韦达定理专项练习
韦达定理练习题
韦达定理练习题一、选择题A. x1 + x2 = b/aB. x1 x2 = b/aC. x1 x2 = √(b^2 4ac)/aD. x1 x2 = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两根为x1和x2,则x1 x2的值为?A. 5B. 6C. 5D. 63. 若一元二次方程2x^2 4x + 1 = 0的两根为x1和x2,则x1 + x2的值为?A. 2B. 4C. 2D. 4二、填空题1. 已知一元二次方程x^2 3x + 2 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。
2. 若一元二次方程3x^2 6x + 2 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。
3. 已知一元二次方程4x^2 + 8x 9 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。
三、解答题1. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
2. 设一元二次方程x^2 (k+3)x + 2k = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
3. 已知一元二次方程x^2 (a+b)x + ab = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
4. 若一元二次方程x^2 (m+n)x + mn = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
5. 已知一元二次方程x^2 (2a1)x + a^2 a = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
四、应用题1. 在一个一元二次方程中,两根的和是10,两根的积是21,请写出这个方程。
2. 如果一元二次方程的两根分别是方程系数的倒数,且两根的积是1/6,求这个方程。
3. 有一个一元二次方程,它的两根的和是它们积的3倍,且两根的积是12,求这个方程。
韦达定理全面练习题及答案
韦达定理全面练习题及答案1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0?≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么nmx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ;(3)=-221)(x x = ;(4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是()(A )0 (B )正数(C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ()(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=()(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是()(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是()(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
韦达定理练习题
韦达定理练习题一、选择题1. 已知二次方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和 \( x_2 \),根据韦达定理,下列哪个选项是错误的?A. \( x_1 + x_2 = -\frac{b}{a} \)B. \( x_1x_2 = \frac{c}{a} \)C. \( x_1 + x_2 = \frac{c}{a} \)D. \( x_1x_2 = -\frac{b}{a} \)2. 对于二次方程 \( x^2 - 5x + 6 = 0 \),使用韦达定理,下列哪个选项是正确的?A. 根的和为 5B. 根的积为 -6C. 根的和为 3D. 根的积为 63. 如果二次方程 \( 2x^2 - 4x + 1 = 0 \) 的一个根是 \( x = 1 \),那么另一个根是:A. 0.5B. 2C. -2D. 1二、填空题4. 假设二次方程 \( 3x^2 - 6x + 2 = 0 \) 的根为 \( x_1 \) 和\( x_2 \),根据韦达定理,\( x_1 + x_2 \) 等于 ________。
5. 对于二次方程 \( x^2 + 4x + 4 = 0 \),其根的积 \( x_1x_2 \)等于 ________。
6. 如果二次方程 \( ax^2 + bx + c = 0 \) 的两个根相等,即\( x_1 = x_2 \),那么 \( b^2 \) 与 \( 4ac \) 之间的关系是\( b^2 \) ________ \( 4ac \)。
三、解答题7. 已知二次方程 \( x^2 - 7x + 10 = 0 \),求出它的两个根,并验证韦达定理是否成立。
8. 给定一个二次方程 \( 2x^2 - 12x + 10 = 0 \),使用韦达定理求出它的两个根,并计算根的和与积。
9. 如果二次方程 \( ax^2 + bx + c = 0 \) 的根的和为 5,根的积为 6,求出 \( a \)、\( b \) 和 \( c \) 的值。
根与系数的关系(韦达定理)(专项培优训练)—2023-2024学年九年级数学上册(苏科版)(解析版)
根与系数的关系(韦达定理)(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.43一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•射阳县校级二模)已知x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,下列结论正确的是()A.x1=x2B.﹣2x1=﹣2x2C.x1+x2=﹣2 D.x1•x2=1解:∵Δ=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数解,即x1≠x2,所以A选项不符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴﹣2x1﹣1=0,﹣2x2﹣1=0,∴﹣2x1﹣1=﹣2x2﹣1,即﹣2x1=﹣2x2,所以B选项符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴x1+x2=2,x1x2=﹣1,所以C选项和D选项不符合题意.故选:B.2.(2分)(2023•苏州模拟)关于x的方程(x﹣1)(x﹣2)﹣m2=0的根的情况是()A.有一正一负两个不相等的实数根B.有两个正的不相等实数根C.至多有一个正的实数根D.至少有一个正的实数根解:方程整理得:x2﹣3x+2﹣m2=0,∵Δ=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,∵方程的两个根和为3>0,∴至少有一个正的实数根,故选:D.3.(2分)(2020秋•盐城期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是()A.0 B.2020 C.4040 D.4042解:∵a,b是方程x2+x﹣2021=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.4.(2分)(2020秋•金坛区月考)已知关于x的一元二次方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,且满足x12+x22=3,则m的值是()A.0 B.﹣2 C.0 或﹣D.﹣2或0解:∵方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,∴x1+x2=﹣(2m+1),x1x2=m﹣1,∵x12+x22=3,即(x1+x2)2﹣2x1x2=3,∴[﹣(2m+1)]2﹣2(m﹣1)=3,解得m=0或m=﹣,∵Δ=(2m+1)2﹣4(m﹣1)=4m2+5>0,∴m为任意实数,方程均有实数根,∴m=0或m=﹣均符合题意.故选:C.5.(2分)(2020秋•江都区月考)若a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,则a2﹣3b的值是()A.3 B.﹣15 C.﹣3 D.15解:∵a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,∴a2+3a﹣6=0,即a2=﹣3a+6,a+b=﹣3,则a2﹣3b=﹣3a+6﹣3b=﹣3(a+b)+6=﹣3×(﹣3)+6=9+6=15,故选:D.6.(2分)(2021•建邺区一模)关于x的方程3x2﹣7x+4=0的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根解:∵a=3,b=﹣7,c=4,∴Δ=b2﹣4ac=49﹣4×3×4=1>0,∴关于x的方程3x2﹣7x+4=0有两个实数根.设关于x的方程3x2﹣7x+4=0的两根分别是α、β.又∵αβ=>0,∴α、β同号.∵α+β=>0,∴α>0,β>0.∴该方程有两个正根.故选:A.7.(2分)(2021秋•常熟市校级月考)关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,则另一根为()A.1 B.﹣2 C.2 D.3解:设方程x2+kx﹣3=0的另一个根为a,∵关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,∴由根与系数的关系得:﹣3a=﹣3,解得:a=1,即方程的另一个根为1,故选:A.8.