七年级数学思维探究(2)聚焦绝对值(含答案)
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)
2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
人教版七年级数学上册绝对值(含答案)3
绝对值要点一、绝对值1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a与b在数轴上的位置如图所示,则a<b.2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号正数大于负数-数为0正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;知识点(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反. 5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.类型一、绝对值的概念例1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)| 【答案与解析】运用绝对值意义先求出各个绝对值再计算结果.解:(1) 111444555⎡⎤⎛⎫--=---=- ⎪⎢⎥⎝⎭⎣⎦, (2)|-4|+|3|+|0|=4+3+0=7, (3)-|+(-8)|=-[-(-8)]=-8.【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解,一种是利用绝对值的代数意义求解,后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的代数意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.例2.若|a ﹣1|=a ﹣1,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >1【思路点拨】根据|a|=a 时,a ≥0,因此|a ﹣1|=a ﹣1,则a ﹣1≥0,即可求得a 的取值范围. 【答案】A 【解析】典型例题解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,【总结升华】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.举一反三:【变式1】(2015•重庆校级模拟)若a>3,则|6﹣2a|= (用含a的代数式表示).【答案】2a-6【变式2】如果数轴上的点A到原点的距离是6,则点A表示的数为.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.【答案】6或-6;1或3;x>3或x<-3【变式3】已知| a |=3,| b |=4,若a,b同号,则| a +b |=_________;若a,b异号,则| a+b |=________.据此讨论| a+b |与| a | + | b |的大小关系.【答案】7,1;若a,b同号或至少有一个为零,则|a+b|=|a|+|b|;若a,b异号,则|a+b|<|a|+|b|,由此可得:|a+b|≤|a|+|b| .类型二、比大小例3.比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--.【思路点拨】先化简符号,去掉绝对值号再分清是“正数与0、负数与0、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】解: (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--.(4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【变式1】比大小:(1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.【答案】>;>【变式2】比大小:(1) 1.38-______-1.384;(2) -π___-3.14. 【答案】>;<【变式3】若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来. 【答案】解法一:∵ m >0,n <0,∴ m 为正数,-m 为负数,n 为负数,-n 为正数. 又∵ 正数大于一切负数,且|m|>|n|,∴ m>-n>n>-m.解法二:因为m>0,n<0且|m|>|n|,把m,n,-m,-n表示在数轴上,如图所示.∵数轴上的数右边的数总比左边的数大,∴ m>-n>n>-m.类型三、含有字母的绝对值的化简例4.(2016春•都匀市校级月考)若﹣1<x<4,则|x+1|﹣|x﹣4|= .【思路点拨】根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x﹣4|=﹣x+4,然后再合并同类项即可.【答案】2x﹣3.【解析】解:原式=x+1﹣(﹣x+4),=x+1+x﹣4,=2x﹣3.【总结升华】此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x﹣4的正负性.举一反三:【变式1】已知有理数a,b,c在数轴上对应的点的位置如图所示:化简:.【答案】解:由图所示,可得.∴ 30a c ->,,,∵.∴ 原式.【变式2】求的最小值. 【答案】解法一:当2x <-时,则23(2)[(3)]23215x x x x x x x ++-=-++--=---+=-+>当时,则23(2)[(3)]235x x x x x x ++-=++--=+-+= 当时,则23(2)(3)23215x x x x x x x ++-=++-=++-=->综上:当时,取得最小值为:5.解法二:借助数轴分类讨论: ①2x <-; ②; ③.的几何意义为对应的点到-2对应点的距离与对应点到3对应点的距离和.由图明显看出时取最小值.所以,时,取最小值5.类型四、绝对值非负性的应用例5. 已知a、b为有理数,且满足:12,则a=_______,b=________.【答案与解析】由,,,可得∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三:【变式1】已知,则x的取值范围是________.【答案】;提示:将看成整体,即,则,故,.【变式2】已知b为正整数,且a、b满足,求的值.【答案】解:由题意得∴所以,2ba类型五、绝对值的实际应用例6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案与解析】解:因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【总结升华】绝对值越小,越接近标准.举一反三:【变式】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】解:小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)小虫得到的芝麻数为54×2=108(粒)答:小虫一共可以得到108粒芝麻.一、选择题1.以下选项中比|﹣|小的数是()A.1 B.2 C. D.2.如图(一),数O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置,下列各数的绝对值的比较何者正确?A.|b|<|c| B.|b|>|c| C.|a|<|b| D.|a|>|c|3.满足|x|=-x的数有( ).A.1个 B.2个 C.3个 D.无数个4.若|x﹣5|=5﹣x,下列不等式成立的是()A. x﹣5>0B. x﹣5<0C. x﹣5≥0D. x﹣5≤0课后练习5.a 、b 为有理数,且a >0、b <0,|b|>a ,则a 、b 、-a 、-b 的大小顺序是( ). A .b <-a <a <-b B .-a <b <a <-b C .-b <a <-a <b D .-a <a <-b <b6.下列推理:①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a|≠|b|;④若|a|≠|b|,则a ≠b .其中正确的个数为( ). A .4个 B .3个 C .2个 D .1个7.设a 是最小的正整数,b 是最大的负整数的相反数,c 是绝对值最小的有理数,则a 、b 、c 的大小关系是( ).A .a <b <cB .a =b >cC .a =b =cD .a >b >c 二、填空题8.如果|a ﹣2|+|b+1|=0,那么a+b 等于 .9.已知|x|=|﹣3|,则x 的值为 . 10.绝对值不大于11的整数有 个.11. 已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是 . 12. 式子|2x-1|+2取最小值时,x 等于 .13.数a 在数轴上的位置如图所示,则|a-2|=__________.14.若1aa=-,则a 0;若a a ≥,则a . 三、解答题 15.将2526-,259260-,25992600-按从小到大的顺序排列起来.16.正式的足球比赛对所用足球的质量都有严格的规定,标准质量为400克.下面是5个足球的质量检测结果(超过规定质量的克数记为正数,不足规定质量的克数记为负数):-25,+10,-20,+30,+15.(1)写出每个足球的质量;(2)请指出哪个足球的质量好一些,并用绝对值的知识进行说明.17.定义:数轴上表示数a和数b的两点A和B之间的距离是|a﹣b|.完成下列问题:(1)数轴上表示x和﹣4的两点A和B之间的距离是;如果|AB|=2,那么x为;(2)利用数轴以及已知中的定义,可得式子|x﹣1|+|x﹣2|+|x﹣3|的最小值是.(3)拓展:当x= 时,式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|的值最小,最小值是.【答案与解析】一、选择题1. 【答案】D【解析】解:∵|﹣|=,A 、1>,故本选项错误;B 、2>,故本选项错误;C 、=,故本选项错误;D 、﹣<,故本选项正确;故选D .2. 【答案】A【解析】由图(一)可知,距离原点最远的是点C ,其次是点A ,最近的是点B ,所以他们对应的数的绝对值的大小为:c a b >>或b a c <<,所以A 正确.3.【答案】D【解析】x 为负数或零时都能满足|x|=-x ,故有无数个.4.【答案】D5.【答案】A【解析】画数轴,数形结合.6.【答案】C【解析】①正确;②错误,如|-2|=|2|,但是-2≠2;③错误,如-2≠2,但是|-2|=|2|;④正确.故选C .7.【答案】B【解析】a =1,b =-(-1)=1,c =0,故a =b >c .二、填空题8.【答案】1【解析】解:由题意得,a ﹣2=0,b+1=0,解得,a=2,b=﹣1,则a+b=1,故答案为:1.9. 【答案】±310.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.【答案】负数或零(或非正数均对)【解析】非负性是绝对值的重要性质.由题意可知≥0,≤0.12.【答案】1 2【解析】因为|2x-1|≥0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值2.13.【答案】-a+2【解析】由图可知:a≤2,所以|a-2|=-(a-2)=-a+2.14.【答案】<;任意数.三、解答题15.【解析】解:因为2525250026262600-==,25925925902602602600-==,2599259926002600-=,因为250025902599260026002600<<,即259925925260026026->->-,所以259925925 260026026 -<-<-.16. 【解析】解:(1)每个足球的质量分别为375克,410克,380克,430克,415克;(2)质量为410克(即质量超过+10克)的足球的质量好一些.理由:将检测结果求绝对值,再比较绝对值大小,绝对值最小的质量最好.17. 【解析】解:(1)数轴上表示x和﹣4的两点A和B之间的距离是|x﹣(﹣4)|;如果|AB|=2,那么|x﹣(﹣4)|=2,x+4=±2,解得x=﹣2或﹣6;(2)x=2有最小值,最小值=|2﹣1|+|2﹣2|+|2﹣3|=1+0+1=2;(3)1~2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030.故答案为|x﹣(﹣4)|;﹣2或﹣6;2;1006;1011030.。
