MSC fatigue 实例-组件的疲劳分析

合集下载

疲劳分析流程fatigue样本

疲劳分析流程fatigue样本

摘要:疲劳破坏是构造重要失效形式,疲劳失效研究在构造安全分析中扮演着举足轻重角色。

因而构造疲劳强度和疲劳寿命是其强度和可靠性研究重要内容之一。

机车车辆构造疲劳设计必要服从一定疲劳机理,并在系统构造可靠性安全设计中考虑复合疲劳设计技术应用。

国内机车车辆重要构造部件疲劳寿命评估和分析采用复合疲劳设计技术,国外从疲劳寿命理论计算和疲劳实验两个方面在疲劳研究和应用领域有诸多新发展理论办法和技术手段。

无论国内国外,一批人几十年如一日致力于疲劳研究,对疲劳问题研究贡献颇多。

核心词:疲劳 UIC原则疲劳载荷 IIW原则 S-N曲线机车车辆一、国内外轨道车辆疲劳研究现状6月30日15时,备受关注京沪高铁正式开通运营。

作为新中华人民共和国成立以来一次建设里程最长、投资最大、原则最高高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。

京沪高铁开通,不但乘客可以享有到便捷与实惠,沿线都市也需面对高铁带来机遇和挑战。

在享有这些待遇同步,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆安全性绝对不容忽视。

依照机车车辆当代设计办法,对构造在规定做到尽量轻量化同步,也规定具备高度可靠性和足够安全性。

这两者之间经常浮现矛盾,因而,如何精确研究其核心构造部件在运营中使用寿命以及如何进行构造抗疲劳设计是构造强度寿命预测领域研究中前沿课题。

在随机动载作用下构造疲劳设计更是成为当前机车车辆构造疲劳设计研究重点,而如何预测核心构造和部件疲劳寿命又是将来机车车辆构造疲劳设计重要发展方向之一。

机车车辆承受外部载荷大某些是随时间而变化循环随机载荷。

在这种随机动载荷作用下,机车车辆许多构件都产生动态应力,引起疲劳损伤,而损伤累积后构造破坏形式经常是疲劳裂纹萌生和最后构造断裂破坏。

随着国内铁路运营速度不断提高,某些核心构造部件,如转向架构架、牵引拉杆等都浮现了某些断裂事故。

因而,机车车辆构造疲劳设计已经逐渐成为机车车辆新产品开发前期必要过程之一,而通过有效计算办法预测构造疲劳寿命是构造设计重要目的。

MscFatigue疲劳分析实例指导教程(2024)

MscFatigue疲劳分析实例指导教程(2024)

2024/1/29
8
MscFatigue软件介绍与操作
02
指南
2024/1/29
9
软件背景及功能特点
专注于疲劳分析
MscFatigue是一款专业的疲劳分析 软件,适用于各种材料和结构的疲劳
寿命预测。
高效的求解算法
采用先进的疲劳分析算法,能够快速 准确地完成复杂结构的疲劳寿命计算

2024/1/29
2024/1/29
求解流程
设置好模型后,即可进行求解。软件支持多种求解方法,如静态分析、模态分析、瞬态 分析等,可根据实际需求进行选择。求解完成后,可查看相应的结果文件。
12
结果查看、后处理及报告生成
结果查看
提供多种结果查看方式,如云图 、等值线、矢量图等,方便用户 直观了解疲劳分析结果。
后处理功能
剩余寿命预测
根据裂纹扩展速率和当前裂纹长度,预测结构的剩余寿命。
2024/1/29
结果分析
对裂纹扩展路径和剩余寿命进行综合分析,评估结构的疲劳性能 和安全性。
24
疲劳分析实例:焊接接头疲
05
劳性能评估
2024/1/29
25
问题描述与模型建立
问题描述:针对某一具体焊接接头,在 循环载荷作用下进行疲劳性能评估。
2024/1/29
复杂环境下的疲劳分析
研究高温、低温、腐蚀等复杂环境下的疲劳 问题,提高分析的实用性。
跨学科合作
加强与其他学科的交叉融合,共同推动疲劳 分析领域的发展。
35
2024/1/29
THANKS
感谢观看
36
损伤曲线
02
03
其他结果
输出构件的损伤曲线,了解构件 在不同循环次数下的损伤累积情 况。

Msc.Fatigue疲劳分析实例指导教程

Msc.Fatigue疲劳分析实例指导教程

第三章疲劳载荷谱的统计处理3.1 疲劳载荷谱的统计处理理论基础3.1.1 数字化滤波频率分析的典型参量是功率谱密度(PSD),如像确定频率为4Hz对应的幅值的均方根值,只需要求取功率谱密度下对应的3.5-4Hz之间的面积。

3.1.2 雨流计数法循环计数法:将不规则的随机载荷-时间历程,转化为一系列循环的方法。

3.2 数据的导入与显示(1)新建:File>New(2)导入:Tools>Fatigue Utilities>File Conversion Utilities>Covert ASCII.dac to Binary...>Single Channel(设置,注意Header Lines to skip要跳过的行数)>exit(3)查看:Tools>Fatigue Utilities>Graphic Display>Quick Look Display1)放大:View>Window X,输入X的最值2)读取:①左击任何位置,状态栏显示②数据轨迹:Display>Track3)显示数据点:Display>Join Points;显示实线图:Display>Join4)网格和可选坐标轴:Axes>Axes Type/Grid5)显示某段时间信号的统计信息:Display>Wstats,放大3.3 数字滤波去除电压干扰信号(1)载荷时间历程的PSD分析1)File>New2)Tools>Fatigue Utilities>Advanced Load Utilities>Auto Spectral density(2)信号的滤波1)Tools>Fatigue Utilites>Advanced Load Utilities>Fast Fourier Filtering2)比较滤波前后结果:Tools>Fatigue Utilities>Graphic Display>Multi-file Display(3)滤波稳定性检查:比较前后PSD,多文件叠加显示第四章应力疲劳分析4.2 载荷谱块的创建与疲劳寿命计算(1)创建载荷谱块:Tools>Fatigur Utility>Load Management>Add an Entry>Block program (2)疲劳分析:Tools>Fatigue Utilities>Advanced fatigue utilities>选方法4.3 零部件疲劳分析(1)导入有限元模型及应力结果:工具栏Import>Action、Object、Method,查看Results (2)疲劳分析1)设置疲劳分析方法:工具栏Analysis,设置2)设置疲劳载荷①创建载荷时间历程文件Loading info>Time History Manager②将有限元分析工况与时间载荷关联:Loading Info>Load case空白>Get/Filte result...3)设置材料的疲劳特性:Material info>Materials Database Manager>create...4)求解:Solution Params5)疲劳分析:Job Control6)查看寿命结果云图:Import Fatigue Result...>Action:Read results>工具栏Results查看7)寿命列表显示:Import Fatigue Result...>Action:List Results...>most damaged nodes (3)优化设计:Import Fatigue Results...>Action:Optimize....1)参数优化:Parameter optimization>Scaling factor>Recalculate2)材料优化:Material Optimization...>Recalculate3)灵敏度分析:Sensitivity analysis>Scaling factor比例因子....4)灵敏度分析结果:results Display>Sensitivity plot第五章应变疲劳分析5.2 考虑残余应力的应变疲劳分析(1)导入有限元模型和应力分析结果(2)先不考虑残余应力的疲劳分析(3)考虑残余应力的疲劳分析1)设置疲劳分析方法:保留Material Info和Solution Params...的设置2)定义残余应力:Loading Info..>Static Load Case:2,单击enter。

