相关分析与回归分析实例

合集下载

第六章 相关分析与回归分析

第六章 相关分析与回归分析

b<0,y 有随 x 的增加而减少的趋势
●●●回归直线一定通过由观测值的平均值(x,y )所组成的点:
∵ yˆ a bx
a y bx
∴ yˆ y bx bx y b(x x)
当 xx 时, yˆ y,即回归直线通过点(x,y )
●直线回归方程配置的实例
实例:对表 6-1 的北碚大红番茄果实横径与果重进行回归分析
| r |愈接近于 1,相关愈密切 | r |愈接近于 0,相关愈不密切 0<r<1 时,为正相关 -1<r<0 时,为负相关 ●相关系数计算的实例: 实例:表 6-1 为番茄果实横径与果实重的观测值,求其相关性。
表 6-1 北碚大红番茄果实横径与果实重
果实横径(cm)
果重(g)
x
y
10.0
140
其中: r
n
[ x2 ( x)2 ][ y 2 ( y)2 ]
n
n
x、y——为两个变数的成对观测值 n——为观测值的对数(样本容量)
●●相关系数的性质:
●●●r 的符号取决于 x、y 离均差的乘积和(lxy 或 SP);符号的
性质表示两个变数之间的相关性质,即
r>0,表示正相关
r<0,表示负相关
∑y2=133071.0
n=10
a=-23.834
b=16.425
r=0.9931
结论:北碚大红番茄果实横径与果实重量的回归方程为:
yˆ 23.834 16.425 x
●回归关系的显著性测定——有 3 种方法。 ●●直线回归方程的方差分析
●●●y 的总变异的分解
SS y lyy ( y y)2 [( y yˆ) ( yˆ y)]2 ( y yˆ)2 ( yˆ y)2 2 ( y yˆ)(yˆ y) ( y yˆ)2 ( yˆ y)2 其中: 2 ( y yˆ )( yˆ y) =0

(整理)相关分析与回归分析SPSS实现

(整理)相关分析与回归分析SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进行相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元及多元回归模型的计算与检验。

(3) 学会回归模型的散点图与样本方程图形。

(4) 学会对所计算结果进行统计分析说明。

(5) 要求试验前,了解回归分析的如下内容。

♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验(t -检验);回归方程显著性检验(F -检验)。

二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度。

用来测度简单线性相关关系的系数是Pearson 简单相关系数。

2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。

回归分析是研究两个变量或多个变量之间因果关系的统计方法。

其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。

回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。

线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进行检验。

如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。

回归模型的检验包括一级检验和二级检验。

一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差检验等。

回归分析实例PPT课件

回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值

解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。

线性回归与相关分析

线性回归与相关分析

线性回归与相关分析一、引言线性回归和相关分析是统计学中常用的两种数据分析方法。

线性回归用于建立两个或多个变量之间的线性关系,而相关分析则用于衡量变量之间的相关性。

本文将介绍线性回归和相关分析的基本原理、应用场景和计算方法。

二、线性回归线性回归是一种建立自变量和因变量之间线性关系的统计模型。

它的基本思想是通过找到最佳拟合直线来描述自变量与因变量之间的关系。

线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。

线性回归的目标是最小化观测值与模型预测值之间的差异,常用的优化方法是最小二乘法。

线性回归的应用场景非常广泛。

例如,我们可以利用线性回归来分析广告费用和销售额之间的关系,或者分析学生学习时间和考试成绩之间的关系。

线性回归还可以用于预测未来趋势。

通过建立一个合适的线性回归模型,我们可以根据历史数据来预测未来的销售额或者股票价格。

在计算线性回归模型时,我们首先需要收集相关的数据。

然后,可以使用统计软件或者编程语言如Python、R等来计算最佳拟合直线的参数。

通过计算截距和斜率,我们可以得到一个最佳拟合线,用于描述自变量和因变量之间的关系。

此外,我们还可以借助评价指标如R 平方来衡量模型的拟合程度。

三、相关分析相关分析是一种用于衡量两个变量之间相关性的统计方法。

它可以帮助我们判断变量之间的线性关系的强度和方向。

相关系数是表示相关性的一个指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于测量两个连续变量之间的线性关系,其取值范围在-1到1之间。

当相关系数接近1时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加。

当相关系数接近-1时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减小。

当相关系数接近0时,表示两个变量之间没有线性关系。

斯皮尔曼相关系数适用于测量两个有序变量之间的单调关系,其取值范围也在-1到1之间。

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析导言回归分析与相关分析是统计学中常用的两种分析方法,用于研究变量之间的关系。

