新北师大初三数学黄金三角形习题精选

合集下载

2024年北师大版九年级上册数学第四章图形的相似第4节探索三角形相似的条件第4课时黄金分割

2024年北师大版九年级上册数学第四章图形的相似第4节探索三角形相似的条件第4课时黄金分割
那么 BP 的长度是(
A )
A. (12-4 )cm
B. (9-4 )cm
C. (4 -4)cm
D. (4 +4)cm
1
2
3
4
5
6
7
8
5. 【情境题·体育赛事2023济南期中】 2023年第19届杭州亚
运会的会徽“潮涌”将自然奇观与人文精神进行巧妙融
合,其中浪潮设计借助了黄金分割比以给人协调的美感.如




x=
x .∴ = − =

.







∴ BE 与 BC 的比是黄金比.
∴剩余的四边形 BCFE 也是一个黄金矩形.
1
2
3
4
5
6
7
8
3
4
.

5
6
7
8
3星题
发展素养
8. [教材P96想一想变式]当一个矩形的宽长之比为( -
1)∶2时,称这个矩形是黄金矩形,如图,四边形 ABCD
是黄金矩形且



,将矩形 ABCD 剪裁掉一个正方
பைடு நூலகம்

形 ADFE 后,剩余的四边形 BCFE 是否是黄金矩形?请说
明理由.
1
2
3
4
5
6
7
8
D. 3- 或 -1
1
2
3
4
5
6
7
8
7. 【新考向·传统文化2023达州】 如图,乐器上的一根弦 AB
=80 cm,两个端点 A , B 固定在乐器板面上,支撑点 C

专题26 相似三角形中的黄金分割问题专练(一)(解析版)九下数学专题培优训练

专题26 相似三角形中的黄金分割问题专练(一)(解析版)九下数学专题培优训练

专题26 相似三角形中的黄金分割问题专练(一)班级:___________姓名:___________得分:___________一、选择题1.美是一种感觉,当人体的下半身长与身高的比值越接近0.618时越给人一种美感.已知某女士身高160cm,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度约为()A. 6cmB. 10cmC. 4cmD. 8cm【答案】D【分析】本题考查了黄金分割的应用.关键是明确黄金分割所涉及的线段的比.先求得下半身的实际高度,再根据黄金分割的定义求解.【解答】解:根据已知条件得下半身长是160×0.60=96cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:96+y160+y=0.618,解得:y≈8cm.2.已知点P是线段AB的黄金分割点,且AP>PB,则有()A. AB2=AP·PBB. AP2=BP·ABC. BP2=AP·ABD. AP·AB=PB·AP【答案】B【分析】本题考查了黄金分割,理解黄金分割点的概念,找出黄金分割中成比例的对应线段即可.由AP>BP知AP是较长线段,根据黄金分割点的定义,则AP2=BP·AB.【解答】解:∵P为线段AB的黄金分割点,且AP>BP,∴AP2=BP·AB.3.矩形的两边长分别为a,b,下列数据能构成黄金矩形的是()A. a=4,b=√5+2B. a=4,b=√5−2C. a=2,b=√5+1D. a=2,b=√5−1【答案】D【分析】本题主要考查了黄金矩形,记住定义是解题的关键.根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是√5−12的矩形叫做黄金矩形,∴ba =√5−12,∴a=2,b=√5−1.4.已知点C是线段AB的黄金分割点,且AC>BC,AB=200,则AC的长度是()A. 200(√5−1)B. 100(√5−1)C. 100(3−√5)D. 50(√5−1)【答案】B【分析】根据黄金分割的定义得到AC=√5−12AB,把AB=200代入计算即可.本题主要考查了黄金分割的定义:线段上一点把线段分为较长线段和较短线段,若较长线段是较短线段和整个线段的比例中项,即较长线段是整个线段的√5−12倍,则这个点叫这条线段的黄金分割点,难度适中.【解答】解:∵点C是线段AB的黄金分割点,且AC>BC,∴AC=√5−12AB,而AB=200,∴AC=√5−12×200=100(√5−1).5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.某女老师上身长约61.8cm,下身长约94cm,为尽可能达到黄金比的美感效果好,她应穿的高跟鞋的高度大约为(精确到1cm)()A. 4cmB. 5cmC. 6cmD. 7cm 【答案】C【分析】设她应穿的高跟鞋的高度大xcm,利用黄金分割的定义得到61.894+x =√5−12,然后解关于x的方程即可.本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.其中AC=√5−12AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:设她应穿的高跟鞋的高度大xcm,根据题意得61.894+x =√5−12,解得x≈6(cm),答:她应穿的高跟鞋的高度大约6cm(精确到1cm).6.若点C是线段AB的黄金分割点,且AD>BC,则下列说法正确的有()①AB=√5+12AC;②AC=3−√52AB;③AB:AC=AC:BC;④AC≈0.618AB.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据黄金分割的概念和黄金比值进行解答即可.本题考查的是黄金分割的概念,掌握把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.【解答】解:∵点C数线段AB的黄金分割点,∴①AB=√5+12AC,正确;②AC=3−√52AB,错误;③AB:AC=AC:BC,正确;④AC≈0.618AB,正确.二、填空题7.如图,扇子的圆心角为x°,余下的圆心角为y°,x与y的比通常用黄金比来设计,这样的扇子造型美观,若取黄金比为0.6,则x应为________.【答案】135【分析】本题考查了圆心角的概念,线段的比,黄金分割的知识.解题关键是根据题中黄金比的定义得到x=0.6y,则y=53x,再根据周角的定义得到x+y=360,所以x+53x=360,然后解一次方程即可.【解答】解:根据题意得,x=0.6y,∴y=53x而x+y=360°,∴x+53x=360°,∴x=135°.8.已知线段AB=2,P是AB的黄金分割点,且AP>BP,那么AP=______.【答案】√5−1【分析】根据黄金分割的概念、黄金比值为√5−12计算.本题考查了黄金分割的概念,熟记黄金比值为√5−12是解题的关键.【解答】解:∵P是AB的黄金分割点,AP>BP,∴AP=√5−12AB=√5−1,9.如图,已知点C,D都是线段的黄金分割点,如果AB=10.那么CD的长度是______.【答案】10√5−20【分析】根据黄金分割的定义计算.本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.【解答】解:∵点C、D是线段AB的两个黄金分割点,∴AD=BC=√5−12AB=√5−12×10=5√5−5,∴CD=AD+CD−AB=2(5√5−5)−10=10√5−20,10.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P为AB的黄金分割点(AP>PB),如果AB的长度为6cm,那么AP的长度是________cm.【答案】3√5−3【分析】此题考查了黄金分割有关知识,利用黄金分割的定义计算出AP即可.【解答】解:∵P为AB的黄金分割点(AP>PB),AB的长度为6cm,∴AP=√5−12AB=√5−12×6=3√5−3(cm),11.如图,已知线段AB=2,作BD⊥AB,使BD=12AB;连接AD,以D为圆心,BD长为半径画弧交AD于点E,以A为圆心,AE长为半径画弧交AB于点C,则AC长为______.【答案】√5−1【解析】设AB=x,根据题意表示出BD、DE,根据勾股定理求出AD,求出AC与AB 的比值,根据黄金比值进行判断即可.是解题的关键.本题考查的是作图和黄金分割的概念,熟记黄金比的值√5−12×2=1,解::∵AB=2,则BD=DE=12由勾股定理得,AD=√AB2+BD2=√5,则AC=AE=√5−1,AB=√5−1,∴AC=√5−1212.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽,以AB为长的矩形面积为S2,S1______S2(填“>”或“=”或“<”).【答案】=【分析】根据黄金分割的定义可得AP2=BP×AB,得出S1,S2的表达式即可比较S1与S2的大小.本题考查了黄金分割的知识,关键是得出AP2=BP×AB,属于基础题.【解答】解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.三、解答题13.如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.【分析】(1)通过“连直径、证垂直”的方法,证明∠BAP =∠OPA ,即可求解; (2)CF =CE =AC −AE =√20−4=2√5−2,即可求解.本题考查了圆的切线的性质与证明、黄金分割的应用,题目的关键是明确黄金分割所涉及的线段的比.【解答】解:(1)连接OP ,则∠PAO =∠APO ,而△AEP 是由△ABP 沿AP 折叠而得: 故AE =AB =4,∠OAP =∠PAB , ∴∠BAP =∠OPA ,∴AB//OP ,∴∠OPC =90°, ∴BC 是⊙O 的切线;(2)CF =CE =AC −AE =√20−4=2√5−2, CFBC=4√5−24=√5−12, 故:点F 是线段BC 的黄金分割点.14. 如图1,我们已经学过:点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S2S 1,那么称直线l 为该图形的黄金分割线.如图2,在△ABC 中,∠A =36°,AB =AC ,∠C 的平分线交AB 于点D . (1)证明点D 是AB 边上的黄金分割点;(2)证明直线CD 是△ABC 的黄金分割点.【分析】(1)易证△BCD∽△BAC ,则有BC AB =BDBC,再由BC =CD =AD 可得AD AB =BDAD ,由此可得D 是AB 边上的黄金分割点;(2)设△ABC 的边AB 上的高为h ,则S △ADC =12AD ⋅ℎ,S △DBC =12DB ⋅ℎ,S △ABC =12AB ⋅ℎ,即可得到S △ADCS△ABC=AD AB ,S △DBC S △ADC=BD AD .由(1)得AD AB=BDAD,即可知S △ADCS△ABC=S△DBC S △ADC,由此可得CD 是△ABC 的黄金分割线.本题主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的面积公式,需要注意的是:当比例顺序不确定时,应分情况讨论,避免出现漏解的现象. 【解答】解:(1)点D 是边AB 上的黄金分割点,理由如下: ∵∠A =36°,AB =AC ,∴∠B =∠ACB =72°. ∵CD 平分∠ACB ,∴∠ACD =∠DCB =36°, ∴∠BDC =∠B =72°,∠ACD =∠A =36°, ∴BC =DC =AD . ∵∠A =∠BCD ,∠B =∠B , ∴△BCD∽△BAC , ∴BC AB =BD BC. ∴AD AB=BD AD.∴D 是AB 边上的黄金分割点;(2)直线CD 是△ABC 的黄金分割线,理由如下: 设△ABC 的边AB 上的高为h ,则S △ADC =12AD ⋅ℎ,S △DBC =12DB ⋅ℎ,S △ABC =12AB ⋅ℎ, ∴S △ADC S △ABC=AD AB ,S △DBC S △ADC=BDAD .∵D是AB的黄金分割点,∴ADAB =BDAD,∴S△ADCS△ABC =S△DBCS△ADC.∴CD是△ABC的黄金分割线.15.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足MGMN =GNMG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB= AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,求△ADE的面积.【分析】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=√5−12AB≈0.618AB,并且线段AB的黄金分割点有两个,也考查了等腰三角形的性质.作AH⊥BC于H,如图,根据等腰三角形的性质得到BH=CH=12BC=2,则根据勾股定理可计算出AH=√5,接着根据线段的“黄金分割”点的定义得到BE=√5−12BC=2√5−2,则计算出HE=2√5−4,然后根据三角形面积公式计算.【答案】解:∵D,E为BC的两个“黄金分割”点,∴DCBC =BDDC=√5−12,BEBC=CEBE=√5−12,∴DCBC =BDDC=BEBC=CEBE,∴DC=BE,∴BD=CE,作AH⊥BC于H,如图,∵AB=AC,BC=2,∴BH=CH=12∴DH=HE,在Rt△ABH中,AH=√AB2−BH2=√32−22=√5,∵D,E是边BC的两个“黄金分割”点,BC=2(√5−1)=2√5−2,∴BE=√5−12∴HE=BE−BH=2√5−2−2=2√5−4,∴DE=2HE=4√5−8×(4√5−8)×√5=10−4√5.∴S△ADE=1216.取长为2的定线段AB为边,作正方形ABCD,P为AB的中点,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AFEM,点M落在AD上,如图所示。

4.4.4+探索三角形相似的条件——黄金分割+课件++2024-—2025学年北师大版数学九年级上册

4.4.4+探索三角形相似的条件——黄金分割+课件++2024-—2025学年北师大版数学九年级上册
C点是AB的黄金分割点吗?
(小组讨论)
巩固训练
1.据有关实验测定,当室温与人体正常体温(37℃)
的比值为黄金比时,人体感到最舒适,这个室温约


(精确到1℃)
C
A.21℃
B.22℃
C.23℃
D.24℃
课堂小结
1.什么是黄金分割
2.如何去确定黄金分割点或黄金比
3.要用数学美去装点和美化生活
测试评价
2.黄金比的理解及黄金点的画法和验
证(难点)
感悟导入
黄金分割与正五角星
正五角星形有庄严雄健之美与黄金分割什
么关系呢?
自主探究
自学课本95-96页
时间:(3分钟)
任务:了解黄金分割定义、黄金分割点、黄金比
一个五角星如图4-18所示。
(1)从图中找出相等的角,相等的线段
K
C
L
A
B
H
D
F
(2)从图中找出两对相似比不同的相似三角形
在人体下半身与身高的比例上,越接近0.6,越
给人美感,遗憾的是,即使是身体修长的芭蕾舞
演员也达不到如此的完美。某女士身高1.65米,
下半身0.9米,她应该选择多高的高跟鞋看起来
更美呢?
• 生活中的0.618
打开地图,你就会发现那些好茶产地大多位于北纬30度左右。特别
是红茶中的极品“祁红”,产地在安徽的祁门,也恰好在此纬度上
矩形ABCD的宽与长的比是黄金比吗?