基于有限元的疲劳设计分析系统MSC_FATIGUE_林晓斌

基于有限元的疲劳设计分析系统MSC_FATIGUE_林晓斌

3 Ba nnantine J A ,Co mer J J ,Handrock J L .Fundamentals o f M etal Fa tig ue Ana ly -sis.Pretice Hall,1990.4 鲍万年.机械强度有限寿命设计专家工作站配置的疲劳寿命预测和局部应变法.中国机械工程,1997,8(3):25~275 nCode Internatio na l Limited.The n Code Boo k o f Fa-tig ue Theo ry ,1997.6 林晓斌,Hey es P J .多轴疲劳寿命工程预测方法.中国机械工程,1998,9(11):20~237 Halfpenny A ,林晓斌.基于功率谱密度信号的疲劳寿命估计.中国机械工程,1998,9(11):16~198 Austen I M ,林晓斌.加速疲劳试验的疲劳编辑技术.中国机械工程,1998,9(11):27~309 Ensor D F ,林晓斌.关联用户用途的试车技术.中国机械工程,1998,9(11):24~28林晓斌 男,1963年生。

英国n Cod e 国际有限公司高级疲劳工程师、英国Sheffield 大学客座研究员。

1978~1990年在浙江大学学习工作,主要从事压力容器的安全性研究。

1994年获英国Sh effield 大学博士学位,接着做了近两年的博士后研究,在疲劳裂纹形状扩展研究领域取得了国际性领先成果。

1996年加入nCode,从事疲劳新技术的开发研究,已开发了多轴疲劳寿命分析工具。

当前的研究包括多轴疲劳、热机疲劳、疲劳裂纹形状扩展模拟、压力容器及管道的疲劳断裂等。

发表论文40篇。

基于有限元的疲劳设计分析系统M SC /FA TIGU EPete r J .Heyes 博士Peter J .Heyes 林晓斌译 摘要 简单描述了基于有限元分析结果进行疲劳寿命分析的思路,着重介绍了根据时域载荷输入计算构件内各点弹性应力应变响应的各种方法,以及从弹性应力应变结果近似计算弹塑性应力应变历史,并考虑多轴影响的各种途径;简单介绍了几种包含在M SC /FATIGUE 中的疲劳寿命计算方法及其各自的特点;总结了M SC /FA TIGU E 系统的功能和特点,并给出了一个转向节疲劳分析例子。

基于MSC FATIGUE的轿车车门结构疲劳耐久分析

基于MSC FATIGUE的轿车车门结构疲劳耐久分析

基于MSCFATIGUE的轿车车门结构疲劳耐久分析作者:肖志金夏汤忠刘盼摘要:以某型轿车车门为例,建立了前侧门系统的有限元模型,施加了边界条件以模拟实际工况,并采用ABAQUS 求解器计算获得了应力时间历程。

利用Miner 损伤累积准则,在MSC.FATIGUE 软件中对车门的疲劳寿命进行仿真分析,估算了车门在100000 次开关闭循环后的累计损伤值,并提出了改进方案。

计算结果显示危险区域与实车试验一致。

关键词:MSC.FATIGUE 车门疲劳损伤1 引言车门作为轿车车身中十分重要的功能部件,具有隔绝车外噪声,缓冲来自外部的冲击的作用,其疲劳寿命直接关系到轿车的经济性和舒适性。

如果能在设计的早期预测结构的疲劳寿命,可以减少试验次数,降低费用,缩短产品开发周期,提高产品的质量。

因此在车门设计的早期阶段,利用计算机仿真模拟,对疲劳寿命进行,有针对性的进行设计的改进,具有较大的现实意义。

以某型轿车前侧门为例,采用MSC.FATIGUE 求解器,对前侧门结构的疲劳寿命进行了分析,识别了危险区域并提出了改进意见。

2 汽车前侧门有限元模型的建立2.1 前侧门网格模型将前侧门各零件和与其相关联的车身环境件的三维模型导入到有限元前处理软件HYPERMESH 中,采用壳单元进行网格划分,基本网格尺寸为5mm。

玻璃及门窗附件简化为集中质量施加在各质心处。

门锁、门铰链和玻璃升降器电机都采用六面体单元建模。

焊点利用B31 单元模拟,采用MPC 单元模拟门铰链上的旋转副。

根据实际情况定义材料属性和接触关系。

生成的有限元模型单元数量为318555,节点数量为290757,局部模型如图1 所示。

图1 前侧门总成局部网格模型2.2 分析工况及边界条件在车身环境件上加全约束,使车门开启4 度,并对车门施加1.46 弧度/s 的关闭角初速度(对应锁扣处的关闭线速度为1.5m/s)。

改变模型中玻璃安装位置,以分别模拟玻璃全关,半开和全开三个工况。

疲劳分析软件MSC Fatigue的工程应用

疲劳分析软件MSC Fatigue的工程应用

a r e c o mp l e t e d u s i n g t he r e a l me a s u r e d d y n a mi c l o a d a n d ma t e r i a l d a t a . Ap pl y i n g t he no mi na l s t r e s s me t h o d,t h e f a t i g ue l i f e c a l c u l a t i o n o f t h e c r o s s s u s t a i ni n g b a r ha s b e e n p e r f o r me d b a s e d o n MS C F a t i g u e, t h e r e s u l t o f f a t i ue g l i f e i s c o r r e s po n d e n t t o t he r e a l s e r v i c e l i f e .T he f a t i g u e a n a l y s i s me t h o d wi t h v i r t u a l f a t i g u e a n a l y s i s s o f t wa r e i s v e if r ie d,a n d i t p r o v i d e s r e f e r e n c e f o r t h e o p t i mu m d e s i g n a nd f a t i g u e l i f e
a n a l y s i s o n c r o s s s u s t a i n i n g b a r .
Ke y wor ds :c r o s s s us t a i n i f e;n o mi n a l s t r e s s me t h o d;l o a d s p e c t r um ;S— N c u r v e

MSC_NASTRAN振动疲劳分析(Lec22_振动疲劳)

MSC_NASTRAN振动疲劳分析(Lec22_振动疲劳)