在本文中,我们将对回归分析和相关分析进行详细探讨,并介绍它们的原理、应用和实例。

一、回归分析回归分析是通过建立一个数学模型来描述一个或多个自变量与因变量之间的关系。

它可以帮助我们预测因变量的取值,并理解自变量对因变量的影响程度。

1.1 简单线性回归简单线性回归是回归分析中最常见的一种方法,它假设自变量和因变量之间存在线性关系。

通过最小二乘法,我们可以得到最佳拟合直线,从而预测因变量的取值。

1.2 多元线性回归多元线性回归是对简单线性回归的拓展,它可以同时考虑多个自变量对因变量的影响。

通过最小二乘法,我们可以得到最佳的多元回归方程,从而预测因变量的取值。

1.3 逻辑回归逻辑回归是回归分析在分类问题上的一种应用。

它能够根据自变量的取值,预测因变量的类别。

逻辑回归常用于预测二分类问题,如预测一个学生是否会被大学录取。

二、相关分析相关分析是研究两个或多个变量之间相关关系的一种方法。

它可以帮助我们了解变量之间的关联程度,以及一个变量是否能够作为另一个变量的预测因子。

2.1 皮尔逊相关系数皮尔逊相关系数是一种衡量两个连续变量之间线性相关程度的统计量。

它的取值范围在-1到1之间,当相关系数接近1时,表示两个变量正相关;当相关系数接近-1时,表示两个变量负相关;当相关系数接近0时,表示两个变量无相关关系。

2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种衡量两个变量之间的非线性相关程度的统计量。

它的取值范围也在-1到1之间,但它适用于衡量非线性关系和顺序关系。

斯皮尔曼相关系数广泛应用于心理学和社会科学领域。

应用实例为了更好地理解回归分析与相关分析的应用,让我们通过一个实际案例来说明。

假设我们想研究某个国家的人均GDP与教育水平之间的关系。

我们收集了10个州的数据,包括每个州的人均GDP和受教育程度指数。

我们可以利用回归分析来建立一个数学模型,从而预测人均GDP与受教育水平之间的关系。

回归分析应用实例讲解

回归分析应用实例讲解

回归分析应用实例讲解回归分析是一种用于确定变量之间关系的统计方法,它可以帮助我们预测一个自变量对因变量的影响程度。

在实际应用中,回归分析可以帮助我们解决各种问题。

下面将介绍几个常见的回归分析应用实例。

1.销售预测:回归分析可以帮助企业预测销售额。

通过收集历史销售数据和相关的市场因素(例如广告费用、季节性因素等),可以建立一个回归模型来预测未来的销售额。

这可以帮助企业做出合理的销售计划和预算安排。

2.金融风险管理:在金融领域,回归分析可以用来评估不同因素对金融资产价格的影响,以及它们之间的相关性。

例如,可以使用回归分析来确定利率、通货膨胀率、市场指数等因素对股票价格的影响程度。

这些信息可以帮助投资者制定投资策略和风险管理计划。

3.医学研究:回归分析在医学研究中也有广泛的应用。

例如,可以使用回归分析来确定其中一种药物对患者生存率的影响,或者确定特定因素(例如饮食、运动等)与心血管疾病的关系。

通过建立回归模型,可以帮助医生和研究人员制定更有效的治疗和预防策略。

4.市场调研:回归分析在市场调研中也是一个有用的工具。

例如,可以使用回归分析来确定广告投入与销售额之间的关系,以及其他市场因素(如竞争对手的市场份额、产品价格等)对销售额的影响。

这些信息可以帮助企业优化广告投放策略和市场定位。

5.人力资源管理:在人力资源管理中,回归分析可以用于预测员工绩效。

通过收集员工的个人特征和背景信息(如教育水平、工作经验等),并将其与绩效数据进行回归分析,可以确定哪些因素对员工绩效有着显著影响。

这可以帮助企业优化人员招聘和培训策略,提高人力资源管理的效率。

总之,回归分析可以在实际应用中帮助我们解决各种问题,从销售预测到金融风险管理,再到医学研究和市场调研,以及人力资源管理等领域。

通过建立回归模型,我们可以了解不同变量之间的关系,并利用这些信息做出更准确的预测和决策。

回归分析实例范文

回归分析实例范文

回归分析实例范文回归分析是一种统计方法,用于研究两个或多个变量之间的关系。

它可以帮助我们了解变量之间的相关性,以及一个变量对另一个变量的影响程度。

以下是一个回归分析的实例,以说明如何运用回归分析来探索变量之间的关系。

假设我们有两个变量:广告费用(x)和销售额(y)。

我们对其中一产品进行了市场调研,收集了一些数据,如下所示:广告费用(万元),销售额(万元)-----------,-----------4,1002,508,2006,15010,250我们的目标是确定广告费用与销售额之间的关系,以及预测未来的销售额。

首先,我们可以通过绘制散点图来观察两个变量之间的关系。

从散点图中可以看出,广告费用与销售额之间存在着正相关关系,即广告费用越高,销售额也越高。

接下来,我们可以使用回归分析来量化这种关系。

在回归分析中,我们假设存在一个线性关系,即销售额(y)与广告费用(x)之间的关系可以用一条直线来表示。

我们希望找到一条最佳拟合线,使得该直线尽可能地通过数据点。

通过回归分析,我们可以得到以下回归方程,用于预测销售额:y=β0+β1*x其中,β0表示截距,β1表示斜率。

回归分析还可以计算出拟合优度(R²),来评估模型的拟合程度。

R²的取值范围为0到1,越接近1表示模型的拟合程度越好。

现在,我们来计算回归方程和拟合优度。

首先,我们需要计算β1和β0。

β1可以通过以下公式来计算:β1 = ∑((xi - x平均)*(yi - y平均)) / ∑((xi - x平均)²)β0可以通过以下公式计算:β0=y平均-β1*x平均其中,x平均和y平均分别表示广告费用和销售额的平均值。

计算得到β1≈20计算得到β0≈5因此,回归方程为:y=5+20*x接下来,我们计算拟合优度(R²)。

拟合优度可以通过以下公式计算:R²=SSR/SSTO其中,SSR(回归平方和)表示拟合线解释的总方差SSR = ∑((yi - y预测)²)SSTO(总平方和)表示实际观测值和实际平均值之间的总方差,可以通过以下公式计算:SSTO = ∑((yi - y平均)²)计算得到SSR≈850计算得到SSTO≈1166.67因此,拟合优度(R²)为:R²=850/1166.67≈0.73拟合优度为0.73,说明回归模型可以解释销售额的73%的变异性。