专题突破:绝对值化简问题专项探究(3大题型)(解析版)—24-25学年七年级数学上册单元(浙教版)
专题突破:绝对值化简问题专项探究绝对值化简常见问题方法总结1、根据绝对值的性质化简(1)牢记绝对值的性质:⎪⎩⎪⎨⎧-==)a(a a )a(a a 0000<)(>或⎩⎨⎧≤-≥=)a(a )a(a a 00(2)在”“=的组合中,当“=”左边的部分未知时,求“| |”内部的数,需要分类讨论;当“=”右边的部分未知时,求“=”右边的值,结果只有一个。
(3)绝对值的非负性应用:当“| |+| |=0”时,则“| |”内部的式子整体=02、已知范围的绝对值化简基本步骤第1步:判断绝对值内部式子的正负;第2步:把绝对值改为小括号;第3步:去括号;第4步:化简合并。
3、绝对值化简与最值问题对应规律(1)当x=a 时,|x-a|的最小值=0;(2)当a ≤x ≤b 时,|x-a|+|x-b|的最小值=|a-b|;(3)若a <b <c ,当x=b 时,|x-a|+|x-b|+|x-c|最小值=c-a;题型一 根据绝对值的性质化简【例1】.(2024春•肇源县期中)若|a |+a =0,则a 是( )A .零B .负数C .负数或零D .非负数【分析】根据绝对值的性质解答即可.【解答】解:若|a |+a =0,则a 是负数或零,故选:C .【变式1-1】.(2024•碑林区校级模拟)如果,那么x =( )A .B .或2C .D .2【分析】根据绝对值的意义求解即可.【解答】解:∵∴.故选:C .【变式1-2】.(2023秋•|m |=|n |,那么m ,n 的关系( )A .相等B .互为相反数C .都是0D .互为相反数或相等【分析】利用绝对值的代数意义化简即可得到m 与n 的关系.【解答】解:∵|m |=|n |,∴m =n 或m =﹣n ,即互为相反数或相等,故选:D .【变式1-3】.(2023秋•渑池县期末)若|a +2|+|b ﹣7|=0,则a +b 的值为( )A .﹣1B .1C .5D .﹣5【分析】根据非负数的性质分别求出a 、b ,计算即可.【解答】解:∵|a +2|+|b ﹣7|=0,∴|a +2|=0,|b ﹣7|=0,∴a+2=0,b﹣7=0,解得,a=﹣2,b=7,则a+b=5,故选:C.【变式1-4】.(2023秋•东莞市月考)若|x﹣1|+|2﹣y|=0,求2x﹣y的值.【分析】根据非负数的性质得出x﹣1=0,2﹣y=0,即可求出x、y的值,从而求出2x﹣y的值.【解答】解:∵|x﹣1|+|2﹣y|=0,又∵|x﹣1|≥0,|2﹣y|≥0,∴x﹣1=0,2﹣y=0,∴x=1,y=2,∴2x﹣y=2×1﹣2=0.【变式1-5】.(2023•南皮县校级一模)若ab≠0,那么+的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;分别计算即可.【解答】解:∵ab≠0,∴有四种情况:①a>0,b>0,a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,+=1+1=2;②当a<0,b<0时,+=﹣1﹣1=﹣2;③当a>0,b<0时,+=1﹣1=0;④当a<0,b>0时,+=﹣1+1=0;综上所述,+的值为:±2或0.故选:C.题型二已知范围的绝对值化简【例2】.(2023•成都模拟)化简|π﹣4|+|3﹣π|= .【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.【变式2-1】.(2024春•松江区期中)如果a>3,化简:|1﹣a|﹣|a﹣3|= .【分析】根据绝对值的性质进行解题即可.【解答】解:∵a>3,∴|1﹣a|﹣|a﹣3|=a﹣1﹣(a﹣3)=a﹣1﹣a+3=2.故答案为:2.【变式2-2】.(2024春•海门区校级月考)已知|m|=﹣m,化简|m﹣1|﹣|m﹣2|所得的结果为( )A.2m﹣3B.﹣1C.1D.2m﹣1【分析】由|m|=﹣m,得到m≤0,判断出m﹣1 与m﹣2的正负,然后利用绝对值的性质化简,去括号,合并,即可得到结果.【解答】解:∵|m|=﹣m,∴m≤0,∴m﹣1<0,m﹣2<0,∴|m﹣1|﹣|m﹣2|=﹣(m﹣1)+(m﹣2)=1﹣m+m﹣2=﹣1.故选:B.【变式2-3】.(2022秋•市北区校级期末)当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为( )A.﹣12B.﹣2或﹣12C.2D.﹣2【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7∵|a+b|=a+b,∴a+b≥0,∴a=±5.b=7,当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣12;故a﹣b的值为﹣2或﹣12.故选:B.【变式2-4】.(2023秋•文登区期末)如图所示,则|﹣3﹣a|﹣|b+1|等于( )A.4+a﹣b B.2+a﹣b C.﹣4﹣a﹣b D.﹣2﹣a+b【分析】先根据数轴判断﹣3﹣a和b+1的正负,再去掉绝对值符号,合并同类项即可.【解答】解:由数轴可知,﹣1<a<0,b>1,∴﹣3<﹣3﹣a<﹣2,b+1>0,∴|﹣3﹣a|﹣|b+1|=(3+a)﹣(b+1)=3+a﹣b﹣1=2+a﹣b.故选:B.【变式2-5】.(2023秋•青羊区校级期末)已知数a,b,c在数轴上的位置如图所示,且|c|>|b|>|a|,化简|a+b|﹣|c﹣b|+|a﹣c|= .【分析】由数轴得c<a<0,b>0,|b|>|a|,进一步判断出a+b>0,c﹣b<0,a﹣c>0,再根据绝对值的意义化简即可.【解答】解:由数轴得c<a<0,b>0,|b|>|a|,∴a+b>0,c﹣b<0,a﹣c>0,∴|a+b|﹣|c﹣b|+|a﹣c|=(a+b)﹣(b﹣c)+(a﹣c)=a+b﹣b+c+a﹣c=2a,故答案为:2a.【变式2-6】.(2023秋•思明区校级期末)如图,化简|a﹣1|= .【分析】判断出a﹣1的取值,再根据绝对值性质计算即可.【解答】解:由题得a<1,∴a﹣1<0,∴|a﹣1|=1﹣a,故答案为:1﹣a.【变式2-7】.(2023秋•余干县期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.题型三绝对值化简与最值问题【例3】.(2022秋•泗阳县期中)式子|x﹣2|+1的最小值是( )A.0B.1C.2D.3【分析】当绝对值有最小值时,式子有最小值,进而得出答案.【解答】解:当绝对值最小时,式子有最小值,即|x﹣2|=0时,式子最小值为0+1=1.故选:B.【变式3-1】.(2023秋•邵阳县校级月考)当a= 时,5﹣|a﹣1|的值最大,最大值为 .【分析】分a<1、a=1和a>1三种情况讨论求出5﹣|a﹣1|≤5,问题随之得解.【解答】解:当a<1时,a﹣1<0,即5﹣|a﹣1|=5﹣(1﹣a)=4+a,∵a<1,∴5﹣|a﹣1|=4+a<5;当a=1时,a﹣1=0,即5﹣|a﹣1|=5;当a>1时,a﹣1>0,即5﹣|a﹣1|=5﹣(a﹣1)=6﹣a,∵a>1,∴﹣a<﹣1,∴5﹣|a﹣1|=6﹣a<5;综上:5﹣|a﹣1|≤5,当且仅当a=1时,5﹣|a﹣1|有最大值,最大值为5,解法二:∵|a﹣1|≥0,∴5﹣|a﹣1|≤5,∴当a=1时,5﹣|a﹣1|的值最大,最大值为5.故答案为:1,5.【变式3-2】.(2023秋•西安校级月考)当x满足 条件时,|x﹣2|+|x+3|有最小值,这个最小值是 .【分析】根据绝对值的性质以及题意即可求出答案.【解答】解:由题意可知:当﹣3≤x≤2时,|x﹣2|+|x+3|有最小值,这个最小值是5.故答案为:﹣3≤x≤2,5.【变式3-3】.(2023春•沙坪坝区校级月考)已知m是有理数,则|m﹣2|+|m﹣4|+|m﹣6|+|m﹣8|的最小值是 .【分析】根据绝对值最小的数是0,分别令四个绝对值为0,从而求得m的四个值,分别将这四个值代入代数式求值,比较得不难求得其最小值.【解答】解:∵绝对值最小的数是0,∴分别当|m﹣2|,|m﹣4|,|m﹣6|,|m﹣8|等于0时,有最小值.∴m的值分别为2,4,6,8.∵①当m=2时,原式=|2﹣2|+|2﹣4|+|2﹣6|+|2﹣8|=12;②当m=4时,原式=|4﹣2|+|4﹣4|+|4﹣6|+|4﹣8|=8;③当m=6时,原式=|6﹣2|+|6﹣4|+|6﹣6|+|6﹣8|=8;④当m=8时,原式=|8﹣2|+|8﹣4|+|8﹣6|+|8﹣8|=12;∴|m﹣2|+|m﹣4|+|m﹣6|+|m﹣8|的最小值是8.故答案为:8.【变式3-4】.(2023秋•新罗区期中)我们已经学习了一个数a的绝对值可分为两种情况:.请用你所学的知识解决下面的问题:(1)若|a﹣3|=5,求a的值;(2)若数轴上表示数a的点位于﹣3与0之间(含端点),化简|a﹣2|﹣|a|;(3)当a= 时,|a﹣5|+|a﹣1|+|a+3|取到最小值,最小值是 .【分析】(1)根据绝对值可得:a﹣3=±5,即可解答;(2)根据已知范围,化简绝对值,再合并即可;(3)分四种情况讨论,即可解答.【解答】解:(1)∵|a﹣3|=5,∴a﹣3=±5,解得:a=8或a=﹣2;(2)∵数轴上表示数a的点位于﹣3与0之间(含端点),∴﹣3≤a≤0,∴|a﹣2|﹣|a|=﹣(a﹣2)+a=﹣a+2+a=2;(3)当a≥5时,原式=a﹣5+a﹣1+a+3=3a﹣3,此时的最小值为3×5﹣3=12;当1≤a<5时,原式=﹣a+5+a﹣1+a+3=a+7,此时的最小值为1+7=8;当﹣3<a≤1时,原式=﹣a+5﹣a+1+a+3=9﹣a,此时的最小值为9﹣1=8;当a≤﹣3时,原式=﹣a+5﹣a+1﹣a﹣3=﹣3a+3,这时的最小值为﹣3×(﹣3)+3=12;综上所述当a=1时,式子的最小值为8,故答案为:1,8.