S22-15
模态叠加瞬态分析的优点
• 使得结构动力响应计算不需要存储每一节点/单元的 响应. • 考虑共振影响 • 这个方法类似于准静态方法,模态参与因子关联模 态应力 • 结合多体动力求解允许对整个装配体进行有效的瞬 态分析
PAT318, Section 22, September 2008 Copyright 2008 MSC.Software Corporation
● 模态(叠加)瞬态方法
● 系统的动力学特性和自由度被缩减到一组模态,因此求 解速度比直接法快.
● 需要选择一组合适的模态. ● 限于线性问题(一般采用这个)
PAT318, Section 22, September 2008 Copyright 2008 MSC.Software Corporation
frequency
Hale Waihona Puke 准静态分析➢ 确定静态有限元分析载荷和约束,以模拟工作环境 ➢ 测量或者预测载荷时间历程Pk( t ) ➢ 弹性应力历程是通过线性叠加方法进行计算:
ij,e (t)
k
Pk
(t
)
ij,e,k Pk,f ea
where k = loadcase ID.
PAT318, Section 22, September 2008 Copyright 2008 MSC.Software Corporation
S22-7
A
静态分析
● 优点:
● 有限元计算代价低. ● 硬盘空间要求少. ● 可以使同样的应力数据用于不同载荷事件的疲劳分析. (也就是多
事件) ● 自动排除可以用于在疲劳分析前选择实体以加速分析。
● 缺点:
● 静态有限元分析要求的某些约束可能不理想. ● 当系统固有频率接近外载频率时候精度不够.