相关与回归分析

相关与回归分析

相关与回归分析相关与回归分析是统计学中常用的方法,用于研究两个或多个变量之间的关系。

通过这种分析方法,我们可以了解这些变量之间的相互作用、依赖程度以及预测未来可能的变化。

一、相关分析相关分析是一种用来衡量两个变量之间相关程度的方法。

通常情况下,我们可以通过计算相关系数来确定变量之间的关联程度,最常见的相关系数是皮尔逊相关系数。

皮尔逊相关系数的取值范围为-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示不相关。

通过计算样本数据的皮尔逊相关系数,我们可以得出结论,判断变量之间的关系是正相关还是负相关。

相关分析的应用非常广泛,可以用在市场调研、经济预测、医学研究等领域。

例如,在市场调研中,我们可以通过相关分析来了解广告投放与销售额之间的关系,进而优化广告策略。

二、回归分析回归分析是一种通过建立数学模型来研究自变量与因变量之间关系的方法。

回归分析主要用于预测与解释因变量的变化。

在回归分析中,根据自变量的类型,可以分为线性回归和非线性回归。

1. 线性回归线性回归是指自变量与因变量之间存在线性关系的回归模型。

线性回归模型可以用直线方程来表示,即y = a + bx。

其中,a表示截距,b表示斜率,x表示自变量,y表示因变量。

线性回归分析可以用于预测未来的趋势,以及通过自变量来解释因变量的变化。

在金融领域中,我们经常使用线性回归来预测股票价格的变化。

2. 非线性回归非线性回归是指自变量与因变量之间存在非线性关系的回归模型。

与线性回归不同,非线性回归的数学模型一般无法用简单的直线方程表示。

非线性回归分析可以用来研究自变量与因变量之间的复杂关系。

例如,在生物学研究中,我们可以使用非线性回归来研究温度与生物体生长速度之间的关系。

三、相关与回归分析实例为了更好地理解相关与回归分析的应用,我们来看一个实例。

假设我们有一份房屋销售数据,其中包括房屋面积、售价以及地理位置等信息。

我们可以使用相关与回归分析来探索这些变量之间的关系。

相关回归分析法在水文数据处理中的应用

相关回归分析法在水文数据处理中的应用

相关回归分析法在水文学中的应用康永德地理科学与旅游学院830054摘要:相关回归分析法是数理统计中最常用的一种方法,此方法对水文资料进行统计分析,结果表明,该方法符合水文现象特性,具有较高的精度,能很好地运用于水文预报工作中。

关键词:相关分析;回归分析;水文;应用相关回归分析法是数理统计常用方法之一,它能处理若干变量之间相互关系。

将经典的统计方法灵活应用,能从复杂的水文数据中寻找变化规律,得出科学结论,更好地服务于水利事业。

1相关分析与回归分析1.1相关分析理论简介相关分析是对总体中具有因果关系标志的分析。

自然界中的许多变量,并不是独立变化的,某些变量在变化过程中相互之间存在着一定的联系。

在水文学中所研究的变量,很多属于相关关系。

例如,河流在不同设计频率下流量变化关系;对某个确定的水位,流量是不确定的,而是在某个数值的上下变化,因为影响流量大小的除了不同设计频率以外,还有水面比降、河道糙率等因素。

在水文分析计算中,经常会遇到某一变量实测资料系列较短,而与其有关的另一变量的实测资料系列较长,在这种情况下,通过相关分析,观察两变量间关系的密切程度,建立两变量间的相关关系,利用系列较长的变量值插补延长系列较短的变量的估计值。

在水文学的研究中,虽然许多指标是不确定地、随机的,但通过相关回归分析,可以得到较好的模拟。

对于大量的水文要素之间物理成因方面确有联系的观测数据,通过分析进一步了解它们之间联系的规律性。

简言之,相关回归分析可以解决这些问题:(1)判断几个变量之间是否存在相关关系,若存在,模拟它们之间的关系,建立相关关系方程(即回归方程)。

(2)根据一个或几个自变量的值,推算或插补另一个变量的值,并对估值进行评价。

在线性相关中,两变量之间的相关密切程度用相关系数R来判定:(1)①当|R|=1时,两变量完全相关,x与y之间存在着确定的函数关系。

②当0<|R|<1时,表示x与y存在着一定的线性关系。

相关分析与回归分析实例

相关分析与回归分析实例

相关与回归分析法探究实例——上海市城市居民家庭人均可支配收入与储蓄存款关系的统计分析系别经济系专业金融学学号姓名指导教师2011年1月1日上海市城市居民家庭人均可支配收入与储蓄存款关系的统计分析摘要:随着中国经济的迅速发展,我国居民的消费水平不断提高,居民储蓄存款作为消费支出的重要组成部分,直接关系到国家对资金的合理使用。