(2分)(2020秋•锡山区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有()个.①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若p、q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,则必有2b2=9ac.A.1 B.2 C.3 D.4 解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则px2+3x+q=(px+1)(x+q)=0,∴,x2=﹣q,∴,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:,,若x1=2x2,则,即,∴,∴,∴,∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,则,∴,∴,∴,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,∴正确的有:②③④共3个.故选:C.9.(2分)(2018秋•相城区期中)已知m,n是方程x2﹣2018x+2019=0的两个根,则(m2﹣2019m+2018)(n2﹣2019n+2018)的值是()A.1 B.2 C.4037 D.4038解:∵m,n是方程x2﹣2018x+2019=0的两个根,∴m+n=2018,mn=2019,m2﹣2018m+2019=0,n2﹣2018n+2019=0,∴m2﹣2019m+2018=﹣m﹣1,n2﹣2019n=﹣n﹣1,∴(m2﹣2019m+2018)(n2﹣2019n+2018)=(﹣m﹣1)(﹣n﹣1)=mn+m+n+1=2019+2018+1=4038,故选:D.10.(2分)(2021•武进区校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.解:方法1、∵方程有两个不相等的实数根,则a≠0且Δ>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•工业园区校级模拟)已知:一元二次方程x2﹣5x+c=0有一个根为2,则另一根为.解:设方程的另一根为α,则α+2=5,解得α=3.故答案为:3.12.(2分)(2023•徐州二模)关于x的方程x2+mx﹣4=0的一根为x=1,则另一根为.解:设这个一元二次方程的另一根为x2,∵关于x的方程x2+mx﹣4=0的一根为x=1,∴∴x2=﹣4故答案为:x=﹣4.13.(2分)(2023•玄武区二模)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p+q=.解:∵关于x的方程x2+px+q=0的两根为﹣3和﹣1,∴﹣3+(﹣1)=﹣p,﹣3×(﹣1)=q,∴p=4,q=3,∴p+q=7,故答案为:7.14.(2分)(2023•海陵区校级二模)若关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,则x1+x2=.解:∵关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,∴,故答案为:﹣5.15.(2分)(2022秋•海陵区校级期末)已知一元二次方程2x2+4x﹣3=0的两根为a和b,则a2+b2的值为.解:由题意可得,a+b=﹣=﹣2,ab=﹣∴a2+b2=(a+b)2﹣2ab=4﹣2×(﹣)=7,故答案为:7.(2011秋•江宁区校级期中)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.(2分)16.解:根据题意得x1+x2=﹣6,x1x2=3,所以+====10.故答案为10.17.(2分)(2021秋•东台市期中)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=,q=.解:∵小明看错了系数p,解得方程的根为1和﹣3,∴q=1×(﹣3)=﹣3,∵小红看错了系数q,解得方程的根为4和﹣2,∴﹣p=4﹣2=2,∴p=﹣2,故答案为:﹣2、﹣3.18.(2分)(2020x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=﹣,x2=﹣q,∴x2=﹣q=﹣=2x1,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:x1=,x2=,若x1=2x2,则,=×2,即,﹣×2=0,∴=0,∴=0,∴3=﹣b∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,×2=,即,则,×2﹣=0,∴=0,∴﹣b+3=0,∴b=3,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,故答案为:②③④(2分)(2019春•崇川区校级期末)设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;19.解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.20.(2分)(2019秋•江阴市期中)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.(只要求写出两个).解:∵﹣12=2×(﹣6)=6×(﹣2)=﹣3×4=﹣4×3等等,∴k=2+(﹣6)=﹣4,或6+(﹣2)=4,或k=±1,故填空答案:4或﹣4.答案不唯一.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2016秋•吴江区期中)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,Δ=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.22.(6分)(2015秋•灌云县校级月考)已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.解:(1)∵a=,b=﹣(m﹣2),c=m2方程有两个相等的实数根,∴Δ=0,即Δ=b2﹣4ac=[﹣(m﹣2)]2﹣4××m2=﹣4m+4=0,∴m=1.原方程化为:x2+x+1=0 x2+4x+4=0,(x+2)2=0,∴x1=x2=﹣2.(2)不存在正数m使方程的两个实数根的平方和等于224.∵x1+x2=﹣=4m﹣8,x1x2==4m2x12+x22=(x1+x2)2﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=224,即:8m2﹣64m﹣160=0,解得:m1=10,m2=﹣2(不合题意,舍去),又∵m1=10时,Δ=﹣4m+4=﹣36<0,此时方程无实数根,∴不存在正数m使方程的两个实数根的平方和等于224.23.(8分)(2022秋•张家港市校级月考)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2==,x1x2==﹣,故答案为:,﹣;(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,∴m+n=,mn=﹣,∴====;(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,∴s+t=,st=﹣,∴(s﹣t)2=(s+t)2﹣4st,(s﹣t)2=()2﹣4×(﹣),(s﹣t)2=,∴s﹣t=,∴====.24.(8分)(2022秋•通州区校级月考)关于x的方程kx2+(k+2)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.解:(1)∵方程有两个不相等的实数根,∴Δ=(k+2)2﹣4k•>0且k≠0,∴k2+4k+4﹣k2>0,且k≠0,∴k>﹣1且k≠0,即k的取值范围是k>﹣1且k≠0.(2)不存在.理由如下:∵关于x的方程kx2+(k+2)x+=0的两根分别为x1、x2,∴x1+x2=−,x1•x2=,假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不为0,且+=0,∴+==﹣=0,∴k+2=0,∴k=﹣2,而k=﹣2与方程有两个不相等实数根的条件k>﹣1且k≠0矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.25.(8分)(2021秋•泰兴市校级月考)关于x的方程:2(x﹣k)=x﹣4①和关于x的一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0②(k、m、n均为实数),方程①的解为非正数.(1)求k的取值范围;(2)如果方程②的解为负整数,k﹣m=2,2k﹣n=6且k为整数,求整数m的值;(3)当方程②有两个实数根x1、x2,满足(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,且k为正整数,试判断|m|≤2是否成立?请说明理由.解:(1)∵关于x的方程:2(x﹣k)=x﹣4.解得x=2k﹣4∵关于x的方程:2(x﹣k)=x﹣4的解为非正数.∴2k﹣4≤0,∴解得k≤2,∵由方程②可知k≠1,∴k≤2且k≠1.(2)∵一元二次方程一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0中k﹣m=2,2k﹣n=6,∴k=m+2,n=2k﹣6=2m+4﹣6=2m﹣2,∴把k=m+2,n=2m﹣2代入原方程得:(m+1)x2+2mx+m﹣1=0,因式分解得,[(m+1)x+(m﹣1)](x+1)=0,∴x1=﹣,x2=﹣1,∵方程②的解为负整数,﹣=﹣1,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3.