【变式3-5】.(2023秋•芙蓉区校级月考)同学们都知道,|5﹣(﹣2)|表示5与﹣2的差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离,试探索:(1)|5﹣(﹣2)|= ;(2)x是所有符合|x+5|+|x﹣2|=7成立条件的整数,则x= ;(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|的最小值为 ;(4)当x为整数时,|x﹣1|+|x﹣2|+|x﹣3|的最小值为 ;(5)求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|的最小值.【分析】(1)利用题干中的绝对值的几何意义解答即可;(2)利用题干中的绝对值的几何意义解答即可;【解答】解:(1)|5﹣(﹣2)|=|5+2|=7.故答案为:7;(2)∵|x+5|+|x﹣2|=7表示的是在数轴上x所对应的点到﹣5,2两点之间的距离之和等于7,又∵x为整数,∴x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)|x﹣3|+|x﹣6|表示的是在数轴上x所对应的点到3,6两点之间的距离之和,当3≤x≤6时,|x﹣3|+|x﹣6|∴|x﹣3|+|x﹣6|的最小值为3.故答案为:3;(4)|x﹣1|+|x﹣2|+|x﹣3|表示的是在数轴上x所对应的点到1,2,3三点之间的距离之和,∵x为整数,|x﹣1|+|x﹣2|+|x﹣3|取得最小值,∴x=2时,|x﹣1|+|x﹣2|+|x﹣3|的最小值为2.故答案为:2;(5)由(4)的结论可知:当x=999时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取得最小值,最小值为2×(1+2+...+998)=997002.。
部编数学七年级上册专题03绝对值的几何意义(解析版)含答案
专题03 绝对值的几何意义类型一求两个绝对值和的最小值1.数学实验室:我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A、B,分别表示有理数a、b,那么A、B两点之间的距离AB=|a-b|.利用此结论,回答以下问题:(1)数轴上表示1和5的两点之间的距离是______,数轴上表示1和-5的两点之间的距离是______.(1+1分,注意写出最后结果)(2)式子|x+2|可以看做数轴上表示x和______的两点之间的距离.(3)式子|x+2|+|x-3|的最小值是______.(4)当|x+2|+|x-3|取得最小值时,数x的取值范围是______.【答案】(1)4,(2)6;(3)-2;(4)5.(5)-2£x£3.【解析】【分析】根据绝对值的定义进行填空即可.【详解】-=4,数轴上表示1和-5的两点之间的距离是解:(1)数轴上表示1和5的两点的距离是15()6;15--=故答案为4,6;x--,(2)∵|x+2|=()2∴式子|x+2|可以看做数轴上表示x和-2的两点之间的距离;故答案为-2;(3)当x 在数轴上表示-2和3之间时,此时|x +2|+|x -3|的最小值为5;故答案为5.(4) 当x 在数轴上表示-2和3之间时,此时|x +2|+|x -3|的最小值为5;即当|x +2|+|x -3|取得最小值时,数x 的取值范围是-2£x £3.故答案为-2£x £3.2.我们知道,在数轴上,|a|表示数a 到原点的距离,这是绝对值的几 何意义,进一步地,数轴上两个点A 、B ,分别用a 和b 表示,那么A 、B 两点之间的距离为AB =|a ﹣b|利用此结论,回答以下问题:(1)数轴上表示3 和7 的两点之间的距离是,数轴上表示﹣3 和﹣7 的两 点之间的距离是 ,数轴上表示2 和﹣3 的两点之间的距离是 ;(2)数轴上表示x 和﹣5 的两点A 、B 之间的距离是,如果|AB|=3,那 么x 的值为 ;(3)当代数式|x ﹣1|+|x ﹣3|取最小值时,相应的x 的取值范围是多少?最小值是多少?(4)已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0,设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.【答案】(1)4;4;5;(2)5x +;-8或-2;(3)x 的范围是31x -££;最小值是4;(4)x 的值为12-.【解析】【分析】(1)(2)直接根据数轴上A 、B 两点之间的距离|AB |=|a ﹣b |.代入数值运用绝对值即可求任意两点间的距离.(3)根据|x ﹣a |表示数轴上x 与a 之间的距离,因而原式表示:数轴上一点到1和3距离的和,当x 在1和3之间时有最小值.(4)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题.【详解】(1)数轴上表示3和7的两点之间的距离是|7﹣3|=4,数轴上表示﹣3和﹣7的两点之间的距离是|﹣7﹣(﹣3)|=4.数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上表示x 和﹣5的两点A 和B 之间的距离是|x ﹣(﹣5)|=|x +5|,如果|AB |=3,那么x 为﹣8或﹣2.(3)代数式|x ﹣1|+|x +3|表示在数轴上到1和﹣3两点的距离的和,当x 在﹣3和1之间时,代数式取得最小值,最小值是﹣3和1之间的距离4.故当﹣3≤x ≤1时,代数式取得最小值,最小值是4.(4)①当P 在点A 左侧时,|PA |﹣|PB |=﹣(|PB |﹣|PA |)=﹣|AB |=﹣5≠2.②当P 在点B 右侧时,|PA |﹣|PB |=|AB |=5≠2,∴上述两种情况的点P 不存在.③当P 在A 、B 之间时,|PA |=|x ﹣(﹣4)|=x +4,|PB |=|x ﹣1|=1﹣x .∵|PA |﹣|PB |=2,∴x +4﹣(1﹣x )=2,∴x 12=-,即x 的值为12-.故答案为(1)4;4;5.(2)|x +5|;﹣8或﹣2.(3)x 的范围是﹣3≤x ≤1;最小值是4.(4)x 的值为-12.【点睛】本题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义,本题属于基础题型.3.“数形结合”是重要的数学思想.如:()32--表示3与2-差的绝对值,实际上也可以理解为3与2-在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A ,B ,所对应的数分别用a ,b 表示,那么A ,B 两点之间的距离表示为AB a b =-.利用此结论,回答以下问题:(1)数轴上表示2-和5两点之间的距离是__________.(2)若13x -=,则x =______.(3)若x 表示一个有理数,142x x ++-的最小值为_________.(4)已知数轴上两点A 、B 对应的数分别为2-,8,现在点A 、点B 分别以3个单位长度/秒和2单位长度/秒的速度同时向右运动,当点A 与点B 之间的距离为2个单位长度时,求点A 所对应的数是多少?【答案】(1)7;(2)4或2-;(3)142;(4)22或34.【解析】【分析】(1)利用数轴上两点之间的距离公式:AB a b =-,代入计算即可得到答案;(2)由3=3,± 可得13x -=或13,x -=- 再解方程即可得到答案;(3)先画好数轴,如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则此时111444,222AC AB BC x x æö=+=++-=--=ç÷èø而且利用两点之间线段最短,可得此时可得最小值;(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t 再利用两点之间的距离公式表示,AB 再利用2,AB = 建立绝对值方程,解方程可得答案.【详解】解:(1)数轴上表示2-和5两点之间的距离是:()52527,--=+=故答案为:7(2)Q 13x -=13x \-=或13,x -=-解得:4x =或 2.x =-故答案为:4或2-(3)如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则11,4,22AB x x BC x æö=--=+=-ç÷èø 111444,222AC AB BC x x æö\=+=++-=--=ç÷èø此时:142x x ++-的值最小,为14.2故答案为:14.2(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t而移动后:2,AB =()8+2232,t t \--+=102,t \-=102t \-=或102,t -=-解得:8t =或12.t =当8t =时,A 向右移动后对应的数为:2322422,t -+=-+=当12t =时,A 向右移动后对应的数为:2323634.t -+=-+=【点睛】本题考查的是数轴上两点之间的距离,绝对值的含义,建立绝对值方程,一元一次方程的解法,掌握数形结合的方法解题是解本题的关键.4.认真阅读下面的材料,完成问题.在学习绝对值时,我们知道绝对值的几何含义为数轴上一点到原点的距离.如|5|意义为表示5的点到原点的距离,实际上可理解为,|5|=|5-0|,即5到0点的距离.又如|5-3|表示5、3在数轴上对应的两点之间的距离;|5-(-3)|表示5、-3在数轴上对应的两点之间的距离,容易知道|5-(-3)|=|5+3|=8.即5与-3相距8个单位长度.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为|a -b |.(1)利用上面的知识回答:点A 、B 在数轴上分别表示有理数-5、1,那么A 到B 的距离可表示为 ,这个距离的计算结果是 ;(2)利用上面的知识回答:若|x -1|=2,则x = ;(3)利用上面的知识回答:|x -2|+|x +1|的最小值是 .【答案】(1)|1-(-5)|,6;(2)-1或3;(3)3.【解析】【分析】(1)根据数轴上两点距离公式表示和计算即可;(2)根据点到1的距离等于2,即可找出x =-1或3即可;(3)根据条件化去绝对值当x ≥2时,|x -2|+|x +1|= 2x -1≥3,-1≤x <2时,|x -2|+|x +1|=3,当x <-1时,|x -2|+|x +1|=1-2x >3即可.【详解】解:(1)|1-(-5)|=|1+5|=6;故答案为:|1-(-5)|,6;(2)∵| 3-1|=2,∴x =3,∵|-1-1|=2,∴x=-1,∴|x -1|=2,x =-1或3,故答案为-1或3;(3)当x ≥2时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,-1≤x <2时,|x -2|+|x +1|=2-x +x +1=3,当x <-1时,|x -2|+|x +1|=2-x -x -1=1-2x >3,|x -2|+|x +1|的最小值是3.故答案为:3.