本文采用相关分析与回归分析方法,对上海市居民家庭人均可支配收入与储蓄存款进行了定量地分析,探求了二者之间的关系。

所得结论对研究中国居民储蓄行为的规律具有一定的参考价值。

关键词:居民家庭人均可支配收入,储蓄存款,相关分析,回归分析自经济体制改革以后,我国国民收入分配的格局发生巨大变化。

变化之一是居民收入在国民收入中的比重迅速提高。

这使居民的消费和储蓄行为对于经济发展有越来越重要的意义。

居民储蓄存款是社会总储蓄的重要组成部分,也是推动经济增长的重要资源。

居民储蓄的快速增长,是我国经济发展的重要资金来源,是改革开放顺利进行的重要保证。

过度储蓄构成经济的一种潜在威胁甚至现实扭曲,它的负面影响也不容忽视。

为了了解我国居民储蓄的现状,认真分析影响居民储蓄变动的主要因素——居民家庭人均可支配收入,本文采用了多元统计中的相关分析及回归方法,借助于SPSS,对1997—2009年上海市城市居民家庭人均可支配收入与储蓄存款进行了分析和评价。

1.选择指标,收集数据资料西方经济学通行的储蓄概念是,储蓄是货币收入中没有用于消费的部分。

这种储蓄不仅包括个人储蓄,还包公公司储蓄、政府储蓄。

储蓄的内容有在银行的存款、购买的有价证券及手持现金等。

在其他条件不变的情况下,个人可支配收入与居民储蓄是正比例函数关系,是居民储蓄存款增长的基本因素。

本文遵循了可比性、可操作性等原则,指标记为年份分别为a1,a2,a3,……,a11,a12,a13;人均可支配收入分别为b1,b2,b3,……,b11,b12,b13;居民储蓄存款分别为c1,c2,c3,……,c11,c12,c13。

报告中的回归分析与因果关系推断实例分析

报告中的回归分析与因果关系推断实例分析

报告中的回归分析与因果关系推断实例分析引言:回归分析是一种常用的统计方法,在各个领域都有广泛的应用。

回归分析可以帮助我们理解变量之间的关系,并进行因果推断。

在报告中,回归分析能够为读者提供经验验证,进一步支持或反驳研究假设。

本文将通过几个实例,详细论述报告中的回归分析和因果关系推断。

一、实例一:汽车燃油效率与车重的关系1.1 数据收集和处理我们收集了100辆汽车的燃油效率和车重数据,并进行了初步处理,例如填补缺失值和处理异常值。

1.2 回归分析在此实例中,我们使用线性回归分析来研究汽车燃油效率与车重之间的关系。

我们将燃油效率作为因变量,车重作为自变量。

通过拟合回归模型,我们得到了回归系数以及其他统计指标,如拟合优度和置信区间等。

1.3 结果解读根据回归分析的结果,我们发现车重与燃油效率呈现负相关关系。

即车重增加时,燃油效率下降。

然而,由于数据为观察性数据,不能直接推断因果关系。

二、实例二:睡眠时间与工作表现的关系2.1 数据收集和处理我们对一组员工进行了调查,记录他们的睡眠时间和工作表现。

同样地,我们对数据进行了清洗和处理,以确保数据的准确性和一致性。

2.2 回归分析在此实例中,我们使用多元回归分析来研究睡眠时间对工作表现的影响。

我们将工作表现作为因变量,睡眠时间作为自变量,并控制其他可能影响工作表现的因素,如工龄和学历等。

2.3 结果解读根据回归分析的结果,我们发现睡眠时间显著影响了工作表现。

睡眠时间增加时,工作表现也会有所提高。

然而,该结果只是相关性,并不表示因果关系。

还需要进一步的研究来验证和解释这种关系。

三、实例三:广告投入与销售额的关系3.1 数据收集和处理我们收集了一家公司在过去几个季度的广告投入和销售额数据,并进行了数据的清洗和处理,以确保数据的可靠性。

3.2 回归分析在此实例中,我们使用多元回归分析来研究广告投入对销售额的影响。

我们将销售额作为因变量,广告投入作为自变量,并控制其他可能影响销售额的因素,如市场竞争和产品质量等。

统计学第7章 相关与回归分析 (2)

统计学第7章 相关与回归分析 (2)
完成量(小时)
20 50 20 30 50 20 50 40 20 80 40 20 50 80 30 单位成本(元/小时) 16 16 18 16 15 18 15 14 16 14 15 16 14 15 15
完成量(小时)
整理后有
20 20 20 20 20 20 20 20 20 30 30 30 30 30 40 单位成本(元/小时) 15 16 16 16 16 18 18 18 18 15 15 15 16 16 14
rXY
样本相关系数
通过X和Y的样本观测值去估计样本相关系 数变量X和Y的样本相关系数通常用 r 表示
r
rXY
( x x )( y y ) (x x) ( y y)
2
2
特点:样本相关系数是根据从总体中抽取的随机样 本的观测值计算出来的,是对总体相关系数 的估计,它是个随机变量。
例:为了研究分析某种劳务产品完成量与其单位 产品成本之间的关系,调查30个同类服务公司得到的 原始数据如表。 相关表:将自变量x的数值按照从小到大的顺序,并 配合因变量y的数值一一对应而平行排列的表。
20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时) 18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
根据相关关系的方向划分
1、正相关。指两个因素(或变量)之间的变化方向 一致,都是呈增长或下降的趋势。即自变量x的值 增加(或减少),因变量y的值也相应地增加(或 减少),这样的关系就是正相关。例如,工业总 产值增加,企业税利总额也随之增加;家庭消费 支出随收入增加而增加等。 2、负相关。指两个因素或变量之间变化方向相反, 即自变量的数值增大(或减小),因变量随之减 小(或增大)。 如劳动生产率提高,产品成本降 低;产品成本降低,企业利润增加等。