MSC fatigue 实例 组件的疲劳分析

MSC fatigue 实例 组件的疲劳分析

4Component S-N AnalysisProblem Description 138Geometry 139Set Up the Fatigue Analysis 142Run the Fatigue Analysis 158Review the Results 159Concluding Remarks 164MSC Fatigue QuickStart Guide138Problem DescriptionProblem DescriptionA simple bracket as shown has a design life of 7 years (61,320 hours). Loading occurs at the end of theshort section which has been welded and the component is constrained at both ends of the main bar.Because failure is known to occur at the weld, the finite element modeling at the loading point and thestresses found there can be ignored for the purposes of this exercise. The load applied in the model was900 lbs total. In service, the component experiences loading of 3000 lbs in the direction of the finiterate is allowed.Objective•To introduce the concept of a component S-N curve.•To learn how to enter materials data into the database manager.•To determine if the component achieves its design life.•To determine what level of loading can be achieve and what failure rate could be expected - asensitivity study.•To understand what files are created by an MSC Fatigue analysis.Table4-1 Chapter 4 Necessary FilesFileP3_HOME/mscfatigue_files/examples/bracket.op2Chapter4: Component S-N Analysis139Geometry GeometryInvoke MSC Patran as you did in the previous examples. The geometry can be found in the file bracket.op2. The results are from MSC Nastran. Copy the file to your working directory. Open a new database in a clean, empty work directory from the File | New menu. Give the name bracket to the database.Import the Model and ResultsPress the Analysis toggle switch or tab on the main form. When the form appears set the Action to Access Results, the Object to Read Output2, and the Method to Both (model and results) then press the Select Results File button and select the file bracket.op2 and click Apply. The model will then appear and you are ready to set up a fatigue analysis.View the Stress ResultsBefore moving on to the fatigue analysis, press the Results application switch or tab on the main form to view the stress results from the MSC Nastran analysis. Select Stress Tensor, from the listbox and set theMSC Fatigue QuickStart Guide140GeometryQuantity to Maximum Principal. Click the Apply button and note the areas of high stress mostly aroundthe applied load. This however, is not of concern to us. What we are interested in is the stress at Node514 of around 2,690 PSI. This will be explained in more detail as we set up the material information.To rotate the model, press the middle mouse button or for a two button mouse, press both at the sametime.When you are done, press the Results switch again to close down the Results application form.Chapter4: Component S-N Analysis141GeometryMSC Fatigue QuickStart Guide142Set Up the Fatigue AnalysisSet Up the Fatigue AnalysisTo begin setup for a fatigue analysis, from the Tools pull-down menu in MSC Patran, select MSC Fatigueand then Main Interface. This will bring up the MSC Fatigue main form from which all parameters,loading and materials information, and analysis control are accessed.Once the form is open, set the Main Form as follows:Chapter4: Component S-N Analysis143Set Up the Fatigue AnalysisMSC Fatigue QuickStart Guide144Set Up the Fatigue Analysis1.Analysis: S-N2.Results Loc.: NodeThis simply means that the fatigue lives will be determined at the nodes of the model.3.Nodal Ave.: GlobalAccept the default which simply means element nodal stresses will be averaged to the nodes.4.F.E. Results: StressS-N analyses require stresses; you do not have a choice.5.Res. Units: PSIModel dimensions are inches and forces are in Pounds, therefore stress units are PSI.6.Jobname: comp_sn7.Title: Component S-N AnalysisSolution ParametersOpen the Solution Params... form. On this form leave all the defaults except:Chapter4: Component S-N Analysis145Set Up the Fatigue Analysis Certainty of Survival: 96As we learned in the last exercise, the S-N data can have significant scatter associated with it. Weare asking MSC Fatigue to calculate a fatigue live with 96% certainty of survival based on thescatter in the S-N data. This corresponds to a 4% failure rate.Click the OK button to continue.Material InformationThe component was tested under constant amplitude, fully-reversed conditions to produce S-N data. Inthe previous examples we have used S-N curves that are representative of the material and independentof geometry. They related local stress (σ) to life. Now we have a different situation where the actual component geometry itself as well as the material has been used in tests to create the S-N curve. This typeof S-N curve is called a component S-N curve. These type of curves relate nominal stress (S) to life and are dependent on the geometry of the component. If you change the geometry, the curve will no longerMSC Fatigue QuickStart Guide146Set Up the Fatigue Analysisbe valid. The nominal stress is a location away from the actual failure location. This is usually becauseit is impossible to place a measurement device such as a strain gauge in the failure location. The stressfor the S-N curve was measured using strain gauges at a point one quarter of an inch from the weld onthe main bar and 5 inches from each end of the bar. Node 514 of the model corresponds to thismeasurement point for the S-N curve. The point of measurement is sometimes referred to as thereference location.For this model we have an S-N curve that needs to be input to PFMAT, the materials database manager.Two methods of entering this data will be given.Table4-2 S-N Data Set for Bracket AssemblyS-N Properties:Stress Range Intercept, SRI1 10,710 MPa1553 KSIFirst fatigue strength exponent, b1-0.33333-0.33333Fatigue transition point (cycles), NC11E71E7Second fatigue strength exponent, b2-0.2-0.2Standard error of Log (N), SE0.20.2R-Ratio of test, RRAT-1-1Monotonic Properties:Young’s Modulus, E 205,800 MPa29, 850 KSIUTS 700 MPa101.5 KSISet Up the Fatigue AnalysisManual Entry of Materials DataOpen the Material Info... form and press the Materials Database Manager button. This will invoke PFMAT. Once the program has started, select Create | data set 1.You will be asked for a password to modify the central database location. If you do not enter a password and simply press the carriage return or the OK button, a copy of the central materials database will be copied to your local directory where you can then proceed to enter your materials data.Now a series of forms will open requesting data entry. On the first form, Names, enter:1.Primary name : BRACKET_SN2.Anything else you want - not requiredOn the next form, Static Data, enter the generic (monotonic) information:1.UTS : Ultimate Tensile Strength (MPa): 7002.E : Elastic modulus (MPa): 205800Only these two parameters are required to be entered. The next form (E-N data) is for strain data. Skip over this form by clicking the OK button. The next form is for S-N data . Select Component from the pull-down menu.For the rest of the data, enter the SI values as indicated in Table 4-2. Click the OK button when done. Fracture Mechanics Data is requested next. Just click the OKbutton to skip over this. Multiaxial data isNote:PFMAT always tells you at the top of its main menu whether it is connected to the centraldatabase in the MSC Fatigue installation area or a local database in the current directory, or even some other database that you may have created in another directory.requested next. Skip over this form also by clicking the OK button. The material will be entered into the database. Press or double-click the Graphical Display switch to view the S-N curve.Exit from PFMAT when you are done using the File | Exit and the eXitswitch.Hint:We are entering the data here in SI units. All underlying fatigue calculations are done usingSI units. However if you wish to enter and view materials data in Imperial units, set thepreference using Preferences | Stress units | PSI . You can save this setting globally, orjust locally in your working directory (or not at all) so that each time you invoke PFMAT it remembers to display values and plots in your units of preference.Note:S-N curves are characterized by a power law and thus appear as straight lines in log-log space.The equation is S=SRI1(N)b where SRI1 is the y-intercept and b is the slope (after Basquin). It is interesting to note historically that, although invented in 1870 by August Woehler, the S-N curve was not actually displayed graphically until some 30 years later. And it was not until 10 years after that that the curves were characterized in equation form. Our curve actually has two slopes and a transition point. If the second slope were zero it would act as a fatigue limit.Set Up the Fatigue AnalysisBatch Entry of Materials DataInput another S-N data set. To illustrate batch mode operation of PFMAT we are going to define the parameters of the second S-N set in a file. Using your a text editor, create a file called bracket.mat in the working directory.Enter the following lines in this file:/OPT=CREATE /INDB=YES /PASS=/MATNO=2/PRI=BRACKET_SN2/UTS=700/E1=205800/SNT=C /SRI=13950/B1=-0.29/NC1=2E7/B2=-0.16/SE=0.14/RRAT=-1/OPT=EXThen from the system prompt or a DOS window issue the following command:pfmat @bracket.matASCII Materials File Reader The MAT file created above can also be entered in the S-N data set by using the ASCII Materials File Reader. This form can be accessed by going to the Tools pull-down menu and selecting MSC Fatigue (for the MSC Patran version) or Fatigue Utilities (for the Standalone version). From here, select Material Management and then ASCII Materials File Reader.Table 4-3 Second S-N Data Set for Bracket Assembly Stress Range Intercept, SRI1 (MPa)139502023ksiSlope, b1-0.29-0.29Transition life, NC1 (cycles)2E72E7Slope, b2-0.16-0.16Standard error, SE0.140.14Stress ratio, RRAT-1-1On the form that comes up, enter the name bracket.mat into the MAT Filename databox and click the Apply button.Either of the above mentioned two methods will put the second data set into the database. Graphically compare bracket_sn and bracket_sn2 by running PFMAT interactively and using the Graphicaldisplay option. To run interactively you can either just type pfmat at the system prompt or go back to Pre & Post or MSC Patran and spawn it from the MSC Fatigue Material Info... form. Make sure bothbracket_sn and bracket_sn2 are loaded as data set 1 and 2 using Load | data set n.Note:The above mentioned MAT file can also be created from scratch by using the “Edit” button onthe form shown above.Set Up the Fatigue Analysis Hint:If you do not have any S-N data, but only know E and UTS, you can have PFMAT generate generic material properties based on empirical formulas and the type of material.Simply enter E and UTS as if you were going to enter your own S-N data and the MaterialType Number (see the MSC Fatigue User’s Guide) and the S-N parameters will begenerated automatically for you. (99=steel of unknown heat treatment) Of course youhave to turn on the Generate all parameters from UTS toggle.Specify the Material for the AnalysisOn the Material Info... form enter the following in the spreadsheet:1.Material: BRACKET_SNSelect the cell under the Material column to activate it and select the S-N curve from the listbox that appears below the spreadsheet. The next cell will become active.2.Finish: No FinishSelect No Finish from the pull-down menu that appears below the spreadsheet. Finish andtreatment are not allowed in a component S-N analysis (they are built into the curve). They will be ignored if you set them. The next cell will become active once you select the finish.3.Treatment: No TreatmentSelect No Treatment. The next cell becomes active.4.Region: default_groupSelect default_group which contains the nodes and elements from the entire model.Close the Material Info... form when you are done by clicking OK.Loading InformationTo create the time history which represents the actual loading conditions of the bracket, use PTIME and the X-Y points option representing y-values only. The time