(3)|m|≤2成立,理由是:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=﹣=﹣2m,x1x2==1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5,Δ=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣(n+1)≥0②,把①代入②得:4m2﹣4(2m2﹣4)≥0,m2≤4,则|m|≤2,∴|m|≤2成立.26.(8分)(2022秋•洪泽区期中)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=,x1x2=.(2)初步体验:已知一元二次方程x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)类比应用:已知实数s、t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,求的值.(4)思维拓展:已知实数a、b、c满足a+b=c﹣5、ab=,且c<5,求c的最大值.解:(1)∵一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2=﹣=3,x1x2==﹣1,故答案为:3,﹣1;(2)∵一元二次方程x2﹣3x﹣1=0的两根分别为m,n,∴m+n=3,mn=﹣1,∴=﹣11;(3)∵实数s,t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,∴s,t是一元二次方程2x2﹣3x﹣1=0的两个实数根,∴s+t=3,st=﹣1.∵(t﹣s)2=(t+s)2﹣4st=32﹣4×(﹣1)=13,∴t﹣s=±∴;(4)∵a+b=c﹣5,ab=,∴将a、b看作是方程x2﹣(c﹣5)x+=0的两实数根.∵Δ=(c﹣5)2﹣4×≥0,而c<5,∴(5﹣c)3≥64,∴5﹣c≥4,即c≤1,∴c的最大值为1.27.(8分)(2021秋•海陵区校级月考)已知关于x的一元二次方程x2﹣2(k+1)x+k2+k+3=0(k为常数).(1)若方程的两根为菱形相邻两边长,求k的值;(2)是否存在满足条件的常数k,使该方程的两解等于边长为2的菱形的两对角线长,若存在,求k的值;若不存在,说明理由.解:(1)∵方程的两根为菱形相邻两边长,∴此方程有两个相等的实数根,∴Δ=0,∴[﹣2(k+1)]2﹣4(k2+k+3)=0,4(k2+2k+1)﹣4k2﹣4k﹣12=0,4k2+8k+4﹣4k2﹣4k﹣12=0,4k﹣8=0,k=2,(2)不存在,理由如下:∵该方程的两解是菱形的两对角线长,∴a+b=2(k+1),ab=k2+k+3,设菱形的两对角线长a,b.∵菱形的两对角线互相垂直平分,∴由勾股定理得,+=4,+=4,b2+a2=16,∴b2+2ab+a2﹣2ab=16,(a+b)2﹣2ab=16,[2(k+1)]2﹣2(k2+k+3)=16,解得k=,∵Δ=4k﹣8,∴4k﹣8≥0.∴k≥2,∵k=<2,∴不存在满足条件的常数k.28.(8分)(2022秋•惠山区校级月考)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:无论m取何值方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的等腰三角形的周长.(1)证明:∵Δ=(m+2)2﹣4﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4≥4,即△≥4,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该等腰三角形的腰为1、底边为3时,∵1+1<3∴构不成三角形;②当该等腰三角形的腰为3、底边为1时,等腰三角形的周长=3+3+1=7。
韦达定理练习
韦达走理练习1、已知关于X的一元二次方程x+x+1二0有两个不相等的实数根,则k的取值范围是5、已知x1、x2是方程x+6x+3二0的两个实数根,则6、如果关于x的一元二次方程x - 6x+c=0没有实根,那么c 的取值范围是_________ 、7、已知关于x的一元二次方程x+2x-m二0有两个相等的实数根,则m的值是8、方程x - 2x - 1=0的两个实数根分别为xl, x2,则二9、已知a, 0是一元二次方程x-4x-3二0的两实数根,则代数式二________ 、10、已知x二2是方程x+mx-2二0的一个解,则方程的另一个解为11、用指定的方法解方程22 - 25=0 x+4x - 5=0[1 **********]的值等于-10+25=04) 2x - 7x+3=012、+3+2=013、已知关于x的一元二次方程x+2x+m二0、当m二3时,判断方程的根的情况;当m=- 3时,求方程的根、14、当实数k为何值时,关于x的方程x-4x+3-k二0有两个相等的实数根?并求出这两个相等的实数根、15、阅读材料:如果xl, x2是一元二次方程ax+bx+c=O的两根,那么有xl+x2= - , xlx2二、这是一元二次方程根与系数的关系,我们利用它可以用来解题,例xl, x2是方程x+6x-3二0的两根,求222222xl+x2的值、解法可以这样:Vxl+x2=6, xlx2=-3 则xl+x2=-2xlx2-2X =42、请你根据以上解法解答下题:已知xl, x2是方程x - 4x+2=0 的两根,求:的值;222222222 的值、16、已知xl, x2是方程3x+2x - 1=0的两根,求xl+x2的值、17、已知关于x的一元二次方程x+kx - 1=0,求证:方程有两个不相等的实数根;设方程的两根分别为xl, x2,且满足xl+x2二xl・x2,求k的值、18、已知x1、x2是一元二次方程2x - 2x+l - 3m=0的两个实数根,且x1、x2满足不等式xl・x2+2>0,求实数m的取值范围、19、已知xl, x2是方程x-2x-2二0的两实数根,不解方程求下列各式的值:20、已知一元二次方程X - 2x+m二0、若方程有两个实数根,求m的范围;若方程的两个实数根为xl, x2,且xl+3x2=3,求m的值、2222222;、21、阅读材料:如果x1、x2是一元二次方程ax+bx+c二0的两根,那么,名的韦达定理、现在我们利用韦达定理解决问题:2已知m与n是方程2x - 6x+3二0的两根填空:m+n= ________ , m* n= _________ ;计算22、已知关于x的一元二次方程x-2x-0二0、如果此方程有两个不相等的实数根,求a的取值范围;如果此方程的两个实数根为xl, x2,且满足23、已知关于x的一元二次方程kx- 2x+k - 1=0有两个不相等的实数根xl, X2、求k的取值范围;是否存在实数k,使+二1成立?若存在,请求出k的值;若不存在,请说明理由、222,、这就是著的值、,求a的值、。
韦达定理练习题初三
韦达定理练习题初三一、选择题1. 若一个一元二次方程的两个根分别是α和β,则下列选项中正确的是()A. α + β = 0B. αβ = 1C. α + β = b/aD. αβ = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两个根为x1和x2,则x1 x2的值为()A. 5B. 6C. 5D. 63. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,则下列说法错误的是()A. x1 + x2 = b/aB. x1 x2 = c/aC. 若a > 0,则方程有两个实数根D. 若b^2 4ac < 0,则方程有两个不相等的实数根二、填空题1. 已知一元二次方程2x^2 4x + 1 = 0的两个根为x1和x2,则x1 + x2 = _______。
2. 若一元二次方程x^2 3x + k = 0有两个实数根,则k的取值范围是_______。
3. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两个根为x1和x2,则x1 x2 = _______。
三、解答题1. 已知一元二次方程x^2 (k+3)x + 2k = 0的两个根为x1和x2,且x1 x2 = 6,求k的值。
2. 已知一元二次方程x^2 (a+2)x + a = 0的两个根为x1和x2,且x1 + x2 = 4,求a的值。
3. 设一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,且x1 + x2 = 5,x1 x2 = 6,求a、b、c的关系。
4. 已知一元二次方程x^2 4x + m = 0的两个根为x1和x2,且x1和x2是两个连续的正整数,求m的值。
5. 已知一元二次方程x^2 (k+2)x + k^2 5 = 0有两个实数根,求k的取值范围。
四、应用题1. 小华解一元二次方程x^2 (3a+1)x + 2a^2 = 0时,发现两个根的和是7,请问a的值是多少?2. 在一个三角形中,三边的长度分别是x、x+1和x+2,已知x是方程x^2 (a+3)x + 6 = 0的一个根,求a的值。
韦达定理(精品讲解与专题练习)
x1 ●2= 3k x1 =-3
k =-2
答:方程的另一个根是-3 , k的值是-2。
1、韦达定理及证明
2、利用韦达定理解决有关一元二次方程 根与系数问题时,注意隐含条件: 根的判别式△ ≥0
1、已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值。
解:设方程的另一个根为x1, 19 则x1+1= 3 , ∴ x1=
韦达定理
韦达(1540-1603) 法国数学家 十六世纪最有影响的 数学家之一,被尊称为 “代数学之父”。 他是第一个引进系统的 代数符号,并对方程论 做了改进的数学家。
韦达定理
一:思考、发现, 噢,是这样哎!
二:疑问,为什么会是这样呢?能证明吗?