【点睛】本题考查数轴上两个点之间的距离,绝对值的意义,化简绝对值的方法,整式的加减法,同类项,掌握数轴上两个点之间的距离,绝对值的意义,化简绝对值的方法,整式的加减法,同类项是解题关键.5.我们知道,||a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点,A B ,分别用数,a b 表示,那么,A B 两点之间的距离为||||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是__________.(2)数轴上点A 用数a 表示,若||5a =,那么a 的值为_________.(3)数轴上点A 用数a 表示:①若|3|5a -=,那么a 的值是________.②当|2||3|5a a ++-=时,数a 的取值范围是________,这样的整数a 有________个.③|3||2017|a a -++有最小值,最小值是___________.【答案】(1)5;2;(2)5或5-;(3)①2-或8;②23a -££,6;③2020.【解析】【分析】(1)根据两点之间的距离公式进一步计算即可;(2)根据绝对值的定义求解即可;(3)①利用绝对值的定义可知35a -=或5-,然后进一步计算即可;②|2||3|5a a ++-=的意义是表示数轴上到表示2-和表示3的点的距离之和是5的点的坐标,据此进一步求解即可;③|3||2017|a a -++是表示数轴上表示3与表示2017-的点的距离之和,然后进一步求解即可.【详解】(1)数轴上表示数8的点和表示数3的点之间的距离是:83=5-;数轴上表示数1-的点和表示数3-的点之间的距离是:()13=2---,故答案为:5,2;(2)若||5a =,则5a =或5-,故答案为:5或5-;(3)①若|3|5a -=,则35a -=或5-,∴8a =或2-,故答案为:2-或8;②∵|2||3|5a a ++-=的意义是表示数轴上到表示2-和表示3的点的距离之和是5的点的坐标,∴23a -££,其中整数有2-、1-、0、1、2、3共6个,故答案为:23a -££,6;③∵|3||2017|a a -++是表示数轴上表示3与表示2017-的点的距离之和,∴当20173a -££时,|3||2017|a a -++有最小值,此时最小值为:3(2017)=2020--,故答案为:2020.【点睛】本题主要考查了绝对值意义的综合运用,熟练掌握相关概念是解题关键.类型二 求多个绝对值和的最小值6.我们知道,a 表示数a 对应的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B 分别表示数a 、b ,那么AB a b =-.利用此结论,回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示2-和5-的两点之间的距离是_____,数轴上表示1和3-的两点之间的距离是____;(2)数轴上表示x 和-1的两点A 、B 之间的距离是____,如果AB =2,那么x 的值为_____;(3)写出13x x +++表示的几何意义:_____,该式的最小值为______;(4)123x x x +++++的最小值_____.【答案】(1)3,3,4;(2)1x +,1或-3;(3)点x 到1-的距离与点x 到3-的距离之和,2;(4)2【解析】【分析】(1)结合题意,根据数轴和绝对值的性质计算,即可得到答案;(2)根据数轴、绝对值的性质计算,即可得到答案;(3)根据数轴、绝对值的性质,对x 的取值分类计算,即可完成求解;(4)结合(3)的结论,根据数轴和绝对值的性质计算,即可得到答案.【详解】(1)数轴上表示2和5的两点之间的距离是:2533-=-=;数轴上表示2-和5-的两点之间的距离是:()()25253---=-+=;数轴上表示1和3-的两点之间的距离是:()13134--=+=;故答案是:3,3,4;(2)数轴上表示x 和-1的两点A 、B 之间的距离是:()11--=+x x ;∵AB =2∴()112x x --=+=∴1x =或3-故答案为:1x +,1或-3(3)13x x +++表示的几何意义:点x 到1-的距离与点x 到3-的距离之和;当3x <-时,132x x +++>当31x -££-时,13132x x x x +++=--++=当1x >-时,132x x +++>∴13x x +++的最小值为:2故答案为:点x 到1-的距离与点x 到3-的距离之和,2;(4)结合(3)的结论,当31x -££-时, 13x x +++的最小值为:2∴12322x x x x +++++=++当2x =-时,2x +取最小值,即20x +=∴123202x x x +++++=+=∴123x x x +++++的最小值为:2故答案为:2.【点睛】本题考查了数轴、绝对值的知识;解题的关键是熟练掌握数轴、绝对值的性质,从而完成求解.7.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________;(4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.【答案】(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(2)1-或5(3)10,19m -££(4)17,9m =【解析】【分析】(1)根据距离公式及定义表示即可;(2)分点在2表示的数的点的左边和右边两种情形求解;(3)利用数形结合思想,画数轴求解即可;(4)利用数形结合思想,画数轴求解即可.(1)解:①在数轴上的意义是表示数2的点与表示数3-的点之间的距离的式子是()23-- ,故答案为:()2323--=+;②∵5a +=|a -(-5)|,∴5a +在数轴上的意义是表示数a 的点与表示数-5的点之间的距离.故答案为:表示数a 的点与表示数-5的点之间的距离.(2)解:∵2m -表示数m 到2的距离,画数轴如下:当数在2的右边时,右数3个单个单位长,得到对应数是5,符合题意;当数在2的左边时,左数3个单个单位长,得到对应数是-1,符合题意;故答案为:-1或5;(3)解:∵19m m ++-表示数m 与-1,9的距离之和,画数轴如下:根据两点之间线段最短,-1表示点与9表示点的最短距离为9-(-1)=10,此时动点m 在-1表示点与9表示点构成的线段上,∴19m -££ ;故答案为:10、19m -££;(4)解:根据题意,画图如下,根据两点之间线段最短,-1表示点与16表示点的最短距离为16-(-1)=17,此时动点m 在-1表示点与16表示点构成的线段上,且到9表示的点的距离为0,∴9m = ;故答案为:17、 9m =.【点睛】本题考查了数轴上两点间的距离计算公式,线段最短原理,数轴的意义,解题的关键是利用数形结合思想,分类思想,结合数轴,运用数学思想解题.8.我们知道,在数轴上,|a |表示数a 到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A 、B 两点之间的距离为:AB =|a ﹣b |.利用此结论,回答以下问题:(1)数轴上表示﹣20和﹣5的两点之间的距离是 .(2)数轴上表示x 和﹣1的两点A ,B 之间的距离是 .(3)式子|x +1|+|x ﹣2|+|x ﹣3|的最小值是 .(4)结合数轴求|1||||2||4|x x x x -++++-的最小值为,此时符合条件的整数x 为 .(5)结合数轴求4|1|||3|2|2|4|x x x x -++++-的最小值为,此时符合条件的整数x为 .(6)结合数轴求|1||3|x x ---的最小值为 ,最大值为 .【答案】(1)15;(2)|x +1|;(3)4;(4)7;0,1;(5)16;1;(6)-2;2.【解析】【分析】(1)利用两点距离公式-5-(-20)计算即可;(2)利用两点距离公式|x -(-1)|计算即可;(3)分当x ≤-1当-1<x ≤2,当2<x ≤3,当x ≥3区间化去绝对值,合并同类项即可;(4)分当x ≤-2,当-2≤x ≤0, 当0≤x ≤1, 当1≤x ≤4, 当x ≥4区间化去绝对值,合并同类项,再确定区间的代数式最小值即可;(5)分当x ≤-2,当-2≤x ≤0, 当0≤x ≤1, 当1≤x ≤4, 当x ≥4区间化去绝对值,合并同类项,再确定区间的代数式最小值即可;(6)分区间化去绝对值当x ≤1,|1||3|2x x ---=-,当1≤x ≤3,|1||3|242x x x ---=-³- ,当x ≥3,|1||3|2x x ---=即可.【详解】解:(1)-5-(-20)=-5+20=15,故答案为15;(2)|x -(-1)|=|x +1|,故答案为:|x +1|;(3)当x ≤-1,|x +1|+|x ﹣2|+|x ﹣3|=- x -1 –x +2- x +3=-3x +4≥7,当-1<x ≤2,|x +1|+|x ﹣2|+|x ﹣3|= x +1–x +2- x +3=- x +6≥4,当2<x ≤3,|x +1|+|x ﹣2|+|x ﹣3|= x +1+x -2- x +3= x +2>4,当x >3,|x +1|+|x ﹣2|+|x ﹣3|= x +1+x -2+ x -3=3 x -4>5,式子|x +1|+|x ﹣2|+|x ﹣3|的最小值是4,故答案为4;(4)当x ≤-2,|1||||2||4|1243411x x x x x x x x x -++++-=----+-=-³,当-2≤x ≤0,|1||||2||4|124727x x x x x x x x x -++++-=--+++-=-³当0≤x ≤1,|1||||2||4|1247x x x x x x x x -++++-=-++++-=当1≤x ≤4,|1||||2||4|124527x x x x x x x x x -++++-=-++++-=+³当x ≥4,||1||||2||4|1244313x x x x x x x x x -++++-=-++++-=-³∴|1||||2||4|x x x x -++++-的最小值为7,符合条件的整数x 为0,1,故答案为:7;0,1;(5)当x ≤-2,4|1|||3|2|2|4|44368261026x x x x x x x x x -++++-=----+-=-³,当-2≤x ≤0,4|1|||3|2|2|4|44368218418x x x x x x x x x -++++-=--+++-=-³当0≤x ≤1,4|1|||3|2|2|4|44368218218x x x x x x x x x -++++-=-++++-=-³当1≤x ≤4,4|1|||3|2|2|4|44368210616x x x x x x x x x -++++-=-++++-=+³当x ≥4,|4|1|||3|2|2|4|44362810636x x x x x x x x x -++++-=-++++-=-³∴|1||||2||4|x x x x -++++-的最小值为16,符合条件的整数x 为1,故答案为16;1;(6)当x ≤1,()|1||3|132x x x x ---=---=-,当1≤x ≤3,()|1||3|13242x x x x x ---=---=-³- ,当x ≥3,()|1||3|132x x x x ---=---=,|1||3|x x ---的最小值为-2,最大值为2.