.
A
E
B



=
,且四边形AEFD为正方形
∴BC=AE

��

=


∴点E是AB的黄金分割点

黄金三角形例题

黄金三角形例题

黄金三角形例题一、在黄金三角形中,若较长边与较短边的比为φ(黄金比例),且较短边长为1,则较长边长为多少?A. 1.618B. 1.414C. 1.732D. 2.000(答案:A)二、黄金三角形的两个锐角中,较小的一个角度大约是多少度?A. 36°B. 45°C. 60°D. 72°(答案:A)三、若一个三角形的三边长成等比数列,且比例为黄金比例,这个三角形被称为?A. 等腰三角形B. 等边三角形C. 黄金三角形D. 直角三角形(答案:C)四、黄金三角形的面积与其外接圆的半径之间有何关系?(假设较短边长为a)A. 面积与半径成正比B. 面积是半径的平方的φ倍C. 面积与半径的平方成正比,但非φ倍D. 无直接关系(答案:C)五、在黄金三角形中,若已知较长边长为a,较短边长为b,则第三边 (斜边)的长度约为?A. a + bB. a - bC. √(a2 + b2)D. √(a2 + ab)(答案:D)六、黄金三角形的一个重要性质是其内角的特定比例关系,以下哪个描述是正确的?A. 两个锐角之和等于直角B. 较大锐角是较小锐角的两倍C. 较大锐角与较小锐角之比等于边长比φD. 较大锐角与直角边所对锐角互补(答案:B)七、黄金三角形在建筑设计中的应用主要体现在?A. 增加结构稳定性B. 美学比例,使设计更具吸引力C. 减少材料使用D. 提高建筑高度(答案:B)八、若一个黄金三角形的较长边被延长,保持黄金比例不变,形成新的三角形,则新三角形也是黄金三角形吗?A. 一定是B. 一定不是C. 可能是,取决于延长的长度D. 无法确定(答案:A)。

探索三角形相似的条件4.4.4+黄金分割+同步练习+2024-2025学年北师大版九年级数学上册

探索三角形相似的条件4.4.4+黄金分割+同步练习+2024-2025学年北师大版九年级数学上册

4.4 探索三角形相似的条件课时4 黄金分割题型1 黄金分割的定义1、已知P为线段AB的黄金分割点,且AP<PB,则()A.AP2=AB∙PBB.AP2=AB∙PBC.PB2=AP∙ABD.AP2+ BP2=AB22、如果C是线段AB的黄金分割点,并且AC>CB,AB=1,那么AC的长度为()A.23 B.12C.√5−12D.3−√523、已知点C是线段AB的黄金分割点,且AB=6cm,则BC的长为( )A.(3√5−3)cmB.(9−3√5)cmC.(3√5−3)cm或(9−3√5)cmD. (9−3√5)cm或(6√5−6)cm4、宽与长的比是√5−12(约0.618)的矩形叫黄金矩形,矩形的长与宽分别为a和b,下列数据能构成黄金矩形的是( )A.a=4,b=√5+2B.a=4,b=√5−2C.a=2,b=√5+1D.a=2,b=√5−15、定义:如图1,点C在线段AB上,若满足AC2=BC⋅AB,则称点C为线段AB的黄金分割点。

如图2,在△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长。

题型2 黄金分割的应用6、主持人主持节目时,站在舞台的黄金分割点处最自然得体。

如图所示,如果舞台AB的长为12米,一名主持人现在站在A处,则她要到达最理想的位置至少走( )A.(18−6√5)米B.(6√5−6)米C. (6√5+6)米D. (18−6√5)米或(6√5−6)米7、某种乐器的弦AB长为120cm,点A、B固定在乐器面板上,弦AB之间有一个支撑点C,且点C是AB的黄金分割点(AC>BC),则AC的长为( )A.(120−30√5)cmB.(160−60√5)cmC.(60√5−120)cmD.(60√5−60)cm8、宽与长的比是√5−1(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调2和匀称的美感。

4.4.4 黄金分割九年级上册数学北师大版

4.4.4 黄金分割九年级上册数学北师大版

较短线段
较长线段
C
A
注意:
黄金分割是一种分割线段的方法,每条线段有两个
黄金分割点.如图,点C和点D都是线段AB的黄金分

割点,

=


=
5−1
,
2

=


=
5−1
,并且AD=BC
2
,AC=BD.
A
D
C
B
古希腊时期的巴台农神庙
古希腊时期的帕台农神庙
想一想
如果把图1中用虚线表示的矩形画成图2中的 ABCD
黄金分
割点
黄金比
一条线段有两个
黄金分割点
较长线段
原线段

较短线段
较长线段

5−1
2
(3)在AB上截取AC=AE;
点C即为所求的黄金分割点.
A
D
E
C
B
方法二:如图,已知线段AB,
(1)以线段AB为边作正方形ABCD;
F
G
(2)取AD的中点E,连接EB;
(3)延长DA至点F,使EF=EB;
A
(4)以AF为边作正方形AFGH;
E
点H即为所求的黄金分割点.
D
H
B
C
课堂小结
定义




则BC=1-x . ∴ x2=1×(1-x). 即x2+x-1=0
解这个方程,得1 =

所以,黄金比

A
=
−1+ 5
, 2
2
=
−1− 5
2 (不合题意,舍去).
5−1
≈0.618.

初中数学相似三角形之黄金分割专项练习题(附答案详解)

初中数学相似三角形之黄金分割专项练习题(附答案详解)
【详解】
解:由于D为线段AB=2的黄金分割点,
且AD>BD,
则AD= ×2=( )cm
∴BD=AB−AD=2−( )=
故选D.
【点睛】
本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的 ,较长的线段=原线段的 .
2.B
【解析】
【分析】
由AP>BP知PA是较长线段,根据黄金分割点的定义,则AP2=BP•AB.
5.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为()
A.2 ﹣2B.6﹣2√5C. D.4﹣2
6.已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()
A. B. C. D.
7.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()
【详解】
解:∵P为线段AB的黄金分割点,且AP>BP,
∴AP2=BP•AB.
故选:B.
【点睛】
本题考查了黄金分割,理解黄金分割点的概念,找出黄金分割中成比例的对应线段即可.
3.D
【解析】
【分析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
【详解】
解:当AC<BC时,BC= AB= ,
当AC>BC时,BC= = ,
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;
(2)请你说明:三角形的中线是否是该三角形的黄金分割线.
21.把宽与长之比为 的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调、匀称的美感,如图,四边形 是黄金矩形,如果在这个黄金矩形里画一个正方形,那么剩下的矩形(矩形: )还是黄金矩形吗?请证明你的结论.

九年级数学上册4.4探索三角形相似的条件第4课时线段的黄金分割习题课件新版北师大版精品

九年级数学上册4.4探索三角形相似的条件第4课时线段的黄金分割习题课件新版北师大版精品

•最新中小学课件
•6
知识点2:黄金分割的应用 5.根据生物学知识得到当气温与人体正常体温(37 ℃)的比值为黄金数
时人体最舒适,那么这个气温约是________ ℃.(精确到整数) 23
•最新中小学课件
•7
6.要设计一座2 m高的维纳斯女神雕像(如图),使雕像的上部AC(肚脐 以上)与下部BC(肚脐以下)的高度比,等于下部与全部的高度比,即点 C(肚脐)就叫做线段AB的黄金分割点,试求出雕像下部设计的高 度.(结果精确到0.001)
的正方形的面积,S2表示以AB为长,PB为宽的矩形的面积,则S1,S2 的大小关系为( B )
A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定
•最新中小学课件
•5
4.如图,△ ABC 中,AB=AC,∠B=2∠DCB=72° ,△ ABC 与△ BDC BC 是黄金三角形 , 即 D 是线段 AB 的黄金分割点 (AD>DB) , 则 AB = 5-1 ________ 2 .
•最新中小学课件
•14
10.(1)操作:如图所示.
(2)探究:四边形 EBCF 是黄金矩形.理由:∵四边形 AEFD 是正方形, ∴∠AEF=90° .∴∠BEF=90° .∵四边形 ABCD 是矩形,∴∠B=∠C= 90° .∴∠BEF=∠B=∠C=90° .∴四边形 EBCF 是矩形.设 CD=a,AD 2( 5+1) b 5-1 CF a-b a 2 =b,则a= 2 ,∴EF = b =b-1= -1= -1= 4 5-1 5-1 2 .∴矩形 EBCF 是黄金矩形.
•最新中小学课件
•8
6.设维纳斯女神雕像下部设计的高度为 x m,那么雕像上部的高度为(2 2-x x -x)m.依题意,得 x =2,解得 x1=-1+ 5≈1.236,x2=-1- 5(不 合题意,舍去). 经检验,x=-1+ 5是原方程的根.答:维纳斯女神 雕像下部设计的高度约为 1.236 m.