三:疑问,我学习它有什么用呢?
第一段
做准备:
1.一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
b b 2 4ac 2a
X=
2.方程合家欢,(
十字相乘 )
是首选。
第一段
解下列方程并完成填空: (1)x2-7x+12=0 (2)x2+3x-4=0 两根 x1 x2 4 -4
1 2
(3) 2x2+3x-2=0 两根和 X1+x2 7 -3 3 - 2 两根积 x 1x 2 12 -4 -1
又x1 1=
●
m 3
16 3,
,
∴ m= 3x1 = 16 x1+x2= - 2 , x1 · x2=
3 2 3 )+1= 2
2、设x1,x2是方程2x2+4x-3=0的两个根,求(x1+1)(x2+1)的值。
解: 由韦达定理,得
专项韦达定理(一)
18、设21,x x 是方程()031222=-+--m x m x 的两个实数根。
(1)当m 取何值时,21x x ≠;(2)当42221=+x x 时,求m 的值。
19、已知关于x 的一元二次方程()()002122>=-+--m m x m mx(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为21,x x 且()()m x x 53321=--,求m 的值.20、已知关于x 的方程:x m x m 22240---=() (1)求证:无论m 取什么实数值,这个方程总有两个相异实根;(2)若这个方程的两个实根x 1、x 2满足x x 212=+,求m 的值及相应的x 1、x 2。
《韦达定理》练习2一 填空题:1、如果()51222+++-m x m x 是一个完全平方公式,则=m ______。
2、已知x 的二次方程04422=++k kx x 的一个根是–2,那么k=__________3、已知关于x 的一元二次方程02=++q px x 的两根为2和3,则q p +=________.4、已知关于x 的一元二次方程02=--k x x 无实数恨,则k 的取值范围是=_________5、关于x 的一元二次方程()01122=-+++k x k kx 有两个实数根,则k 的取值范围是______。
6、若m 、n 是方程0120022=-+x x 的两个实数根,则mn mn n m -+22的值是 .7、如果关于x 的一元二次方程022=+-m x x 有两个相等的实数根,那么m =________。
8、如果关于x 的方程022=+-k x x 的两根的差等于6,那么k=___________9、若关于x 的方程0122=-+kx x 的两根均是整数,则k 的值可以是________。
(只要求写出两个)。
10、已知α,β是方程0522=-+x x 的两个实数根,则ααβα22++的值为=_________二.选择题:11、若关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是。
韦达定理初三练习题
韦达定理初三练习题韦达定理是解决三角形问题的重要定理之一,在初中数学学习中起着关键的作用。
在本篇文章中,我们将通过一些实际的练习题来巩固和应用韦达定理的知识。
请您认真阅读题目,并按照题目要求进行解答。
练习一:已知三角形的两个边长和夹角,求第三边的长度。
1. 已知一个三角形的两条边长分别为5cm和8cm,夹角为60度。
请计算第三边的长度。
解答:根据韦达定理,我们可以使用以下公式求解:c² = a² + b² - 2abcosC。
其中,c代表第三边,a和b分别代表已知的两个边长,C代表已知的夹角。
根据题目信息,已知的两条边分别为5cm和8cm,夹角为60度。
我们可以将这些数据代入韦达定理的公式中进行计算。
c² = 5² + 8² - 2 × 5 × 8 × cos60°= 25 + 64 - 80 × 0.5= 89 - 40= 49因此,第三边的长度为√49,即7cm。
练习二:已知三角形的两个边长和一条高的长度,求另一条高的长度。
2. 已知一个三角形的两边长分别为6cm和10cm,其中一条高的长度为8cm。
请计算另一条高的长度。
解答:我们可以利用韦达定理的性质来求解这个问题。
首先,我们需要找到一个关系式来表示两条高的长度。
根据韦达定理,我们可以得到以下关系式:(a² - b²)/ (a² + b²)= (h₁² - h₂²)/ (h₁² + h₂²)。
其中,a和b代表已知的两边长,h₁和h₂分别代表已知的两条高的长度。
根据题目中的信息,已知两边长分别为6cm和10cm,其中一条高的长度为8cm。
假设另一条高的长度为h₂。
根据关系式,我们可以将这些数据代入,得到以下等式:(6² - 10²)/ (6² + 10²)= (8² - h₂²)/ (8² + h₂²)我们可以通过化简这个等式,解得h₂的值。
韦达定理30题
韦达定理专项训练1、若一元二次方程()002≠=++a c bx ax 中,两根为1x ,2x 。
则ab x x -=+21, acx x =∙21,;补充公式a x x ∆=-212、以1x ,2x 为两根的方程为()021212=∙+++x x x x x x 3、用韦达定理分解因式()()2122x x x x a a c x a b x a c bx ax --=⎪⎭⎫⎝⎛++=++ 1、设:3a 2-6a -11=0,3b 2-6b -11=0,求a 4-b 4的值。
2、试确定使x 2+(a -b)x+a=0的根同时为整数的整数a 的值。
3、已知一元二次方程(2k -3)x 2+4kx+2k -5=0,且4k+1是腰长为7的等腰三角形的底边长,求当k 取何整数时,方程有两个整数根。
4、已知:α、β是关于x 的方程x 2+(m -2)x+1=0的两根,求(1+m α+α2)(1+m β+β2)的值。
5、已知x 1,x 2是关于x 的方程x 2+px+q=0的两根,x 1+1、x 2+1是关于x 的方程x 2+qx+p=0的两根,求常数 p 、q 的值。
6、已知x 1、x 2是关于x 的方程x 2+m 2x+n=0的两个实数根;y 1、y 2是关于y 的方程y 2+5my+7=0的两个实数根,且x1-y1=2,x2-y2=2,求m、n的值。
7、关于x的方程m2x2+(2m+3)x+1=0有两个乘积为1的实根,x2+2(a+m)x+2a-m2+6m-4=0有大于0且小于2的根。
求a的整数值。
8、关于x的方程22n41mx2x+-=0,其中m、n分别是一个等腰三角形的腰长和底边长。
(1)求证:这个方程有两个不相等的实根;(2)若方程两实根之差的绝对值是8,等腰三角形的面积是12,求这个三角形的周长。
9、已知关于x的一元二次方程ax2+bx+c=0的两根为α、β,且两个关于x的方程x2+(α+1)x+β2=0与x2+(β+1)x+α2=0有唯一的公共根,求a、b、c的关系式。
韦达定理(根与系数的关系)全面练习题及答案
1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程ax2+bx+c=0(a丰0),如果方程有两个实数根x,x,那么12说明:定理成立的条件A>0练习题一、填空:1、如果一兀二次方程ax2+bx+c=0(a丰0)的两根为x,x,那么x+x=1212xx=.122、如果方程x2+px+q=0的两根为x,x,那么x+x=,xx=.1212123、方程2x2-3x-1=0的两根为x,x,那么x+x=,xx=.1212124、如果一元二次方程x2+mx+n二0的两根互为相反数,那么m=;如果两根互为倒数,5方程x2+mx+(n-1)=0的两个根是2和一4,那么m=,n=.6、以x,x为根的一元二次方程(二次项系数为1)是127、以<3+1,v3-1为根的一元二次方程是.8、若两数和为3,两数积为一4,则这两数分别为.9、以3+迈和3-迈为根的一元二次方程是.10、若两数和为4,两数积为3,则这两数分别为.11、已知方程2x2+3x-4二0的两根为x,x,那么x2+x2=.121212、若方程x2-6x+m=0的一个根是3-j2,则另一根是,m的值是.13、若方程x2-(k-1)x-k-1=0的两根互为相反数,则k=,若两根互为倒数,贝Uk=.14、如果是关于x的万程x2+mx+n=0的根是-詔2和J3,那么x2+mx+n在实数范围内可分解为.二已知方程x2—3x—2—0的两根为x,且>x,求下列各式的值:1212(1 )x2+x2=;(2)11+= 12x x12(3 )(x一x)2—=;(4)(x+1)(x+1)=. 1212三、选择题:1、关于x的方程2x2-8x-p=0有一个正根,一个负根,则p的值是()(A)0(B)正数(C)—8(D)—42、已知方程x2+2x—1=0的两根是x,x,那么x2x+xx2+1—()12(A)-7 (B)3 (C)7 (D)—33、已知方程2x2—x—3—0的两根为x,x12 那么丄+丄=()xx12(B)1(C)3 (D)4、下列方程中,两个实数根之和为2的一元次方程是(A)x2+2x—3—0 (B)x2—2x+3—0(C)x2—2x—3—0 (D)x2+2x+3—05、若方程4x2+(a2—3a-10)x+4a—0的两根互为相反数, 则a的值是((A)5或—2 (B)5 (C)—2 (D)—5或26、若方程2x2—3x—4—0的两根是x,x,那么(x+1)(x1211(C)2 +1)的值是((B)—6 (D)-27、分别以方程x2—2x—1=0两根的平方为根的方程是(C)y2—6y—1—0(D)y2+6y一1—0(A)y2+6y+1—0 (B)y2一6y+1—0四、解答题:1、若关于x的方程5x2+23x+m=0的一个根是一5,求另一个根及m的值.2、关于x的方程x2+2(m-2)x+m2+4二0有两个实数根,且这两根平方和比两根积大21.求m的值.3、若关于x的方程x2+(m-2)x-m-3=0两根的平方和是9.