history will have a maximum of 3000 lbs and a minimum of –7000 lbs. No other information has been given so you can assume that there are no peaks and valleys between these points and that only these two points are required. You will enter the values 0, 3000, –7000, and 0 to create this loading.The 1/2 hour interval can be modeled using the fatigue equivalent units. This is a term relating to the real value of one repeat of the time history. In this case, you can use 30 minutes, 1/2 hours, 1/48 days, etc. The answer will be the same of course, but you can choose the best parameter for reporting the life of your product.Open the Loading Info... form and click the Time History Manager button.Set Up the Fatigue AnalysisDefine the LoadWhen PTIME comes up, select Enter X-Y points as the method of input.Note:If you have been working sequentially through this document, then you will already have some entries in the PTIME database. The version of the form that is displayed will be differentthan the one shown here. On this form, select Add an entry and then select the option X-ytime series, which is the equivalent of selecting Enter X-Y points on the shown form.A form will appear that will ask for a name, description and other information. Enter the following leaving defaults for those not mentioned:1.Filename: BRACKET_LOAD2.Description 1: Bracket Loading3.Load Type: Force4.Units: lbs force5.Number of fatigue equivalent units: 0.56.Fatigue Equivalent Units: HoursWe are defining a single occurrence of this signal as representing 1/2 hour.Click the OK button to go on. Next you will be prompted to enter the Y points. Enter the following numbers with a carriage return after each: 0, 3000, -7000, 0. End by putting in a blank entry and thenclick the End button.Set Up the Fatigue AnalysisPlot the Time HistoryPTIME returns to its main menu where you can select Plot an entry to make sure it took correctly. Accept the default file, BRACKET_LOAD .Select File | Exit to close the plot and press or double-click the eXit switch in PTIME.Associate the FE Load to its Time VariationNow back on the Loading Info... form you must associate the time variation of the load that you just created to the FE load case. Go to the spreadsheet as was done in the previous example. Select the first cell with the mouse to activate it.1.Load Case ID : 1.1-3.1-1-This is the internal database ID. You select the FE results from the listboxes below. You must select a Result Case, a Stress result, and a layer. Then you click the Fill Cell button to enter it in the spreadsheet cell. The listboxes may appear empty at first. To fill them select the Get/Filter Results ... button and turn ON the Select All Result Cases toggle and click Apply .2.Time History: BRACKET_LOADNote:The load case ID may be different than that shown here.The middle cell should become active after selecting the FE result. Another spreadsheet appears at the bottom of the form from which you select the time history file. Click on theBRACKET_LOAD row anywhere with the mouse. This will fill the cell with the time history file name.3.Load Magnitude: 900The next cell becomes active and a databox appears below the spreadsheet. Change this entry to 900. You must press a carriage return (Return or Enter) to accept the value in the databox below the spreadsheet. A common mistake is to forget to press the carriage return to accept the value.Remember we are normalizing the FE stresses by dividing by the total applied load magnitude of 900 lbs from the FE analysis to simulate a stress distribution due to a unit load. The time variation represents the actual load magnitudes.Chapter4: Component S-N Analysis157Set Up the Fatigue AnalysisThe time variation of the loading is now associated to the static FE results. Click the OK button to close the Loading Info... form.MSC Fatigue QuickStart Guide158Run the Fatigue AnalysisRun the Fatigue AnalysisYou are ready to run the fatigue analysis. Open the Job Control... form. Set the Action to Full Analysisand click the Apply button. The database will close momentarily as the results information is extracted.When the database reopens, the job will have been submitted. You can then set the Action to MonitorJob and click the Apply button from time to time to view the progress. When the message appears, theanalysis is complete. Close down the Job Control... form when done.Fatigue analysis completed successfullyChapter4: Component S-N Analysis159Review the Results Review the ResultsOpen the Fatigue Results... form on the main MSC Fatigue setup form (not to be confused with the Results application switch or tab on the main Patran form). With the Action set to Read Results, click Apply. The fatigue analysis results have been read into the database.MSC Fatigue QuickStart Guide Review the Results 160View the Life Contour PlotJust as you viewed the stresses earlier, you can view the life plot. Press the Results application switch on the main from and select the Total Life result case and Log of Life (Hours) as the Fringe Result and click Apply . Press the Results switch again to close the Results application.Now, the point of putting up this life contour plot is to make a point. The plot is of absolutely no value and is meaningless. The only node on this structure with the correct fatigue life prediction is Node 514, the reference point of the component S-N curve. By allowing all the nodes of the model in the analysis, MSC Fatigue treats them all as reference nodes but only Node 514 is of interest to us. This is only the case when using component S-N curves. Contour plots from material S-N curves and the crack initiation method are perfectly valid and meaningful.Tabular ListingNow let us find out what the actual fatigue life is at Node 514. On the Fatigue Results... form, change the Action to List Results and click Apply . This will start the module PFPOST which tabularly lists the fatigue analysis results. Accepting the jobname and the default filtering values by clicking OK a couple of times will get you to the main menu. Press or double-click the User specified nodes switch, enter 514 as the node number. Note the life value of approximately 104.115=1.303E4 repeats (=6,515 hours) hours. This is certainly less than the design life of 7 years (61,320 hours). Click Cancel to quit the listing and press or double-click eXitto leave PFPOST.Note:Since only Node 514 is valid in this analysis, it would have been better to have created a group(under Group | Create ) that contained only Node 514 and then have assigned it as the region of analysis in the Material Info... form as opposed to using default_group.161Chapter 4: Component S-N Analysis Review the ResultsDesign OptimizationThe objectives of this example have been partially met. The life of the component is below that of the design life for a 96% confidence level. You can enter the design optimization portion of MSC Fatigue to answer the other objectives. This can be done by picking Optimize from the Fatigue Results... form. This time however, enter Node 514 as the node to optimize (or select it graphically from the screen).Once in FEFAT’s design optimization mode, you can reanalyze the component. Enter the design life of 61,320 hours. You should obtain the same life estimate of around 6,500 hours. Click End to continue.You will be placed into the FEFAT design optimization main menu. Select Parameter optimization | Scaling factor to back calculate a scale factor that will be needed to achieve the appropriate design life of 61,320 hours and then press or double-click Recalculate . This should give you a scale factor of about 0.5 which tells you that to achieve your design criteria you need a 50% reduction in load. This may be unacceptable.You can also set the Design criterion under Parameter optimization to determine the certainty of survival after 7 years. Remember to press the Recalculate switch. Note that it is less than one percent. So premature failure is certain.You have submitted a report to your manager which has caused panic and have been asked to reanalyze the component after using a modified welding technique, which is more expensive. After retesting, a new S-N data set has been generated. This is BRACKET_SN2 which was imported earlier.Try a new analysis using this modified S-N data set to see if the life is satisfactory. Reset the analysis from the main menu of FEFAT by selecting the Original parameters switch. Next go to Material optimization and change the S-N curve to BRACKET_SN2 and press or double-click Recalculate.Note: A file called pfatigue.ents is created when you select nodes or elements from the graphicalscreen or type them into the Fatigue Results...| Optimize form. Node 514 is contained in this file in this case. You can also simply type 514 in the Node/Element field also in FEFAT.MSC Fatigue QuickStart Guide162Review the ResultsYou should find that the new life is around 97,000 hours or approximately 11 years. By back calculatinga scale factor again in FEFAT, you will get around 1.1, which means your component should be able tosurvive a 10% overload and still maintain the design criteria. Also, the failure rate after seven yearsshould be less than 0.1%. This can all be seen by repeating the steps done with the new S-N curve.Sensitivity AnalysisAs one last exercise in this example, select Sensitivity analysis | Scale factors. Enter the following forscale factors: (.5, 1.5, .1). This includes the parentheses. Press or double-click the Recalculate switch. Asensitivity analysis will proceed and the results displayed tabularly. The scale factor input signifies (to,from, increment) a 50% reduction to a 50% overload by increments of 10%. (You can also enter a seriesof values separated by commas or spaces.)It is, of course, more interesting to view the results graphically. Select results Display | Sensitivity plot.The last sensitivity analysis results will be plotted. You have specified to scale the loading (or thestresses) or you can think of the scale factors as stress concentration factors (K t). Now you can see howsensitive the component is to loading. The same thing can be done for certainty of survival.Hint:When you do a sensitivity plot in FEFAT, it creates a couple of files, one XY (.xyd) plotfile and a template (.tem) file that can be read into Pre & Post’s or MSC Patran’s XYplotting application. From the MSC Fatigue Results... form, set the Action to PlotSensitivity. There you will see all sensitivity plots that have been created by FEFAT. Youcan simply select one and it will plot after you click the Apply button.Chapter4: Component S-N Analysis163Review the Results When you are done, close the plot (File | Exit) and exit from FEFAT.MSC Fatigue QuickStart Guide164Concluding RemarksConcluding RemarksThe component S-N method is the most macro view of the world of life prediction since all the failuremechanisms are built right into the component S-N curve: plasticity, geometry effects, residual stresses,surface conditions, etc. When the failure mechanisms are unknown or not well understood this methodmust be used. For this reason it is a completely general purpose method and lends itself well to mostapplications where other methods of life prediction fail. Non-ferrous materials such as plastics, ceramics,rubber, and composite structures as well as welds can use this method, whereas the other two mainmethods of life prediction (crack initiation and crack growth) are mainly restricted to metals or materialsthat behave like metals under cyclic loading conditions.Batch OperationsIn this example you ran one of the MSC Fatigue modules in batch mode. Most MSC Fatigue modulescan be run in batch mode either by including the batch commands in a file and then issuing the commandusing the @ sign to direct the module to read the commands from the file (pfmat @filename). Or thecommands can be included on the same line as the command:fefat /opt=p/inp=filename/out=filename/ov=yBatch operation can be quite convenient if you have to do a lot of repetitive tasks. See the MSC FatigueUser’s Guide for batch operation descriptions.。

