)-14、幂级数2021nn n x ∞=+∑的收敛域是_________.答案:(15、幂级数的()nn nx n ∑∞=-+113收敛半径为=R _________.答案:1.16、幂级数∑∞=-+0)3(2n nn nnx 的收敛半径为=R _________. 答案:3=R .17、幂级数023n n nn x n ∞=+∑的收敛域是_________. 答案:11[,)33-18、幂级数21(2)!(!)nn n x n ∞=∑的收敛半径为=R _________. 答案:14=R 19、幂级数∑∞=+152n n nx 的收敛半径是=R _________.答案:2=R20、若幂级数()1∞=-∑nnn a x 的收敛半径0R =,则此幂级数只在_________收敛.答案:1=x21、幂级数∑∞=0n nnx a与11∞-=∑n n n na x 的收敛半径分别为1r 与2r ,则1r ___ 2r .答案:等于22、幂级数∑∞=0n nn x a 与101+∞=+∑n n n a x n 的收敛半径分别为1r 与2r ,则1r ____ 2r .答案:等于 23、幂级数()01∞=-∑nn n a x 在3=x 处条件收敛,则该级数的收敛半径R =_________.答案:2=R 24、幂级数∑∞=-02)1(n n nx a在处2=x 条件收敛,则其收敛域为_________.答案:[0,2]25、若1lim 3nn n a a →∞+=,则幂级数210n n n a x ∞+=∑的收敛区间是_________.答案:(26、若1lim 3+→∞=n n na a ,则幂级数20∞=∑n n n a x 的收敛区间是_________.答案:( 27、函数x2的麦克劳林展开式为=x2__________________________________. 答案:()∑∞=0!2ln n n nx n , (,)∈-∞+∞x28、函数)(21x xe e -+的麦克劳林展开式为__________________________________. 答案: +++++)!2(!4!21242n x x x n, (,)∈-∞+∞x 29、函数)(21x xe e --的麦克劳林展开式为__________________________________. 答案:∑∞=--112)!12(k k k x , (,)∈-∞+∞x30、函数2x e的麦克劳林展开式为__________________________________.答案:∑+∞=02!n nn x . , (,)∈-∞+∞x31、函数xe2的幂级数展开式为__________________________________.答案:nn n xx n e∑+∞==02!2 , (,)∈-∞+∞x32、函数x 2sin 的幂级数展开式为__________________________________.答案:12012)!12(2)1(2sin ++∞=+∑+-=n n n nx n x , (,)∈-∞+∞x33、函数)21ln(x +的幂级数展开式__________________________________.答案:n n n n x n x 2)1()21ln(11∑+∞=--=+ , 12<x 34、函数)2ln(x +在)2,2-(内的麦克劳林展开式为________________________________.答案: nnn n x 2)1(2ln 1⋅-+∑-, 2<x 35、函数21xx-在)1,1(-内的麦克劳林展开式为__________________________________. 答案:∑∞=+012n n x, 1<x36、函数xx +13的麦克劳林展开式为__________________________________.答案:+-++-=++-21433)1(1n n x x x xx , 1<x 37、函数()21-=x x f 在0=x 的幂级数展开式为__________________________________. 