2020高考数学 专题复习 轨迹方程
2020版高考新课程数学二轮课件:2.5.解答题 1 轨迹与方程问题
左右顶点.
(2)(ⅰ)设直线PQ的斜率为k,则其方程为y=kx(k>0).
y kx,
由
x2
4
y2 2
1
得x=±
2 .记u=
1 2k2
2,
1 2k2
则P(u,uk),Q(-u,-uk),E(u,0).于是直线QG的斜率
为 k ,方程为y= k (x-u).由
2
2
-2uk2x+k2u2-8=0.①
2
2
2
2
符合题意.
直线y= 2 x+ 6 和直线y=- 2 x- 6 不与AB线段
2
2
2
2
相交,故舍去.
考向二 定义法求轨迹方程 【例2】(1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2 +y2=9,动圆M同时与圆C1及圆C2相外切① ,求动圆圆心M 的轨迹方程②.
(2)如图,已知△ABC的两顶点坐标 A(-1,0),B(1,0),圆E是△ABC的内 切圆③,在边AC,BC,AB上的切点分别 为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相 等),动点C的轨迹为曲线M.求曲线M的方程. 世纪 金榜导学号
,
所以,x1+x2=
-4mn 2m2+1
,
x1x2=
2n 2-2 2m2+1
,
S四边形ACBD=
1 2
|AB||x2-x1|=
2
2m2-n2+1= 2 m = 2
2m2+1
2m2+1 2 m + 1
2. 2
m
当且仅当2|m|= 1 ,
m
即m=± 2 时等号成立,此时n=± 6 .
2020年高考数学(文)二轮专项复习专题13 坐标系与参数方程含答案
专题13 坐标系与参数方程【知识要点】1.极坐标系的概念,极坐标系中点的表示.在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ; 极坐标化直角坐标:, 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为(t 为参数);(2)直线参数方程的一般形式为(t 为参数);222y x +=ρ).0(tan =/=x xyθ⎩⎨⎧==)()(t g y t f x b t a ≤≤⎩⎨⎧+=+=ααsin ,cos 00t y y t x x ⎩⎨⎧+=+=bt y y at x x 00,(3)圆的参数方程为(θ 为参数);(4)椭圆的参数方程为(θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点是否在曲线上. (2)点P 的直角坐标为,则点P 的极坐标为______.(限定0<θ ≤2π)(3)点P 的极坐标为,则点P 的直角坐标为______.解:(1)因为,所以点是在曲线上. (2)根据ρ 2=x 2+y 2,, 得ρ =2,,又点P 在第四象限,,所以,所以点P 的极坐标为 (3)根据x =ρ cos θ ,y =ρ sin θ ,得, 所以点P 的直角坐标为 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.⎩⎨⎧+=+=θθsin ,cos 00r y y r x x )0(12222>>=+b a b y a x ⎩⎨⎧==θθsin ,cos b y a x )35π,23(-2cos θρ=)3,1(-)4π,3(-2365πcos2cos-==θ)35π,23(-2cos θρ=)0(tan =/=x xy θ3tan -=θ2π23π≤<θ35π=θ).3π5,2(223,223-==y x ).223,223(-(2)直线与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ), 所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为. (2)将直线与圆ρ =2sin θ 化为直角坐标方程,得 由得,即, 由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1, 因为圆的半径为1,圆心到直线的距离为, 所以评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一; (3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如: ①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ . ⑤若O (0,0),A (2a ,),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.)(3πR ∈=ρθ2)(3πR ∈=ρθ3π=θxy=3πtan x y 3=21311=+=d .3)21(12||2=-=AB 2π解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x . 即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由解得 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4(1)曲线的参数方程是(t 为参数,t ≠0),它的普通方程是________. (2)在平面直角坐标系xOy 中,直线l 的参数方程为 (参数t ∈R ),圆C 的参数方程为(参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______. 解:(1)由得,带入y =1-t 2,得 注意到,所以已知参数的普通方程为 (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4, 所以圆心坐标为(0,2),圆心到直线l 的距离评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题;(2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为(t 为参数,t >0),则其普通方程为 例5 求椭圆的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ . 因为,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . ⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x ⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x ⎩⎨⎧-=+=t y t x 3,3⎩⎨⎧+==2sin 2,cos 2θθy x t x 11-=x t -=11,)1()2()11(122--=--=x x x x y 111=/-=t x ⋅--=2)1()2(x x x y .222|620|=-+=d ⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x ).1()1()2(2<--=x x x x y 12222=+by a x )2π,0(∈θ评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆的参数方程为 (θ 为参数).抛物线y 2=2px (p >0)的参数方程为.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆. 解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为 (α 为参数),两式平方相加得x 2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标.解:(1)由已知得所以已知直线的参数方程为…………………①(t 为参数)代入圆的方程化简,得…………………② ②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知)0,0(12222>>=+b a b y a x ⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==pty ptx 222⎩⎨⎧==,sin 2,cos 2ααR y R x ,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα53cos -=α53cos -=α,54sin =α⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x .095542=+-t t|PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数,代入参数方程, 得 所以 评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点t 1+t 2=0;③设弦M 1M 2的中点为M ,则点M 对应的参数值,(由此可求得|M 2M |及中点坐标). 习题13一、选择题 1.极坐标的直角坐标为 (A)(1,)(B)(-,-1)(C)(-1,-)(D)(-1,)2.椭圆(θ 为参数)的焦距等于( )(A) (B)2 (C) (D)3.已知某条曲线的参数方程为(0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若是极坐标系中的一点,则四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个527221=+=t t t ,2533,2544==y x M PP PP ,9||||21=⋅).2533,2544(⇒221t t t M +=)34π(2,3333⎩⎨⎧==θθsin 5,cos 2y x 212129292⎪⎩⎪⎨⎧-=+=1,2322t y t x )3π,2(--P 、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N )(Z ∈k5.在极坐标系中,若等边△ABC 的两个顶点是,那么顶点C 的坐标可能是( ) (A) (B) (C)(D)(3,π)二、选择题6.过极点,倾斜角是的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________. 8.直线(t 为参数)过定点____________.9.曲线(t 为参数)与y 轴的交点坐标是____________.10.参数方程(θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点,并且和极轴垂直的直线的极坐标方程.12.在椭圆上求一点,使点M 到直线的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.)4π5,2()4π,2(B A 、)4π3,4()43π,32()π,32(6π⎩⎨⎧+-=+=t y at x 41,3⎩⎨⎧=+-=t y t x ,12⎩⎨⎧+==θθθcos sin ,2sin y x )4π,3(14922=+y x 021032=-+y x14.已知点M (2,1)和双曲线,求以M 为中点的双曲线右支的弦AB 所在直线l 的方程.专题13 坐标系与参数方程参考答案习题13一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.; 7.; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11. 12.解:由题设知椭圆参数方程为(θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离 即d 的最小值为,此时.所以M 的坐标为13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.1222=-y x )(6πR ∈=ρθ)47π,23(⋅=223cos θρ⎩⎨⎧==θθsin 2,cos 3y x ,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd 261344π=θ).2,223((2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ .14.解:设AB 的方程为(t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.⎩⎨⎧+=+=ααsin 1,cos 2t y t x。
【高考复习】高考数学知识点:轨迹方程的求解
【高考复习】高考数学知识点:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数叙述。
一、求动点的轨迹方程的基本步骤⒈创建适度的坐标系,设立增派点m的座标;⒉写出点m的集合;⒊列举方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈意译法:轻易将条件翻译成等式,整理化简后即为得动点的轨迹方程,这种谋轨迹方程的方法通常叫作意译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊有关点法:用动点q的座标x,y则表示有关点p的座标x0、y0,然后代入点p的座标(x0,y0)所满足用户的曲线方程,整理化方便快捷获得动点q轨迹方程,这种谋轨迹方程的方法叫作有关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数解出,获得不不含参数的方程,即为两动曲线交点的轨迹方程,这种谋轨迹方程的方法叫作交轨法。