求m的值.4、已知方程x2-3x-m二0的两根之差的平方是7,求m的值.5、已知方程x2+(m2-4m-5)x+m=0的两根互为相反数,求m的值.6、关于x的方程3x2-(4m2-1)x+m(m+2)=0的两实数根之和等于两实数根的倒数和,求m的值.7、已知方程x2-2x+3m=0,若两根之差为一4,求m的值.8、已知x,x是一元二次方程4kx2-4kx+k+1二0的两个实数根.123(1)是否存在实数k,使(2x-x)(x-2x)二-一成立?若存在,求出k的值;若不存在,请12122您说明理由.⑵求使九+•-2的值为整数的实数k的整数值.xx21韦达定理;肘于一元二次方程ax 3+^+^0^*0).如果方程有两个窝雜根环E ・那么丙+Aj=__,片%=-aa说明:定理成立的条件也±0练习题iK 如果一元二次方程o?+址+G =0S 古叭的两根为工厂旳,那么心+勺工_£2、如果方程工"卡戸工+《弓0的两根为為’x ±,那么百*0=_1&孔=―I①方程2+—H 工一1"的两根为f 那么斗+斗巧匸士一-涉如果一元二次方稈十+淞E+丹土0的两根互丸相反数.那么rn=PJ 如果两根互为倒数.那么祥=_...护趕++楓子厲-120的两个根是2和一4、那么m=2."-7.以.旺,观为根的一元二次方程(二抿项系数为O 是代宀七入九沁、 以舲+1,再-1为银的一元…祢方稈是%-2怡喘池可T,斑nl 若两数和为趴踽数积为-4,则这两敢分别為壬TA 曲_口?馭齢血利3-迈再根的一元二次方程是上也如壬 kd@若两数和为4,两数厂-门,瓦这两数分别为」和占II 、已期方穆2d+3工一4=U 的茁郴为“,j 心,那虫工;于工;@若方理宀钳+协=0的一卡根2近.耻I -根是丄坐_,用的值鬼J_.售琥d 塑),若方程讹-1)—七-1=0的两覘耳知皈数“则"_L ・若两根互为倒数,则"竺.严炭贅关于”的方程一F+酥+姑=0的根是-近和更、邯么F+吟严右険数范川內出分解为(世环Q 【環也),答案: 根与系数的关系(韦达定理) —、填空:9、g已知方jix3-jj-2=o的两根为卧小且7筍亠“求下列各貳的值:⑶匚―可『==;⑷佃+1)(工严1)=—.—■三、选择题;@关于x的方程2Sp=0有-牛正根,一个负根・则p的值是(ja>)(A)0(B)正数(C)-8<D)~42、已知方程x z+2i-l=0的两根是冲x2.削么彳珀卡旺帀'42(B(A)-7(B)3{(:)了(D)-3氛已知方程空疋-工-3"的两根为书.%那么丄+丄=©A〉円x i”电(A)-|(B)+(C)3(D)-3瑾®'下测方理中,两个实数根之和为2的一元二次方程是(匚)(A)x5+2x~3=0CB)j2-2x+3=Q免钮1(C)F-2—3=0(D)J2+2x+3=O形若方程4?+(/—加―】哄+硼二0的弊互曲相反数,则"的帶1是〔C> tA)5或一2(B)5(C)-2(□)-5或26.若方程"-脈-斗=G的两根是鬲』补那么詬+i〕g+D的值是(C)(A)—扌(B)-6(C)|(D)殆@为别以方程工―2—1-0两根杓平方为根的方程是(B)%■<缜二工■,儿仏二-I矗=了求曲的值, 呼1+孙:一尊1%H 屈Qn 山械一小-.叙知九十*二A M 叩 [7k +Jk^-旳Ml 二^|.二-S*L yt-卒gd -上(韭华,“対s 站叮,也么、叔4y网二7盘亠丨m H 料r 寻]二w(K.+ViJ-4>«=74—f 二切=』石-J ,仃工X-$%占=f£tQ7•迩己知X ],号是一元二祝方程4fac s -4^+A+1=0的两个实数根.3⑴是否存程实数帚便俗I--qH 咼-2即=-二成立?若存在,求出A 的直;若平存也 请您说明理由.d 二協’必f ““二W£*■J ■号虫S”⑵求使A +2__2的值为整数的实坡丘的鰹数学.X?斗m 的值.>tKi ,T 十41曰- 丁-仆(厲T )(器叶1":Pz 「匕—I@己知方程x 1-2x+^m=0・若两根之差为Q 求朋的值一I"创冷一缈5左&乜乔戚宜癸£a 4窗巳*试2T%亠fr~i.^'*-??d -1—◎二讥“埠£ 厶二-耳“$£.心f-7Z+■/A0关于工的方程如'-(4用*」找十粗佃+2]二0的两实数根之和等于两实数很的倒数和,求。
和韦达定理有关的练习题
和韦达定理有关的练习题一、选择题1. 若一元二次方程ax^2 + bx + c = 0的两根为x1和x2,则下列哪个选项正确地表示了韦达定理?()A. x1 + x2 = b/a,x1 x2 = c/aB. x1 + x2 = b/a,x1 x2 = c/aC. x1 + x2 = b/a,x1 x2 = c/aD. x1 + x2 = b/a,x1 x2 = c/a2. 已知一元二次方程2x^2 5x + 3 = 0的两根分别为x1和x2,则x1 x2的值为()。
A. 3B. 3C. 1.5D. 1.5二、填空题1. 若一元二次方程x^2 4x + 3 = 0的两根为x1和x2,则x1 + x2 = _______,x1 x2 = _______。
2. 已知一元二次方程3x^2 + 7x 2 = 0的两根分别为x1和x2,且x1 < x2,则x1 = _______,x2 = _______。
三、解答题1. 已知一元二次方程4x^2 12x + 9 = 0的两根为x1和x2,求x1和x2的值。
2. 已知一元二次方程5x^2 7x + 2 = 0的两根之和为4,求该方程的两根之积。
3. 已知一元二次方程2x^2 (4k + 1)x + 2k = 0的两根之积为k,求k的值。
4. 设一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两根为x1和x2,若x1 + x2 = 5,x1 x2 = 6,求该方程的解。
5. 已知一元二次方程x^2 (2a + 1)x + a^2 = 0的两根均为正数,求a的取值范围。
6. 已知一元二次方程x^2 (k + 3)x + 2k = 0的两根分别为x1和x2,且x1 < x2,求x1和x2的值。
7. 设一元二次方程x^2 (a + b)x + ab = 0的两根为x1和x2,求证:x1和x2是正数的充分必要条件是a和b均为正数。
8. 已知一元二次方程x^2 (2k + 1)x + k^2 = 0的两根之差为1,求k的值。
专题1.5根与系数的关系(韦达定理)(专项拔高卷)学生版
20232024学年苏科版数学九年级上册同步专题热点难点专项练习专题1.5 根与系数的关系(韦达定理)(专项拔高卷)考试时间:90分钟试卷满分:100分难度:0.56姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•叙州区校级月考)已知m,n为一元二次方程x2+2x﹣9=0的两个根,则m2+m﹣n的值为()A.﹣7 B.0 C.7 D.112.(2分)(2022秋•徐汇区期末)若方程x2﹣3x+m=0有一根是1,则另一根是()A.1 B.2 C.﹣1 D.﹣23.(2分)(2022秋•澄海区期末)已知2是关于x的方程x2+mx﹣3m=0的一个根,则这个方程的另一个根为()A.﹣6 B.6 C.﹣3 D.34.(2分)(2022秋•大渡口区校级期末)对于实数a,b,定义新运算a*b=,则下列结论正确的有()①5*3=1;②当x=﹣1时,[(﹣2)*x]*7=﹣21;③m*(2m﹣1)=;④若x1,x2是一元二次方程x2﹣5x﹣6=0的两个根,则x1*x2=16或﹣17.A.1个B.2个C.3个D.4个5.(2分)(2023秋•山丹县校级月考)若x=﹣2是一元二次方程x2+ax+2=0的一个根,则此方程的另一个根是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣36.(2分)(2023•下陆区校级开学)已知方程x2﹣3x+2=0的两根是x1,x2,则的值是()A.1 B.2 C.1.5 D.2.57.(2分)(2023•花山区二模)关于x的方程x2﹣x﹣3=0的两根分别为x1,x2,则x1+x2﹣x1•x2的值为()A.4 B.﹣2 C.2 D.﹣48.(2分)(2023•江夏区校级模拟)已知m、n是一元二次方程x2+4x﹣1=0的两根,则的值是()A.4 B.﹣2 C.2 D.﹣49.(2分)(2023•江岸区模拟)已知a、b是一元二次方程3x2﹣x﹣1=0的两根,则的值为()A.﹣5 B.﹣3 C.﹣D.﹣10.(2分)(2023•沂源县一模)关于x的方程x2﹣2mx+m2=4的两个根x1,x2满足x1=2x2+3,且x1>x2,则m的值为()A.﹣3 B.1 C.3 D.9评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•广水市月考)若m,n是方程x2﹣x﹣2021=0的两个实数根,则m2+m+2n的值为.12.(2分)(2023•武侯区校级模拟)已知x1,x2是关于x的一元二次方程x2﹣kx﹣4=0的两个实数根,且++x1x2=6,则k的值为.13.(2分)(2023秋•铁岭月考)已知x1,x2是方程2x2+3x﹣4=0的两个根,那么x1(2x1﹣x2)﹣3x2﹣5=.14.(2分)(2023•赛罕区二模)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为,另外一根等于.15.(2分)(2023春•宁明县期中)设m,n分别是一元二次方程x2﹣2x﹣2025=0的两个实数根,则m2﹣3m ﹣n=.16.(2分)(2023春•威海期末)若非零实数a,b(a≠b)满足a2+a﹣2007=0,b2+b﹣2007=0,则+的值为.17.(2分)(2023•攀枝花)x2﹣4x﹣2=0的两根分别为m、n,则=.18.(2分)(2023•东湖区校级二模)若a,β是方程x2﹣2x﹣5=0的两个根,则α﹣αβ+β的值为.19.(2分)(2022秋•细河区期末)若一元二次方程x2﹣3x+2=0的两个根分别为a、b,则a2﹣3a+ab﹣2的值为.20.(2分)(2023•芜湖三模)已知关于x的一元二次方程x2﹣2x﹣3m2=0的两个实数根分别为α、β,且α+2β=5,则m的值为.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022秋•龙岩期末)已知关于x的方程x2﹣4x+2k+1=0.(1)k取什么值时,方程有两个实数根;(2)如果方程有两个实数根x1,x2,且x2﹣2x1﹣2x2+9=0,求k的值.22.