答案:∑∞=+-012n n nx , 2<x38、将xx f 1)(=展开成)3(-x 的幂级数为__________________________________. 答案:.013(1)(),0633∞=--<<∑n nn x x39、把()1f x a bx=+展成x 的幂级数(其中a b ⋅≠0)时,其收敛半径R =___________. 答案:ab解析:()011111∞=⎛⎫==⋅=- ⎪+⎝⎭+∑nn bx f x bx a bx a a a a当1,-<bx a 即<a x b 时收敛,当1,->bx a 即>a x b时发散 从而收敛半径为ab40、幂级数nn x n )1211(1+++∑∞= 的收敛域是___________.答案:(1,1)-三 计算题1、函数21()32f x x x =-+ 展开成x 的幂级数,并确定收敛域。
幂级数测试题
幂级数测试题第十四章幂级数单选题:1设幂级数的收敛半径为R ,则下列断语中正确的是(A)在上一致收敛。
(B)在内某些点处非绝对收敛。
(C)的收敛半径大于。
(D)对任意的,在上一致收敛。
.2。
若幂级数在处收敛,在处发散,则该级数(A)在处发散;(B)在处收敛;(C)收敛区间为; (D)当时发散。
3.幂级数级数的收敛域是(A) (B)(C) (D)4.若幂级数的收敛半径为R,那么(A), (B) ,(C), (D)不一定存在 .5.如果能展开成的幂级数,那么该幂级数(A) 是的麦克劳林级数;(B)不一定是的麦克劳林级数;(C)不是的麦克劳林级数;(D) 是在点处的泰勒级数。
6. 如果,则幂级数(A)当时,收敛;(B) 当时,收敛;(C) 当时,发散;(D) 当时,发散7..设级数在处是收敛的,则此级数在处(A)发散;(B)绝对收敛;(C)条件收敛;(D)不能确定敛散性。
8幂级数在其收敛区间的两个端点处A 全是发散的. B. 全是收敛的C. 左端点发散, 右端点收敛. D 左端点收敛, 右端点发散9. 函数展开成的幂级数的方法是.10. 幂级数的收敛域为答案: 1—10 DDBDA ADDDA填空题:1. 若幂级数在内收敛, 则应满足__________.2. 设幂级数的收敛半径为2, 则级数的收敛区间为__________.3.级数的和函数为_________.4. 设是一等差数列, 则幂级数收敛域是__________.5. 与有相同的___________.6. 的幂级数展开式_________________.7. 幂级数只有在___________区间内才有和函数.8. 经过逐项微分或逐项积分后幂级数___________不变.9. 的幂级数表达式____________.10. 级数在区间_________收敛.答案: 1. .4. ( -1, 1)5. 收敛区间.. 6.7. 收敛. 8. 收敛半径. 9.计算题1.求幂级数的收敛域及和函数.2. 求幂级数的收敛域及和函数.3. 求幂级数的收敛半径与收敛域( 1)4. 将函数展开为的幂级数, 并指出收敛域.5. 求函数在x=1处泰勒展开式.6. 设幂级数当时有且求该幂级数的函数.7. 将展成x的幂级数.8. 求幂级数的和函数.9. 试求幂级数的收敛区域及和函数10. 设,确定的连续区间,并求积分的值答案: 1. 解因且当时级数都发散, 故该级数的收敛域为( -1, 1 ), 令, 则,.2. 解: 收敛半径, 当时, 原级数发散, 故原级数的收敛域为( -1, 1 ). 设其和函数为,3. ( 1 ) 解记, 由于, 故收敛半径R=1, 收敛区间为( -1, 1 )当时, 由于, 故级数发散, 所以该级数的收敛域为( -1, 1 ) .( 2 ) 解记因为所以收敛半径R=1, 收敛域为[ -1, 1 ].4. 解而而级数与的收敛域都是[ -1, 1 ], 故当时5. 解因.6. 设和函数则即.解上述关于的二阶微分方程, 得.7. 解易看出, 而两边求导, 得.8.级数的和函数为9. 由于级数在上收敛,所以当时,有10. 因为幂级数的收敛域是,所以在上的连续,且可逐项积分。