*直译法:求动点轨迹方程的一般步骤①建系――创建适度的坐标系;②设点――设轨迹上的任一点p(x,y);③列式――列于增派点p所满足用户的关系式;④代换――依条件的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;⑤证明――证明所求方程即为为符合条件的动点轨迹方程。
高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题
高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。
高考数学难点突破_难点22__轨迹方程的求法
高考数学难点突破_难点22__轨迹方程的求法在高考数学中,轨迹方程的求法是一个比较常见但也较为复杂的难点。
在解决这类问题时,我们需要考虑几个关键因素,如何确定相关点、如何利用已知条件及使用适当的数学知识等。
一、确定相关点对于轨迹方程的求法,首先需要明确或确定一些与所求轨迹相关的点。
这些点可以从已知条件中得出,如一个点的坐标、两个点的距离、特定点到直线的距离等。
这些已知条件将成为我们解题的基础。
二、利用已知条件在确定了相关的点之后,我们需要利用已知条件来求解轨迹方程。
对于不同的条件,我们可以使用不同的数学知识和方法来解决问题。
下面是一些常见的已知条件及相应的解决思路:1.已知点的坐标:如果已知轨迹上的其中一点的坐标,我们可以将这个点的坐标代入轨迹方程中,得到一个等式,并根据这个等式求解出其他未知量,从而得到轨迹方程。
例如,已知轨迹上的点的坐标满足$x^2+y^2=1$,则这是一个以原点为中心、半径为1的圆的轨迹方程。
2.已知点到另一点的距离:如果已知轨迹上的其中一点到另一点的距离等于一定值,我们可以根据距离公式来求解轨迹方程。
例如,已知轨迹上的点到点$(2,1)$的距离等于2,则可以列出方程$\sqrt{(x-2)^2 + (y-1)^2} = 2$,进而求解出轨迹方程。
3.已知点到直线的距离:如果已知轨迹上的其中一点到直线的距离等于一定值,我们可以利用距离公式和直线方程来求解轨迹方程。
例如,已知轨迹上的点到直线$2x+ 3y = 6$的距离等于3,则可以列出方程$\frac{,2x + 3y -6,}{\sqrt{2^2 + 3^2}} = 3$,进一步求解出轨迹方程。
三、使用适当的数学知识在解决轨迹方程的问题中,我们可能需要应用到一些特定的数学知识,如圆的性质、直线的性质、二次曲线方程等。
我们需要结合问题的具体情况,合理地选择和应用这些知识来解决问题。
总结起来,要解决轨迹方程的问题,我们需要明确相关点、利用已知条件和适当应用数学知识。
高考数学总复习(整合考点+典例精析+深化理解)第七章
半径 r2=2,
又|OQ|=
x0+2 12+y202
=
14x20+21x0+14+413-43x20
=
116x20+12x0+1 =1+14x0,
故|OQ|=r2-r1,即两圆内切.
点评:根据题设条件,可以得出动点的轨迹是某种已知
曲线,则可以由该曲线的定义直接写出动点的轨迹方程.
线段AN上,且 M→P·B→N= 0.
(1)求动点P的轨迹方程; (2)试判断以PB为直径的圆与圆x2+y2=4的位置关系, 并说明理由.
自主解答:
解析:(1)由点 M 是 BN 的中点, 又M→P·B→N=0,可知 PM 垂直平分 BN, 所以|PN|=|PB|,又|PA|+|PN|=|AN|, 所以|PA|+|PB|=4>|AB|, 由椭圆定义知,点 P 的轨迹是以 A,B 为焦点的椭圆. 设椭圆方程为ax22+by22=1,其中 2a=4,2c=2, 可得 a2=4,b2=a2-c2=3. 可知动点 P 的轨迹方程为x42+y32=1.
化简得(x+1)2-y2=65.
即为所求的动点 M 的轨迹方程.
点评:利用题设条件建立动点坐标x与y的关系,再等价变 形得到轨迹方程F(x,y)=0.
变式探究
1.(2012·襄阳调研)平面内动点 P(x,y)与 A(-2,0),B(2,0) 两点连线的斜率之积为41,则动点 P 的轨迹方程为( )
变式探究
2 . 已 知 两 定 点 F1( - 1,0) 、 F2(1,0) , 且 |F1F2| 是 |PF1| 与 |PF2|的等差中项,则动点P的轨迹方程是________.
解析:由|F1F2|是|PF1|与|PF2|的等差中项知: |PF1|+|PF2|=4>|F1F2|, 故动点 P 的轨迹是以定点 F1(-1,0)、F2(1,0)为焦点, 长轴长为 4 的椭圆,故其方程为x42+y32=1. 答案:x42+y32=1
高三高考数学中求轨迹方程的常见方法
高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x PB PA =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 三、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.例3 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN 在直线上,.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.四、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.解:由平面几何知识可知,当ABM ∆为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为25221=AB ,方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.解:设),(y x M ,直线OA 的斜率为)0(≠kk ,则直线OB 的斜率为k1-.直线OA 的方程为kx y =,由⎩⎨⎧==px y kx y 22解得⎪⎪⎩⎪⎪⎨⎧==kp y k px 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -. 由中点坐标公式,得⎪⎪⎩⎪⎪⎨⎧-=+=pk kpy pk k px 22,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例6 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得直线M A 1的方程为)(11a x a x y y ++=①;直线N A 2的方程为)(11a x ax y y -+-=②. ①×②得)(22221212a x ax y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(22222a x ab y --=,化简得12222=+by a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.高考动点轨迹问题专题讲解(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ; 5.已知圆C:22(16x y ++=内一点()A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 设PQ 所在直线方程为(1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44yx =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G . ∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴= 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴223(,)1313kb bN k k-++. ∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+, ∴2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r, 48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y+= 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r ,∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得5k =. 故存在直线l :53y x =+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当34πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y=-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OAOB ⋅=-u u u r u u u r,且||AB ≤l的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2yPF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204yx -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u u u,0MN MP +=u u u u r u u u r r .(1)求P 点轨迹E 的方程; (2)将(1)中轨迹E 按向量(0, 1)a=r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围. 解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、(, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. 11.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u u u r u u u r,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r, ∴14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u u r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>, 设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---,∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--, 消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||AB =u u u r P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16).故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l的方程;(y x =)(2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525xy +=) 提示:||1010AB =⇒=,又11y x =,22y x =, 则1221)yy x x +=-,2112)y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知||PF =,且2332d ≤≤. (1)求动点P 的轨迹方程;15.如图,直线:1l ykx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k=,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然23k10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>,解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k >或1k 2<,且k≠0. ∴k的取值范围是11(,(,0)(0,))22-∞-+∞U U U .…………………14分 17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围. 18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r ,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;xyOA BEF M(2)若M 为动点,且90EMF∠=o ,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r.(1)建立适当的直角坐标系,求点M 的轨迹方程; (2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r ,求实数λ的取值范围.。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线之轨迹方程的求法
圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
高考数学一轮复习资料第四章圆的综合一求轨迹方程
解后反思
解析答案
跟踪训练 已知圆x2+y2=1,定点Q(2,0),点A为已知圆上一个动点 (1)
解析答案
跟踪训练 已知圆的方程为x2+y2-6x-6y+14=0,求过点A(-3,-5) 的直线交圆的弦PQ的中点M的轨迹方程.