故答案为-2;2.【点睛】本题考查数轴上两点距离,绝对值化简,最值,掌握数轴上两点距离,分区间绝对值化简方法是解题关键.9.阅读理解;我们知道,若A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点间的距离表示为AB ,则AB a b =-.所以2x -的几何意义是数轴上表示X 的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A 表示-2,点B 表示3,则AB = .(2)若35x -=,则x 的值是 .(3)如果数轴上表示数a 的点位于-4和2之间,求42a a ++-的值;(4)点a 取何值时,42a a ++-取最小值,最小值是多少?请说明理由;(5)直接回答:当式子-129a a a +-+¼+-取最小值时,相应a 的取值范围是多少?最小值是多少?【答案】(1)5;(2)2-或8;(3)6;(4)当42a -££时,最小值为6;(5)当5a =时,最小值为20【解析】【分析】(1)根据题目中的方法确定出AB 的长即可;(2)原式利用绝对值的代数意义化简即可求出x 的值;(3)根据数轴上两点间的距离的求法,化简42a a ++-即可;(4)根据线段中点到各点的距离的和最小,可得答案;(5)根据线段中点到各点的距离的和最小,可得答案.【详解】解:(1)235AB =--=,则5AB =;(2)∵35x -=,∴35x -=±,故2x =-或8,故答案为:2-或8;(3)∵数轴上表示数a 的点位于-4和2之间,∴42426a a a a ++-=++-=;(4)∵42a a ++-,代表点a 到4-和到2之间的距离之和,当42a -££时,42a a ++-取得最小值,最小值为6;(5)当5a =时,-129a a a +-+¼+-有最小值,最小值为=123456789a a a a a a a a a-+-+-+-+-+-+-+-+-=15a +=515+=20.【点睛】本题考查了绝对值,数轴两点间的距离,利用了两点间的距离公式,注意线段上的点与线段两端点的距离的和最小.10.我们知道,|a|表示数a 到原点的距离,这是绝对值的几何义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么AB=|a-b|.(思考一下,为什么?),利用此结论,回答以下问题:(1)数轴上表示2和5 的两点之间的距离是______,数轴上表示-2和-5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是_______;(2)数轴上表示x 和-1的两点A 、B 之间的距离是_______,如果|AB|=2,那么x 的值为_______;(3)当x 取何值时,式子|x -1|+|x -2|+|x -3|+ |x -4|+|x -5|的值最小,并求出这个最小值.【答案】(1)3,3,4;(2)|x+1|,1或-3;(3)x=3,最小值为6【解析】【分析】(1)根据两点间的距离的求法列式计算即可得解;(2)根据绝对值的几何意义列式计算即可得解;(3)根据数轴上两点间的距离公式得到式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的意义,从而分析出x=3时,式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值最小.【详解】解:(1)表示2和5 的两点之间的距离是|2-5|=3,表示-2和-5的两点之间的距离是|-2-(-5)|=3,表示1和-3的两点之间的距离是|1-(-3)|=4;(2)表示x 和-1的两点A 、B 之间的距离是|x+1|,∵|AB|=2,∴|x+1|=2,∴x+1=2或x+1=-2,解得x=1或-3;(3)式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示x 到数轴上1,2,3,4,5五个数的距离之和,∴当x 与3重合时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|有最小值,最小值为6,此时x=3.【点睛】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a 、b ,则这两点间的距离可表示为|a-b|.11.我们知道,a 表示数a 对应的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点,A B 分别表示数,a b ,那么,A B 两点之间的距离为a b -.利用此结论,回答下列问题:(1)数轴上表示3和-3的两点之间的距离是 ;(2)数轴上表示x 和-1的两点之间的距离为2,那么x 的值为 ;(3)直接写出24x x ++-的最小值为 ;(4)直接写出+21+4x x x +--的最小值为 ;(5)简要求出12399x x x x -+-+-++-…的最小值.【答案】(1)6;(2)-3或1;(3)6;(4)6;(5)2450【解析】【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)得出24x x ++-的几何意义,从而得到最小值;(4)得出+21+4x x x +--的几何意义,从而得到最小值;(5)根据绝对值的几何意义可知:当x=50时值最小,然后去掉绝对值符号,再利用求和公式列式计算即可得解.【详解】解:(1)数轴上表示3和-3的两点之间的距离是()336--=,故答案为:6;(2)由题意可得:()12x --=,则x 的值为:-3或1;(3)∵24x x ++-表示数轴上表示点x 到-2和4两点的距离和,∴当x 在-2到4之间时,24x x ++-有最小值,最小值为6;(4)+21+4x x x +--表示数轴上表示点x 到-2和1和4三点的距离和,∴当x 与1重合时,+21+4x x x +--的值最小,最小值为6;(5)12399x x x x -+-+-++-…的中间一项是|x-50|,当x=50时,12399x x x x -+-+-++-…有最小值,∴12399x x x x -+-+-++-…=5015025035099-+-+-++-…=49+48+47+…+1+0+1+2+…+49=2×(1+2+ (49)=2450.【点睛】本题主要考查的是绝对值的意义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.类型三 利用绝对值的几何意义解方程12.阅读理解;我们知道」x 丨的几何意义是在数轴上数x 对应的点与原点的距离,即丨x 丨=丨x -0丨,也就是说丨x |表示在数轴上数x 与数0对应点之间的距离;这个结论可以推广为:丨x -y 丨表示在数轴上数x 、y 对应点之间的距离.在解题中,我们常常运用绝对值的几何意义.①解方程|x | = 2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为 x =±2.②在方程丨x -1丨=2中,x 的值就是数轴上到1的距离为2的点对应的数,所以该方程的解是x = 3或x = -1.知识运用:根据上面的阅读材料,求下列方程的解(1)方程|x |= 5的解(2)方程| x -2|= 3的解【答案】(1)5x =±;(2)5x =或1-【解析】【分析】(1)由阅读材料中的方法求出x 的值即可;(2)由阅读材料中的方法求出x 的值即可;【详解】(1)∵在数轴上与原点距离为5的点对应的数为5±∴方程5x =的解是5x =±(2)∵在方程23x -=中,数轴上到2的距离为3的点对应的数.∴方程23x -=的解是5x =或1-.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示方法是解题的关键.13.阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;(4)若12y x x =--+,则y 的取值范围是_______.【答案】(1)128,2x x ==(2)62x -<<(3)21x -£<(4)33y -££【解析】【分析】(1)利用绝对值的性质,直接化简进而求出即可;(2)将原式化解为24x +<,首先在数轴上找出+24x =的解,即2x =或6x =-,则24x +<的解集为到-2的距离小于4的点对应的所有数,写出解集即可;(3)表示到1的点与到-2的点距离和为3,-2与1之间的距离为3,据此可得出答案;(4)1x -表示数x 到1的距离,2x +表示数x 到-2的距离,12y x x =--+表示数到1的距离减去数x 到-2的距离,然后分三者情况讨论y 的取值即可.【详解】解:(1)53x -=Q ,53x \-=±,解得:128,2x x ==,故答案为:128,2x x ==;(2)2219x ++<228x +<24x +<,首先找2=4x +的解,即到-2距离为4的点对应的数为-6和2,24x +<表示到-2的距离小于4的点对应的所有数,\不等式解集为62x -<<;(3)123x x -++=,表示到1的点与到-2的点距离和为3,Q -2与1之间的距离为3,21x \-£<;故答案为:21x -£<;(4)12y x x =--+,1x -表示数x 到1的距离,2x +表示数x 到-2的距离,12y x x =--+表示数x 到1的距离减去数x 到-2的距离,当x 在点1右边时,3y =-,当x 在点-2左边时,3y =,当x 在-2到1之间时,33y -££,33y \-££;故答案为:33y -££.【点睛】本条考查含有绝对值的方程和不等式的解法,正确对x的范围进行讨论,转化为一般的不等式是关键.14.我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:(1)方程|x|=5的解是_______________.(2)方程|x﹣2|=3的解是_________________.(3)画出图示,解方程|x﹣3|+|x+2|=9.【答案】(1)x=5或-5;(2)x=5或-1;(3)x=5或-4.【解析】【详解】试题分析:(1)由于|x|=5表示在数轴上数x与数0对应点之间的距离,所以x=±5;(2)由于|x-2|=3中,x的值就是数轴上到2的距离为3的点对应的数,显然x=5或-1;(3)方程|x-3|+|x+2|=9表示数轴上与3和-2的距离之和为9的点对应的x值,在数轴上3和-2的距离为5,满足方程的x的对应点在3的右边或-2的左边,画图即可解答.试题解析:(1)∵在数轴上与原点距离为5的点对应的数为±5,∴方程|x|=5的解为x=±5;(2)∵在方程|x-2|=3中,x 的值是数轴上到2的距离为3的点对应的数,∴方程|x-2|=3的解是x=5或-1;(3)∵在数轴上3和-2的距离为5,5<9,∴满足方程|x-3|+|x+2|=9的x 的对应点在3的右边或-2的左边.若x 的对应点在3的右边,由图示可知,x=5;若x 的对应点在-2的左边,由图示可知,x=-4,所以原方程的解是x=5或x=-4.