MSCFatigue疲劳分析标准教程

MSCFatigue疲劳分析标准教程
使用MSCFatigue自带的后处理工具 或第三方软件(如ParaView、 Ensight等)打开结果文件,进行可视 化查看和分析。
疲劳寿命云图显示与调整
云图显示
通过设定颜色映射范围、透明度等参数,使疲劳寿命云图更加直观易懂。
云图调整
根据实际需求,可以对云图进行旋转、缩放、平移等操作,以便更好地观察和 分析疲劳寿命分布情况。
高效的多核并行计算
灵活的二次开发接口
利用多核并行计算技术,MSCFatigue可大 幅提高计算效率,缩短分析时间。
提供开放的API接口,用户可根据自身需求进 行二次开发,扩展软件功能。
软件安装与启动步骤
01
安装步骤
02
下载MSCFatigue安装包;
双击安装包,按照提示完成软件的安装;
03
软件安装与启动步骤
桥梁结构疲劳分析步骤演示
疲劳分析流程
定义疲劳载荷谱,根据桥梁所处环境和交通流量 统计得到。
进行静力分析,得到桥梁在静载作用下的应力分 布。
桥梁结构疲劳分析步骤演示
01
进行动力分析,得到桥梁在动态载荷作用下的应力 响应。
02
结合疲劳载荷谱和应力响应,进行疲劳损伤计算。
03
关键步骤详解
桥梁结构疲劳分析步骤演示
03 对比设计寿命要求,评估桥梁的疲劳性能是否满 足要求。
结果讨论与优化建议
01
优化建议
02
针对疲劳寿命较短的关键部位,可优化结构设计,如增加截面尺寸、 改变材料类型等。
03
对于受到严重疲劳损伤的部位,可考虑采用加固措施,如粘贴钢板、 增设横向支撑等。
04
在桥梁运营过程中,加强监测和维护保养工作,及时发现并处理疲劳 裂纹等问题。

疲劳分析软件Fatigue

疲劳分析软件Fatigue

目录疲劳分析软件单项论证报告——MSC Fatigue (2)1 必要性论证 (2)1.1.现状 (2)1.2.存在问题: (2)1.3.发展趋势 (3)2 项目(设备)名称: (3)2.1技术规格性能 (3)2.2设备调研及选型情况 (5)2.3先进性和特色 (7)3 设备厂商描述 (9)3.1设备厂商介绍: (9)3.2行业客户 (10)4 项目配套方案的配套条件: (11)5 项目投资估算及进度安排 (12)6 附件:MSC.Software公司简介 (12)疲劳分析软件单项论证报告——MSC Fatigue序号:设备表中编号:设备名称:MSC Fatigue\MSC Patran设备型号:国别、厂商:美国\MSC软件公司1必要性论证电子行业是一个飞速发展的行业,市场容量极其巨大,如今我国已是全球第三大电子信息产品制造国,电子信息产品已经渗透到我们生活的各个角落,包括国防军工用品、通信、医疗、计算机及周边视听产品、玩具等。

电子行业具有产品更新快,研发周期短的特点,为了满足不断发展的市场需求,必须加快产品结构的升级,在核心技术领域取得重大突破。

MSC.Software公司认为新的研究方法和技术突破在现代产品研发中扮演非常关键的作用,目前CAE仿真已经成为电子行业广泛采用的一种新的方法和技术,一定能够发挥重要作用。

1.1. 现状随着电子技术的逐渐成熟,越来越多的电子元器件或相关产品投入市场,为降低制作成本、缩短研制周期、提高产品可靠性,迫切需要引入有效的设计方法。

另一方面伴随着电子产品加工工艺的标准化,使得电子产品设计在一定程度上可与具体工艺相分离,从而大大地促进了产品建模与仿真技术的迅速发展,与以前相比电子产品CAD技术更具实际应用价值。

目前在电子产品研发中,计算机辅助工具的发展水平远远滞后于前沿研究的步伐,大多数电子元器件都由与其功能差不多但不能准确预测其执行情况的分析工具来设计。

因此,通常采用试验排错的方法进行,这往往需要反复多次的试验才能最终确定满足特定环境的器件设备。

Msc.Fatigue疲劳分析实例指导教程

Msc.Fatigue疲劳分析实例指导教程

第三章疲劳载荷谱的统计处理3.1疲劳载荷谱的统计处理理论基础3.1.1数字化滤波频率分析的典型参量是功率谱密度(PSD),如像确定频率为4Hz对应的幅值的均方根值,只需要求取功率谱密度下对应的3.5-4Hz之间的面积。