第四章 求轨迹方程
题型一 求动点的轨迹方程
跟踪训练 已知线段AB的中点C的坐标是(4,3),端点A在圆 (x+1)2+y2=4上运动,求线段AB的端点B的轨迹方程.
解析答案
跟踪训练 点P(x0,y0)是圆x2+y2=4上的动点,点M是OP(O是原点)的 中点,则动点M的轨迹方程是________.
解析答案
跟踪训练 已知直角∆ABC的斜边为AB,且A(-1,0),B(3,0),求直角 顶点C的轨迹方程.
反思与感悟
解析答案
跟踪训练 已知圆O的方程x2+y2=9过点A(1,2)作圆的弦,求弦的中点P的 轨迹方程
解析答案
例 已知定圆的方程为(x+1)2+y2=4,点A(1,0)为定圆上的一个点, 点C为定圆上的一个动点,M为动弦AC的中点,求点M的轨迹方程.
解析答案
跟踪训练 点A是圆x2+y2=r2(r>0)上任意一点,AB⊥x轴,
垂足为B,以A为圆心, AB 为半径的圆交已知圆于C,D两
点,连接CD交AB于M点,当点A在圆上运动时,求点M的 轨迹方程
解析答案
反思与感悟
解析答案
跟踪训练 等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一 个端点C的轨迹方程,并说明它的轨迹是什么.
解析答案
跟踪训练 3 求到点 O(0,0)的距离是到点 A(3,0)的距离的12的点的轨迹 方程.
高考数学知识点:动点的轨迹方程_知识点总结
高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
2020年高考数学复习题:圆的方程
圆的方程[基础训练]1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9答案:C 解析:∵圆心(2,-1)到直线3x -4y +5=0的距离d =|6+4+5|5=3, ∴圆的半径为3,即圆的方程为(x -2)2+(y +1)2=9.2.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( )A.14<m <1B .m <14或m >1C .m <14D .m >1 答案:B 解析:由D 2+E 2-4F =16m 2+4-20m >0,解得m >1或m <14.3.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4答案:B 解析:根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB=90°,连接OP,易知|OP|=12|AB|=m,要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.4.[2019湖南师大附中月考]已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则实数m的取值范围是()A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]答案:A解析:∵x+y+m≥0,即m≥-x-y恒成立,∴只需求出-x-y的最大值即可.∵1=x2+(y-1)22≥⎝⎛⎭⎪⎫x+y-122,∴(x+y-1)2≤4,解得-2≤x+y-1≤2,即-1≤x+y≤3,∴-3≤-x-y≤1,∴-x-y的最大值是1,则m≥1,∴实数m的取值范围是[1,+∞).故选A.5.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6] C.[4,6) D.(4,6]答案:A解析:易求圆心(3,-5)到直线4x-3y=2的距离为5.令r=4,可知圆上只有一点到已知直线的距离为1;令r=6,可知圆上有三点到已知直线的距离为1,所以半径r在(4,6)之间取值符合题意.6.[2019河南豫西五校联考]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为()A.x2+(y-1)2=4 B.x2+(y-1)2=2C.x2+(y-1)2=8 D.x2+(y-1)2=16答案:B解析:解法一:由题意,可得圆心(0,1)到直线x-by+2b+1=0的距离d=|1+b|1+b2=(1+b)21+b2=1+2b1+b2≤1+2|b|1+b2≤2,当且仅当b=1时等号成立,所以半径最大的圆的半径r=2,此时圆的标准方程为x2+(y-1)2=2.故选B.解法二:直线x-by+2b+1=0过定点P(-1,2),如图,∴圆与直线x-by+2b+1=0相切于点P时,圆的半径最大,为2,此时圆的标准方程为x2+(y-1)2=2,故选B.7.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为________.答案:4解析:如图所示,圆心M(3,-1)与定直线x=-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.8.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN =45°,则x0的取值范围是________.答案:[-1,1]解析:解法一:当x0=0时,M(0,1),由圆的几何性质,得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A,B,如图1.若在圆上存在N,使得∠OMN=45°,应有∠OMB≥∠OMN=45°,∴∠AMB≥90°,∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.解法二:过O作OP⊥MN,P为垂足,如图2,OP =OM ·sin 45°≤1,∴OM ≤1sin 45°,∴OM 2≤2,∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1.9.[2019银川模拟]已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形P ACB 面积的最小值是________. 答案:3 解析:圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径r =1,根据对称性可知,四边形P ACB 的面积为2S △APC =2×12|P A |r =|P A |=|PC |2-r 2,要使四边形P ACB 的面积最小,则只需|PC |最小,最小为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2. 所以四边形P ACB 面积的最小值为|PC |2min -r 2=4-1= 3.10.[2019河南安阳一模]在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.答案:[0,3] 解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ), 由题意得x 2+(y +3)2=2x 2+y 2,整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组 ⎩⎪⎨⎪⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3, 解得0≤a ≤3,综上可得,实数a 的取值范围是[0,3].11.[2019广东深圳3月联考]如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线方程;(2)若M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)在(2)的条件下,若动圆N 过点P 且与圆M 内切,求动圆N 的圆心的轨迹方程.解:(1)易知k AB =-2,AB ⊥BC ,∴k CB =22,∴BC 边所在直线方程为y =22x -2 2.(2)由(1)及题意得C (4,0),∴M (1,0),又∵AM =3,∴外接圆M 的方程为(x -1)2+y 2=9.(3)∵圆N 过点P (-1,0),∴PN 是动圆的半径,又∵动圆N 与圆M 内切,∴MN =3-PN ,即MN +PN =3,∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆.∵P (-1,0),M (1,0),∴a =32,c =1,b =a 2-c 2=54,∴所求轨迹方程为x 294+y 254=1,即4x 29+4y 25=1.[强化训练]1.[2019广东七校联考]圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( )A .2 3 B.203 C .4 D.163答案:D 解析:圆x 2+y 2+2x -6y +1=0的标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0).∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9 ≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163, 当且仅当3b a =3a b ,即a =b 时等号成立,故选D.2.[2019江西新余五校3月联考]已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0答案:D 解析:当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎪⎫k ≠12, 则圆心到直线PQ 的距离d =|1-2k |1+k 2, 由平面几何知识,得|PQ |=29-d 2,S △OPQ =12·|PQ |·d =12·29-d 2·d=(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92, 当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92. 因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92, 解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.故选D.3.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]答案:B 解析:由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆,3x +y -m =0是直线(如图),直线的斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,设圆心O 到直线3x +y -m =0的距离为d ,所以⎩⎪⎨⎪⎧ m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧ m ≥-23,|-m |2≤2,解得m ∈[-23,4].4.过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为( )A .(-∞,-3)∪(1,+∞)B.⎝ ⎛⎭⎪⎫-∞,32 C .(-3,1)∪⎝ ⎛⎭⎪⎫32,+∞ D .(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 答案:D 解析:圆x 2+y 2-2ax +a 2+2a -3=0的圆心为(a,0),且a <32,并且(a ,a )在圆外,即有a 2>3-2a ,解得a <-3或a >1,所以a <-3或1<a <32.5.[2019福建厦门3月联考]若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案:B 解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23. 又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34, ∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.6.[2019重庆九校联盟联考]设m ,θ∈R ,则(22-m -cos θ)2+(22+m -sin θ)2的最小值为( )A .3B .4C .9D .16答案:C 解析:(22-m -cos θ)2+(22+m -sin θ)2的几何意义是单位圆上的点与直线x +y -42=0上的点间的距离的平方,故其最小值为(4-1)2=9.故选C.7.[2019广东广州模拟]已知圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,则|PM ||PN |的取值范围是( )A.⎣⎢⎡⎦⎥⎤67,8B.⎣⎢⎡⎦⎥⎤25,6 C.⎣⎢⎡⎦⎥⎤17,7 D.⎣⎢⎡⎦⎥⎤14,4 答案:C 解析:圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,∴P 是AN 的垂直平分线上一点,∴|P A |=|PN |.又∵|AM |=8,∴点P 满足|PM |+|PN |=|AM |=8>6,即点P 满足椭圆的定义,焦点是(3,0),(-3,0),长半轴长a =4,∴点P 的轨迹方程为x 216+y 27=1,|PM |+|PN |=8,|PM ||PN |=8-|PN ||PN |=8|PN |-1.∵1≤|PN |≤7,∴8|PN |∈⎣⎢⎡⎦⎥⎤87,8, ∴|PM ||PN |∈⎣⎢⎡⎦⎥⎤17,7, 故选C.8.圆x 2+y 2-4x +4y +6=0上的动点M 到坐标原点的距离的最大值、最小值分别是________,________.答案:322 解析:因为圆心是A (2,-2),半径是2,又AO =22,所以动点M 到坐标原点的距离的最大值、最小值分别是22+2=32,22-2= 2.9.[2019湖南师大附中模拟改编]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.则椭圆C 的标准方程和圆A 的方程分别为________,________.答案:x 24+y 2=1 (x -2)2+y 2=85 解析:如图,设T 为线段PQ的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ ,∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |.∴|AT ||OT |=12,即b a =12.由已知c =3,∴a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85. 10.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M 的坐标为(m ,n )(m ≠-2),求n -3m +2的最大值和最小值. 解:(1)由题意知,圆C 的标准方程为(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2.∵|QC |=[2-(-2)]2+(7-3)2=42>22,∴|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)易知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2)⎝⎛⎭⎪⎫k =n -3m +2, 即直线MQ 的方程为kx -y +2k +3=0.由题意知,当直线MQ 与圆C 相切时取得最值, 则|7-2k -2k -3|1+k2=22, 解得k =2-3或k =2+3,则k =n -3m +2的最大值和最小值分别为2+3,2- 3. 11.[2016江苏卷]如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤[(t+4)-6]2+(3-7)2≤5+5,解得2-221≤t≤2+221.因此,实数t的取值范围是[2-221,2+221 ].。
2020年人教版高考数学(理)一轮复习 第50讲圆的方程
听课正文 第50讲 圆的方程1.圆的定义及方程定义 平面内与定点的距离等于定长的点的集合(轨迹)标准 方程(r>0)圆心 ,半径一般 方程(D 2+E 2-4F>0)圆心为-D 2,-E 2,半径为12√D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x-a )2+(y-b )2=r 2(r>0)的位置关系:(1)若M (x 0,y 0)在圆外,则 . (2)若M (x 0,y 0)在圆上,则 . (3)若M (x 0,y 0)在圆内,则 . 常用结论常见圆的方程的设法:标准方程的设法一般方程的设法圆心在原点 x 2+y 2=r 2x 2+y 2-r 2=0过原点 (x-a )2+(y-b )2=a 2+b 2x 2+y 2+Dx+Ey=0圆心在 x 轴上(x-a )2+y 2=r 2x 2+y 2+Dx+F=0圆心在y 轴上x 2+(y-b )2=r 2x 2+y 2+Ey+F=0与x 轴 相切(x-a )2+(y-b )2=b 2x 2+y 2+Dx+Ey+14D 2=0与y 轴 相切(x-a )2+(y-b )2=a 2x 2+y 2+Dx+Ey+14E 2=0题组一 常识题1.[教材改编] 若点(5a+1,12a )在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是 .2.