点睛:本题考查了绝对值的定义,解答此类问题时要用分类讨论及数形结合的思想,同时考查了学生的阅读理解能力.15.阅读材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离,即|0|x x =-,也就是说||x 表示在数轴上数x 与数0对应的点之间的距离,这个结论可以推广为12||x x -表示数轴上1x 与2x 对应点之间的距离.例1:已知||2x =,求x 的值.解:容易看出,在数轴上与原点距离为2的点的对应数为2-和2,即x 的值为2-和2.例2:已知|1|2x -=,求x 的值.解:在数轴上与1的距离为2的点的对应数为3和1-,即x 的值为3和1-.仿照阅读材料的解法,求下列各式中的值.(1)||3x =(2)|2|4x +=(3)由以上探索猜想:对于任何有理数,36x x x -+-是否有最小值?如果有,写出最小值;如果没有,请说明理由.【答案】(1)-3和3;(2)-6和2;(3)有最小值,最小值为3【解析】【分析】(1)由阅读材料中的方法求出x 的值即可;(2)由阅读材料中的方法求出x 的值即可;(3)根据题意得出原式最小时x 的范围,并求出最小值即可.【详解】(1)3x =,在数轴上与原点距离为3的点的对应数为-3和3,即x 的值为-3和3;(2)24x +=,在数轴上与-2距离为4的点的对应数为-6和2,即x 的值为-6和2;(3)有最小值,最小值为3,理由是:∵36x x -+-理解为:在数轴上表示x 到3和6的距离之和,∴当x 在3与6之间的线段上(即36x ££)时:即36x x -+-的值有最小值,最小值为633-=.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示方法是解题的关键.类型四 利用绝对值的几何意义解不等式16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.【答案】(1) 1和-7;(2) x ≥4或x ≤-5(3) a ≤7【解析】【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x -3|+|x +4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x -3|+|x +4|≥a 对任意的x 都成立,即求到3与-4两点距离的和最小的数值.【详解】(1)方程|x +3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x 的值.在数轴上,3和-4的距离为7,满足方程的x 对应点在3的右边或-4的左边,若x 对应点在3的右边,由图可以看出x ≥4;同理,若x 对应点在-4的左边,可得x ≤-5,即可求得x ≥4或x ≤-5.(3)|x -3|+|x +4|即表示x 的点到数轴上与3和-4的距离之和,当表示对应x 的点在数轴上3与-4之间时,距离的和最小,是7.故a ≤7.【点睛】此题主要考察不等式的应用,熟知不等式与数轴的关系是解题的关键.17.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.。
部编数学七年级上册专题04聚焦绝对值(解析版)含答案
2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题04 聚焦绝对值考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022七上·汇川期末)已知|a|=8,|b|=3,且|a -b|=b -a ,则a +b 的值为( ) A .5或11B .-5或-11C .-5D .-11【答案】B【完整解答】解: |a|=8,|b|=3, 83a b ∴=±=±,,|a -b|=b -a ,b a ∴≥,83a b ∴=-=, 或 83a b =-=-,,835a b ∴+=-+=- 或 ()8311a b +=-+-=-,故答案为:B【思路引导】由|a|=8,|b|=3,可得83a b =±=±,, 根据|a -b|=b -a 可得b a ≥,从而确定83a b =-=, 或 83a b =-=-,,然后分别代入计算即可.2.(2分)(2022七上·遵义期末)若 a 、 b 为有理数, 0a < , 0b > ,且 a b > ,那么 a , b , a - , b - 的大小关系是( )A .b a b a-<<<-B .b b a a <-<<-C .a b b a<-<<-D .a b b a<<-<-【答案】C【完整解答】解:∵0a < , 0b > ,且 a b > ,∴0a -> , 0b -< , a b -> ,∴a b <- ,∴a b b a <-<<- .故答案为:C.【思路引导】 由0a < , 0b > ,且 a b > ,可得0a -> , 0b -< , a b -> ,从而得出a b<-据此即可得解.3.(2分)(2021七上·洪山期末)已知数a ,b ,c 在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )A .-a -cB .-a -b -cC .-a -2b -cD .a -2b +c【答案】C 【完整解答】解:通过数轴得到a <0,c >0,b >0,|a|>|c|>|b|,∴a+b <0,a -b <0,a +c <0∴|a +b| - |a -b| + |a +c|=-a-b +a -b ﹣a-c =-a -2b -c.故答案为:C.【思路引导】根据数轴可得:a<0<b<c 且|a|>|c|>|b|,然后判断出a+b 、a-b 、a+c 的正负,接下来根据绝对值的性质以及合并同类项法则进行化简.4.(2分)(2021七上·宜宾期末)下列说法: ①若 a a =- ,则 0a < ;②若a ,b 互为相反数,且 0ab ≠ ,则1b a =- ;③若 22a b = ,则 a b = ;④若 0a < , 0b < ,则 ab a ab a -=- .其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【完整解答】解:①若 a a =- ,则 0a = 或 a 为负数,错误;②若 a , b 互为相反数,且 0ab ≠ ,则 1b a=- ,正确;③若 22a b = ,则 a b = 或 a b =- ,错误;④若 0a < , 0b < ,所以 0ab a -> ,则 ab a ab a -=- ,正确;故答案为:B.【思路引导】根据绝对值的非负性可判断①;根据a 、b 互为相反数可得a=-b ,据此判断②;根据a 2=b 2可得|a|=|b|,据此判断③;根据a<0、b<0可得ab-a>0,结合绝对值的性质可判断④.5.(2分)(2021七上·遂宁期末)若有理数 m 在数轴上的位置如图所示,则化简 m 3m ++ 结果是( )A .23m +B .3C .23m --D .23m -+【答案】B 【完整解答】解:观察数轴得 0m < 且m >-3(即m+3>0) ∴33m m m m =-+=+,∴m 3(3)3m m m ++=-++= .故答案为:B.【思路引导】根据数轴可得-3<m<-2,则m+3>0,然后根据绝对值的性质以及合并同类项法则进行化简.6.(2分)(2021七上·长沙期末)有理数 a b c ,, 在数轴上对应的点的位置如图所示,则下列各式正确的个数有( )①0abc > ;②a c b +< ;③1a b c a b c++=- ;④a b b c a c ---=- .A .1个B .2个C .3个D .4个【答案】C 【完整解答】解:由数轴可得,b <c <0<a ,且|b|>|c|>|a|,∴abc >0,①正确;a-b+c >0, a c b +> ,②不正确;1111a b c a b c++=--=- ,③正确;()a b b c a b c b a c a c ---=---=-=- ,④正确,故答案为:C.【思路引导】由数轴可得b <c <0<a ,且|b|>|c|>|a|,根据有理数的乘法,有理数的加法,绝对值的性质分别计算,再判断即可.7.(2分)(2021七上·鄞州期中)已知a ,b 为实数,下列说法:①若ab <0,且a ,b 互为相反数,则 1a b=- ;②若a+b <0,ab >0,则|2a+3b|=﹣2a ﹣3b ;③若|a ﹣b|+a ﹣b =0,则b >a ;④若|a|>|b|,则(a+b )×(a ﹣b )是正数;⑤若a <b ,ab <0且|a ﹣3|<|b ﹣3|,则a+b >6,其中正确的说法有( )个.A .2B .3C .4D .5【答案】C【完整解答】解: ①若ab <0,且a ,b 互为相反数,则 1a b=-,正确 ;②∵a+b <0,ab >0,∴a<0,b<0,∴2a+3b<0,∴|2a+3b|=﹣2a ﹣3b ,正确;③∵|a ﹣b|+a ﹣b =0,∴|a ﹣b|=b-a≥0,∴b≥a ,错误;④当a>0, b>0时,则a>b , ∴a-b>0, a+b>0,∴(a+ b). (a- b)为正数;当a>0, b<0时,a-b>0, a+b>0,∴(a+ b).(a- b)为正数;当a<0,b>0时,a-b<0, a+b<0,∴(a+ b). (a- b)为正数;当a<0, b<0时,a-b<0, a+b<0,∴(a+ b).(a- b)为正数;故 ④ 正确;⑤∵a <b ,ab <0,∴b>0,a<0,当0<b<3时,∵|a ﹣3|<|b ﹣3|,∴3-a<3-b ,不符合题意;∴b>3,∵|a ﹣3|<|b ﹣3|,∴3-a<b-3,∴a+b>6,正确.综上,正确的有4项.故答案为:C.【思路引导】因为ab <0,可得a 、b≠0,根据互为相反数的商为- 1,可对①作判断;由两数之和小于0,两数之积大于0,得到a 与b 都为负数,则2a+ 3b 小于0,利用负数的绝对值等于它的相反数去绝对值,对②作判断;由a - b 的绝对值等于它的相反数,得到a -b 为非正数,进而得出a 与b 的大小,即可对③作判断;由a 绝对值大于b 绝对值,分4种情况讨论,即可对④作出判断;先根据a<b ,得a-3<b- 3,再由ab< 0和有理数乘法法则可得a<0, b>0,分情况讨论,可对⑤作判断.8.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数B .任意一个正数C .任意一个负数D .任意一个非负数【答案】D【完整解答】解:当a≥0时,得3+a=3+a ,∴a 为可以为一切非负数,当-3≤a <0时,得3+a=3-a ,∴a 为0,不符合题意,舍去,当a <-3时,得3+a=3-a ,∴a 为0,不符合题意,舍去,综上a 为可以为一切非负数,故答案为:D.【思路引导】分当a≥0时、当-3≤a <0时、当a <-3时三种情况,根据绝对值的非负性进行解答.9.(2分)(2021七上·和平月考)已知a ,b ,c 是有理数,且a+b+c=0,abc (乘积)是负数,则 b c a c a b a b c+++++ 的值是( ) A .3B .﹣3C .1D .﹣1【答案】D【完整解答】解:由题意知,a ,b ,c 中只能有一个负数,另两个为正数,不妨设a <0,b >0,c >0.由a+b+c=0得出:a+b=-c ,b+c=-a ,a+c=-b ,代入代数式,原式=a b c 1111a b c---++=--=- ,故答案为:D .【思路引导】根据a ,b ,c 中只能有一个负数,另两个为正数,不妨设a <0,b >0,c >0.再将a+b+c=0变形为a+b=-c ,b+c=-a ,a+c=-b ,再代入计算即可。