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年九年级数学下册第一章《直角三角形的边角关系》复习题一、单选题1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是()A .34B .43C .35D .452.定义:圆心在原点,半径为1的圆称为单位圆.如图,已知点()(),0,0P x y x y >>在单位圆上,则sin POA ∠等于()A .x B .yC .x y D .y x 3()A .3B .1C .2D .124.在Rt △ABC 中,∠C =90°,如果∠A =α,AB =3,那么AC 等于()A .3sinαB .3cosαC .3sin αD .3cos α5.tan60°的值等于()A .1BC .D .26.在Rt △ABC 中,∠C=90°,∠A=α,BC=m ,则AB 的长为()A .m sinαB .C .m cosαD .7.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为()A .12B .5C .35D .108.在Rt △ABC 中,∠C=90°,BC=6,sinA=35,则AB=()A .8B .9C .10D .129.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为()米.A .100cos 20︒B .100cos 20︒C .100sin 20︒D .100sin 20︒10.在平面直角坐标系xOy 中,已知点P (1,2),点P 与原点O 的连线与x 轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A .2B .12C .2D 二、填空题11.计算:012⎛⎫ ⎪⎝⎭–2cos60°=.12.cos30°+sin45°=13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AD=95,BD=165,则sinB=.14.如图,已知斜坡AC 的坡度i =1:2,小明沿斜坡AC 从点A 行进10m 至点B ,在这个过程中小明升高m.三、计算题15.计算:0(3)4sin601π-+--16.计算:0(3)22cos30π---︒.四、解答题17.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东60 的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东30 的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A 处?请说明理由.(参1.732=)18.如图,升国旗时,某同学站在离国旗20m 的E 处行注目礼(即BE=20m ),当国旗升至旗杆顶端A 时,该同学视线的仰角∠ADC=42°,已知他的双眼离地面的高度DE=1.60m .求旗杆AB 的高度(结果精确到0.01m ).参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9004.19.如图,小明站在A 处,准备测量教学楼CD 的高度.此时他看向教学楼CD 顶部的点D ,发现仰角为45°.他向前走30m 到达A '处,测得点D 的仰角为67.5°.若小明的身高AB 为1.8m (眼睛与头顶的距离忽略不计),则教学楼CD 的高度为多少?(计算结果精确到0.1m ,参考数据:67.50.924sin ︒≈,67.50.383cos ︒≈,67.5 2.414tan ︒≈,1.414≈)20.先化简,再求代数式262393a a a a -÷+--的值,其中a =tan60°﹣6sin30°.21.先化简,再求代数式23211m m m m m m-+-÷-的值,其中60230m tan sin =︒-︒五、综合题22.五一期间,数学兴趣小组的几位同学到公园游玩,看到公园内宝塔耸立,几人想用所学知识测量宝塔的高度.为此,他们在距离宝塔中心18m 处(AC =18m )的一个斜坡CD 上进行测量.如图,已知斜坡CD 的坡度为i =1斜坡CD 长12m ,在点D 处竖直放置测角仪DE ,测得宝塔顶部B 的仰角为37°,量得测角仪DE 的高为1.5m ,点A 、B 、C 、D 、E 在同一平面内.(1)求点D 距地面的高度;(2)求宝塔AB 的高度.(结果精确到0.1,参考数据;sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)23.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(参考数据:40400.766sin ︒︒≈≈,,400.839tan ︒≈,26.60.448sin ≈ ,26.60.89426.60.500cos tan ︒︒≈≈,3 1.732≈)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10 后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.答案解析部分1.【答案】A【解析】【解答】解:在△ABC 中,∵AC=3,BC=4,AB=5,又因32+42=52,即AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°,∴tanB=34AC BC =.故答案为:A.【分析】首先根据勾股定理的逆定理判断出△ABC 是直角三角形,再根据正切函数的定义即可得出答案.2.【答案】B【解析】【解答】解:过P 作PE OA ⊥于E ,则PO=1,PE=y,OE=x,∴sin 1PE yPOA y PO ∠===,故答案为:B.【分析】过P 作OA 的垂线构造直角三角形,利用正弦的定义可得答案.3.【答案】C 【解析】【解答】解:∵sin45°=2.故答案为:C.【分析】根据特殊角的三角函数值即可求得答案.4.【答案】B 【解析】【解答】解:如图,∵ACcosαAB=,∴AC=3cosα.故答案为:B.【分析】根据余弦等于邻边比斜边即可求解.5.【答案】C 【解析】【解答】C 。

最新北师版九年级初三数学上册《三边成比例的两个三角形相似》同步练习题

最新北师版九年级初三数学上册《三边成比例的两个三角形相似》同步练习题

第3课时 三边成比例的两个三角形相似1、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第三个数是 (只需写出一个即可).2、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB 上找一点E ,使△ADE 与原三角形相似,那么AE= 。

3、如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,那么可添加的条件是4、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).5、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是 (把你认为正确的说法的序号都填上).6、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 或时,使得由点B 、O 、C 组成的三角形与ΔAOB 相似(至少写出两个满足条件的点的坐标).7、下列命题中正确的是 ( )①三边对应成比例的两个三角形相似②二边对应成比例且一个角对应相等的两个三角形相似③一个锐角对应相等的两个直角三角形相似④一个角对应相等的两个等腰三角形相似A 、①③B 、①④C 、①②④D 、①③④8、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF =9、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是 ( )A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD,AB=ACD. AD∶AC=AE∶AB10、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A ΔADE∽ΔAEFB ΔECF∽ΔAEFC ΔADE∽ΔECFD ΔAEF∽ΔABF11、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A 1对B 2对C 3对D 4对12、如图,在大小为4×4的正方形网格中,是相似三角形的是()①②③④A.①和②B.②和③C.①和③D.②和④.13、如图,在正方形网格上有6个斜三角形:①ΔABC,②ΔBCD,③ΔBDE,④ΔBFG,⑤ΔFGH,⑥ΔEFK.其中②~⑥中,与三角形①相似的是()(A)②③④(B)③④⑤(C)④⑤⑥(D)②③⑥14、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A1B1C1,使ΔA1B1C1与格点三角形ABC相似(相似比不为1).15、如图,ΔABC中,BC=a.(1)若AD 1=31AB ,AE 1=31AC ,则D 1E 1= ; (2)若D 1D 2=31D 1B ,E 1E 2=31E 1C ,则D 2E 2= ; (3)若D 2D 3=31D 2B ,E 2E 3=31E 2C ,则D 3E 3= ; ……(4)若D n -1D n =31D n -1B ,E n -1E n =31E n -1C ,则D n E n = .16、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.17、已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC , Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似?为什么?学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。

最新北师大版九年级数学上册《黄金分割》精品ppt教学课件

最新北师大版九年级数学上册《黄金分割》精品ppt教学课件

10.宽与长的比是
5-1
(
2
综合能力提升练
拓展探究突破练
约 0.618 )的矩形叫做黄金矩形,黄金矩形蕴
藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样
的方法画出黄金矩形:作正方形 ABCD,分别取 AD,BC 的中点 E,F,连
接 EF:以 F 为圆心,以 FD 为半径画弧,交 BC 的延长线于点 G;作 GH
拓展探究突破练
-9-
9.“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使
画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小
狗,按照黄金分割的原则,应该使小狗置于图中的位( B )
A.①
B.②
C.③
D.④
第四章
第4课时 黄金分割
知识要点基础练
∴梯形 ABGH 与梯形 GCDH 的上、下底分别相等,高也相等,
1
∴S 梯形 ABGH=S 梯形 GCDH=2S 梯形 ABCD.
∴直线 GH 不是直角梯形 ABCD 的黄金分割线.
第四章
第4课时 黄金分割
归纳总结、拓展提升
知识要点基础练
综合能力提升练
通过这节课的学习,
你有哪些收获?
拓展探究突破练
扇子比较美观.若取黄金比为0.6,则α为( B )
A.216°B.135°
C.120° D.108°
第四章
第4课时 黄金分割
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
6.自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,点P为AB的黄金分
割点( AP>PB ),如果AB的长度为10 cm,黄金比为0.618,那么PB的长度为 3.82 cm.( 结果

黄金分割(知识讲解)九年级数学上册基础知识讲与练(北师大版)

黄金分割(知识讲解)九年级数学上册基础知识讲与练(北师大版)

专题4.4 黄金分割(知识讲解)【学习目标】1、理解黄金分割的概念;2、会找一条线段的黄金分割点;3、会判断一个点是否为一条线段的黄金分割点。

【要点梳理】要点一:黄金分割的定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BCAB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.特别说明:51AC AB -=≈0.618AB(叫做黄金分割值). 要点二: 作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.特别说明:一条线段的黄金分割点有两个.要点三: 黄金三角形和黄金矩形黄金三角形有2种:1、等腰三角形,两个底角为72°,顶角为36°;这种三角形既美观又标准。

这样的三角形的底与一腰之长之比为黄金比:; 2、等腰三角形,两个底角为36°,顶角为108°;这样的三角形的一腰与底之长之比为黄金比:黄金矩形:黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的短边为长边的 0.618倍。

黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。

在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子。

达芬奇的脸符合黄金矩形,同样也应用了该比例布局。

512512512【典型例题】类型一、黄金分割的作法1.作出线段AB 的黄金分割点(不写作法,保留作图痕迹)【分析】作法:(1)延长线段AB 至F ,使AB BF =,分别以A 、F 为圆心,以大于等于线段AB 的长为半径作弧,两弧相交于点G ,连接BG ,则BG AB ⊥,在BG 上取点D ,使2ABBD =;(2)连接AD ,在AD 上截取DE DB =.(3)在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.解:如图,点C 即为所求.【点拨】本题主要是考查了黄金分割点的概念,熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解和作图.【变式1】黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.【分析】(1)过点B 作AB 的垂线,并用圆规在垂线上截取BC ,使BC=12AB ,连接AC ,以C 为圆心,BC 为半径画弧,交AC 于点D ,以A 为圆心,AD 为半径画弧,交AB 于E ,则点E 即为线段AB 的黄金分割点;(2)设BC=a ,则AB=2a ,,通过计算证明2AE BE AB =⋅即可解决问题.解:(1)如图:点E 即为所求;(2)设BC=a ,则AB=2a ,, ∴CD=BC=a ,-a ,∴22226)AE a a =-=-,222(2)6AB BE a a a a ⋅=⋅+=-, ∴2AE BE AB =⋅,∴点E 是线段AB 的黄金分割点.【点拨】此题考查黄金分割,黄金分割的作图,勾股定理,正确掌握黄金分割的知识并熟练应用解决问题是解题的关键.【变式2】回顾:“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用,通.的矩形叫做“黄金矩形” . 若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的“黄金矩形ABEF ”,请在BC 边上作出这个黄金矩形的顶点E .(要求:尺规作图,保留作图痕迹.如用铅笔作图,必须用黑色水笔把线条描清楚.)【分析】此题主要是确定矩形的长边,根据黄金比,只需要保证较短的边是较长的边倍即可,这里可以熟练的运用勾股定理进行分析.解:第一步,用圆规作出BC的中点H,则由题意可知112BH BC==,第二步,连接AH,以H为圆心,以BH为半径画弧交AH于O,由勾股定理知AH OH=HB所以AO=AH-OH1,第三步,以A为圆心,以AO为半径画弧交AD于F,过F点作FE∴BC交BC于E,∴AF=AO1,∴AFAB=故矩形ABEF即为所求.【点拨】本题考查了作图-应用与设计,矩形的性质,正方形的性质等知识,此题主要类型二、由黄金分割点求值2.(1)已知a=4.5,b=2,c是a,b的比例中项,求c;(2)如图,C 是AB 的黄金分割点,且AC >BC ,AB =4,求AC 的长.【答案】(1)3c =±;(2)2 【分析】(1)由c 是a ,b 的比例中项,可得29c ab ==,由此求解即可; (2)根据黄金分割点的定义进行求解即可. 解:(1)∴a =4.5,b =2,c 是a ,b 的比例中项,∴29c ab ==, ∴3c =±;(2)∴C 是AB 的黄金分割点,且AC >BC ,∴2AC AB ==. 【点拨】本题主要考查了黄金分割点以及比例中项,正确理解比例中项和黄金分割点的定义是解题的关键.【变式1】如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求AM DM ,的长;(2)点M 是AD 的黄金分割点吗?为什么?【答案】(1)AM 1,DM =32)是,理由见分析 【分析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD =,则1AM AF =,3DM AD AM =-=(2)根据(1)中的数据得:AM AD =M 是AD 的黄金分割点.解:(1)在Rt APD 中,1AP =,2AD =,由勾股定理知PD1AM AF PF AP PD AP ∴==-=-,3DM AD AM =-=故AM 1,DM 的长为3 (2)点M 是AD 的黄金分割点.由于AMAD= ∴点M 是AD 的黄金分割点.【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM ,DM 的长,然后求得线段AM 和AD ,DM 和AM 之间的比,根据黄金分割的概念进行判断.【变式2】如图,设线段AC =1.(1)过点C 画CD∴AC ,使CD 12=AC ;连接AD ,以点D 为圆心,DC 的长为半径画弧,交AD 于点E ;以点A 为圆心,AE 的长为半径画弧,交AC 于点B .(2)在所画图中,点B 是线段AC 的黄金分割点吗?为什么?【答案】(1)作图见分析;(2)是,理由见分析 【分析】(1)根据几何语言画出对应的几何图形;(2)设AC =1,则DE =DC 12=,利用勾股定理得到AD AE则AB B 是线段AC 的黄金分割点. 解:(1)如图,点B 为所作;(2)点B 是线段AC 的黄金分割点.理由如下:设AC =1,则CD 12=,∴DE =DC 12=,=∴AE =AD ﹣DE 12,∴ABBC ,BC AB =21AB AC == 即BC ABAB AC=, ∴点B 是线段AC 的黄金分割点. 【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.求出线段长是解决问题的关键类型三、证明黄金分割点3.已知线段MN = 1,在MN 上有一点A ,如果AN=352,求证:点A 是MN的黄金分割点【分析】首先得出AM 的长,进而得出2AM AN MN =求出即可. 证明:作下图:线段1MN =,在MN 上有一点A ,AN , 1AM ∴== 22AM ∴= 2AM AN MN ∴=,∴点A 是MN 的黄金分割点.【点拨】本题主要考查了黄金分割,解题的关键是根据已知得出2AM AN MN =. 【变式1】如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF =EB .类似的,在AB 上折出点M 使AM =AF .则M 是AB 的黄金分割点吗?若是请你证明,若不是请说明理由.【答案】是,证明见分析【分析】设正方形ABCD的边长为2,根据勾股定理求出AE的长,再根据E为BC的中点和翻折不变性,求出AM的长,二者相比即可得到黄金比.解:M是AB的黄金分割点,理由如下:∴正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE∴EF=BE=1,∴AF=AE﹣EF=1,∴AM=AF=1,∴AM:AB1):2,∴点M是线段AB的黄金分割点.【点评】本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫)叫做黄金比.【变式2】阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.=的矩形叫黄金矩形.如图1,已知黄金矩形ABCD的宽AB(1)求黄金矩形ABCD 中BC 边的长;(2)如图2,将图1中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论.【答案】是黄金矩形,见分析 【分析】(1)根据黄金矩形的定义,列出比例式计算即可.(2)求得CD ,EC =BC -AB EC DC =即可.解:(1)∴ 的矩形叫黄金矩形,黄金矩形ABCD 的宽AB =∴AB BC ==,∴BC == (2)矩形DCEF 是黄金矩形.理由如下:∴ 黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,∴CD =AB =,EC =BC -AB∴EC DC=,故矩形DCEF 是黄金矩形.【点拨】本题考查了黄金矩形,二次根式的分母有理化,熟练掌握有理化的方法,理解定义是解题的关键.类型四、黄金分割点的应用4.梯形ABCD 中,AD//BC ,对角线AC 和BD 相交于点O ,G 1和G 2分别为三角形AOB 和三角形COD 的重心.(1)求证:G 1G 2//AD ;(2)延长AG 1交BC 于点P ,当P 为BC 的黄金分割点时,求ADBC的值.【答案】(1)证明见分析;(2)AD BC 【分析】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .易得EF 为AOD △的中位线,故EF//AD ,根据重心的性质可得12121=2EG FG BG CG =,即EF //12G G ,即可得证; (2)根据点P为黄金分割点,可得PC BC 解:(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .因为1G 、2G 为三角形AOB 和三角形COD 的重心, 所以点E 、F 为AO 、DO 的中点, 所以EF 为AOD △的中位线, 所以EF//AD , 又因为12121=2EG FG BG CG =, 所以EF //12G G , 所以12G G //AD . (2)因为点P 为黄金分割点,所以PC BC 又因为RQ 是中位线,所以RQ//BC ,12RQ BC =, 因为AD//PQ , 所以1=2PQ DQ RO BO AD OA OD DO ==,所以AD BC 【点拨】本题考查重心的定义和性质、三角形中位线的性质、黄金分割,掌握重心的性质是解题的关键.【变式1】如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】88##88+885【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离即可解答.解:设腰节到脚尖的距离为x cm ,根据题意,得:176x =,解得:88x =,∴腰节到脚尖的距离为(88)cm ,故答案为:88.=较长线段:全线段是解答的关键.【变式2】(1)数学活动一的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,都采用了黄金矩形的设计.在数学活动课上,小红按如下步骤折叠出一个矩形:第一步,在一张矩形纸片的一端,利用图∴的方法折出一个正方形ABCD ,然后把纸片展平;第二步,如图∴,把这个正方形ABCD 对折成两个完全重合的矩形,再把纸片展平; 第三步,如图∴,折出内侧矩形EFBC 的对角线CF ,并把CF 折到图中所示FN 处; 第四步,如图∴,展平纸片,按照点N 折出NM ,得到矩形BNMC .若2AD =,请证明矩形BNMC 是黄金矩形.(2)数学活动二如图∴,点C 在线段AB 上,且满足::AC BC BC AB =,即2BC AC AB =⋅,此时,我们说点C 是线段AB 的黄金分割点,且通过计算可得BC AB =.小红发现还可以从活动一的第三步开始修改折叠方式,如图∴,折出右侧矩形EFBC 的对角线EB ,把AB 边沿BG 折叠,使得A 点落在对角线BE 上的K 点处,若2AD =,请通过计算说明G 点是AD 的黄金分割点.【答案】(1)证明见分析,(2)证明见分析【分析】(1)由正方形ABCD 的边长为2,根据折叠可知FB ,由勾股定理可得FC ,易得出BN 的值,再求BN :BC 的值即可判断;(2)如图,连接,GE 设,AG x 则,2,GK x GD x 再利用轴对称的性质与勾股定理求解52,KE 再利用勾股定理建立方程求解x ,从而可得答案.证明:(1)根据第一步折叠可知,ABCD 是正方形,由正方形边长为2, 根据第二步可知,1,FB在∴FCB 中,根据勾股定理, 得22215,FC 根据第三步可知,5,FCFN ∴51,BN∴ 51.2BNBC ∴矩形BNMC 是黄金矩形.(2)如图,连接,GE 正方形的边长2,AD由对折可得:1,2,,90,AFBF CE DE BA BK AG GK A GKB 22215,52,90,BE EK GKE设,AG x,2,GK x GD x所以由勾股定理可得:22222152,x x解得:1,x = 51,2AGAD 所以G 点是AD 的黄金分割点. 【点拨】本题考查的是成比例线段,黄金分割点的含义,正方形的性质,轴对称的性质,勾股定理的应用,理解题意利用轴对称的性质逐步计算是解本题的关键.。

【教育资料】备战中考数学(北师大版)巩固复习三角形(含解析)学习精品

【教育资料】备战中考数学(北师大版)巩固复习三角形(含解析)学习精品

2019备战中考数学(北师大版)巩固复习-三角形(含解析)一、单选题1.已知三角形的两边长分别为3cm和8cm,则该三角形的第三边的长可能是( )A. 4cmB. 5cmC. 6cmD. 11cm2.如图.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为()A. 3个B. 4个C. 5个D. 6个3.如图,已知A.D.C.F在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF ,还需要添加一个条件是()A. BC∥EFB. ∠B=∠FC. AD=CFD. ∠A=∠EDF4.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ 时,连接PQ交AC于点D,下列结论中不一定正确的是()A. PD=DQB. DE=ACC. AE=CQD. PQ⊥AB5.不能确定△ABC与△DEF全等的是()A. AC=DF,AB=DE,BC=EF,B. AB=DE,∠A=∠D,BC=EFC. AC= DF,∠A=∠D,∠C=∠FD. AC= DF,∠B=∠E,∠A=∠D6.如图已知,AC=AD,BC=BD,便能知道∠ABC=∠ABD.这是根据什么理由得到的,小芳想了想,马上得出了正确的答案.你猜想小芳说的依据是()A. SASB. SSAC. ASAD. SSS7.根据下列已知条件,能唯一画出△ABC的是()A. AB=3,BC=4,AC=8B. AB=4,BC=3,∠A=30°C. ∠A=60°,∠B=45°,AB=4D. ∠C=90°,AB=68.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为( )A. 25°B. 30°C. 15°D. 30°或15°9.三角形三边长分别是6,2a﹣2,8,则a的取值范围是()A. 1<a<2B. <a<2C. 2<a<8D. 1<a<4二、填空题10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2,则S2=________。

4.4 探索三角形相似的条件 九年级数学北师大版上册课时优化训练(含答案)

4.4 探索三角形相似的条件 九年级数学北师大版上册课时优化训练(含答案)

4.4探索三角形相似的条件——九年级数学北师大版(2012)上册课时优化训练1.在和中,,,,,那么的度数是( )A. B. C. D.2.如图,中,,,.将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B.C. D.3.如图所示,给出下列条件:①;②;③;④.其中能够判定的个数为( )A.1B.2C.3D.44.如图,点E是菱形的边上一点,连接并延长,交的延长线于点F.已知,,则的长为( )A.6B.12C.9D.4.55.如图,点D为边AB上任一点,交AC于点E,连接BE,CD相交于点F,则下列等式中不成立的是( )A. B. C. D.6.如图,在菱形中,延长至点F,使得,连接交于点E.若,则菱形的周长为( )A.12B.16C.20D.247.在矩形ABCD中,,,P是AD上的动点,于E,于F,则的值为( )A. B.2 C. D.18.如图所示,在中,D为中点.E为上一点,,和相交于点F,则( )A. B.2 C.3 D.49.在中,分别交AB,AC于点M,N;若,,,则MN的长为______.10.如图,在中,点E在上,交于点F.若,则的值为______.11.如图,正方形的对角线,相交于点O,点E是的中点,点F是上一点.连接.若,则的值为______.12.如图,在三角形纸板ABC中,,,,P是AC上一点,过点P沿直线剪下一个与相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是___________.13.如图,四边形ABCD为菱形,点E在AC的延长线上,.(1)求证:;(2)当,时,求AE的长.14.一块材料的形状是锐角三角形,下面分别对这块材料进行课题探究:课本再现:(1)在图1中,若边,高,把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在,上,这个正方形零件的边长是多少?类比探究(2)如图2,若这块锐角三角形材料可以加工成3个相同大小的正方形零件,请你探究高与边的数量关系,并说明理由.拓展延伸(3)①如图3,若这块锐角三角形材料可以加工成图中所示的4个相同大小的正方形零件,则的值为_______(直接写出结果);②如图4,若这块锐角三角形材料可以加工成图中所示的相同大小的正方形零件,求的值.答案以及解析1.答案:B解析:,,,.,,与是对应角,.故选B.2.答案:C解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,不符合题意B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,不符合题意,C、两三角形的对应边不成比例,故两三角形不相似,符合题意,D、两三角形对应边成比例且夹角相等,故两三角形相似,不符合题意,故选:C.3.答案:C解析:有三个.①,再加上为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②,再加上为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.4.答案:C解析:∵,∴,∵是菱形,∴,,,∴,,∴,∴∴.故选:C.5.答案:C解析:,,故A正确;,,,故B正确;,,,故C错误;,.,,,故D正确,故选C.6.答案:D解析:∵四边形是菱形,∴,,∴,∴,即,∵,,∴则,,即.∴菱形的周长为24.故选:D.7.答案:A解析:设,.,;,故①;同理可得,故②.得,.故选:A.8.答案:C解析:过点D作,交于M,则,,D为中点,,,,,,,,,,,,,,故选:C.9.答案:1解析:∵,∴,∴,即,∴.故答案为1.10.答案:解析:在中,,,,,,,,,,故答案为:.11.答案:解析:正方形的对角线,相交于点O,,,点E是的中点,,,,,,即,故答案为:.12.答案:解析:如图(1)所示,过P作交BC于D或交AB于E,则或,此时.如图(2)所示,过P作交AB于F,则,此时.如图(3)所示,过P作交BC于G,则,此时.综上所述,要有4种不同的剪法,则AP长的取值范围是.13.答案:(1)见解析(2)9解析:(1)证明:四边形ABCD为菱形,.,.又,.(2),,,.14.答案:(1)(2),理由见解析(3)①②解析:(1)设正方形零件的边长为,则,,∵,∴.∴,∴,解得.∴正方形零件的边长为.(2).理由如下:如图.设每个正方形的边长为.∵,∴.∴,∴.∴.∴,∵,∴,∴,∴.∴.(3)①如图,,设每个正方形的边长为.∵,∴.∴,∴.∴.∴,∵,∴,∴,∴.∴;②如图,设每个正方形的边长为.∵,∴.∴,∴,∴,∵,∴.∴,.。

最新北师大版数学中考手拉手模型三角形全等练习试题以及答案(共5套题)

最新北师大版数学中考手拉手模型三角形全等练习试题以及答案(共5套题)