3.1.2雨流计数法循环计数法:将不规则的随机载荷-时间历程,转化为一系列循环的方法。

3.2数据的导入与显示(1)新建:File>New(2)导入:Tools>Fatigue Utilities>File Conversion Utilities>Covert ASCII.dac to Binary...>Single Channel(设置,注意Header Lines to skip要跳过的行数)>exit(3)查看:Tools>Fatigue Utilities>Graphic Display>Quick Look Display1)放大:View>Window X,输入X的最值2)读取:①左击任何位置,状态栏显示②数据轨迹:Display>Track3)显示数据点:Display>Join Points;显示实线图:Display>Join4)网格和可选坐标轴:Axes>Axes Type/Grid5)显示某段时间信号的统计信息:Display>Wstats,放大3.3数字滤波去除电压干扰信号(1)载荷时间历程的PSD分析1)File>New2)Tools>Fatigue Utilities>Advanced Load Utilities>Auto Spectral density(2)信号的滤波1)Tools>Fatigue Utilites>Advanced Load Utilities>Fast Fourier Filtering2)比较滤波前后结果:Tools>Fatigue Utilities>Graphic Display>Multi-file Display(3)滤波稳定性检查:比较前后PSD,多文件叠加显示第四章应力疲劳分析4.2载荷谱块的创建与疲劳寿命计算(1)创建载荷谱块:Tools>Fatigur Utility>Load Management>Add an Entry>Block program (2)疲劳分析:Tools>Fatigue Utilities>Advanced fatigue utilities>选方法4.3零部件疲劳分析(1)导入有限元模型及应力结果:工具栏Import>Action、Object、Method,查看Results (2)疲劳分析1)设置疲劳分析方法:工具栏Analysis,设置2)设置疲劳载荷①创建载荷时间历程文件Loading info>Time History Manager②将有限元分析工况与时间载荷关联:Loading Info>Load case空白>Get/Filte result...3)设置材料的疲劳特性:Material info>Materials Database Manager>create...4)求解:Solution Params5)疲劳分析:Job Control6)查看寿命结果云图:Import Fatigue Result...>Action:Read results>工具栏Results查看7)寿命列表显示:Import Fatigue Result...>Action:List Results...>most damaged nodes (3)优化设计:Import Fatigue Results...>Action:Optimize....1)参数优化:Parameter optimization>Scaling factor>Recalculate2)材料优化:Material Optimization...>Recalculate3)灵敏度分析:Sensitivity analysis>Scaling factor比例因子....4)灵敏度分析结果:results Display>Sensitivity plot第五章应变疲劳分析5.2考虑残余应力的应变疲劳分析(1)导入有限元模型和应力分析结果(2)先不考虑残余应力的疲劳分析(3)考虑残余应力的疲劳分析1)设置疲劳分析方法:保留Material Info和Solution Params...的设置2)定义残余应力:Loading Info..>Static Load Case:2,单击enter。

基于有限元的疲劳设计分析系统MSC_FATIGUE

基于有限元的疲劳设计分析系统MSC_FATIGUE

3 Ba nnantine J A ,Comer J J ,Handr ock JL .F undamentals of Met al Fa tigue Analy-sis.P retice Hall,1990.4 鲍万年.机械强度有限寿命设计专家工作站配置的疲劳寿命预测和局部应变法.中国机械工程,1997,8(3):25~275 nCode Inter national Limit ed.The nCode Book of F a-tigue Theory,1997.6 林晓斌,Heyes P J .多轴疲劳寿命工程预测方法.中国机械工程,1998,9(11):20~237 Halfpenny A,林晓斌.基于功率谱密度信号的疲劳寿命估计.中国机械工程,1998,9(11):16~198 Austen I M ,林晓斌.加速疲劳试验的疲劳编辑技术.中国机械工程,1998,9(11):27~309 Ensor D F ,林晓斌.关联用户用途的试车技术.中国机械工程,1998,9(11):24~28林晓斌 男,1963年生。

英国n Code 国际有限公司高级疲劳工程师、英国Sheffield 大学客座研究员。

1978~1990年在浙江大学学习工作,主要从事压力容器的安全性研究。

1994年获英国Sh effield 大学博士学位,接着做了近两年的博士后研究,在疲劳裂纹形状扩展研究领域取得了国际性领先成果。

1996年加入nCode,从事疲劳新技术的开发研究,已开发了多轴疲劳寿命分析工具。

当前的研究包括多轴疲劳、热机疲劳、疲劳裂纹形状扩展模拟、压力容器及管道的疲劳断裂等。

发表论文40篇。

基于有限元的疲劳设计分析系统MSC /FATIGU EPeter J.Heyes 博士Pet er J.Heyes 林晓斌译 摘要 简单描述了基于有限元分析结果进行疲劳寿命分析的思路,着重介绍了根据时域载荷输入计算构件内各点弹性应力应变响应的各种方法,以及从弹性应力应变结果近似计算弹塑性应力应变历史,并考虑多轴影响的各种途径;简单介绍了几种包含在MSC/FATIGUE 中的疲劳寿命计算方法及其各自的特点;总结了MSC/FAT IGUE 系统的功能和特点,并给出了一个转向节疲劳分析例子。

基于MSC_Fatigue对40CrNiMoA拉杆疲劳寿命分析

基于MSC_Fatigue对40CrNiMoA拉杆疲劳寿命分析
3 不同过渡圆弧半径下的应力集中系 数和疲劳寿命的对比
为了研究不同过渡圆弧半径对拉杆的应力集中
系数和疲劳寿命的影响, 又分别对不同的半径进行
了类似的有限元和疲劳分析。 半径为 2 mm 的拉杆 的寿命云图如图 6(b)所示,从而得到两者之间的近
似关系。 进行分析的方案如表 1 所示。
表 1 不同过渡半径下的应力集中系数和疲劳寿命 Tab.1 Stress concentrating coefficients and fatigue life
主应力 / MPa
应力 / MPa
抗 拉 强 度 1100 MPa、 弹 性 模 量 210 GPa 和 泊 松 比 0.3 等 参 数 输 入 到 MSC.Fatigue 软 件 中 的 PEMAT 中,软件就会根据这几项基本设置自动匹配材料疲劳 性能,生成材料的 S-N 曲线,如图4 所示。
1E4
寿命的薄弱位置, 从而修改产品设计方案来满足疲 劳寿命的要求。因此,运用基于有限元进行的疲劳分 析可以减少产品试验的次数,缩短产品的开发周期, 从而达到降低开发成本,大大提高了市场竞争力,为 企 业 带 来 较 高 的 收 益 [1]。
本 文 采 用 大 型 通 用 有 限 元 软 件 ABAQUS 对 40CrNiMoA 变截面拉杆进行分析,得到拉杆的应力 集中系数与过渡半径的关系, 然后将其分析的结果 引入专业疲劳分析软件 MSC.Fatigue 对其进行疲劳 寿命的计算,从而得到这两者之间的关系,为拉杆的 抗疲劳设计提供重要参考。 拉杆的具体尺寸如图 1 所示。
1E3
1E21E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 疲劳寿命 /次
图 4 40CrNiMoA 的 S-N 曲线 Fig.4 The S-N curve of 40CrNiMoA