幂级数及泰勒展开习题解答(最新整理)
幂级数及泰勒展开一、求下列幂级数的收敛区间1. 12(21)nn x n n ∞=-∑解:12(21)limlim 12(1)(21)n n n n a n n a n n +→∞→∞-==++1R ⇒=当时,因 , 所以收敛,1x =21112(21)2(1)n n n n n n =<-+-112(21)n n n ∞=-∑当时, 绝对收敛,1x =-1(1)2(21)nn n n ∞=--∑ 收敛区间为。
⇒[1,1]-2.n ∞=解:11lim 2n n nna a +→∞==2R ⇒= 当时,为收敛的交错级数,2x=1n ∞=当时, 2x =-11n n ∞∞===- 收敛区间为。
⇒(2,2]-3. 1(1)32n n n n n n x x ∞=⎡⎤-+⎢⎥⎣⎦∑解:1111(1)32limlim 3(1)32n n n n nn n n nn a a ++++→∞→∞-+==-+, 当时,通项不趋于零, 收敛区间为。
13R ⇒=13x =±⇒11,33⎛⎫- ⎪⎝⎭4. 1(23)(1)21nnn x n ∞=---∑解:121limlim 121n n n na n a n +→∞→∞-==+1R ⇒=故当,即时级数绝对收敛。
231x -<12x <<当时, 发散,1x =11(1)(1)111, 21212-12n n n n n n n n ∞∞==--⎛⎫=> ⎪--⎝⎭∑∑当时, 为收敛的交错级数,2x =1(1)21nn n ∞=--∑ 收敛区间为。
⇒(1,2]5.1ln(1)1)1n n n x n ∞=+-+∑解:1ln(2)(1)limlim 1(2)ln(1)n n n n a n n a n n +→∞→∞++==++1R ⇒=故当,即时级数绝对收敛。
11x -<02x <<当时,因为0x =,1ln(1)ln lim lim lim 011n x x n x x n x →∞→+∞→+∞+===+2ln 1ln ln(2)ln(1)()()0() 3 21x x n n f x f x x e n x x n n -++'=⇒=<>⇒≥<++时,所以 收敛,1(1)ln(1)1n n n n ∞=-++∑当时,因为当时 所以发散, 2x =2n ≥ln(1)11112n n n n +>>++1ln(1)1n n n ∞=++∑ 收敛区间为。
7.4 幂级数-习题
1.求下列级数的收敛域: ⑴1()nn nx ∞=-∑;【解】将级数1()nn nx ∞=-∑化为幂级数,得1()nn nx ∞=-∑1(1)nnnn n x∞==-∑,即由1lim n n na a +→∞11(1)(1)lim (1)n n n n n n n ++→∞-+=-(1)lim (1)n n n n n n →∞+=+ 1lim(1)(1)n n n n→∞=++=∞, 得级数1()nn nx ∞=-∑的收敛半径0R =,可知级数1()nn nx ∞=-∑的收敛域为{}0。
⑵124(2)nn x n ∞=⋅∑L ;【解】由1limn n na a +→∞124(2)(22)lim 124(2)n n n n →∞⋅+=⋅L L 24(2)lim 24(2)(22)n n n n →∞⋅=⋅+L L 1lim022n n →∞==+得级数124(2)nn x n ∞=⋅∑L 的收敛半径R =∞,可知级数124(2)nn x n ∞=⋅∑L 的收敛域为(,)-∞+∞。
⑶21(1)nnn x n ∞=-∑;【解】由1limn n na a +→∞1221(1)(1)lim 1(1)n n n n n+→∞-+=-21lim 1(1)n n →∞=+1=,得级数21(1)nnn x n ∞=-∑的收敛半径1R =,当1x =-时,幂级数为211n n∞=∑,为收敛的P 级数(21P =>), 当1x =时,幂级数为211(1)nn n ∞=-∑,由于211n n ∞=∑为收敛的P 级数,知211(1)n n n ∞=-∑是绝对收敛的交错级数,可知级数21(1)nnn x n ∞=-∑的收敛域为[1,1]-。