报告中的回归分析与相关性检验

报告中的回归分析与相关性检验

报告中的回归分析与相关性检验一、回归分析的概念与应用A. 回归分析的基本概念1. 定义和目的:回归分析是通过建立数学模型,研究自变量与因变量之间的关系,以预测和解释因变量的变化。

2. 简单线性回归:介绍一元线性回归模型,并解释回归直线的拟合度和回归系数的含义。

3. 多元回归分析:引入多个自变量,讨论多元回归模型的建立和解释。

B. 回归分析的应用实例1. 经济学领域:以国内生产总值(GDP)为因变量,探究其与就业率、通货膨胀率等自变量之间的关系。

2. 医学研究:以患者的年龄、体重等指标为自变量,分析其与疾病的发病率或治愈率之间的关联。

3. 市场营销:以广告投入、价格等自变量,研究它们对销售额的影响。

二、回归分析的前提条件和方法选择A. 前提条件1. 相关性检验:通过计算相关系数,判断自变量与因变量之间是否存在线性相关关系。

2. 正态分布性:检验残差是否符合正态分布,影响回归分析结果的假设前提之一。

3. 多重共线性:了解自变量之间是否存在高度相关性,以避免多重共线性对回归结果的影响。

B. 回归方法选择1. 最小二乘法回归:介绍最常用的回归方法,并解释其优点和局限性。

2. 岭回归和Lasso回归:讨论在存在多重共线性时,如何选用岭回归和Lasso回归等方法来优化回归模型。

3. 分类回归方法:介绍逻辑回归、支持向量机等用于分类问题的回归方法,并解释其应用场景和原理。

三、回归模型的评估与解释A. 拟合度检验1. R-squared:解释拟合优度的常用指标,包括总体R-squared和调整R-squared。

2. 偏最小二乘回归(Partial Least Squares Regression):介绍用于高维数据拟合度评估的方法。

B. 回归系数的解释1. 系数显著性检验:通过假设检验,判断回归系数是否显著不为零。

2. 系数的实际含义:解释回归系数的物理意义,如单位变化对因变量的影响。

四、相关性检验的方法与解读A. 相关系数的计算1. 皮尔逊相关系数:介绍最常用的相关性测量方法,并解释其计算公式和取值范围。

9.7一元线性回归分析实例应用

9.7一元线性回归分析实例应用


SSR SST

(Yˆi
i 1 n
(Yi
Y )2 Y )2
10.33 0.7673 13.46
i 1
判定系数的实际意义是:在牙膏销售量的波动中,有76.73%可以由牙膏销 售量与广告费用之间的线性关系来解释,或者说,在牙膏销售量的波动中,有 76.73%是由广告费用所决定的。
一元线性回归分析应用
销售量/百万支
7.38 8.51 9.52 7.50 9.33
… 9.21 8.27 7.67 7.93 9.26
X
广告费用/百万元
5.50 6.75 7.25 5.50 7.00
… 6.80 6.50 5.75 5.80 6.80
一元线性回归分析应用

X 表示广告费用,Y 表示牙膏销售量。利用观察数据计算得到:
为研究一地区住宅建筑面积与建造单位成本间的变化关系,一房地 产商收集了相关数据。
(1)构建建造单位成本与住宅建筑面积的线性回归方程; (2)解释回归系数的经济意义; (3)当住宅建筑面积为5.0万平方米时,建造单位成本可能为多少? 在置信水平95%下,计算建造单位成本平均数的置信区间。
思考练习
表 一地区住宅建筑面积与建造单位成本的数据
住宅建筑地 1 2 3 4 5 6 7 8 9 10
住宅建筑面积/万平方米 0.60 0.95 1.35 2.10 2.56 3.89 5.16 5.66 6.11 6.23
建造单位成本/(元/平方米) 1860 1750 1710 1690 1688 1620 1598 1536 1518 1500
一元线性回归分析应用

广告费用对牙膏销售量的样本回归方程为:
Yˆi 1.649 1.043Xi

相关与回归分析结果的表达

相关与回归分析结果的表达

相关与回归分析结果的表达在护理科研活动中,相关与回归分析是描述变量间相互关系的一种统计学方法。

相关说明的是变量间是否有相关关系;回归描述的是变量间依存变化的数量关系。

护理管理类科研论文中常见的有Pearson相关分析、Spearman相关分析和多元线性回归、分层回归、Logistic回归分析。

一、相关分析结果表达相关分析常用于表达变量间的相关性,常用的有Pearson相关和Spearman 相关。

相关分析的结果表达可用表格形式表示,表内列出相应r值,有统计学意义的数据右上角标注“*”代表(P<0.01)或“**”代表(P<0.05)。

实例见表1,摘自:《2016年1月第16卷1期 中老年住院冠心病患者疾病相关健康素养与社会支持现状分析》表1 住院冠心病患者疾病相关健康素养与社会支持的相关性(r值) 项目 主观支持 客观支持 对支持的利用度 社会支持总分 健康知识 0.584* 0.516* 0.622* 0.656*健康态度 0.555* 0.423* 0.552* 0.590*健康行为 0.477* 0.423* 0.523* 0.541*健康技能 0.551* 0.482* 0.525* 0.621*健康素养总分 0.614* 0.654* 0.628* 0.684*注:* p<0.01二、回归分析结果表达(一)多元线性回归 当因变量是计量资料,同时自变量之间相互独立时,可采用多元线性回归分析,来探讨多个自变量对某一个因变量的影响。