数学竞赛专题讲座七年级第9讲_绝对值与一元一次方程(含答案)
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中很多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段实行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存有的条件,对这个方程的解实行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,所以,探求这种关系是解本例的关键,•使用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存有6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、水平拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、 •12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立,故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)
思维特训(四) 绝对值与分类讨论方法点津 ·1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论.用符号表示这一过程为:||a =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a .3.分类讨论的原则是不重不漏,一般步骤为:①分类;②讨论;③归纳.典题精练 ·类型一 以数轴为载体的绝对值的分类讨论1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |.(1)|AB |=________;(2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值.2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b |,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.根据上述材料,回答下列问题:(1)|5-(-2)|的值为________;(2)若|x -3|=1,则x 的值为________;(3)若|x -3|=|x +1|,求x 的值;(4)若|x -3|+|x +1|=7,求x 的值.类型二 与绝对值化简有关的分类讨论问题3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题:【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c=1+1+1 =3;②当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c=a a +-b b +-c c=1-1-1=-1. 所以|a|a +|b|b +|c|c的值为3或-1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求|a|a +|b|b +|c|c的值; (2)已知|a |=3,|b |=1,且a <b ,求a +b 的值.4.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=________;②|-12+0.8|=________; ③⎪⎪⎪⎪717-718=________. (2)用合理的方法计算:|15-12018|+|12018-12|-|-12|+11009.5.探索研究:(1)比较下列各式的大小(填“<”“>”或“=”):①|-2|+|3|________|-2+3|;②|-12|+|-13|________|-12-13|;③|6|+|-3|________|6-3|;④|0|+|-8|________|0-8|.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(直接写出结论即可)(3)根据(2)中得出的结论,解决以下问题:当|x|+|-2018|=|x-2018|时,求x的取值范围.详解详析1.解:(1)因为|a +4|+(b -1)2=0,所以a =-4,b =1,所以|AB |=|a -b |=5.(2)当点P 在点A 左侧时,|P A |-|PB |=-(|PB |-|P A |)=-|AB |=-5≠2,不符合题意; 当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2,不符合题意.当点P 在点A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x . 因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12. 2.解:(1)7(2)因为|x -3|=1,所以x -3=±1,解得x =2或4.故x 的值为2或4.(3)根据绝对值的几何意义可知,x 必在-1与3之间,故x -3<0,x +1>0, 所以原式可化为3-x =x +1,所以x =1.(4)在数轴上表示3和-1的两点之间的距离为4,则满足方程的x 的对应点在-1的对应点的左边或3的对应点的右边.若x 的对应点在-1的对应点的左边,则原式可化为3-x -x -1=7,解得x =-2.5; 若x 的对应点在3的对应点的右边,则原式可化为x -3+x +1=7,解得x =4.5. 综上可得,x 的值为-2.5或4.5.3.解:(1)因为abc <0,所以a ,b ,c 都为负数或其中一个为负数,另两个为正数.①当a ,b ,c 都为负数,即a <0,b <0,c <0时,则|a |a +|b |b +|c |c =-a a +-b b +-c c=-1-1-1=-3; ②当a ,b ,c 中有一个为负数,另两个为正数时,设a <0,b >0,c >0, 则|a |a +|b |b +|c |c =-a a +b b +c c=-1+1+1=1. 综上所述,|a |a +|b |b +|c |c的值为-3或1.(2)因为|a |=3,|b |=1,且a <b ,所以a =-3,b =1或-1,则a +b =-2或-4.4.解:(1)①21-7 ②0.8-12 ③717-718(2)原式=15-12018+12-12018-12+11009=15. 5.解:(1)①因为|-2|+|3|=5,|-2+3|=1,所以|-2|+|3|>|-2+3|.②因为|-12|+|-13|=56,|-12-13|=56,所以|-12|+|-13|=|-12-13|. ③因为|6|+|-3|=6+3=9,|6-3|=3,所以|6|+|-3|>|6-3|.④因为|0|+|-8|=8,|0-8|=8,所以|0|+|-8|=|0-8|.(2)当a ,b 异号时,|a |+|b |>|a +b |;当a ,b 同号或a ,b 中有一个为0或两个同时为0时,|a |+|b |=|a +b |,所以|a |+|b |≥|a +b |.(3)由(2)中得出的结论可知,x 与-2018同号或x 为0,所以当|x |+|-2018|=|x -2018|时,x 的取值范围是x ≤0.。
七年级数学思维探讨二聚焦绝对值含答案
祖冲之,中国古代闻名的数学家和天文学家,于公元429年诞生于建康(今江苏南京),祖冲之从小就对天文、数学知识产生浓厚的爱好,“专攻数术,搜炼古今”,他在数学方面的成绩,首推圆周率的计算,计算圆周率精准到小数点以后7位,是那时世界上最杰出的成绩;在天文学方面,他编写了新的历法——大明历,这是那时最好的一部历法. 2.聚焦绝对值 解读课标绝对值是数学中的一个大体概念,这一概念是学习相反数、有理数运算、算术根的基础;绝对值又是数学中的一个重要概念,绝对值与其他知识融合形成绝对值方程、绝对值不等式、绝对值函数等,在代数式化简求值、解方程、解不等式等方面有普遍的应用.明白得、把握绝对值应注意以下几个方面: 1.脱去绝对值符号是解绝对值问题的切入点脱去绝对值符号经常使用到相关法那么、分类讨论、数形结合等知识方式. 2.恰本地运用绝对值的几何意义从数轴上看a 表示数a 的点到原点的距离;a b -表示数a 、数b 的两点间的距离. 3.灵活运用绝对值的大体性质①0a ≥;②222a a a ==;③ab a b =⋅;④()0aa b b b=≠. 问题解决例1 已知2020y x b x x b =-+-+--,其中020b <<,20b x ≤≤,那么y 的最小值为_______. 试一试结合已知条件判定每一个绝对值符号内式子的正负性,再去掉绝对值符号. 例2 式子a b aba b ab++的所有可能的值有( ).A .2个B .3个C .4个D .无数个试一试 依照a 、b 的符号所有可能情形,去掉绝对值符号,这是解本例的关键. 例3 (1)已知220ab a -+-=,求()()()()()()1111112220062006ab a b a b a b ++++++++++的值.(2)设a 、b 、c 为整数,且1a b c a -+-=,求c a a b b c -+-+-的值.试一试 关于(1),由非负数的性质先导出a 、b 的值;关于(2),1写成两个非负整数的和的形式又有几种可能这是解(2)的冲破口.例4 阅读以下材料并解决有关问题:咱们明白()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,此刻咱们能够用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,别离求得1x =-,2x =(称1-,2别离为1x +与2x -的零点值).在有理数范围内,零点值1x =-和2x =可将全部有理数分成不重复且不遗漏的如下3种情形:(1)1x <-;(2)12x -<≤;(3)2x ≥.从而化简代数式12x x ++-可分以下3种情形: (1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当12x -<≤时,原式()123x x =+--=; (3)当2x ≥时,原式1221x x x =++-=-. 综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥,通过以上阅读,请你解决以下问题: (1)别离求出2x +和4x -的零点值; (2)化简代数式24x x ++-.试一试 在阅读明白得的基础上化简求值.