⑷21(2)1nn x n ∞=+∑;【解】将级数21(2)1n n x n ∞=+∑化为标准幂级数,得21(2)1n n x n ∞=+∑2121n nn x n ∞==+∑由1limn n na a +→∞1222(1)1lim 21n n n n n +→∞++=+221lim 2(1)1n n n →∞+=++22211lim 211(1)n n n n →∞+=++2=, 得级数21(2)1nn x n ∞=+∑的收敛半径12R =,当12x =-时,级数为21(1)1nn n ∞=-+∑,绝对收敛;当12x =时,级数为2111n n ∞=+∑,收敛,可知级数21(2)1nn x n ∞=+∑的收敛域为11[,]22-。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂级数测试题
上一致收敛。
2。
若幕级数 在T 二-处收敛,在L 二-弓处发散,则该级数(A)在芜二上处发散; (B)在2 处收敛;(C)收敛区间为(D)当>3时发散。
3 •幕级数级数的收敛域是(A)-(B)lim 也(D) -•”不一定存在第十四章幕级数工皿£{X单选题:1设幕级数二的收敛半径为 R 1则下列断语中正确的是「:1内某些点处非绝对收敛。
(B)卜(D)--2>用 4.若幕级数 的收敛半径为 R,那么(C )的收敛半径大于r > 0,(D )对任意的 -上一致收敛。
a(A)'—R«-SO(A)是」''的麦克劳林级数; (B)不一定是」•—的麦克劳林级数; 5•如果-「,能展开成7的幕级数,那么该幕级数6.如果,则幕级数7(A)当'':时,收敛; (B)当y、时,收敛;X (C)当£-时,发散;^|>1(D)当 /时,发散『⑴二9.函数的幕级数的方法是工10.幕级数■-■的收敛域为E偽G +鸾7..设级数在':二一-处是收敛的,则此级数在二=-处(A)发散;(C)条件收敛;(B)绝对收敛;(D)不能确定敛散性。
8幕级数二■“」—'在其收敛区间的两个端点处A全是发散的• B.全是收敛的C.左端点发散,右端点收敛. D左端点收敛,右端点发散1 « , *J M-01 1 1 1 g fj■ —兀3 1九Q 331 1心f畫_ 3寸⑹丄二£丫(一1珂琴(-3<z<3) 3H_0 < 3 )(D)一二二-们(0<A<6)A J B-0 \ /(&[-2,2] ⑻(-2.2) (O (-2,2] (2?) [-2,2)(_g叔)答案:1 —10 DDBDA ADDDAB1填空题:1.若幕级数:」(a >0)在I C l - tJ :-内收敛,则戈应满足是一等差数列「「:则幕级数收敛收敛.(0 3 <]). 答案:1. '2.(-3弋1)3. E (x)-1 —工十士务肆士血念+ 1),2.设幕级数―-的收敛半径为2,则级数的收敛区间为 __________ .3•级数1+丸17)+“(1-対4”.+ /(1-期*"・的和函数为域是 __________VDv V VM-1乙私沁 L 叫工 5. 41 与池-1有相同的 ____________6. -二工的幕级数展开式7. 幕级数只有在 __________ 区间内才有和函数.8. 经过逐项微分或逐项积分后幕级数 _____________ 不变. △•I9. 如-* *的幕级数表达式 __________________ . 10. 级数■- ■' ■■- ■■' - '" ' 1■-在区间4. ( -1, 1)5.收敛区间.: * j1.求幕级数’i 的收敛域及和函数2. 求幕级数.Ll'--的收敛域及和函数3. 求幕级数的收敛半径与收敛域6.(-00 <x < +00)7.收敛.8.收敛半径. 计算题Z 9. 