1、变量赋值方式在论文中,应写出各个自变量的赋值方式,可用文字或列表的形式表达。

实例见表2,摘自:《2015年5月第15卷5期 护士工作满意度与组织支持感及工作怠倦的关系研究》表2 护士工作满意度影响因素的自变量赋值方式项目 赋值方式性别 男性=0;女性=1婚姻状况 已婚=1;未婚=2;离异=3有无子女编制职称学历月收入(元) 无=0;有=1合同制=0;正式员工=1副主任护师及以上=1;主管护师=2;护师=3中专=1;大专=2;本科及以上=3<1000=1;1000~1999=2;2000~2999=3;≥3000=42、多元线性回归分析通常是对结果中有意义的数据进行列表表达,表内列出相应B值、β值、t值、P值,以表注形式列R2值、F值、P值。

第5章 回归分析与相关分析(2)-多元线性回归分析

第5章 回归分析与相关分析(2)-多元线性回归分析

第二篇回归分析与相关分析第5章多元线性回归分析在现实地理系统中,任何事物的变化都是多种因素影响的结果,一因多果、一果多因、多果多因的情况比比皆是。

以全球变化为例,过去一直以为地球气候变暖是由于二氧化碳的温室效应造成,但近年来有人指出水蒸汽是更重要的影响因素,二氧化碳只不过是一个“帮凶”。

如果这种观点成立,则气候变暖至少有两个原因:水蒸汽和二氧化碳。

为了处理诸如此类一果多因的因果关系问题,我们需要掌握多元线性回归知识。

至于多果多因的情况,需要借助典型相关分析或者多元多重线性回归分析技术。

多元线性回归的最小二乘拟合思路与一元线性回归相似,但有关数学过程要复杂得多。

对于一元线性回归,F 检验、t检验都与相关系数检验等价;对应多元线性回归,F检验、t检验与相关系数检验没有关系,而且相关系数分析要麻烦多了。

为了简明起见,本章着重讲述二元线性回归分析。

至于三元以上,基本原理可以依此类推。

§5.1 因果关系与基本模型5.1.1 因果关系对于我们上一章讲到的实例,山上积雪深度影响山下灌溉面积。

如果灌溉面积单纯取决于山上的积雪量,这个问题就比较简单,它们之间构成通常意义的简单因果关系——一因一果关系。

在这种情况下进行回归分析、建立数学模型是有意义的。

另一类现象就是诸如街头的裙子和身边的蚊子之类,它们属于共同反应(common response),或者叫做共变反映,建立回归模型没有统计意义。

但是,这并不是说,研究共变现象就没有任何科学意义。

共同反应属于一因多果的问题,探查共同反应的现象有助于我们揭示事物发生的原因。

举个简单的例子,如果在某个山区发源了两条河流,分别流向不同的海洋。

两条河流不会相互影响。

如果在某段时期下游的观测记录表明两条河流的水位同时持续上涨,那就说明一个问题,河流发源的山区下雨或者积雪融化。

这类问题在地理研究中比比皆是。

由于地球的万事万物或多或少都要受到天体的影响,一些原本相对独立的地理事物表面上形成了数据的相关关系,深究之后才发现它们共同的根源在于天文因素。

相关性分析与回归分析的区别及其应用

相关性分析与回归分析的区别及其应用

相关性分析与回归分析的区别及其应用一、前言统计学中有两个重要方法,一个是相关性分析,另一个则是回归分析。

对于这两种方法的应用,许多人都有所耳闻,但是他们很少有机会深入研究这些概念的内在区别。

在我们这篇文章中,我们将会对相关性分析和回归分析进行比较,并探讨它们各自在实际应用场景中的不同作用。

二、相关性分析相关性分析是研究变量之间的相关程度的一种方法。

通过计算变量之间的相关系数,我们可以了解到两个变量之间的线性关系强度和方向。

相关系数的值范围在-1和1之间,当它接近-1时,表示变量呈完全的负相关;当接近1时,则表示它们呈完全的正相关;当为0时,则表示变量之间不存在线性关系。

在实际应用中,相关性分析被广泛使用,如市场调查、医疗研究以及统计预测等领域。

例如,一些研究人员会使用相关性分析来研究消费者的购买习惯和年龄之间的关系,以便确定其目标市场并开发更有效的营销策略。

三、回归分析回归分析则是通过建立一个预测模型来探究变量之间的关系。

与相关性分析不同的是,回归分析不仅仅只是探索线性关系,还可以揭示非线性关系。

通过引入一些控制因素,我们可以建立一个比相关性分析更为复杂的模型。

在实际应用中,回归分析也被广泛使用。

例如,当我们想知道股票价格的变化和利率之间的关系时,就可以通过建立回归模型进行预测。

此外,回归分析还可以应用于风险分析、财务预测及时间序列等应用场景中。

四、相关性分析和回归分析的区别虽然相关性分析和回归分析都用于探究变量之间的关系,但它们之间还是有一些区别的。

首先,相关性分析只是描述了变量之间的线性关系强度和方向,而回归分析则是通过建立一个模型来预测其中一个变量的值。

其次,相关性分析只能告诉我们变量之间是否存在线性关系,而回归分析则可以更加深入地探究两个变量之间的关系,包括它们的函数形式关系及其中的交互作用。

最后,相关性分析和回归分析在应用场景中也有所不同。

相关性分析可用于研究市场调查和医疗研究等领域,而回归分析则更适用于预测和风险分析等应用场景中。

回归分析方法应用实例

回归分析方法应用实例