最新三角形全等证实试题(手拉手模型) 1、如图,A、B、C在同一条直线上,4ACD和△ CBE都是等边三角形证实:(1) AE=BD(2) AM=DN(3) MN II AB(4) ACMN是等边三角形2、如图,△ ACB和4CEF分别以AB、EF为斜边的等腰直角三角形, M、N 分别是AE、BF的中点,说明△ CMN的形状.3、如图,△ AOB和4ACD是等边三角形,其中AB,x轴于E点,点E 坐标为(3, 0),点 C (5, 0).(1)如图①,求BD的长;(2)如图②,设BD交x轴于F点,求证:/ OFA=/ DFA;(3)如图③,假设点P为OB上一个动点(不与O、B重合),PMXOA于M ,PN,AB于N,当P在OB上运动时,以下两个结论:①PM+PN 的值不变;②PM-PN的值不变.其中只有一个是正确的,请战由这个结论,并求生其值.4、如图,△ ABC是等边三角形.(1)假设BD=CE=AF说明三角形DEF的形状.(2) 4DEF是等边三角形,问AD=BE=CF<立吗试证实你的结论5、如图,/ CBD=60 , ABC'、△ BCA'、△CAB'都是等边三角形,旦BC=DC(1)证实:ZC BMAB^ DC(2)证实:AAC DAADE^ A6、如图,△ ABD和△ BCE都是等边三角形(1)证实AE=CD(2)求/ DHE的度数(3)证实BH平分/ AHC最新三角形全等证实试题(手拉手模型)..__.一一…一 -一一一/ _ _ 八21、如图,A (x, 0) , B (0, y),且x、y 满足x y — (x 4),BD^AC,且BD=AC,连OC, OD, CD,说明^ CDO的形状.2、如图,三角形ACD和三角形BCE都是等边三角形,/ ABD=84 求/ EAB 的度数.3、如图1, A、C、B在同一条直线上,△ ACM和△ BCN都是等边三角形.E、F分别是BM、AN的中点,判断△ CEF的形状,并说明理由.如图2,将4ACM和△ BCN都是以C为顶点的等腰三角形, 且/ CAM= /CBN.判断^ CEF的形状,并说明理由.4、如图,正方形ABCD和正方形DEFG(1)说明AG、CE的关系.(2)连接HD,说明HD是/AHE的平分线.5、如图,△ ACE、△ ABC和△ ABD都是等腰直角三角形,(1)说明BE、CD的关系.(2)判断四边形ACGD的形状,并说明理由.6、如图,△ ACD和4DEG都是以点D为90°的等腰直角三角形(1)说明AG和CE的关系(2)连接HD,证实HD是否平分/ AHB最新三角形全等证实试题(手拉手模型) 1、如图,△ ACD和4CBE分别以AD、BE为底边的等腰三角形,(1)证实AE=BD(2)假设/ CAD=/ CBE=65 ,求/ BFE和/ AFC的度数.2、如图,三角形ABC和三角形CDE都是等边三角形,/EBD= 65 求/ AEB的度数.3、如图,/ DBC=60° , △ CDB、△ BCA和△ BDC都是等边三角形, BC=DC O(1)证实:ZC BMAB^ DC(2)证实:\AC DAADB A.4、如图,△ ABC 是等边三角形,/ DAF=60° , AF=AD, DE// AF, EF II AD,(1)如图1,当点D在边BC上时,求证:①BD=Cp②AC=CF+CD(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+C渥否成立假设不成立,请写由AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写由AC、CF、CD之间存在的数量关系.5、如图,△ ABC和△ ADE都是等边三角形(1)证实BD=CE,BM=CQ(2) MW/ BE(3)假设点P, Q分别是BD, CE的中点,试判断△ PAQ的形状,并证实你的结论.最新三角形全等证实试题〔手拉手模型〕1、如图,△ ABD和4ACE分别以BD、CE为斜边的等腰直角三角形, 连接AF.说明:〔1〕说明BE、CD的关系〔2〕 FA平分/ DFE1〕2、如图,三角形ABD和三角形ACE都是以A为顶点的等腰三角形, /ABD=/ACE, G、F分别是CD、BE 的中点.(1)如图,假设/ ADB=58 ,求/ AFG的度数.(2)如图,假设/ ADB=80 ,那么/ AFG(3)如图,假设/ DAB=x,那么试探究/ AFG与x之间的关系.3、如图,△ OAB和△ ACD都是等边三角形, AB,x轴,(1)如图1,假设OC=6,求BDo(2)如图2设BD交x轴于点F,求证:FA平分/ OFD;(3)如图3,假设正△ AOB的边长为4,点C为x轴上一动点,以AC 为边在直线AC下方作正^ ACD,连接ED,求ED的最小值.4、如图,△ ABC和△ ADE都是等腰直角三角形,/ ABC=/ ADE=90 , 如图1, F是CE的中点.〔1〕探究DF、BF的关系.〔2〕将图1中△ ADE绕A点顺时针旋转45°,再连接CE,取CE的中点F 〔如图2〕,问〔1〕中的结论是否仍然成立证实你的结论;〔3〕将图1中4ADE绕A点转动任意角度〔旋转角在0到90之间〕,再连接CE,取CE的中点F 〔如图3〕,问〔1〕中的结论是否仍然成立证实你的结论5、在正方形ABCD和正方形DEFG中,(1)说明CE AG的关系(2)连接HD,说明HD平分/ AHE(3)解释线段AC、GE、AE、CG的关系6、如图,A、C、D三点在同一条直线上.如图1, △ ABC和△ ADE都是等边三角形,求证:①BD=CE②求:ABMC勺度数以及FH// CD.③判断^AFK何特殊三角形,并说明理由;ABC= 如图2中,4ABC和△ ADE都是以点A为顶点的等腰三角形,//AED=x,直接写出BD与CE的数量关系和/ BMC的度数的关系最新三角形全等证实试题(手拉手模型) 1、如图,△ ACD和4CBE都是等边三角形,连接CF.证实:(1) AE=BD(2) / BFE=60(3) CF平分/ DCE2、△ ABD和△ ACE都以A为顶点的等腰直角三角形, G、F分别是CD、BE的中点.(1)说明CD和BE的关系(2)当/ DAB=88°,求/ AFG 的度数(3)假设/ DAB=a,那么/ AFG与a的数量关系,并说明理由3、如图,4AOB是等边三角形,B (x,y) ,x、y满足(y—5焉2 0, D为y轴上移动点,以AD为边做等边AADC直线CB交y轴于点E.(1)如图1,求A、B两点坐标.(2)如图2, D在y轴正半轴上,C在第二象限,CE的延长线交x轴于点M,当D点在y轴正半轴上运动时,M点的坐标是否发生变化,4、如图,△ ABC和4ADE都是以点A为90的等腰直角三角形.说明BD、CE的关系5、如图,三角形ABB'和三角形ACC都是以点A为顶点的等腰三角形(1)证实BC=B'C'(2) / BOB'=/ BAB'(3) AO 平分/ BOC'6、如图,△ ABD和△ BCE都是等边三角形.(1)证实AE=CD(2)说明直线AE和直线DC的所夹的锐角是60 o(3)如果AE与DC的交点设为P,证实BP平分/ AHC。

新北师大初三数学黄金三角形习题精选

新北师大初三数学黄金三角形习题精选

黄金三角形应用举例我们知道,把一条线段分成不相等的两部分,使较长部分是原线段和较短部分的比例中项,这叫做把这条线段黄金分割,把线段分成两部分的这个点就称这条线段的黄金分割点。

就是在线段AB 内有一点C ,使BC AC AC AB =。

BC AB AC ·=2=215-AB ≈0.618AB ,C点就是AB 的黄金分割点。

说,节目主持人站在舞台的黄金分割点处,效果最好。

我们把具有这种性质的图形叫黄金图形,(如果一个等腰三角形的底与腰之比等于215-,则称这个三角形为黄金三角形;则称这个三角形为黄金三角形;若若矩形的宽与长之比等于215-,则称这个矩形为黄金矩形,则称这个矩形为黄金矩形,若直角梯形上下底之若直角梯形上下底之比等于215-,且上下底和等于斜腰,则称这个直角梯形为黄金梯形。

)这里以黄金三角形为例,举例说明。

(如图1)等腰△OAB 的顶角为36度,这个三角形就是黄金三角形,底角平分线BM 与腰的交点M 就是腰OA 的黄金分割点,△MAB 也是黄金三角形。

OM =BM=AB 。

作∠A 的平分线交BM 于E,△AME 也是黄金三角形,角形,这一过程可以继续下去,这样便得到一连串的黄金这一过程可以继续下去,这样便得到一连串的黄金三角形。

三角形。

这些三角形都相似,这些三角形都相似,这些三角形都相似,并且两个相邻的相似三角形并且两个相邻的相似三角形的相似比为215-。

正十边形的一边与过其两端点的两条半组成的三角形也是黄金三角形。

例1.(如图2)等腰△ABC 的顶角为36度,腰AB的长为10厘米,求底角的平分线BD的长。

解:因为△ABC 是黄金三角形,所以215-=ABBCBC=55510215215-=´-=-AB 厘米 又因为BD=BC(容易证明) 所以BD =555-厘米厘米例2.(如图3)等腰△ABC 的顶角为36度,BC 以CD 是对折,点B 交AC 于E ,求DE 与AD 的比值。

北师大版九年级数学上册《相似三角形》压轴练习题(附答案)

北师大版九年级数学上册《相似三角形》压轴练习题(附答案)