(6分)(2022秋•鄞州区校级期末)已知关于x的一元二次方程x2+2x+2k﹣5=0有两个不相等的实数根.(1)求k的取值范围;(2)若x1,x2是这个方程的两个根,且x12+x22+3x1•x2=﹣3,求k的值.23.(8分)(2023秋•武侯区校级月考)若x1、x2是关于x的方程x2+mx﹣3m=0的两个根,且+=7.求m的值.24.(8分)(2023•老河口市模拟)已知关于x的一元二次方程x2+2(m﹣1)x+m2=0.(1)若方程有实数根,求m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足+=14.求+4x2﹣10的值.25.(8分)(2023秋•铁岭月考)关于x的一元二次方程mx2+(2m+1)x﹣2=0的两根为x1、x2.(1)是否存在m值,使两根互为相反数;(2)若两根的倒数和为2,求的m值.26.(8分)(2022秋•安徽期末)已知关于x的一元二次方程(m﹣1)x2﹣2x+1=0.(1)若x=﹣1是该方程的一个根,求m的值及另一个根;(2)若该方程有两个不相等的实数根,求m的取值范围.27.(8分)(2023春•文登区期末)关于x的一元二次方程x2﹣3x﹣mx+m﹣1=0(1)试判断该方程根的情况并说明理由;(2)若x1,x2是该方程的两个实数根,且3x1﹣x1x2+3x2=12,求该方程的解.28.(8分)(2023春•海阳市期末)若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.例如,一元二次方程x2﹣9x+18=0的两个根是3和6,则方程x2﹣9x+18=0就是“倍根方程”.(1)若关于x的一元二次方程x2﹣6x+k=0是“倍根方程”,求k的值;(2)若关于x的一元二次方程nx2﹣(3n+3m)x+8m=0(n≠0)是“倍根方程”,求该方程的根.。
韦达定理全面练习题及答案
韦达定理全面练习题及答案
下面是几道关于韦达定理的练题及答案,供大家练和参考。
问题一
已知两边长为18cm和24cm的直角三角形的斜边是多少?
答案:
根据韦达定理,直角三角形的斜边的平方等于其他两边的平方和。
因此,斜边长为:
√(18^2 + 24^2) = √(324 + 576) = √900 = 30cm
问题二
已知一个平行四边形的两边长分别为10cm和15cm,以及对角线之间的夹角为60度,求另外两边长。
答案:
根据韦达定理,平行四边形的两对角线长度的平方和等于平行四边形的两边长度的平方和的两倍。
因此,另外两边长分别为:
√(10^2 + 15^2 - 2 * 10 * 15 * cos(60°)) = √(100 + 225 - 300 * 0.5) = √(100 + 225 - 150) = √175 = 5√7 cm
问题三
已知一个三角形的边长分别为7cm、8cm和9cm,求其面积。
答案:
根据海伦公式,已知三角形的三条边长可以计算出其面积。
公式如下:
面积= √(s * (s - a) * (s - b) * (s - c))
其中,s = (a + b + c) / 2 是三角形的半周长,而a、b和c分别是三角形的三条边长。
带入已知边长,可以计算出面积:
面积= √(12 * (12 - 7) * (12 - 8) * (12 - 9)) = √(12 * 5 * 4 * 3) = √720 = 12√5 cm²。
韦达定理精华练习题
一、韦达定理如果一元二次方程)0(02≠=++a c bx ax 的两个根是21,x x , 那么a c x x a b x x =⋅-=+2121, 二、练习1、若方程2x +(2a -2)x -3=0的两根是1和-3,则实数a = __________2、设21,x x 是方程22x -6x +3=0的两根,则2221x x +的值是( )(A )15 (B )12 (C )6 (D )33、不解方程,求一元二次方程2x 2+3x -1=0两根的(1)平方和;(2)倒数和。
4、设21,x x 是方程03422=-+x x 的两根,利用根与系数的关系,求下列各式的值。
(1) ()()1121++x x(2) ()221x x - (3) 2112x x x x + 5、求一个一元二次方程,使它的两根分别是25,310-。
6、以方程2x +2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) 2y +5y -6 = 0 (B )2y +5y +6 = 0 (C )2y -5y +6 = 0 (D )2y -5y -6 = 07、已知方程0652=-+kx x 的一根是2,求它的另一根及k 的值。
8、已知关于x 的方程102x -(m+3)x + m -7= 0①若有一个根为0,则m=_________ ,这时,方程的另一个根是_________ ; ②若两根之和为53-,则m=_________ ,这时方程的两个根分别为_____,_____。
8、已知方程032=+-m x x 的两根差的平方是17,求m 的值。
9、已知关于x 的二次方程x 2-2(a -2)x+a 2-5=0有实数根,且两根之积等于两根之和的2倍,求a 的值。
10、如果α和β是方程2x2+3x -1=0的两个根,利用根与系数关系,求作一个一元二次方程,使它的两个根分别等于βα1+和αβ1+。
巩固练习:1、已知方程2x -3x+1=0的两个根为α,β,则α+β=_____ , αβ= _____ 。
初中物理竞赛:韦达定理(附练习题及答案)
初中物理竞赛:韦达定理(附练习题及答案)韦达定理是物理学中的一个重要定理,用于求解力学问题。
它是基于能量守恒和功的定义推导出来的。
韦达定理的表达式为:\[W = \Delta KE \]其中,W表示外力做的功,\(\Delta KE\)表示物体动能的变化。
韦达定理可以应用于各种力学问题,帮助我们分析和计算物体的运动情况和动能的变化。
下面是一些韦达定理的练题及答案,供参考:1. 一个质量为2kg的物体在力为10N的作用下沿着力的方向移动了5m,求外力所做的功。
解答:根据韦达定理,外力做的功等于物体动能的变化。
由于力与物体的位移方向相同,所以力做正功。
根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的质量和加速度未知,无法直接计算动能的变化。
但我们可以利用力和位移的关系求出力所做的功。
根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 10N \cdot 5m = 50J\]所以外力所做的功为50焦耳。
2. 一个质量为1kg的物体从静止开始,受到一个恒力为5N的作用力,沿着力的方向移动了10m,求外力所做的功和物体的末速度。
解答:根据韦达定理,外力做的功等于物体动能的变化。
由于力与物体的位移方向相同,所以力做正功。
根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的初始速度为零,加速度未知,无法直接计算动能的变化。
但我们可以利用力和位移的关系求出力所做的功。
根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 5N \cdot 10m = 50J\]所以外力所做的功为50焦耳。
根据动能定理,可以得到:\[W = \Delta KE = \frac{1}{2} mv^2 - 0\]由此可以求解出物体的末速度:\[50 = \frac{1}{2} \cdot 1kg \cdot v^2\]\[v^2 = 100\]\[v = 10m/s\]所以物体的末速度为10米每秒。
韦达定理练习题(含答案)
韦达定理练习题一.填空题(共16小题)1.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为.2.已知实数x1,x2是方程x2+x﹣1=0的两根,则x1x2=.3.已知a,b是方程x2+x﹣3=0的两个不相等的实数根,则ab﹣2022a﹣2022b的值是.4.设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是.5.若m,n是方程x2+2021x﹣2022=0的两个实数根,则m+n﹣mn的值为.6.一元二次方程x2﹣3x+1=0的两个实数根为α、β,则αβ﹣α﹣β的值为.7.已知α,β是一元二次方程x2﹣x﹣9=0的两个实数根,则代数式α2﹣2α﹣β+3的值为.8.设a、b为x2+x﹣2021=0的两个实数根,则a3+a2+3a+2024b=.9.已知x1,x2是方程x2﹣x﹣1=0的根,则的值是.10.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.11.关于x的一元二次方程3x2﹣10x﹣17=0的两个根分别为x1和x2,则=.12.已知a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,且满足=﹣1,则m的值是.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则mn+m+n=.14.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.15.已知方程x2﹣2x﹣2=0的两根分别为x1,x2,则x12﹣x22+4x2的值为.16.关于x的一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,且满足x12+x22﹣2x1﹣2x2﹣7=0,则k的值为.二.解答题(共4小题)17.已知关于x的方程2x2+2kx+k﹣1=0.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)若x=﹣1是该方程的一个根,求方程的另一个根.18.已知:关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0.(1)证明无论k取何值时方程总有两个实数根.