4、回归分析方法应用实例在制定运动员选材标准时,理论上要求先对不同年龄的运动员,各测试一个较大的样本,然后,计算出各年龄的平均数、标准差,再来制定标准。

但是,在实际工作中,有时某些年龄组不能测到较大的样本。

这时能不能使用统计的方法,进行处理呢?我们遇到一个实例。

测得45名11至18岁男田径运动员的立定三级跳远数据。

其各年龄组人数分布如表一。

由于受到许多客观因素的限制,一时无法再扩大样本,因此决定使用统计方法进行处理。

第一步,首先用原始数据做散点图,并通过添加趋势线,看数据的变化趋势是否符合随年龄增长而变化的趋势,决定能否使用回归方程制定标准。

如果趋势线不符合随年龄增长而变化的趋势,或者相关程度很差就不能用了。

本例作出的散点图如图1,图上用一元回归方法添加趋势线,并计算出年龄和立定三级跳远的:一元回归方程:Y=2.5836+0.3392 X相关系数 r=0.7945(P<0.01)由于从趋势线可以看出,立定三级跳远的成绩是随年龄增加而逐渐增加,符合青少年的发育特点。

而且, 相关系数r=0.7945,呈高度相关。

因此,可以认为计算出的一元回归方程,反映了11至18岁男运动员年龄和立定三级跳远成绩的线性关系。

决定用一元回归方程来制定各年龄组的标准。

第二步,用一元回归方程:Y=2.5836+0.3392 X 推算出各年龄的立定三级跳远回归值,作为各年龄组的第2等标准。

第三步,用45人的立定三级跳远数据计算出标准差为:0.8271。

由于在正态分布下,如把平均数作为标准约有50%的人可达到标准,用平均数-0.25标准差制定标准则约有60%的人可达到,用平均数+0.25、+0.52、+0.84标准差制定标准约有40%、30%、20%的人可达到标准。

本例用各年龄组回归值-0.25标准差、+0.25标准差、+0.52标准差、+0.84标准差计算出1至5等标准如表2、图2。

2、应用方差分析方法进行数据统计分析的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关与回归分析法探究实例——上海市城市居民家庭人均可支配收入与储蓄存款关系的统计分析系别经济系专业金融学学号姓名指导教师2011年1月1日上海市城市居民家庭人均可支配收入与储蓄存款关系的统计分析摘要:随着中国经济的迅速发展,我国居民的消费水平不断提高,居民储蓄存款作为消费支出的重要组成部分,直接关系到国家对资金的合理使用。

本文采用相关分析与回归分析方法,对上海市居民家庭人均可支配收入与储蓄存款进行了定量地分析,探求了二者之间的关系。

所得结论对研究中国居民储蓄行为的规律具有一定的参考价值。

关键词:居民家庭人均可支配收入,储蓄存款,相关分析,回归分析自经济体制改革以后,我国国民收入分配的格局发生巨大变化。

变化之一是居民收入在国民收入中的比重迅速提高。

这使居民的消费和储蓄行为对于经济发展有越来越重要的意义。

居民储蓄存款是社会总储蓄的重要组成部分,也是推动经济增长的重要资源。

居民储蓄的快速增长,是我国经济发展的重要资金来源,是改革开放顺利进行的重要保证。

过度储蓄构成经济的一种潜在威胁甚至现实扭曲,它的负面影响也不容忽视。

为了了解我国居民储蓄的现状,认真分析影响居民储蓄变动的主要因素——居民家庭人均可支配收入,本文采用了多元统计中的相关分析及回归方法,借助于SPSS,对1997—2009年上海市城市居民家庭人均可支配收入与储蓄存款进行了分析和评价。

1.选择指标,收集数据资料西方经济学通行的储蓄概念是,储蓄是货币收入中没有用于消费的部分。

这种储蓄不仅包括个人储蓄,还包公公司储蓄、政府储蓄。

储蓄的内容有在银行的存款、购买的有价证券及手持现金等。

在其他条件不变的情况下,个人可支配收入与居民储蓄是正比例函数关系,是居民储蓄存款增长的基本因素。

本文遵循了可比性、可操作性等原则,指标记为年份分别为a1,a2,a3,……,a11,a12,a13;人均可支配收入分别为b1,b2,b3,……,b11,b12,b13;居民储蓄存款分别为c1,c2,c3,……,c11,c12,c13。

本文研究所分析的数据资料来源于上海统计网——上海统计年鉴2010目录。

表8.13 主要年份城市居民家庭人均可支配收入单位:元1997 8 439 5 969 150 69 2 2511998 8 773 6 004 98 57 2 6141999 10 932 7 326 156 68 3 3822000 11 718 7 832 120 65 3 7012001 12 883 7 975 119 39 4 7502002 13 250 7 915 436 94 4 8052003 14 867 10 097 377 130 4 2632004 16 683 11 422 507 215 4 5392005 18 645 12 409 798 292 5 1462006 20 668 13 962 959 300 5 4472007 23 623 16 598 1 158 369 5 4982008 26 675 18 909 1 399 369 5 9982009 28 838 19 811 1 435 474 7 118注:本表数据为城市居民家庭收支抽样调查资料,由国家统计局上海调查总队提供。