北师大版九年级数学上册《相似三角形》压轴练习题(附答案)一综合题1.在如图的方格纸中△OAB的顶点坐标分别为O(0,0),A(−2,−1),B(−1,−3)△O1A1B1与△OAB是关于点P为位似中心的位似图形.( 1 )在图中标出位似中心P的位置并直接写出点P的坐标为.( 2 )以原点O为位似中心在位似中心的同侧画出△OAB的一个位似△OA2B2使它与△OAB的位似比为2:1;( 3 )△OAB的内部一点M的坐标为(a,b)直接写出点M在△OA2B2中的对应点M2的坐标为.2.(2022九上·济南期末)如图1 长宽均为3cm 高为8cm的长方体容器放置在水平桌面上里面盛有水水面高为6cm 绕底面一棱进行旋转倾斜后水面恰好触到容器口边缘图2是此时的示意图将这个情景转化成几何图形如图3所示.(1)利用图1 图2所示水的体积相等求DE的长;(2)求水面高度CF.3.(2022九上·济南期末)如图点F是平行四边形ABCD的边AD上的一点直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2,AE=√2①求AB的长;②求△EBC的面积.4.(2022九上·济南期末)如图直线y=k1x+b与双曲线y=k2x交于A B两点已知点A的横坐标为−3点B的纵坐标为−3直线AB与x轴交于点C 与y轴交于点D(0,−2),tan∠AOC=13.(1)求双曲线和直线AB的解析式;(2)若点P是第二象限内反比例函数图象上的一点△OCP的面积是△ODB的面积的3倍求点P的坐标.(3)若点E在x轴的负半轴上是否存在以点E C D为顶点构成的三角形与△ODB相似?若存在求出点E的坐标;若不存在请说明理由.5.如图AD、BE是ΔABC的高连接DE.(1)求证:ΔACD∽ΔBCE;(2)若点D是BC的中点CE=3,BE=4求AB的长.6.(2022九上·平阴期中)如图在直角三角形ABC中直角边AC=3cm,BC=4cm.设P Q分别为AB BC上的动点在点P自点A沿AB方向向B作匀速移动的同时点Q自点B沿BC方向向点C作匀速移动它们移动的速度均为每秒1cm 当Q点到达C点时P点就停止移动.设P Q移动的时间t 秒.(1)当t为何值时△PBQ是以∠B为顶角的等腰三角形?(2)△PBQ能否与直角三角形ABC相似?若能求t的值;若不能说明理由.7.(2022九上·济南期中)(1)[问题背景]如图①已知△ABC∽△ADE求证:△ABD∽△ACE.(2)[尝试应用]如图②在△ABC和△ADE中∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F 点D在BC边上ADBD=√3.①填空:AEBD=;②求DFCF的值.8.(2022九上·章丘期中)如图在正方形ABCD外取一点E 连接DE AE CE过点D作DE的垂线交AE于点P 交AB于点Q DE=DP=1,PC=2√5.(1)求证:①△APD≌△CED;②求∠AEC的大小;(2)求正方形ABCD的面积;(3)求线段PQ的长.9.如图Rt△ABC,∠C=90°,AC=10cm,BC=8cm.点P从点C出发以2cm/s的速度沿CA向点A匀速运动同时点Q从点B出发以1cm/s的速度沿BC向点C匀速运动设点P Q运动时间为t 当一个点到达终点时另一个点随之停止.(1)求经过几秒后△PCQ的面积等于16cm2?(2)经过几秒△PCQ与△ABC相似?(3)①是否存在t 使得△PCQ的面积等于20cm2?若存在请求出t的值若不存在请说明理由;②设四边形APQB的面积为S 请直接写出....S的最大值或最小值.10.(2022九上·济南期中)小明和几位同学做手的影子游戏时发现对于同一物体影子的大小与光源到物体的距离有关.因此他们认为:可以借助物体的影子长度计算光源到物体的位置.于是他们做了以下尝试.(1)如图1 垂直于地面放置的正方形框架ABCD边长AB为30cm在其上方点P处有一灯泡在灯泡的照射下正方形框架的横向影子A′B D′C的长度和为6cm.那么灯泡离地面的高度PM为多少.(2)不改变图1中灯泡的高度将两个边长为30cm的正方形框架按图2摆放请计算此时横向影子A′B D′C的长度和为多少?11.(2022九上·长清期中)如图一路灯AB与墙OP相距20米当身高CD=1.6米的小亮在离墙17米的D 处时影长DG为1米.(1)求路灯B的高度;(2)若点P为路灯请画出小亮位于N处时在路灯P下的影子NF(用粗线段表示出来)12.(2022九上·长清期中)如图△ABC的三边长分别为a b c(a>b>c)△A1B1C1的三边长分别为a1、b1、c1.已知△ABC∽△A1B1C1相似比为k(k>1).(1)若c=a1=2a=5求c1的值.(2)若c=a1求证:a=kc;(3)若c=a1试给出符合条件的一对△ABC和△A1B1C1使得a b c和a1、b1、c1都是正整数;(4)若b=a1,c=b1是否存在△ABC和△A1B1C1使得k=2?并请说明理由.13.(2021九上·槐荫期中)在平面直角坐标系中∽ABC的顶点坐标分别为A(0 2)B(1 3)C (2 1).(1)以点O为位似中心在给定的网格中画出∽A'B'C' 使∽A'B'C'与∽ABC位似且相似比为2;(2)求出∽A'B'C'的面积.14.(2021九上·槐荫期中)请阅读以下材料并完成相应的问题:角平分线分线段成比例定理如图1 在∽ABC中AD平分∽BAC 则ABAC=BDCD.下面是这个定理的部分证明过程.证明:如图2 过点C作CE∥DA.交BA的延长线于点E.…(1)任务:请按照上面的证明思路写出该证明过程的剩余部分;(2)如图3 已知Rt∽ABC中AB=3 BC=4 ∽ABC=90° AD平分∽BAC 求∽ABD的周长.15.已知点E在∽ABC内∠ABC=∠EBD=α∽ACB=∽EDB=60° ∽AEB=150° ∽BEC=90°.(1)当α=60°时(如图1)①判断∽ABC的形状并说明理由;②求证:AEBD=tan∠CED;(2)当α=90°时(如图2)②的结论还成立吗?若成立说明理由;若不成立求出AEBD的比值.16.(2021九上·商河期末)如图已知点C D在线段AB上且AC=4 BD=9 ∽PCD是边长为6的等边三角形.(1)求证:∽PAC∽∽BPD;(2)求∽APB的度数.17.在△ABC中AB=AC,∠BAC=90°点D E分别是AC,BC的中点点P是射线ED上一点连接AP将线段PA绕点P顺时针旋转90°得到线段PM连接AM,CM.(1)问题发现如图(1)当点P与点D重合时线段CM与PE的数量关系是∠ACM=.(2)探究证明当点P在射线ED上运动时(不与点E重合)(1)中结论是否一定成立?请仅就图(2)中的情形给出证明.(3)问题解决若AC=√2+√6连接PC当△PCM是等边三角形时直接写出PE的长度.18.(2022九上·章丘期中)如图1四边形ABCD和四边形AMPN有公共顶点A(1)如图2 若四边形ABCD和四边形AMPN都是正方形当正方形AMPN绕点A逆时针旋转α角(0°<α<180°)时BM和DN的数量关系是位置关系是;(2)如图3 若四边形ABCD和四边形AMPN都是矩形且ABAD=AMAN=1√3判断BM和DN的数量关系和位置关系并说明理由;(3)在(2)的条件下若AB=2AM=1矩形AMPN绕点A逆时针旋转α角(0°<α<180°)当MN∥AB时求线段DN的长.19.(2022九上·济南期中)如图在平面直角坐标系中C(8,0)B(0,6)是矩形ABOC的两个顶点点D是线段AB上的一个动点(不与A、B重合) 双曲线y=kx(k>0)经过点D 与矩形ABOC的边AC相交于点E.(1)如图①当点D为AB中点时k的值为点E的坐标为;(2)如图②当点D在线段AB上的任意位置时(不与A、B重合) 连接BC、DE求证:BC∥DE;(3)是否存在反比例函数上不同于点D的一点F 满足:△ODF为直角三角形∠ODF=90°且tan∠DOF=13若存在请直接写出满足以上条件时点D的横坐标若不存在请说明理由.20.(2022九上·济南期中)如图①已知在正方形ABCD中点E是边BC的中点以BE为斜边构造等腰直角△BEF将△BEF绕点B在平面内作逆时针旋转.(1)如图②当∠EBC=30°时若CG=√2则BG=;AG=;(2)如图③延长BE与AC、DC分别相交于点G、N延长BF与AC、AD分别相交于点H、M求证:△AMH∽△CGN;(3)如图④连接CE、DE请直接写出当√2DE+4CE取得最小值时∠ECB的正切值.21.如图RtΔABC中∠C=90°AB=10BC=6D是AB的中点动点P从点A出发沿线段AC以每秒2个单位长度的速度向终点C运动设点P的运动时间为t秒.(1)当t为多少秒时以点A D P为顶点的三角形与ΔABC相似?(2)若ΔAPD为钝角三角形请直接写出t的取值的范围.22.(2022九上·历城期中)如图:(1)【问题初探】如图1 ΔABC中∠BAC=90°AB=AC点D是BC上一点连接AD以AD为一边作ΔADE使∠DAE=90°AD=AE连接BE BE与CD的数量关系位置关系.(2)【类比再探】如图2 ΔABC中∠BAC=90°AB=AC点M是AB上一点点D是BC上一点连接MD以MD 为一边作ΔMDE使∠DME=90°MD=ME连接BE求∠EBD的度数.(3)【方法迁移】如图3 RtΔABC中∠BAC=90°∠ACB=30°BC=6点M是AB中点点D是BC上一点且BD=1连接MD以MD为一边作ΔMDE使∠DME=90°MD=√3ME连接BE求BE的长.23.在∽ABC中∽ACB=90° ∽BAC=60° 点D在斜边AB上且满足BD=13AB 将线段DB绕点D逆时针旋转至DE 记旋转角为α 连接AE BE 以AE为斜边在其一侧作直角三角形AEF 且∽AFE=90° ∽EAF=60° 连接CF.(1)如图1 当α=180°时请直接写出线段BE与线段CF的数量关系;(2)当0°<α<180°时①如图2 (1)中线段BE与线段CF的数量关系是否仍然成立?诸说明理由;②如图3 当B E F三点共线时连接CE 判断∽CEF的形状并证明.24.如图(1)问题如图1 在四边形ABCD中点P为AB上一点当∠DPC=∠A=∠B=90°时求证:AD⋅BC= AP⋅BP.(2)探究若将90°角改为锐角或钝角(如图2)其他条件不变上述结论还成立吗?说明理由.(3)应用如图3 在△ABC中AB=2√2∠B=45°以点A为直角顶点作等腰Rt△ADE.点D在BC上点E在AC上点F在BC上且∠EFD=45°若CE=√5求CD的长.25.如图(1)如图1 正方形ABCD与调研直角∽AEF有公共顶点A ∽EAF=90° 连接BE DF 将∽AEF绕点A旋转在旋转过程中直线BE DF相交所成的角为β 则BEDF=;β=;(2)如图2 矩形ABCD与Rt∽AEF有公共顶点A ∽EAF=90° 且AD=2AB AF=2AE 连接BE DF 将Rt∽AEF绕点A旋转在旋转过程中直线BE DF相交所成的角为β 请求出BEDF的值及β的度数并结合图2进行说明;(3)若平行四边形ABCD与∽AEF有公共顶点A 且∽BAD=∽EAF=α(0°<α<180°) AD=kAB AF=kAE(k≠0) 将∽AEF绕点A旋转在旋转过程中直线BE DF相交所成的锐角的度数为β则:①BEDF=;②请直接写出α和β之间的关系式.26.(2021九上·槐荫期末)在平面直角坐标系中 已知OA =10cm OB =5cm 点P 从点O 开始沿OA 边向点A 以2cm/s 的速度移动;点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动.如果P Q 同时出发 用t (s )表示移动的时间(0≤t≤5)(1)用含t 的代数式表示:线段PO = cm ;OQ = cm .(2)当t 为何值时∽POQ 的面积为6cm 2?(3)当∽POQ 与∽AOB 相似时 求出t 的值.27.如图(1)感知:数学课上 老师给出了一个模型:如图1 ∠BAD =∠ACB =∠AED =90° 由∠1+∠2+∠BAD =180° ∠2+∠D +∠AED =180° 可得∠1=∠D ;又因为ACB =∠AED =90° 可得△ABC ∽△DAE 进而得到BC AC= .我们把这个模型称为“一线三等角”模型.(2)应用:实战组受此模型的启发 将三等角变为非直角 如图2 在△ABC 中 AB =AC =10 BC =12 点P 是BC 边上的一个动点(不与B C 重合) 点D 是AC 边上的一个动点 且∠APD =∠B .①求证:△ABP ∽△PCD ;②当点P 为BC 中点时 求CD 的长;(3)拓展:在(2)的条件下如图2 当△APD 为等腰三角形时 请直接写出BP 的长.28.如图1 在Rt∽ABC 中 ∽BAC=90° ∽ACB=60° AC=2 点A 1 B 1为边AC BC 的中点 连接A 1B 1 将∽A 1B 1C 绕点C 逆时针旋转α(0°≤α≤360°).(1)如图1 当α=0°时BB1AA1=BB1AA1所在直线相交所成的较小夹角的度数为;(2)将∽A1B1C绕点C逆时针旋转至图2所示位置时(1)中结论是否仍然成立?若成立请给出证明;若不成立请说明理由;(3)当∽A1B1C绕点C逆时针旋转过程中①请直接写出∽ABA1面积的最大值;②当A1B1B三点共线时请直接写出线段BB1的长.答案解析部分1.【答案】解:∽如图 点P 为所作;故答案为:(−5,−1);∽如图 △OA 2B 2为所作;∽(2a ,2b).2.【答案】(1)解:如图所示设DE=xcm 则AD=(8-x )cm根据题意得:12(8-x+8)×3×3=3×3×6 解得:x=4 ∴DE=4(cm )(2)解:∵∽E=90° DE=4 CE=3∴CD=5∵∽BCE=∽DCF=90°∴∽DCE+∽DCB=∽BCF+∽DCB∴∽DCE=∽BCF∵∽DEC=∽BFC=90°∴∽CDE∽∽CBF∴CE CF =CD CB 即3CF =58∴CF=245(cm )答:CF 的高是245cm 3.【答案】(1)证明:∵平行四边形ABCD 中 AB ∥CD∴AE ∥CD∴∠E =∠FCD ∠EAF =∠D∴△AEF ∽△DCF .(2)解:①∵△AEF ∽△DCF∴AE DC =AF DF∵AF :DF =1:2∴CD =2√2∵四边形ABCD 是平行四边形ABCD∴AB =CD =2√2.②∵四边形ABCD 是平行四边形ABCD∴AD ∥BC∴△EAF ∽△EBC∴S △EAF S △EBC =(EA EB )2=(√2√2+2√2)2=19 ∵S △AEF =23∴△EBC 的面积为6.4.【答案】(1)解:如图 过点A 作AF∽x 轴于点F∵tan∠AOC =13=AF OF 且点A 的横坐标为-3 ∴OF =3∴AF =1∴A(−3,1)∵双曲线y =k 2x过A 点 ∴1=k 2−3解得 k =−3 ∴双曲线的解析式为y =−3x将A(−3,1) D(0,−2)代入直线y =k 1x +b 得{1=−3k 1+b −2=b 解得{k 1=−1b =−2∴直线AB 的解析式为:y =−x −2(2)解:如图 连接OB PO PC当y =−x −2=0时∴C(−2,0)∴OC =2∵D(0,−2)∴OD =2∵点B 的纵坐标为−3∴−3=−x −2∴x =1∴B(1,−3)∵△OCP 的面积是△ODB 的面积的3倍∴12⋅OC ⋅y P =3⋅12⋅OD ⋅x B即12×2⋅y P=3×12×2×1解得yP=3即y=−3x=3∴x=−1∴P(−1,3)(3)解:由(2)得OC=OD∴∠OCD=∠ODC∴∠ECD=∠ODB∵D(0,−2)B(1,−3)BD=√12+(−3+2)2=√2∴ΔECD与△ODB相似有两种情况讨论如下:①△ODB∼△ECD∴OD CE=BDCD即2CE=√22√2∴CE=4∴E(−6,0)②△ODB∼△DCE∴OD CD=BDCE即22√2=√2CE∴CE=2∴E(−4,0)综上点E的坐标为(−6,0)或(−4,0).5.【答案】(1)证明:∵AD BE是ΔABC的高∴∠ADC=∠BEC=90°∵∠C=∠C∴ΔACD∽ΔBCE;(2)解:∵点D是BC的中点AD⊥BC∴AB=AC在RtΔBEC中∵CE=3BE=4∴BC=√CE2+BE2=√32+42=5∴CD=12BC=52∵ΔACD ∽ΔBCE∴AD CD =BE EC∴AD =4×523103∴AC =√AD 2+CD 2=√(103)2+(52)2=256∴AB =AC =256. 6.【答案】(1)解:∵直角边AC =3cm BC =4cm∴由勾股定理可得 AB =√AC 2+BC 2=√32+42=5∴AP =t BP =5−t BQ =t∵△PBQ 是以∠B 为顶角的等腰三角形∴BP=BQ 即5-t=t 解得t =52秒 ∴当t =52秒 △PBQ 是以∠B 为顶角的等腰三角形; (2)解:能.