[教材改编]已知A(3,4),B(-5,6),则以线段AB为直径的圆的方程是.3.[教材改编]圆心在直线x=2上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为.题组二常错题◆索引:忽视表示圆的条件D2+E2-4F>0;遗漏方程的另一个解;忽略圆的方程中变量的取值范围.4.若方程x2+y2-mx+y+m2=0表示一个圆心在y轴右侧的圆,则实数m的取值范围是.5.半径为3,圆心的纵、横坐标相等且与两条坐标轴都相切的圆的方程为.6.已知点P(x,y)为圆x2+y2=1上的动点,则x2-4y的最小值为.探究点一圆的方程的求法例1(1)[2018·伊春二中月考]过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4(2)经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程为.[总结反思]求圆的方程一般有两种常用方法:(1)几何法,通过研究圆的几何性质,确定圆心坐标与半径长,即得到圆的方程;(2)代数法,用待定系数法求解,其关键是根据条件选择圆的方程,若已知圆上三点,则选用圆的一般方程,若已知条件与圆心及半径有关,则选用圆的标准方程.变式题 (1)在△ABC 中,已知A (0,3),B (4,0),若直线l :8x-6y-7=0与线段AB 交于点D ,且D 为△ABC 的外心,则△ABC 的外接圆的方程为 .(2)圆心为直线x+y-2=0和-x+3y+10=0的交点,且与直线x+y-4=0相切的圆的标准方程是 .探究点二 与圆有关的最值问题微点1 斜率型最值问题例2 (1)[2018·深圳三模] 已知x ,y 满足x 2+y 2-4x-2y-4=0,则2x+3y+3x+3的最大值为 ( )A .2B .174 C .295 D .134√13 (2)[2018·抚州临川一中月考] 点M (x ,y )在圆x 2+(y-2)2=1上运动,则xy 4x 2+y 2的取值范围是( )A .(-∞,-14]∪[14,+∞) B .(-∞,-14]∪[14,+∞)∪{0} C .[-14,0)∪(0,14] D .[-14,14][总结反思] 处理与圆有关的最值问题,应充分探究圆的几何性质,并根据代数式的几何意义,利用数形结合思想求解.求形如k=y-bx-a 的最值问题,可转化为求斜率的最值问题,即过点(a ,b )和(x ,y )的直线斜率的最值问题.微点2 截距型最值问题例3 (1)已知实数x ,y 满足方程x 2+y 2+4y-1=0,则√2x+y 的最大值是 ,最小值是 .(2)已知P (x ,y )在圆(x-1)2+(y-1)2=5上运动,2x+ay (a>0)的最大值为8,则其最小值为 .[总结反思]若(x,y)为圆上任意一点,求形如u=ax+by的最值,可转化为求动直线截距的最值.具体方法是:(1)数形结合法,当直线与圆相切时,直线在y轴上的截距取得最值;(2)把u=ax+by 代入圆的方程中,消去y得到关于x的一元二次方程,由Δ≥0求得u的范围,进而求得最值.微点3距离型最值问题例4(1)若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的最大值为()A.4B.6C.3√2+1D.1+√10(2)已知动点P(x,y)满足x2+y2-|x|-|y|=0,O为坐标原点,则√x2+y2的最大值为.[总结反思]若(x,y)为圆上任意一点,求形如t=(x-a)2+(y-b)2的最值,可转化为圆上的点到定点的距离的最值,即把(x-a)2+(y-b)2看作是点(a,b)与圆上的点(x,y)连线的距离的平方,利用数形结合法求解.微点4利用对称性求最值例5已知点A(-1,1)和圆C:(x-5)2+(y-7)2=4,一束光线从A出发,经x轴反射到圆C上的最短路程的长是()A.6√2-2B.8C.4√6D.10[总结反思]求解形如|PM|+|PN|且与圆C有关的折线段的最值问题(其中M,N均为动点)的基本思路:(1)“动化定”,把与圆上的点的距离,转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.应用演练1.【微点3】圆x2+y2-4x-4y+6=0上的点到直线x+y-8=0的最大距离与最小距离分别是()A.2√2,√2B.3√2,√2C.4,2D.4√2,2√22.【微点3】已知圆C:(x-3)2+(y-4)2=1与圆M关于x轴对称,Q为圆M上的动点,当Q到直线y=x+2的距离最小时,Q的横坐标为()A.2-√22B.2±√22C.3-√22D.3±√223.【微点4】已知点P为直线y=x+1上的一点,M,N分别为圆C1:(x-4)2+(y-1)2=4与圆C2:x2+(y-2)2=14上的点,则|PM|-|PN|的最大值为()A.4B.92C.112D.74.【微点2】若实数x,y满足x2+y2+8x-6y+16=0,则x+y的最小值为.5.【微点1】P(x,y)是圆(x-4)2+y2=4上的点,则yx的取值范围是.6.【微点3】[2018·浙江五校联考]已知圆C:x2+(y+1)2=3,设EF为直线l:y=2x+4上的一条线段,若对于圆C上的任意一点Q,∠EQF≥π2,则|EF|的最小值是.探究点三与圆有关的轨迹问题例6(1)已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所围成的图形的面积等于()A.πB.4πC.8πD.9π(2)[2018·合肥二模]圆C过点M(5,2),N(3,2)且圆心在x轴上,点A为圆C上的点,O为坐标原点,连接OA,延长OA到P,使得|OA|=|AP|,则点P的轨迹方程为.[总结反思]与圆有关的轨迹问题的四种常用求解方法:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等的定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式列方程.变式题(1)已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是()A.(x+2)2+y2=4(y≠0)B.(x+1)2+y2=1(y≠0)C.(x-2)2+y2=4(y≠0)D.(x-1)2+y2=1(y≠0)(2)已知圆M的圆心在直线x-2y+4=0上,且与x轴交于两点A(-5,0),B(1,0).又D(-3,4),点P在圆M上运动,则以AD,AP为一组邻边的平行四边形的另一个顶点Q的轨迹方程为.。
高考数学重要知识点轨迹方程的求解
高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。
轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。
在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。
下面我将详细介绍一下轨迹方程的求解方法。
轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。
当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。
通过解方程可以得到轨迹方程。
例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。
2.抛物线轨迹:另一个常见的轨迹形式是抛物线。
对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。
例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。
3.圆轨迹:圆是另一种常见的轨迹形式。
当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。
当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。
在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。
另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。
除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。
高考数学常见题型解法归纳反馈训练第77讲轨迹方程的求法