(2)△ABC中,BC=5,AB、AC的长是这个方程的两个实数根,求k为何值时,△ABC 是等腰三角形?19.已知关于x的方程x2﹣4mx+4m2﹣4=0.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,且x1=3x2,求m的值.20.阅读材料并解决下列问题:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1,得m+n=1,mn=﹣1,∴+====﹣3.根据上述材料解决下面的问题:(1)一元二次方程5x2+10x﹣1=0的两根为x1,x2,则x1+x2=,x1x2=.(2)已知实数m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=7p﹣2,2q2=7q﹣1,且p≠2q,求p2+4q2的值.参考答案与试题解析一.填空题(共16小题)1.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为﹣1.【分析】根据一元二次方程根与系数的关系直接可得答案.【解答】解:∵方程x2+x﹣1=0的两根为x1、x2,∴x1+x2=﹣1,故答案为:﹣1.【点评】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系.2.已知实数x1,x2是方程x2+x﹣1=0的两根,则x1x2=﹣1.【分析】根据根与系数的关系解答.【解答】解:∵方程x2+x﹣1=0中的a=b=1,c=﹣1,∴x1x2==﹣1.故答案是:﹣1.【点评】此题主要考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.3.已知a,b是方程x2+x﹣3=0的两个不相等的实数根,则ab﹣2022a﹣2022b的值是2019.【分析】由a,b是方程x2+x﹣3=0的两个不相等的实数根,利用根与系数的关系即可求出两根之和和两根之积,代入代数式即可求解.【解答】解:∵a,b是方程x2+x﹣3=0的两个不相等的实数根,∴a+b=﹣1,ab=﹣3.∴ab﹣2022a﹣2022b=ab﹣2022(a+b)=﹣3﹣2022×(﹣1)=2019,故答案为:2019.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是﹣3.【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=m,而x1+x2=﹣3,所以m=﹣3.故答案为:﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.5.若m,n是方程x2+2021x﹣2022=0的两个实数根,则m+n﹣mn的值为1.【分析】利用根与系数的关系可得出m+n=﹣2021,mn=﹣2022,再将其代入m+n﹣mn 中即可求出结论.【解答】解:∵m,n是方程x2+2021x﹣2022=0的两个实数根,∴m+n=﹣2021,mn=﹣2022,∴m+n﹣mn=﹣2021﹣(﹣2022)=1.故答案为:1.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣,两根之积等于”是解题的关键.6.一元二次方程x2﹣3x+1=0的两个实数根为α、β,则αβ﹣α﹣β的值为﹣2.【分析】根据根与系数的关系得到α+β=3,αβ=1,然后利用整体代入的方法计算.【解答】解:根据根与系数的关系得到α+β=3,αβ=1,所以αβ﹣α﹣β=αβ﹣(α+β)=1﹣3=﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=﹣,x1x2=.7.已知α,β是一元二次方程x2﹣x﹣9=0的两个实数根,则代数式α2﹣2α﹣β+3的值为11.【分析】利用一元二次方程的根及根与系数的关系可得出α2﹣α=9,α+β=1,再将其代入α2﹣2α﹣β+3=α2﹣α﹣(α+β)+3中即可求出结论.【解答】解:∵α,β是一元二次方程x2﹣x﹣9=0的两个实数根,∴α2﹣α﹣9=0,α+β=1,∴α2﹣α=9,所以α2﹣2α﹣β+3=α2﹣α﹣(α+β)+3=9﹣1+3故答案为:11.【点评】本题考查了一元二次方程的根以及根与系数的关系,利用一元二次方程的根及根与系数的关系,找出α2﹣α=9,α+β=1是解题的关键.8.设a、b为x2+x﹣2021=0的两个实数根,则a3+a2+3a+2024b=﹣2024.【分析】先根据一元二次方程根的定义得到a2=﹣a+2021,再用a表示a3得到a3=2022a ﹣2021,所以原式变形为2024(a+b),接着根据根与现实的关系得到a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a为x2+x﹣2021=0的根,∴a2+a﹣2021=0,即a2=﹣a+2021,∴a3=a(﹣a+2021)=﹣a2+2021a=a﹣2021+2021a=2022a﹣2021,∴a3+a2+3a+2024b=2022a﹣2021﹣a+2021+3a+2024b=2024(a+b),∵a、b为x2+x﹣2021=0的两个实数根,∴a+b=﹣1,∴a3+a2+3a+2024b=2024×(﹣1)=﹣2024.故答案为:﹣2024.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.9.已知x1,x2是方程x2﹣x﹣1=0的根,则的值是﹣1.【分析】利用根与系数的关系求出两根之和与两根之积,将所求式子通分并利用同分母分式的加法法则计算,把求出的两根之和与两根之积代入计算,即可求出值.【解答】解:∵x1,x2是方程x2﹣x﹣1=0的根,∴x1+x2=1,x1x2=﹣1,∴===﹣1.故答案为:﹣1.【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题10.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为﹣4.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.11.关于x的一元二次方程3x2﹣10x﹣17=0的两个根分别为x1和x2,则=.【分析】根据一元二次方程根与系数的关系可得,,再由进行求解即可.【解答】解:∵一元二次方程3x2﹣10x﹣17=0的两根是x1,x2,∴,,∴.故答案是:.【点评】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根与系数的关系.12.已知a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,且满足=﹣1,则m的值是﹣5.【分析】根据根与系数的关系结合=﹣1,即可得出关于m的方程,解之即可得出m的值,再由根的判别式Δ>0,即可确定m的值.【解答】解:∵a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,∴a+b=﹣(m+3),ab=﹣2,∵=﹣1,即==﹣1,解得:m=﹣5.∵原方程有两个不相等的实数根,∴Δ=(m+3)2﹣4×(﹣2)=(m+3)2+8>0,∴m=﹣5.故答案为:﹣5.【点评】本题考查了根与系数的关系以及根的判别式,根据根与系数的关系结合=﹣1,找出关于m的方程是解题的关键.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则mn+m+n=﹣7.【分析】根据根与系数的关系得到m+n=﹣2,mn=﹣5,然后利用整体代入的方法计算即可.【解答】解:根据题意得:m+n=﹣2,mn=﹣5,所以mn+m+n=﹣5+(﹣2)=﹣7.故答案为:﹣7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.14.已知m,n是方程x2﹣3x=2的两个根,则式子的值是27.【分析】利用一元二次方程解的定义和根与系数的关系,采用整体代入求解.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.【点评】本题考查了一元二次方程解的定义和根与系数的关系,利用整体思想代入求值是解题的关键.15.已知方程x2﹣2x﹣2=0的两根分别为x1,x2,则x12﹣x22+4x2的值为4.【分析】利用一元二次方程解的定义得到x12=2x1+2,x22=2x2+2;然后由根与系数的关系求得x1+x2=2;最后代入所求的代数式求值即可.【解答】解:∵方程x2﹣2x﹣2=0的两根分别为x1,x2,∴x12=2x1+2,x22=2x2+2,x1+x2=2.∴x12﹣x22+4x2=(2x1+2)﹣(2x2+2)+4x2=2(x1+x2)=2×2=4.故答案是:4.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.关于x的一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,且满足x12+x22﹣2x1﹣2x2﹣7=0,则k的值为5.【分析】由根与系数的关系可得:x1+x2=k,x1x2=4,再把已知的条件进行整理,整体代入运算即可求解.【解答】解:∵一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,∴x1+x2=k,x1x2=4,∵x12+x22﹣2x1﹣2x2﹣7=0,∴(x1+x2)2﹣2x1x2﹣2(x1+x2)﹣7=0,∴k2﹣2×4﹣2k﹣7=0,整理得:k2﹣2k﹣15=0,解得:k=5或k=﹣3,当k=﹣3时,Δ=32﹣4×1×4=9﹣16=﹣7<0,则原方程无实数解,故k=5.故答案为:5.【点评】本题主要考查根与系数的关系,解答的关键是熟记根与系数的关系并灵活运用.二.解答题(共4小题)17.已知关于x的方程2x2+2kx+k﹣1=0.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)若x=﹣1是该方程的一个根,求方程的另一个根.