表8.10 居民储蓄存款(1997~2009)年份居民储蓄存款其中人均储蓄存款(亿元)定期储蓄活期储蓄(元)1997 2 109.18 1 843.25 265.93 14 1691998 2 372.94 2 017.16 355.78 15 5361999 2 597.12 2 119.82 477.30 16 5722000 2 627.07 2 084.21 542.86 16 3312001 3 109.50 2 301.33 808.17 19 2642002 4 915.54 3 603.05 1 312.49 30 2452003 6 054.60 4 260.87 1 793.73 35 3852004 6 960.99 4 904.93 2 056.06 39 9562005 8 432.49 6 071.83 2 360.66 47 4162006 9 480.28 6 701.97 2 778.31 52 2312007 9 326.45 6 185.85 3 140.60 50 1942008 12 083.66 8 555.64 3 528.02 63 9872009 14 357.65 9 733.13 4 624.53 75 373注:本表数据由中国人民银行上海总部提供。

2000年起居民储蓄存款为中外资金融机构本外币存款余额。

⒉数据的分析与计算结果(1)调用SPSS的绘制条形图功能,得到的居民储蓄存款与人均可支配收入的条形图如下(2)调用SPSS的绘制线形图功能,得到的居民储蓄存款与人均可支配收入的线形图如下(3)调用SPSS的绘制散点图功能,得到的居民储蓄存款与人均可支配收入的散点图如下(4)进一步调用SPSS中的相关分析功能,得到得到的居民储蓄存款与人均可支配收入的相关系数及显著性检验输出结果如下Correlations居民储蓄存款人均可支配收入居民储蓄存款Pearson Correlation 1 .982**Sig. (2-tailed) .000Sum of Squares andCross-products1.945E8 3.162E8Covariance 1.621E7 2.635E7N 13 13人均可支配收入Pearson Correlation .982** 1Sig. (2-tailed) .000Sum of Squares andCross-products3.162E8 5.332E8Covariance 2.635E7 4.443E7N 13 13**. Correlation is significant at the 0.01 level (2-tailed).相关分析能够有效地揭示事物之间关系强弱程度。

当显著性水平α为0.01时,认为两者之间存在显著的线性关系,并且呈正相关。

(5)运用SPSS的线性回归分析功能,对居民储蓄存款与人均可支配收入进行回归分析,分析结果如下回归方式表模型拟合程度Model Summary bModel R R Square Adjusted RSquareStd. Error ofthe Estimate Durbin-Watson1 .982a.964 .961 794.03187 1.380a. Predictors: (Constant), 人均可支配收入b. Dependent Variable: 居民储蓄存款由模型拟合程度可知,人均可支配收入与居民存款储蓄的相关系数是R=0.982,判决系数是R²=0.964,修正的判决系数为0.961,估计标准误差σ=3.165。

可见,模型的拟合程度很理想。

由方差分析表可知,回归平方和为1.876E8,自由度为1,均方差为1.876E8;剩余平方和为6935352.802,自由度为8,均方差为630486.618,自由度为9;F统计量的值为297.469,单边检验概率值为P=0.000<α=0.01,说明回归方程高度显著。

由表回归方程系数表可知,未标准化回归方程的常数项为-3359.599,标准误差为612.311;回归系数为0.593,标准误差为0.034;由此得出一元线性回归方程为Y=-3359.599+0.593X。

标准化回归方程的回归系数(Beta)为0.982,回归方程标准化后没有常数项。

回归系数检验的t统计量的值为-17.247,显著性概率p=0.000<α=0.01,说明回归系数是特别显著的,也就是说,人均可支配收入与居民存款储蓄的影响特别显著。

残差统计结果(6)运用SPSS的指数曲线回归分析的结果为LinearLogarithmicInverseQuadraticCoefficientsUnstandardized Coefficients StandardizedCoefficientst Sig.B Std. Error Beta人均可支配收入.562 .235 .930 2.389 .038 人均可支配收入** 2 8.559E-7 .000 .053 .135 .895 (Constant) -3109.408 1959.579 -1.587 .144CubicCoefficientsUnstandardized Coefficients StandardizedCoefficientst Sig.B Std. Error Beta人均可支配收入.554 1.156 .917 .479 .643 人均可支配收入** 2 1.313E-6 .000 .081 .020 .985 人均可支配收入** 3 -8.341E-12 .000 -.016 . . (Constant) -3069.682 6171.930 -.497 .631CompoundPowerGrowthExponentialLogistic结合各项结果来看,实际观测点与幂曲线的拟合效果最好,如图所示3.综合结论通过运用相关分析与回归分析方法对上海市城市居民人均可支配收入与居民存款储蓄的分析,表明了人均可支配收入与居民存款储蓄之间的正相关关系。

正是由于近年来我国居民收入的大幅度增长为居民储蓄存款的增长提供了坚实的经济基础,即居民收入的增加是我国居民储蓄增加的根本原因。

从上文可以看出1997—2009年以来我国上海城市居民可支配收入是逐年增加的。

在改革开放以前,居民的平均收入水平很低,绝大多数收入都用于基本生活品的开支需要,几乎没有储蓄。

随着经济的发展,城乡居民的人均收入增加比较快,居民收入水平的提高使居民在满足基本生活开支之后有了较多的节余,因而储蓄随之增加。

由于近年来我国居民收入的大幅度增长为居民储蓄存款的增长提供了坚实的经济基础,所以居民人均收入的增加是我国居民储蓄增加的根本原因。

盛年不重来,一日难再晨。

及时宜自勉,岁月不待人。

相关文档
最新文档