第77讲轨迹方程的求法【知识要点】一、“曲线的方程”、“方程的曲线”的定义在直角坐标系中,如果曲线上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(纯粹性);(2)以这个方程的解为坐标的点都在曲线上(完备性).那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.二、求简单的曲线方程的一般步骤:建设限代化(1)建立直角坐标系:利用垂直性和对称性建立适当的坐标系;(2)设点:用有序实数对表示曲线上任意一点的坐标(不要把其它的点的坐标设成);(3)列出动点满足的限制条件:用坐标表示条件,列出方程;(4)代点坐标到方程;(5)化简:化方程为最简形式;(6)检验:检验某些特殊点是否满足题意,把不满足的点排除,把满足的点补充上来.(可以省略)三、求轨迹方程的四种主要方法:轨迹四法待代直参(1)待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.(2)代入法:如果点的运动是由于点的运动引起的,可以先用点的坐标表示点的坐标,然后代入点满足的方程,即得动点的轨迹方程.(3)直接法:直接把已知的方程和条件化简即得动点的轨迹方程.(4)参数法:动点的运动主要是由于某个参数的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即,再消参.四、轨迹和轨迹方程轨迹和轨迹方程是两个不同的概念,轨迹表示的曲线的简单特征的描述,而求轨迹方程只求那个方程即可,不需描述曲线的特征.【方法讲评】方法一直接法使用情景已知中或图形中有动点满足的方程.解题步骤直接把动点的坐标代入已知的方程化简即可.【例1】线段与互相垂直平分于点,,,动点满足,求动点的轨迹方程.【解析】【点评】(1)这种题目由于已知中没有直角坐标系,所以首先要根据垂直性和对称性建立直角坐标系,由于建立坐标系的方法有多种,所以求出的轨迹方程有多种,但是都是对的;(2)这道题是直接用坐标化简已知中的得到的轨迹方程,运用的是直接法.【例2】已知圆:,由动点向圆引两条切线、,切点分别为、,并且,求点的轨迹.【点评】(1)这道题运用的是直接法,但是它是把已知条件转化得到的一个等式,不是现存的等式.(2)轨迹和轨迹方程是两个不同的概念,轨迹包含轨迹方程和对轨迹方程表示的曲线的简单特征的描述,而求轨迹方程只求那个方程即可,不需描述曲线的特征.所以本题要描述轨迹的基本特征.【反馈检测1】在平面直角坐标系中,两点的坐标分别为、,动点满足:直线与直线的斜率之积为.(1)求动点的轨迹方程;(2)设为动点的轨迹的左右顶点,为直线上的一动点(点不在x 轴上),连[交的轨迹于点,连并延长交的轨迹于点,试问直线是否过定点?若成立,请求出该定点坐标,若不成立,请说明理由.【反馈检测2】一条双曲线的左、右顶点分别为,点,是双曲线上不同的两个动点.(1)求直线与交点的轨迹的方程式;(2)若过点()的两条直线和与轨迹都只有一个交点,且 ,求的值.方法二待定系数法使用情景通过已知条件的分析可以得到动点满足某种曲线(圆、圆锥曲线)的定义.(1)分析出动点满足的方程;(2)证明动点满足某曲线(圆、圆锥曲线)的定义;(3)设解题步骤出该曲线的待定系数方程;(4)求出待定系数,即得所求的轨迹方程.【例3】已知动圆P与两定圆和都外切,求动圆圆心的轨迹方程.【点评】(1)此道题通过对已知的分析得到,即动点到两个定点的距离的差是一个常数,与双曲线的定义相符,所以其轨迹是双曲线的一支,利用的是待定系数法;(2)利用待定系数法求轨迹方程时,一定要比较全面地分析条件和曲线的定义,看是曲线的全部,还是曲线的部分,此题也不是双曲线的全部,是双曲线的一支.【例4】已知点到点的距离比到点到直线的距离小4;(Ⅰ)求点的轨迹的方程;(Ⅱ)若曲线上存在两点关于直线l:对称,求直线的方程.【解析】(1)结合图形知,点不可能在轴的左侧,即到点的距离等于到直线的距离的轨迹是抛物线,为焦点,为准线的轨迹方程是:(2)设则相减得又的斜率为-4则中点的坐标为,即经检验,此时,与抛物线有两个不同的交点,满足题意.【点评】(1)本题的第一问利用的就是待定系数法,通过对动点的分析,发现它满足抛物线的定义,所以动点的轨迹是抛物线.(2)第二小问利用了点差法,可以提高解题效率.【反馈检测3】已知垂直平分线与交于点.(1)求点的轨迹方程;(2)已知点,过点且斜率为()的直线与点的轨迹相交于两点,直线,分别交直线于点,,线段的中点为,记直线的斜率为.求证:为定值.方法三代入法使用情景某被动点之所以在运动,是因为主动点在某曲线上运动引起的.(1)先利用被动点的坐标表示主动点的坐标;(2)把动点的坐标代入它满足的解题步骤方程化简.【例5】已知抛物线和点,为抛物线上一点,点在线段上且,当点在该抛物线上移动时,求点的轨迹方程.【点评】点之所以在动,就是因为点在动,所以点是被动点,点是主动点,这种情景,应该利用代入法求轨迹方程.【反馈检测4】已知的顶点,顶点在抛物线上运动,求的重心的轨迹方程.方法四消参法使用情景如果动点的运动主要是由于某个参数的变化引起的.解题步骤(1)选参设参;(2)用这个参数表示动点的坐标,即;(3)消去参数,化简.【例6】已知曲线(1)证明:当时,曲线是一个圆;(2)求证圆心在一条定直线上.【点评】(1)此题求圆心在一定直线上,就是求动点的轨迹是一条直线;(2)圆心的运动主要是因为参数引起的,所以选用消参法解答.【反馈检测5】已知线段,直线垂直平分于,在上取两点,使有向线段满足,求直线与的交点的轨迹方程.高中数学常见题型解法归纳及反馈检测第77讲:轨迹方程的求法参考答案【反馈检测1答案】(1);(2)直线恒过定点.【反馈检测2答案】(1);(2).【反馈检测2详细解析】由双曲线的左、右顶点分别为得.所以两式相乘得而点在双曲线上,所以即故,即.(2)设,则由知,.将代入得,即,由与E只有一个交点知,,即.同理,由与E只有一个交点知,,消去得,即,从而,即.【反馈检测3答案】(1);(2).(2)设过点(1,0),且斜率为()的直线方程为,设点,点,将直线方程代入椭圆:,整理得:,因为点在椭圆内,所以直线和椭圆都相交,恒成立,且.直线的方程为,直线的方程为,令,得点,点,所以点的坐直线的斜率为.将代入上式得,. 所以为定值. 【反馈检测4答案】【反馈检测5答案】【反馈检测5详细解析】如图2,以线段所在直线为轴,以线段的中垂线为轴建立直角坐标系.设点,则由题意,得.由点斜式得直线的方程分别为.两式相乘,消去,得.这就是所求点的轨迹方程.。
高考数学专题复习圆锥曲线轨迹方程的求法
圆锥曲线轨迹方程的求法一直以来,圆锥曲线这部分内容都是高考必考内容,作为解析几何中一个重要的部分,在历次考试中也是让相当一部分考生感到棘手。
现在,我就圆锥曲线的轨迹方程的问题作一个归纳总结。
在一般情况下,我们对于求圆锥曲线的轨迹方程采用的方法有:直接法,定义法,相关点法,参数法。
下面就以上几种方法作一下介绍。
一、用直接法求轨迹方程利用动点运动的条件作出等量关系,表示成x,y的等式。
例:已知点A(-2,0),B(3,0).动点P(x,y)满足PA·PB=x2,则点P 的轨迹是().A、圆B、椭圆C、双曲线D、抛物线解:PA=(-2-x,-y), PB=(3-x,-y), P A·PB=x2则(-2-x)(3-x)+(-y)(-y)=x2 整理得:y2=x+6所以P点的轨迹为抛物线。
答案:D.二、有定义法求轨迹方程根据圆锥曲线的基本定义解题。
例:如图,已知圆O的方程为x2+y2=100,点A的坐标为(-6,0),M 为圆O上的任意一点,AM的垂直平分线交OM于点P,则点P的轨迹方程()A.x225+y216=1 B.x225-y216=1C.(x+3)225+y216=1 D.(x+3)225-y216=1解:由于P为AM的垂直平分线上的点,|PA|=|PM| 所以|PA|+|PO|=|PM|+|PO|=|OM|=R=10>|OA|=6根据椭圆的定义知:P点轨迹方程为x225+y216=1.解答:A三、用相关点法求轨迹方程当动点M随着已知方程的曲线上另一动点C(x0,y0)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x0,y0)再将x0,y0代入已知曲线方程,即可得到点M的轨迹方程。