用-1申丄---- X w!S咗 1 1 Q工於迟(1+£ +…+5 ⑵工才5. 求函数’八 -■ —'' -■■'-、在x=1处泰勒展开式.22禺己6. 设幕级数匚’’ 当;•、1时有|lx. 1且<1求该幕级数的函数•7•将-''_ 1■' ■展成x的幕级数.口7 叫愛8. 求幕级数的和函数.Z 加+9. 试求幕级数的收敛区域及和函数lim答案:1.解因1 且当?. - 时级数都发散,故该级数的收敛域10.设'「,确定-“的连续区间,并求积分的值(1^1<为(-1, 1 ),令「_/ (◎盈=:甘(IM v 1)恥恤心+ \二12.解:收敛半径’'1''1,当v=±-时,原级数发散,故原级数的收敛域为(-1, 1 ).设其和函数为J 1'也X)=工/心+ 口尹=J为城总+ 1)才7 = X工仗+ 1)护JE-1CD-lim帛T ■讐lim2B +lim —20 12-H 30W>1所以收敛半径 R=1,收敛域为[-1, 1 ].ln(l — =-d1 Ia* = 1 + — + ■■■-!■—3. ( 1 )解记,由于=1,故收敛半径R=1,收敛区间为(-1, 1 )当'1时,由于';w ■-:1,故级数发散,所以该级数的收敛域为(-1, 1 ).血=9(2 )解记 二 因为•J /(r) = lii(l+ z+? + ?+x 4) = lnt 匕二 0丰1)4.解 1一 •'•-Infl- x 5) - lnfl- x)疋 工Xln(l — 2C)=— 盂 1 - - ----- - -I 2 3 用 (,?°0 尹〕z H — H 1d —2 3甘 丿耳盅pi 丄乙一2,-乳,.而级数与 的收敛域都是[-1, 1 ],故当-•时ln(l + x+?+^ + /) = lnfl-z 3) - x)5卍X + ----- -- ------ --- \「3H兀X2 n2 «5.解因炖皿 AD=(2-8Z -F21?)|^=15rW = (-3+42^) |^=34F 广〔1)=42. 严(l)"g4)../(x) =£ + 15(Z -1) + U(^-1)3+ 7(X -1)\ X e (-00,400)E(沪Z轴F=瓦叫产' 6.设和函数则II 21II 2!两边求导,得8.级数的和函数为畑十洽斗+,吃字—心也卫功=£(一1)叫片=北刀(一1)沖/右1=X 送(_1)林%JC鼻! S!"l3即^)-;?w = o?^(o)= ^=<住(0)= ^ = 1.屯、E㈤二?才十3尸解上述关于」」的二阶微分方程,得二 - .7. 解易看出• f ,r',而2 2Jx* - r(l+—+ —+ …)=r+—--1--—丰…9.由于级数在一「上收敛,所以当’L 一时,有=22 ②+ 1)疋=2迟Mr1+ 迟F(Tio.因为幕级数的收敛域是一•••,所以/W 在一・上的连续,4.设©二如=1.% =比+碍M◎二23严匚证明当5. N-0的收敛半径分别为-'4'Z仏+編片幕级数绝对收严、- 1丿+貞)且可逐项积分。
4函数展开成幂级数 练习题没有做
例5. 将函数
展开成 x 的幂级数.
上式右端的幂级数在 x =1 收敛 , 而 ln(1 x) 在 x 1 有 定义且连续, 所以展开式对 x =1 也是成立的, 于是收敛 区间为 利用此题可得
机动
目录
上页
下页
返回
结束
例6. 将
展成
的幂级数.
解: sin x sin ( x ) 4 4
n
lim Rn ( x) lim f ( x) S n 1 ( x) 0 ,
n
机动 目录
x ( x0 )
上页 下页 返回 结束
定理2. 若 f (x) 能展成 x 的幂级数, 则这种展开式是 唯一的 , 且与它的麦克劳林级数相同. 证: 设 f (x) 所展成的幂级数为 则
因此对任意常数 m, 级数在开区间 (-1, 1) 内收敛.
机动 目录 上页 下页 返回 结束
为避免研究余项 , 设此级数的和函数为F ( x) ,1 x 1 则 F ( x) 1 m x m(m 1) x 2 2! m(m 1) (m n 1) n x n!