【分析】(1)根据方程的系数结合根的判别式Δ=b2﹣4ac,可得出Δ4(k﹣1)2+4>0,由此可证出方程有两个不相等的实数根;(2)把x=﹣1代入方程,求得k=1,即可得出2x2+2x=0,然后解方程即可求出方程的另一个根.【解答】(1)证明:Δ=b2﹣4ac=(2k)2﹣4×2×(k﹣1)=4k2﹣8k+8=4(k﹣1)2+4>0,∴方程有两个不相等的实数根.(2)解:∵x=﹣1是该方程的一个根,∴2﹣2k+k﹣1=0,解得k=1,∴方程为2x2+2x=0,解得:x1=﹣1,x2=0,∴方程的另一个根为x=0.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:牢记“当Δ>0时,方程有两个不相等的实数根”.18.已知:关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0.(1)证明无论k取何值时方程总有两个实数根.(2)△ABC中,BC=5,AB、AC的长是这个方程的两个实数根,求k为何值时,△ABC 是等腰三角形?【分析】(1)表示出方程根的判别式,根据根的判别式的正负即可确定出方程根的情况;(2)由(1)得到AB≠AC,分AC=BC与AB=BC两种情况求出k的值即可.【解答】(1)证明:∵Δ=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,∴无论k取何值时方程总有两个实数根.(2)解:∵方程x2﹣(2k+3)x+k2+3k+2=0的解为:x==,即x1=k+2,x2=k+1,∵AB、AC是方程的两个实数根,∴AB≠AC,∵BC=5,∴当k+2=5,或k+1=5时,△ABC是等腰三角形,∴k=3或4,故当k为3或4时,△ABC是等腰三角形.【点评】此题考查了根与系数的关系,涉及的知识有:一元二次方程根与系数的关系,根的情况判断,以及等腰三角形的性质,熟练掌握运算法则是解本题的关键.19.已知关于x的方程x2﹣4mx+4m2﹣4=0.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,且x1=3x2,求m的值.【分析】(1)求出一元二次方程根的判别式,判断Δ与0的关系.(2)利用一元二次方程根与系数的关系求出x1+x2与x1x2,再利用x1=3x2形成关于m 的方程,然后求解即可.【解答】(1)证明:关于x的方程x2﹣4mx+4m2﹣4=0,∵a=1,b=﹣4m,c=4m2﹣4.∴Δ=(﹣4m)2﹣4×1×(4m2﹣4)=16>0.∴此方程有两个不相等的实数根;(2)解:若此方程的两个根分别为x1,x2,由题意得,x1+x2=4m,x1x2=4m2﹣4.∵x1=3x2,∴3x2+x2=4m,即x2=m,∴x1=3m,∴3m•m=4m2﹣4,即m2=4,解得m=±2.当m=﹣2时,x1=﹣6,x2=﹣2.此时x1<x2,不符合题意.∴m=﹣2舍去故m的值为2.【点评】本题考查了一元二次方程根的判别式,及根与系数的关系,根据根与系数的关系及两个根的关系得到方程中有关参数的方程是解题的关键.20.阅读材料并解决下列问题:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1,得m+n=1,mn=﹣1,∴+====﹣3.根据上述材料解决下面的问题:(1)一元二次方程5x2+10x﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1x2=﹣.(2)已知实数m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=7p﹣2,2q2=7q﹣1,且p≠2q,求p2+4q2的值.【分析】(1)5x2+10x﹣1=0中,a=5,b=10,c=﹣1,则x1+x2=﹣=﹣2,x1x2==﹣.(2)由题意m,n可以看作3x2﹣3x﹣1=0的两个不等的实数根,由此可得结论;(3)由题意知p与2q即为方程x2﹣7x+2=0的两个不等的实数根,由此可得结论.【解答】解:(1)在5x2+10x﹣1=0中,a=5,b=10,c=﹣1,∴x1+x2=﹣=﹣2,x1x2==﹣.故答案为:﹣2,﹣;(2)∵m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,m≠n,∴m,n可以看作3x2﹣3x﹣1=0的两个不等的实数根,∴m+n=1,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×1=﹣;(3)由题意知p与2q即为方程x2﹣7x+2=0的两个不等的实数根,∴p+2q=7,2pq=2,∴p2+4q2=(p+2q)2﹣4pq=72﹣2×2=45.【点评】本题考查根与系数的关系,解题的关键是掌握根与系数的关系,灵活运用所学知识解决问题.。
韦达定理全面练习题及答案
1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( )(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( )(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是( )(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韦达定理专项练习
韦达定理:对于一元二次方程20(0)ax
bx c a ++=≠,如果方程有两
个实数根12,x x ,那么 1212,b c x x x x a a
+=-= 说明:定理成立的条件0∆≥
记住下面公式:
专项练习题
一、填空:
1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .
2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .
5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .
6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .
7、以13+,13-为根的一元二次方程是 .
8、若两数和为3,两数积为-4,则这两数分别为 .
9、以23+和23-为根的一元二次方程是 .
10、若两数和为4,两数积为3,则这两数分别为 .
11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .
12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .
13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .
14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .
二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:
(1)2212x x += ; (2)2
111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = .
三、选择题:
1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )
(A )0 (B )正数 (C )-8 (D )-4
2、已知方程122-+x x =0的两根是1x ,2x ,那么=++12
21221x x x x ( )
(A )-7 (B) 3 (C ) 7 (D) -3
3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 3
1 (C )3 (D) -3 4、下列方程中,两个实数根之和为2的一元二次方程是( )
(A )0322=-+x x (B ) 0322=+-x x (C )
0322=--x x (D )0322=++x x 5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )
(A )5或-2 (B) 5 (C ) -2 (D) -5或2
6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( )
(A )-21 (B) -6 (C ) 21 (D) -2
5 7、分别以方程122--x x =0两根的平方为根的方程是( )
(A )0162=++y y (B ) 0162=+-y y
(C )0162=--y y (D )0162=-+y y
四、解答题(注意解题步骤的规范)
1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.
2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.
3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.
4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.
5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.
6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.
7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.
8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.
(1) 是否存在实数k ,使12123(2)(2)2
x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使
1221
2x x x x +-的值为整数的实数k 的整数值.。