理由:当∽PBQ∽∽ABC 时BQ BC =BP AB 即t 4=5−t 5 解得:t =209秒; 当∽PBQ∽∽CBA 时 BQ AB =BP BC 即t 5=5−t 4 解得:t =259秒 ∴当t =209或259秒时 △PBQ 与直角三角形ABC 相似. 7.【答案】(1)证明:∵△ABC ∽△ADE∴∠BAC =∠DAE AB AD =AC AE∴∠BAC −∠CAD =∠DAE −∠CAD即∠BAD =∠CAE∴△ABD ∽△ACE ;(2)解:①1②连接CE ∵∠BAC =∠DAE =90°,∠ABC =∠ADE ∴△BAC ∽△CAE ∴AB AD =AC AE ∴AB AC =AD AE∵∠BAD =∠CAE =90°−∠CAD ∴△BAD ∽△CAE ∴∠ABC =∠ACE ∴∠ADE =∠ACE ∵∠AFD =∠EFC ∴△AFD ∽△EFC ∴DF CF =AD CE由①得AD =√3AE ,AD =√3BD ∴BD CE =AD AE =√3 ∴BD =√3CE ∴AD =√3×√3CE =3CE ∴AD CE =3∴DFCF=ADCE=3.8.【答案】(1)解:①∵DP⊥DE∴∠PDE=∠PDC+∠CDE=90°∵在正方形ABCD中∴∠ADC=∠ADP+∠PDC=90°AD=CD∴∠CDE=∠ADP在△APD和△CED中{AD=CD ∠ADP=∠CDE PD=DE∴△APD≌△CED;②∵△APD≌△CED∴∠APD=∠CED又∵∠APD=∠PDE+∠DEP∠CED=∠CEA+∠DEP∴∠AEC=90°(2)解:过点C作CF⊥DE交DE延长线于点F∵DE=DP=1∠PDE=90°∴PE=√DP2+DE2=√2∴∠DPE=∠DEP=45°∵∠CEA=90°∴∠CEF=45°∵∠EFC=90°∴∠FCE=45°∴∠CEF=∠FCE在Rt△PCE中CE=√PC2−PE2=√20−2=3√2∴CF=EF=√22CE=3∴在Rt △CDF 中 CD 2=CF 2+DF 2=32+(1+3)2=25 ∴正方形ABCD 的面积为:CD 2=25.(3)解:∵△APD ≌△CED∴∠ADQ =∠CDF∵∠DAQ =∠DFC∴△DAQ ∽△DFC∴DQ DC =DA DF∵DA =DC∴DQ =DC 2DF=DC 2DE +EF =251+3=254 ∴PQ =DQ −DP =254−1=214. 9.【答案】(1)解:由题意知 PC =2tcm BQ =tcm ∵AC =10cm BC =8cm∴CQ =(8−t)cm 0<t ≤5∵△PCQ 的面积等于16cm 2∴12PC ·CQ =16 ∴12×2t ·(8−t)=16 即(t −4)2=0 ∴t 1=t 2=4即经过4秒后 △PCQ 的面积等于16cm 2(2)解:∵∠ACB =∠PCQ =90°∴①当△PCQ ∽△ACB 时∴2t 10=8−t 8解得:t =4013; ②当△PCQ ∽△BCA 时∴2t 8=8−t 10 解得:t =167; 由①②可得:当经过4013秒或167秒△PCQ 与△ABC 相似. (3)①不存在 理由:假设存在t 使得△PCQ 的面积等于20cm 2∴12PC·CQ=20∴12×2t·(8−t)=20∴t2−8t+20=0而Δ=64−4×1×20=−16<0∴此方程无实数根∴不存在t 使得△PCQ的面积等于20cm2②S的最小值是24cm210.【答案】(1)解:∵AD∥A′D′∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.∴ADA′D′=PNPM∴3036=PM−30PM解得PM=180;∴灯泡离地面的高度PM为180cm;(2)解:设横向影子A′B D′C的长度和为xcm 同理可得△PAD∽△PA′D′.∴ADA′D′=PNPM即6060+x=150180解得:x=12cm∴横向影子A′B D′C的长度和为12cm.11.【答案】(1)解:∵AB⊥BO CD⊥BO ∴∠ABG=∠CDG∵∠CGD=∠AGB∴△ABG∽△CDG∴BGDG=ABCD∵OB=20米OD=17米DG=1米∴BD=OB−OD=20−17=3米BG=BD+DG=3+1=4米∴41=AB1.6解得:AB=6.4.∴路灯高6.4米.(2)解:如图所示:12.【答案】(1)解:∵△ABC∽△A1B1C1c=a1=2a=5∴aa1=cc1即:52=2c1解得:c1=45;(2)证明:∵△ABC∽△A1B1C1相似比为k(k>1)∴aa1=k∴a=ka1又∵c=a1∴a=kc.(3)解:取a=8,b=6,c=4同时取a1=4,b1=3,c1=2此时aa1=bb1=cc1=2∴△ABC∽△A1B1C1且c=a1(4)解:不存在这样的△ABC和△A1B1C1理由如下:假设存在则a=2a1,b=2b1,c=2c1.又∵b=a1c=b1∴a=2a1=2b=4b1=4c∴b=2c∴b+c=2c+c<4c=a与三角形的三边关系b+c>a不符∴不存在△ABC和△A1B1C1使得k=2.13.【答案】(1)解:如图∽A'B'C'为所作;(2)解:∽A'B'C'的面积=4×4﹣12×2×4﹣12×2×2﹣12×2×4=6. 14.【答案】(1)证明:如图2 过C 作CE ∥DA .交BA 的延长线于E ∵CE ∥AD∴BD CD =BA EA∽2=∽ACE ∽1=∽E ∵∽1=∽2∴∽ACE =∽E∴AE =AC∴AB AC =BD CD. (2)解:如图3 ∵AB =3 BC =4 ∽ABC =90°∴AC =√BC 2+AB 2=√42+32=5∵AD 平分∽BAC∴AC AB =CD BD 即53=CD BD∴BD =38BC =38×4=32∴AD =√BD 2+AB 2=√(32)2+32=32√5 ∴∽ABD 的周长=32+3+32√5=9+3√52. 15.【答案】(1)解:①判断:∽ABC 是等边三角形.理由如下: ∵∽ABC=∽ACB=60°∴∽BAC=180°-∽ABC-∽ACB=60°=∽ABC=∽ACB∴∽ABC 是等边三角形.②∽EBD 也是等边三角形 理由如下:如图1 连接DC则AB=BC BE=BD ∽ABE=60°-∽EBC=∽CBD ∴∽ABE∽∽CBD∴AE=CD ∽AEB=∽CDB=150°∴∽EDC=150°-∽BDE=90°∴在Rt∽EDC中tan∠CED=CDED=AEBD.(2)解:如图2:连接DC∵∽ABC=∽EBD=90° ∽ACB=∽EDB=60°∴∽ABC∽∽EBD∴ABEB=BCBD即ABBC=EBBD又∵∽ABE=90°-∽EBC=∽CBD∴∽ABE∽∽CBD∴∽AEB=∽CDB=150°∴∽EDC=150°-∽BDE=90° ∽CED=∽BEC-∽BED=90°-(90°-∽BDE)=60°设BD=x在Rt∽EBD中DE=2x BE=√3x在Rt∽EDC中CD=DE×tan60°=2√3x∴AE=CD·BEBD=2√3x⋅√3xx=6x=6BD即BDAE=16.16.【答案】(1)证明:∵等边∽PCD的边长为6∴PC=PD=6 ∽PCD=∽PDC=60°又∵AC=4 BD=9∴PCBD=69=23=46=ACPD∵等边∽PCD中∽PCD=∽PDC=60°∴∽PCA=∽PDB=120°∴∽ACP∽∽PDB;(2)解:∵∽ACP∽∽PDB∴∽APC=∽PBD∵∽PDB=120°∴∽DPB+∽DBP=60°∴∽APC+∽BPD=60°∴∽APB=∽CPD+∽APC+∽BPD=120°.17.【答案】(1)(1)CM=√2PE;45(2)解:结论成立证明如下:如图(2)中连接AE.∵AB=AC,BE=EC∴AE平分∠BAC∴∠CAE=12∠BAC=45°∵DE∥AB∴∠ADE=180°−∠BAC=90°∵AD=DC∴AE=√2AD∵AM=√2AP∴ACAE=AMAP∵∠PAM=∠CAE=45°∴∠CAM=∠EAP∴△CAM∽△EAP∴CMPE=AMAP=√2∠ACM=∠AED=45°∴CM=√2PE.(3)解:√2或2√2+√618.【答案】(1)相等;垂直(2)解:数量关系:DN=√3BM位置关系:BM⊥DN.理由如下:如图:∵四边形ABCD和四边形AMPN都是矩形∴∠BAD=∠MAN=90°∴∠BAD−∠MAD=∠MAN−∠MAD∴∠BAM=∠DAN∵ABAD=AMAN=1√3∴△ADN∽△ABM∴BMDN=ABAD=√3∴DN=√3BM.延长BM交AD于点O 交DN于点H∵△ADN∽△ABM∴∠ABM=∠AND又∵∠AOB=∠DOH∴∠OHD=∠OAB=90°即BM⊥DN.(3)解:∵AB=2AM=1ABAD=AMAN=1√3∴AN=√3分类讨论:连结MN.①如图:当MN位于AB上方时在Rt△MAN中由勾股定理得MN=√AN2+AM2=√(√3)2+12=2∴AB=MN又∵MN∥AB∴四边形ABMN是平行四边形∴BM=AN=√3∵DN=√3BM∴DN=3.②如图:当MN位于AB下方时连结BN同理可得四边形ABNM是平行四边形∴BN=AM=1BN∥AM∴∠ANB=∠MAN=90°又∠ANP=90°∴B N P在一条直线上∴∠BPM=90°∴BP=BN+NP=2MP=AN=√3∴在Rt△BPM中BM=√BP2+MP2=√7∵DN =√3BM∴DN =√21.综上所述 DN 的长为3或√21.19.【答案】(1)24;(8 3)(2)证明:设点D 的横坐标为m∴点D 的坐标为(m ,6)∴k =6m∴反比例函数的解析式为:y =6m x点E 的坐标为(8,3m 4)∴AD =8−m ,AE =AC −CE =6−3m 4=3(8−m)4∴AB AC =86=43,AD AE =43∴AB AC =AD AE即AD AB =AE AC∴BC ∥DE ;(3)存在 点D 的横坐标为√37+1或√37−120.【答案】(1)2;√6(2)证明:∵∠EBF =∠ACB =45°∴∠CGN =45°+∠CBN =∠MBC∵AD ∥BC∴∠AMH =∠MBC∴∠AMH =∠CGN∵∠MAH =∠GCN =45°∴△AMH ∽△CGN ;(3)1721.【答案】(1)解:在RtΔABC 中 ∠C =90° AB =10 BC =6∴AC =√AB 2−BC 2=√102−62=8∵ D 是AB 的中点∴AD =12AB =5∵动点P 从点A 出发 沿线段AC 以每秒2个单位长度的速度向终点C 运动设点P 的运动时间为t 秒∴AP =2t 0≤t ≤4若以点A D P 为顶点的三角形与ΔABC 相似 而∠A =∠A 分两种情况:①当∠APD =∠C =90°时 ΔAPD ∽ΔACB 如图1∴AP AC =AD AB 即2t 8=510解得t =2;②当∠ADP =∠C =90°时 ΔADP ∽ΔACB 如图2∴AP AB =AD AC 即2t 10=58解得t =258;故当t 为2或258秒时 以点A D P 为顶点的三角形与ΔABC 相似 (2)解:由(1)知:当t =2时 ∠APD =90° 当t =258时 ∠ADP =90° 而∠A 是锐角∴当0<t <2时 ∠APD 为钝角 ΔAPD 为钝角三角形; 当258<t ≤4时 ∠ADP 为钝角 ΔAPD 为钝角三角形; 故若ΔAPD 为钝角三角形 则t 的取值的范围是0<t <2或258<t ≤4.22.【答案】(1)BE=CD ;BE∽CD(2)解:过点M 作MF ∥AC 交BC 于点F 如图2所示∴∠BMF =∠A =90° ∠MFB =∠C =45°∴MB=MF∵∠DME=∠BMF=90°∴∠BME=∠FMD又∵ME=MD,MB=MF∴ΔMBE≌ΔMFD(SAS)∴∠MBE=∠MFD=45°∴∠EBD=∠MBE+∠MBF=90°故∠EBD=90°(3)解:取BC中点G 连接MG如图3所示∵点M是AB中点∴MG为ΔABC的中位线∴MG∥AC∴BMG=90°,∠MGB=30°∴BM=12BG=14BC=32MG=32√3DG=3−1=2∴BM MG=√3又MD=√3ME∴ME MD=√3∴MEMD=BMMG又∵∠EMD=∠BMG=90°∴∠EMB=∠DMG∴ΔMEB∽ΔMDG∴BEDG=BMMG=√3∴BE =√33×2=2√33故BE 的长为2√33. 23.【答案】(1)解:BE =2CF 理由如下: ∵∽ACB =90° ∽BAC =60°∴∽ABC =30°∴AC =12AB ∵BD =13AB 将线段DB 绕点D 逆时针旋转至DE ∴BD =DE =13AB BE =23AB ∴AE =13AB ∵∽AFE =90° ∽EAF =60°∴∽AEF =30°∴AF =12AE =16AB ∴CF =AC ﹣AF =13AB ∴BE =2CF ;(2)解:①结论仍然成立 理由如下: ∵∽BAC =∽EAF =60°∴∽BAE =∽CAF又∵AC AB =12=AF AE∴∽ABE∽∽ACF∴CF BE =AF AE =12∴BE =2CF ;②∽CEF 是等边三角形 理由如下: ∵B E F 三点共线∴∽AEB+∽AEF =180°∴∽AEB =150°∵∽ABE∽∽ACF∴∽AEB =∽AFC =150°∴∽EFC =150°﹣90°=60°如图3 过点D作DH∽BE于H∵BD=DE DH∽BE∴BH=HE∵BE=2CF∴BH=HE=CF∵DH∽BE AF∽BE∴DH∥AF∴BHHF=BDAD=12∴HF=2BH∴EF=HE=BH∴EF=CF∴∽EFC是等边三角形.24.【答案】(1)证明:如题图1∵∽DPC=∽A=∽B=90°∴∽ADP+∽APD=90° ∽BPC+∽APD = 90°∴∽ADP = ∽BPC∴∽ADP∽∽BPC∴ADBP=APBC∴AD⋅BC = AP⋅BP(2)解:结论仍然成立理由如下∵∠BPD=∠DPC+∠BPC又∵∠BPD=∠A+∠ADP∴∠DPC+∠BPC=∠A+∠ADP∵∠DPC=∠A设∠DPC=∠A=α∴∠BPC=∠ADP∴△ADP∽△BPC∴ADBP=APBC∴AD⋅BC = AP⋅BP(3)解:∵∠EFD=45°∴∠B=∠ADE=45°∴∠BAD=∠EDF∴△ABD∽△DFE∴ABDF=ADDE∵△ADE是等腰直角三角形∴DE=√2AD∵AB=2√2∴DF=4∵∠EFD=45°,∠ADE=45°∴∠EFC=∠DEC=135°∴△EFC∽△DEC∴FCEC=ECCD∵EC=√5CD=DF+FC=4+FC∴EC2=FC⋅CD=FC⋅(4+FC)=5∴FC=1∴CD=5.25.【答案】(1)1;90°(2)解:如图2 延长DF交EB于点H∵AD=2AB AF=2AE∴ADAB=AFAE=2∵∽BAD=∽EAF=90°∴∽FAD=∽EAB∴∽FAD∽∽EAB∴DF BE =AF AE =2∴DF=2BE∵∽FAD∽∽EAB∴∽AFD=∽AEB∵∽AFD+∽AFH=180°∴∽AEH+∽AFH=180°∵∽EAF=90°∴∽EHF=180°-90°=90°∴DF∽BE∴BE DF =12 β=90°;(3)1k ;α+β=180°26.【答案】(1)2t ;(5﹣t )(2)解:由(1)知 OP=2t cm OQ=(5-t )cm ∵∽POQ 的面积为6cm 2∴6=12×2t×(5-t )∴t=2或3∴当t=2或3时 三角形POQ 的面积为6cm 2; (3)解:∵∽POQ 与∽AOB 相似 ∽POQ=∽AOB=90° ∴∽POQ∽∽AOB 或∽POQ∽∽BOA∴OP OA =OQ OB 或OP OB =OQ OA当OP OA =OQ OB 则2t 10=5−t 5∴t=52;当OP OB =OQ OA 时 则2t 5=5−t 10∴t=1∴当t=52或1时 ∽POQ 与∽AOB 相似. 27.【答案】(1)AE DE(2)解:①∵∽APC=∽B+∽BAP ∽APC=∽APD+∽CPD ∽APD=∽B∴∽BAP=∽CPD∵AB=AC∴∽B=∽C∴∽ABP∽∽PCD ;②BC=12 点P 为BC 中点 ∴BP=PC=6·∵∽ABP∽∽PCD∴AB PC =BP CD 即106=6CD解得:CD=3.6;(3)解:BP 的长为2或113. 28.【答案】(1)2;60°(2)解:(1)中结论仍然成立 证明:延长AA 1 BB 1相交于点D 如图2由旋转知 ∽ACA 1=∽BCB 1 A 1C=1 B 1C=2∵AC=2 BC=4∴AC A 1C =2 BC B 1C =2 ∴AC A 1C =BC B 1C ∴∽ACA 1∽∽BCB 1∴BB 1AA 1=BC AC =2 ∽CAA 1=∽CBB 1 ∴∽ABD+∽BAD=∽ABC+∽CBB 1+∽BAC-∽CAA 1 =∽ABC+∽BAC=30°+90°=120°∴∽D=180°-(∽ABD+∽BAD )=60°; (3)解:①∽ABA 1面积的最大值=12×2√3×3=3√3; ②线段BB 1的长为√15+√3或√15−√3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄金三角形应用举例
我们知道,把一条线段分成不相等的两部分,使较长部分是原线段和较短部分的比例中项,这叫做把这条线段黄金分割,把线段分成两部分的这个点就称这条线段的黄金分割点。