例:如图所示从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程.解:设动点P 的坐标为(x,y),点Q 的坐标为(x 1,y 1),则N 点的坐标为(2x-x 1,2y-y 1).∵N 点在直线x+y=2上,∴2x-x 1+2y-y 1=2 ① 又∵PQ 垂直于直线x+y=2,∴y-y 1x-x 1 =1即x-y+y 1-x 1=0 ②①②联立得:x 1=32 x+12 y-1,x 2=12 x+32 y-1 又∵点Q 在双曲线上,∴x 12-y 12=1 ③ 将x1,x2代入③中,得动点P 的轨迹方程式为 2x 2-2y 2-2x+2y-1=0 四、 用参数法求轨迹方程选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程.例:(04.成都)过抛物线y 2=2px(p>0)的顶点O 作两条互相垂直的弦OA,OB,再以OA,OB 为邻边作矩形AOBM,如图,求点M 的轨迹方程.解:设M(x,y),A(x 1,y 1),B(x 2,y 2)OA 的斜率为k(显然k ≠0),则OB 的斜率为-1k . OA 所在直线方程为y=kx.代入y 2=2px 得x 1=2p k 2 ,y 1=2pkOB 所在直线方程为y=-1k x,代入y 2=2px 得x 2= 2pk 2,y 2=-2pk 即B(2pk 2, -2pk) ∴OB=(2pk 2, -2pk),OA=(2p k 2 , 2pk ) OM= OA+ OB =(2p k 2 +2pk 2, 2p k -2pk)所以有x=2p(1k -k)2+4p, y=2p(1k -k) 消去(1k -k)得:y 2=2p(x-4p)(p>0) 即求得M 点的轨迹方程。
高考数学难点:轨迹方程的求法
高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
高考数学复习---轨迹方程规律方法及典型例题
高考数学复习---轨迹方程规律方法及典型例题【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线为y =,(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程. 【解析】(1)由渐近线为y知,ba=(),0c 到直线y ==2c =,224a b +=②,联立①②,解得21a =,23b =,则双曲线方程为2213y x −=.(2)因为直线l 与双曲线交于异支两点,P Q ,所以直线l 的斜率必存在,且经过()01,点,可设直线:1l y kx =+,与双曲线联立得:()223240kxkx −−−=,设()()()1122,,,,,M x y P x y Q x y ,则有122122Δ023403k x x k x x k ⎧⎪>⎪⎪+=⎨−⎪−⎪⋅=<⎪−⎩解得k <由OM OP OQ =+uuu r uu u r uuu r 知,()1221212223623k x x x k y y y k x x k ⎧=+=⎪⎪−⎨⎪=+=++=⎪−⎩两式相除得3x k y =,即3x k y =代入263y k=−得22230y y x −−=,又k <2y …, 所以点M 的轨迹方程为()222302y y x y −−=…. 例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x −=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.【解析】(1)由题得l 方程为:1y x =+,将其与2214yx −=联立有22114y x y x =+⎧⎪⎨−=⎪⎩,消去y 得:23250x x −−=,解得=1x −或53x =. 则令A ()1,0−,B 5833⎛⎫ ⎪⎝⎭,,则AB=. (2)由题,直线l 存在,故设l 方程为:1y kx =+.将其与2214y x −=联立有:22114y kx y x =+⎧⎪⎨−=⎪⎩,消去y 得:()224250k x kx −−−= 因l 与双曲线有两个交点,则2240Δ80160k k ⎧−≠⎨=−>⎩, 得205k ≤<且24k ≠.设()()1122,,A x y B x y ,. 又设M 坐标为()00x y ,,则12120022,x x y y x y ++==. 因A ,B 在双曲线上,则有()221112012212120222144414y x x x x y y k y y x x y y x ⎧−=⎪+−⎪⇒=⇒=⎨+−⎪−=⎪⎩. 又M ,()01P ,在直线l 上,则001y k x −=.故000014y x x y −=2200040x y y ⇒−+= 由韦达定理有,12224k x x k +=−,12284y y k +=−. 则M 坐标为22444,k k k ⎛⎫ ⎪−−⎝⎭.又0244y k=−,205k ≤<且24k ≠,则01y ≥或04y <−. 综上点M 的轨迹方程为:2240x y y −+=,其中()[)41y ⋃∞∈−∞−+,,. 例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).【解析】(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形, 所以点P 在以O 为圆心,||OP长为半径的圆上,且|||OP OA , 进而动点P 的轨迹方程为2222x y r += (2)设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则03x ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22194x y +=, 得2220000(49)18()9()360k x k y kx x y kx ++−+−−=,因为直线与椭圆相切,所以Δ0=,得22222000018()4(49)9[()4]0k y kx k y kx −−+⋅−−=, 化简,2222200009()(49)()(49)40k y kx k y kx k −−+−++=,进而2200()(49)0y kx k −−+=,所以2220000(9)240−−+−=x k x y k y 所以k 是方程222000(9)240−−+−=x k x y k y 的一个根, 同理1k−是方程222000(9)240−−+−=x k x y k y 的另一个根, 202041()9y k k x −∴⋅−=−,得220013x y +=,其中03x ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(3,2)±±,P 点坐标也满足220013x y +=,综上所述,点P 的轨迹方程为:220013x y +=.(3)动点Q 的轨迹方程是222200x y a b +=+以下是证明: 设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则0x a ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22221x y a b+=, 得2222222220000()2()()0b a k x a k y kx x a y kx a b ++−+−−=,因为直线与椭圆相切,所以Δ0=,得()222222220000222()4()[()]0a k y kx k y kx b a a b −−+⋅−−=,化简,222220002222202()()()()0a b a b a k y kx k y kx b k −−+−++=, 进而220220()()0y x b k a k −−+=,所以222000022()20x k x y k y a b −−+−= 所以k 是方程22200022()20x k x y k y a b −−+−=的一个根, 同理1k−是方程222000022()20x k x y k y a b −−+−=的另一个根,2020221()y k ax b k −∴⋅−=−,得222200x y a b +=+,其中0x a ≠±, ②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(,)a b ±±,P 点坐标也满足222200x y a b +=+,综上所述,点P 的轨迹方程为:222200x y a b +=+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015高考数学专题复习: 轨迹方程
一、直译法
求曲线方程(或动点轨迹方程)的一般步骤:
⑴建系设点:适当建立坐标系,设点),(y x M 为所求曲线上的任意一点 ⑵翻译条件:写出点M 所满足的条件
⑶列出方程:根据所给条件列出方程 ⑷化简方程:把所列的方程化为最简形式
求出动点的轨迹方程后,要注意检验变量的取值范围,如果有失根就要补充说明,如果有增根就要彻底删除
1.已知ABC ∆的两个顶点A 、B 的坐标分别是()()0,6,0,6-,若边AC 、BC 所在直线的斜率之积等于94
-
,
求顶点C 的轨迹方程
2.已知ABC ∆的两个顶点A 、B 的坐标分别是()()4,0,4,0-,若边BC AC ,所在直线的斜率之积等于2,求顶点C 的轨迹方程
3.已知点P 到定点(
)
0,2F 的距离与点P 到定直线22:=x l 的距离之比为22
,求动点P 的轨迹C 的方程
4.已知)0,3(-P ,点R 在y 轴上,点Q 在x 的正半轴上,点M 在直线RQ 上,且0=⋅RM 23
,-=.