0, n 2k (0) (1) k , n 2 k 1
(k 0 , 1, 2 ,)
n 1 1 2n 1 3 1 5 1 x 3! x 5! x (1) ( 2n 1)! x 得级数:
其收敛半径为 R , 对任何有限数 x , 其余项满足
a0 f (0) a1 f (0)
f ( x) a1 2a2 x nan x n 1 ;
1 f (0) f ( x) 2!a2 n(n 1)an x n 2 ; a 2 2 !
高等数学幂级数专项练习
幂级数专题训练解题策略4 利用幂级数的求和公式利用幂级数的求和公式求数列的极限,其原理是: 设有幂级数n n nx a∑∞=1,我们想办法求出其和函数)(x S (怎样求和函数见注解),则)(1x S x ann n=∑∞=,即)( (2211)x S x a x a x a x a n n n n n =++++=∑∞=,令0x x =,则有)(......0020201x S x a x a x a nn =++++,而 )...(lim ......020*********nn n n n x a x a x a x a x a x a +++=++++∞→,于是 )()...(lim 0020201x S x a x a x a nn n =+++∞→,即无穷多项相加的数列的极限求出了。
注解 怎样求幂级数n n nx a∑∞=1的和函数)(x S 呢?一般来说,有这几种情况:(1)若n n nx a∑∞=1是等比级数,则利用等比数列的求和公式即可;例如:级数.....12642++++++n x x x x 是公比为2x q =的等比级数,因此其和为2264211 (1x)x x x x n -=++++++,且12<=x q ; 注意求等比级数的和时,一定要注明公比属于1-和1+之间。
(2)若n n nx a∑∞=1不是等比级数,但将其逐项求导后是等比级数,则先求导变成等比级数求出和函数,再通过积分变回原级数的和函数。
例如,级数 (1)2)1( (7531)21753+--++-+--+n x x x x x n n 不是等比级数,但将其求导后有...)1( (1221)642+-++-+--+n n x x x x 是一个公比为2x q -=的等比级数,于是依据等比级数的求和公式有222164211...)1( (1x)x x x x n n +=+-++-+--+,且12<-=x q (即1<x ), 于是两边积分有⎰⎰+=+-++-+--+xxn n dx x dx xx x x 0222164211]...)1(...1[,即有x x dx x n x x x x x xx n n arctan arctan 11 (1)2)1( (7530021)21753==+=+--++-+-⎰-+,且1<x 。
幂级数求和问题
当 时,级数可能绝对收敛,可能条件收敛,也可能发散.
二、求幂级数收敛域的方法
• 标准形式幂级数: 先求收敛半径 R :
再讨论
• 非标准形式幂级数
通过换元转化为标准形式
直接用比值法或根值法
处的敛散性 .
注:
求幂级数的收敛域,应先求出收敛半径和收敛区间,再考虑区间端点的敛散性,而区间端点的敛散性可转化为数项级数敛散性的判别.
3. 利用幂级数的性质,可以求一些幂级数的和函数.
注:
• 求部分和式极限
三、幂级数和函数的求法
求和
• 映射变换法
逐项求导或求积分
对和函数求积或求导
难
直接求和: 直接变换,
间接求和: 转化成幂级数求和, 再代值
求部分和等
• 初等变换法: 分解、套用公式
(在收敛区间内)
• 数项级数 求和
将所给函数展开成 幂级数.
2. 间接展开法
(2) 展成 的幂级数,也就是在点 处展开.
将g (t) 展成t的幂级数,
然后将展开式中的t再换成
例8.
解:
定理2.
若 f (x) 能展成 x 的幂级数,
唯一的 , 且与它的麦克劳林级数相同.
设 f (x) 所展成的幂级数为
即是此种情形.
的情形, 即
称
收敛
发散
定理 1. ( Abel定理 )
若幂级数
则对满足不等式
的一切 x 幂级数都绝对收敛.
反之, 若当
的一切 x , 该幂级数也发散 .
时该幂级数发散 ,
则对满足不等式
发 散
发 散
收 敛
幂级数在 (-∞, +∞) 收敛 ;