MSC Fatigue---一体化的疲劳寿命预测系统

MSC Fatigue---一体化的疲劳寿命预测系统

S3 S3
1 K f
ΔS
Se Se
msur msize Kf
Nf
局部应变(e-N)法
同样的局部应变,同样的裂纹萌生寿命
t
f
E
2N
f
b
f 2N f
c
εa
2Nf
局部应变法修正
平均应力:根据Neuber法则算平均应力,应用SWT方法或Morrow方法 修正eN曲线 表面加工质量和表面处理 应力集中 …
6. MSC.Fatigue 应用案例 7. MSC.Fatigue 新功能 8. MSC.Fatigue总结
1. 疲劳寿命预测简介
7/6/2014
3
什么是疲劳?
疲劳或疲劳断裂
机件在低于材料屈服强度的循环应力作 用下发生断裂的现象
疲劳失效难以预防,疲劳会造成很大
的经济损失
为何需要疲劳分析?
壁厚 材料
寿命missions)
Node 979
寿命 (missions)
Node 12453
方案1
方案2 方案3
8mm
8mm 12mm
826M31
300M 826M31
<1
3207 38300
3148
27605 28500
目标寿命 = 12,000 missions
Node 12453 Node 979
非疲劳破坏与疲劳破坏
断裂强度(Speak)
循环(Sa,Sm)i
瞬间断裂
损伤累积
疲劳研究的目的
疲劳破坏是机械设备的主要破坏形式(80%~90%); 疲劳破坏往往造成重大的经济损失和人员伤亡; 通过试验、计算或监控手段,防止疲劳失效及其造成的事故,保障设备 使用安全是疲劳研究的主要目的。

疲劳分析与MSC.Fatigue

疲劳分析与MSC.Fatigue
+ a
+∞
0
& ⋅ f (a , y & )dy & y
马 天 飞
γ =∫
+ a
+∞
0
− 2 σ & ⋅ f (a , y & ) dy & = Y& ⋅ e 2σ Y y 2πσ Y
a2
24
Ø4
车 辆 随 机 振 动 理 论 及 应 用
四、正穿越a的期望频率
Ø 正穿越y=0的期望频率为
+ γ0 =
二、平稳宽带过程的峰值分布
Ø 随机过程 Y(t) 的 极 大 值( 峰 值)出 现 的 平 均 频率 称 为 极 大值频率。 Ø 平稳宽带过程Y(t)的峰出现 的条件是,在t时刻
& (t ) = 0 且 && y y (t ) < 0
马 天 飞
Ø 曲线关于直线是不对称的; Ø 当 a = σ Y 时,曲线有极大值; Ø 峰值 P非常小或非常大的概率很小,而且大多数峰值都出现在 标准差附近。 (例题3-2)
Ø 在dt时间内正穿越y=a的平均次数为 γ dt 。 Ø 显然,当dt很小时,可以认为dt时间内正穿越y=a的 平均次数与dt内发生正穿越a的事件的概率是相等的。 即
+ γa dt = dt ∫ +∞ 0
+ a
& ⋅ f (a , y & )dy & y
车 辆 随 机 振 动 理 论 及 应 用
四、正穿越a的期望频率
马 天 飞
11 12
Ø2
车 辆 随 机 振 动 理 论 及 应 用
二、窄带过程的理想化自谱
Ø 将响应过程的自谱曲线理想化成直线,用下式描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solution Parameters
Open the Solution Params... form. On this form leave all the defaults except:
Chapter 4: Component S-N Analysis 145
Set Up the Fatigue Analysis
142 158
138 MSC Fatigue QuickStart Guide
Problem Description
Problem Description
A simple bracket as shown has a design life of 7 years (61,320 hours). Loading occurs at the end of the short section which has been welded and the component is constrained at both ends of the main bar. Because failure is known to occur at the weld, the finite element modeling at the loading point and the stresses found there can be ignored for the purposes of this exercise. The load applied in the model was 900 lbs total. In service, the component experiences loading of 3000 lbs in the direction of the finite element load and 7000 lbs in the reverse direction. This occurs once every 30 minutes. Only a 4% failure rate is allowed.
140 MSC Fatigue QuickStart Guide
Geometry
Quantity to Maximum Principal. Click the Apply button and note the areas of high stress mostly around the applied load. This however, is not of concern to us. What we are interested in is the stress at Node 514 of around 2,690 PSI. This will be explained in more detail as we set up the material information. To rotate the model, press the middle mouse button or for a two button mouse, press both at the same time. When you are done, press the Results switch again to close down the Results application form.
Set Up the Fatigue Analysis
1. Analysis: S-N 2. Results Loc.: Node This simply means that the fatigue lives will be determined at the nodes of the model. 3. Nodal Ave.: Global Accept the default which simply means element nodal stresses will be averaged to the nodes. 4. F.E. Results: Stress S-N analyses require stresses; you do not have a choice. 5. Res. Units: PSI Model dimensions are inches and forces are in Pounds, therefore stress units are PSI. 6. Jobname: comp_sn 7. Title: Component S-N Analysis
View the Stress Results
Before moving on to the fatigue analysis, press the Results application switch or tab on the main form to view the stress results from the MSC Nastran analysis. Select Stress Tensor, from the listbox and set the
Objective
• To introduce the concept of a component S-N curve. • To learn how to enter materials data into the database manager. • To determine if the component achieves its design life. • To determine what level of loading can be achieve and what failure rate could be expected - a
Chapter 4: Component S-N Analysis MSC Fatigue QuickStart Guide
4
Component S-N Analysis

Problem Description Geometry 139

138
Set Up the Fatigue Analysis Run the Fatigue Analysis Review the Results Concluding Remarks 159 164
Certainty of Survival: 96
As we learned in the last exercise, the S-N data can have significant scatter associated with it. We are asking MSC Fatigue to calculate a fatigue live with 96% certainty of survival based on the scatter in the S-N data. This corresponds to a 4% failure rate. Click the OK button to continue.
Chapter 4: Component S-N Analysis 139
Geometry
Geometry
Invoke MSC Patran as you did in the previous examples. The geometry can be found in the file bracket.op2. The results are from MSC Nastran. Copy the file to your working directory. Open a new database in a clean, empty work directory from the File | New menu. Give the name bracket to the database.
Import the Model and Results
Press the Analysis toggle switch or tab on the main form. When the form appears set the Action to Access Results, the Object to Read Output2, and the Method to Both (model and results) then press the Select Results File button and select the file bracket.op2 and click Apply. The model will then appear and you are ready to set up a fatigue analysis.
Chapter 4: Component S-N Analysis 141
Geometry
142 MSC Fatigue QuickStart Guide
Set Up the Fatigue Analysis
Set Up the Fatigue Analysis
To begin setup for a fatigue analysis, from the Tools pull-down menu in MSC Patran, select MSC Fatigue and then Main Interface. This will bring up the MSC Fatigue main form from which all parameters, loading and materials information, and analysis control are accessed.
Material Information
The component was tested under constant amplitude, fully-reversed conditions to produce S-N data. In the previous examples we have used S-N curves that are representative of the material and independent of geometry. They related local stress (σ) to life. Now we have a different situation where the actual component geometry itself as well as the material has been used in tests to create the S-N curve. This type of S-N curve is called a component S-N curve. These type of curves relate nominal stress (S) to life and are dependent on the geometry of the component. If you change the geometry, the curve will no longer
相关文档
最新文档