当R 在y 轴上移动时,求M 点轨迹方程
以直接建立轨迹方程
两圆外切⇔ 两圆内切⇔ 直线与圆相切⇔
5.在ABC ∆中,)0,3(A 、)0,3(-B ,若三边AC 、AB 、BC 的长成等差数列,求顶点C 的轨迹方程
6.动点P 到定点
)
0,21(M 的距离比点P 到y 轴的距离大21,求点P 的轨迹方程
7.动圆与定圆9)5(:221=++y x O 和圆
1)5(:2
22=+-y x O 都外切,则动圆圆心P 的轨迹方程
8.动圆M 恒过定点()02,-B ,且与定圆
4)2(:2
2=+-y x C 相切,求动圆圆心M 的轨迹方程
9.圆C 与两圆
2222
(4,(4x y x y ++=+=中的一个内切,另一个外切,求圆C 的圆心轨迹方程
11.动圆P 与定圆()643:2
21=-+y x C 内切,和定圆
()43:2
2
2=++y x C 外切,求动圆圆心P 的轨迹方程
12.已知圆8)1(:2
2=++y x C ,定点(1,0)A ,点N 是线段AM 的中垂线与半径CM 的交点,求N 的的轨迹方程
13.已知定点()()()2,12,7,0,7,0C B A -,以C 为一个焦点作过B A ,的椭圆,求另一焦点F 的轨迹方程
三、转移代入法
如果已知一个动点的轨迹方程,要求另一个动点的轨迹方程,通常采用迁移的思想解题,先假设两个动点的坐标,建立所求动点与已知动点坐标之间的关系,代入已知动点所满足的曲线方程即得所求动点的轨迹方程。
14.已知点P 在直线032=+-y x 上运动,定点)2,1(-M ,Q 是线段PM 延长线上的一点,且MQ
PM =,
求点Q 的轨迹方程
15.设P 为双曲线1
422
=-y x 上一动点,O 为坐标原点,M 为线段OP 的中点,求点M 的轨迹方程
16.已知ABC ∆的顶点B 、C 的坐标分别是)0,0(和)0,4(,若AB 边上中线的长为3,求顶点A 的轨迹方程
17.已知线段AB 的两个端点B A ,分别在x 轴、y 轴上滑动,3
=AB ,点P 是AB 上一点,且
1
=AP ,
求点P 的轨迹方程
18.定点)0,4(A 和圆
422=+y x 上的动点B ,若点P 满足PB AP 2=,求点P 的轨迹方程
19.从圆
2522=+y x 上任意一点P 向x 轴作垂线段'PP ,P '为垂足,且线段'PP 上一点M 满足关系式 3
:5:=''P M P P ,求点M 的轨迹方程
20.椭圆C 的方程为1
9182
2=+y x ,F 是它的左焦点,M 是椭圆上一个动点,O 为坐标原点,求OFM ∆
的重心G 的轨迹方程
21.设1F 、2F 是双曲线1
9162
2=-y x 的两个焦点,点P 在双曲线上运动,求21F PF ∆的重心G 的轨迹方程
22.若ABC ∆的两个顶点B 、C 的坐标分别为)0,2(-、)2,0(-,而顶点A 在曲线
132
-=x y 上移动, 求ABC ∆的重心G 的轨迹方程
23.点P 是圆
1622=+y x 上个动点,A )0,12(,当点P 在圆上运动时,线段PA 的中点M 的轨迹方程
代入消参法
24.已知椭圆14162
2=+y x ,求斜率为2的平行弦的中点M 的轨迹方程
25.过抛物线
x y 42=焦点的直线l 与抛物线交于B A ,两点,O 为坐标原点.求AOB ∆的重心G 的轨迹方程
26.倾斜角为π4的直线交椭圆2
21
4x y +=于B A ,两点,求线段AB 中点M 的轨迹方程
27.P 是抛物线
221:x
y C =
上一点,直线l 过点P 且与抛物线C 交于另一点Q .若直线l 与过点P 的切线垂直,
28.()A m
和(,)B n 分别在射线OT OS ,上移动,且
12OA OB ⋅=-,动点P 满足OP OA OB =+. (Ⅰ)求m n ⋅的值
(Ⅱ)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?
29.已知直线l 过椭圆:C 22
22x y +=的右焦点F ,且与C 相交于,P Q 两点.设
1
()
2OR OP OQ =+,
求点R 的轨迹方程
30.ABC ∆中
,AC =,B ()2,0,直线l 方程是1y =-,当
AC
在直线l 上运动时,求ABC ∆外接圆的圆心
P 的轨迹方程
31.求过点()2,0A 的直线被椭圆
222
2=+y x 所截弦的中点的轨迹方程 .
五.轨迹和轨迹方程是两个不同的概念,轨迹是指满足条件的动点所组成的图形,而轨迹方程是指满足条件 的动点的坐标x 、y 之间的关系式,但往往先有轨迹方程我们才可以判定动点的轨迹
32.设圆C 与圆
()1122
=-+y x 外切,与直线0=y 相切,求C 的圆心轨迹
33.已知一动圆与圆
()1004:2
2
=++y x C 相内切,且过()0,4A ,求这个动圆圆心P 的轨迹
()()()().018162.01163612
222≠=-≠=+x x y y y x ()124322=+y x ().442
x y =()6,12736522±≠=+x y x ().262x y =
()().0124722
>=-x y x ()13822=-y x 内切外切()1492
2=-y x ()x y 8102-=()()
5.116251122-≠=+y x y
().121222=+y x ()()0.1481322
<=-y x y ()05214=+-y x ()()()()1
417.36816.1415222222=+=+-=-y x y x y x
()()()()()()()()12322.116921.12120.192519.116916
43182222
2
2222-+==-=++=+=+
-x y y x y x y x y x
()()
()()440824.46232
2
<<-=+=+-x y x y
x ()9834252-=x y ()()()0121
27.22622≠-+=-=x x x y y x
()()0.13,412822>=-=x y x mn ()()()0
2:12,122.02241229222222
222=-+⇒+-=+=⇒=-+-+x y x l k k y k k x k x k x k
()()()21231.2230222=-+-=y x y x ()().192533).0(04322
22
=+<==y x y x y x 或。