就是在线段AB 内有一点C ,使
BC AC AC AB =。

BC AB AC ∙=2=2
15- AB ≈0.618AB ,C点就是AB 的黄金分割点。

说,节目主持人站在舞台的黄金分割点处,效果最好。

我们把具有这种性质的图形叫黄金图形,(如果一个等腰三角形的底与腰之比等于2
15-,则称这个三角形为黄金三角形;若矩形的宽与长之比等于2
15-,则称这个矩形为黄金矩形,若直角梯形上下底之比等于2
15-,且上下底和等于斜腰,则称这个直角梯形为黄金梯形。

)这里以黄金三角形为例,举例说明。

(如图1)等腰△OAB 的顶角为36度,这个三角形
就是黄金三角形,底角平分线BM 与腰的交点M 就是腰
OA 的黄金分割点,△MAB 也是黄金三角形。

OM =BM
=AB 。

作∠A 的平分线交BM 于E,△AME 也是黄金三
角形,这一过程可以继续下去,这样便得到一连串的黄金
三角形。

这些三角形都相似,并且两个相邻的相似三角形
的相似比为2
15-。

正十边形的一边与过其两端点的两条半组成的三角形也是黄金三角形。

例1. (如图2)等腰△ABC 的顶角为36度,
腰AB的长为10厘米,求底角的平分线BD的长。

解:因为△ABC 是黄金三角形,所以2
15-=AB BC
BC=555102
15215-=⨯-=-AB 厘米 又因为BD=BC(容易证明)
所以BD =555-厘米
例2.(如图3)等腰△ABC 的顶角为36度,BC 以CD 是对折,点B 交AC 于E ,求DE 与AD 的比值。

解:在△BCD 和△ECD 中
∠BDC =∠EDC (已知)
CD =CD (公共边)
∠DCB =∠DCE (已知)
∴△BCD ≌△ECD (SSS )
∴BD=ED
又∵等腰△ABC 是黄金三角形,且点D 是黄金分割
点。

∴==AD
BD AB AD 215-
∴=AD ED 2
15- 例3:作半径为2的正十边形(尺规作图)
因为正十边形的边长与半径的比是
2
15-。

所以要作半径为2的正十边形,只要画出半径为2的圆,再把圆的半径黄
金分割,以上分得的较长线段做正十边形
的边在周上依次截取,便可得到圆的十个
等分点。

作法:(如图4)1:画半径为2的⊙O,作半径OA 。

2:作⊥OA,使AQ=2
1OA。

3:以Q为圆心,AQ为半径画交OQ于P。

4:以O为圆心,OP为半径画交OA于W。

5:以OW为长,在⊙O中依次截得A、B、C、D、E、F、G、H、K、L。

6:连结AB、BC、CD……LA。

则十边形ABCDEFGHKL就是所求作的正十边形。

把上面所说圆的十个等分点依次连结相间的五个,便得到圆内接正五边形,连正五边形的五条对角线便得到正五角星形.
例4:黄金三角板应用
用硬板纸做一块三角板ABC,使其顶角A为36°,两腰相等,这样形状的三角板叫黄金三角板。

(1)作圆内接正十边形和圆内接正五边形
用黄金三角板可以很方便地把圆十等分(如图5)和五等分(如图6)
(2) 用黄金三角板画正五角星
(如图7)用黄金三角板ABC为模型先画两腰AB
和AC,再以B为顶角的顶点,BA为一腰画黄金三
角形的另一腰BD。

然后以C为顶角的顶点,CA为
一腰画黄金三角形的另一腰CE。

最后连结ED,便得正五角星。

相关文档
最新文档