例5 (1)当x 取何值时,3x -有最小值那个最小值是多少 (2)当x 取何值时,52x -+有最大值那个最大值是多少 (3)求45x x -+-的最小值. (4)求789x x x -+-+-的最小值.分析 关于(3)、(4)可先运用零点分段讨论法去掉绝对值符号,再求最小值;也可利用绝对值的几何意义,即在数轴上找一表示x 的点,使之到表示4、5的点(或表示7、8、9的点)的距离和最小. 解 (1)当3x =时,原式有最小值,最小值为0. (2)当2x =-时,原式有最大值,最大值为5. (3)当45x ≤≤时,原式有最小值,最小值为1. (4)当8x =时,原式有最小值,最小值为2.关于(3),给出另一种解法:当4x ≤时,原式()()4592x x x =---=-,最小值为1; 当45x <≤时,原式()451x x =---=,最小值为1; 当5x >时,原式4529x x x =-+-=-,最小值为1. 综上所述,原式有最小值等于1. 以退求讲例6 青年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算进程足:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后那么显示12x x -的结果,尔后每输入一个整数都是与前次显示的结果进行求差取绝对值的运算,现小明将从1到1991这1991个整数随意地一个一个地输入,全数输入完毕以后显示的最后结果设为P ,试求出P 的最大值,并说明理由. 分析 先考虑输入个数较少的情形,并结合奇偶分析调整估值,一步步求出P 的最大值.解 由于输入的数都是非负数,当10x ≥,20x ≥时,12x x -不超过1x 、2x 中最大的数,对10x ≥,20x ≥,30x ≥,那么123x x x --不超过1x 、2x 、3x 中最大的数,设小明输入这1991个数的顺序是1x ,2x ,…,1991x .相当于计算:12319901991x x x x x P ----=,因此P 的值1991≤.另外从运算奇偶性分析,1x 、2x 为整数,12x x -与12x x +奇偶性相同,因此P 与121991x x x +++的奇偶性相同. 但121991121991x x x +++=+++=偶数,于是判定1990P ≤.咱们证明P 能够取到1990.对1,2,3,4,按如下顺序:13420---=,()()()414344420k k k k +-+-+-+=,关于0k =,1,2,…均成立.因此,1~1988可按上述方法依次输入最后显示结果为0,而后1989199019911990--=,故P 的最大值为1990. 数学冲浪 知识技术广场1.数a 在数轴上的位置如下图,且12a +=,那么37a +=______.2.已知5a =,3b =,且a b b a -=-,那么a b +=_______.1a3.化简1111111120042003200320022002200120012004-+-+---=________. 4.已知有理数a 、b 、c 在数轴上的对应位置如下图:,1c a c a b -+-+-化简后的结果是________.5.已知整数1a ,2a ,3a ,4a ,…知足以下条件:10a =,211a a =-+,322a a =-+,433a a =-+,…,依次类推,那么2012a 的值为( ).A .1005-B .1006-C .1007-D .2012- 6.已知a a =-,化简12a a ---所得的结果是( ) A .1- B .1 C .23a - D .32a - 7.若m 是有理数,那么m m -一定是( ). A .零 B .非负数 C .正数 D .负数 8.有理数a 、b 、c 的大小关系如图:,那么以下式子中必然成立的 是( )A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 9.化简(1)3x -; (2)12x x +++. 10.阅读下面材料并回答下列问题.点A 、B 在数轴上别离表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图①,AB OB b a b ===-;当A 、B 两点都不在原点时,(1)如图②,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-; (2)如图③,点A 、B 都在原点的左侧,()AB OB OA b a b a a b =-=-=---=-;-1cbacba图①O (A )B b图②A B O 0ba图③O B A a b 0图④A B O ab(3)如图④,点A 、B 在原点的两边,()AB OA OB a b a b a b =+=+=+-=-. 综上,数轴上A 、B 两点之间的距离AB a b =-. 请回答:①数轴上表示2和5的两点之间的距离是_______,数轴上表示2-和5的两点之间的距离是_______,数轴上表示1和3-的两点之间的距离是________;②数轴上表示x 和1-的两点A 和B 之间的距离是__________,若是2AB =,那么x 为_________; ③今世数式12x x ++-取最小值时,相应的x 的取值范围是_________. 思维方式天地11.已知1a =,2b =,3c =,且a b c >>,那么a b c +-=_________.12.在数轴上,点A 表示的数是3x +,点B 表示的数是3x -,且A 、B 两点的距离为8,那么x =______. 13.已知5x =,1y =,那么x y x y --+=_________. 14.(1)11x x ++-的最小值为________. (2)11213x x x ++-++的最小值为________. 15.有理数a 、b 在数轴上对应的位置如下图:,那么代数式1111a ab a ba a ab b +---+-+--的值为( ) A .1- B .0 C .1 D .216.若()2210m n ++-=,那么2m n +的值为( )A .4- B .1- C .0 D .4 17.如图,已知数轴上点A 、B 、C 所对应的数a 、b 、c 都不为0,且C 是AB 的中点.若是2220a b a c b c a b c +--+--+-=,那么原点O 的位置在( )A .线段AC 上B .线段CA 的延长线上C .线段BC 上D .线段CB 的延长线上 18.设1m x x =+-,那么m 的最小值为( ) A .0 B .1 C .1- D .21-1baC B Acba19.已知点A在数轴上对应的数为a,点B对应的数为b,且()2a b++-=,A、B之间的距离410记作AB.(1)求线段AB的长AB;(2)设点P在数轴上对应的数为x,当2-=时,求x的值;PA PB(3)点P在A的左侧,M、N别离是PA、PB的中点,当点P在A的左侧移动时,式子PN PM-的值是不是发生改变假设不变,请求其值;假设发生转变,请说明理由.20.已知a b c abcx=+++,且a、b、c都不等于0,求x的所有可能值.a b c abc应用探讨乐园21.绝对值性质(1)设a、b为有理数,比较a b+与a b+的大小.(2)已知a、b、c、d是有理数,9a b c d-≤,且25---的--+=,求b a d ca b-≤,16c d值.22.已知数轴上两点A、B对应的数别离为1-,3,点P为数轴上一动点,其对应的数为x.(1)假设点P到点A、点B的距离相等,求点P对应的数.(2)数轴上是不是存在点P,使点P到点A、点B的距离之和为5假设存在,请求出x的值;若不存在,请说明理由.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时动身,几分钟后P点到点A、点B的距离相等2.聚焦绝对值 问题解决例l 20 ()()2020202040y x b x x b x b x x b x =-+--+---=--+-++=-⎡⎤⎡⎤⎣⎦⎣⎦,当20x =时,y 的值最小为20.例2 A 分0a >,0b >;0a <,0b <;0a >,0b <;0a <,0b >四种情形讨论. 例3 (1)由20ab -=,20a -=,得2a =,1b =. 原式1111111111200711122334200720082232007200820082008=++++=-+-++-=-=⨯⨯⨯⨯. (2)因a 、b 、c 为整数,且1a b c a -+-=,故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=因此,原式1102=++=. 例4 (1)别离令20x +=和40x -=,别离求得2x =-和4x =, 2x +∴和4x -的零点值别离为2x =-和4x =.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式()246x x =+--=;当4x ≥时,原式2422x x x =++-=-.∴综上讨论,原式()()()222,624,224.x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥ 数学冲浪1.2 2.2-或8 3.0 4.12c b -+5.B 1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 对应的数别离为0,1-,1-,2-,2-,3-,3-,4-. 6.A 7.B 8.C 9.(1)原式()()3333x x x x ⎧-<⎪=⎨-⎪⎩≥ (2)原式()()()232121231x x x x x --<-⎧⎪=-<-⎨⎪+-⎩≤≥ 10.①3,3;4 ②1x +;1或3- ③12x -≤≤ 11.2或0 12.413.2 分x ,y 同号、x ,y 异号两种情形讨论 14.(1)2 (2)25 15.D 16.C 17.A 提示:2a bc += 原式化为a b b a +=- 18.B19. (1)5AB =;(2)12x =-;(3)52PN PM -=,值不变.20.4或0或4-21.(1)a b a b ++≤,当且仅当a 、b 同号或a 、b 至少有一为0时等号成立. (2)因9a b -≤,16c d -≤,故91625a b c d -+-+=≤,又因为()()2525a b c d a b d c a b d c =--+=-+--+-≤≤,因此9a b -=,16c d -=,故原式9167=-=-.22.(1)1;(2)3.5或1.5-;(3)B 未追上A 时,223t =;B 追上A 时,415t =.。
七年级数学下思维探究-绝对值与方程(含答案)
七年级数学下思维探究-绝对值与方程(含答案)商高是公元前世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为和时,直角三角形的斜边就是,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前世纪发现的.9.绝对值与方程解读标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有:1.最简绝对值方程形如是最简单的绝对值方程,可化为两个一元一次方程与.2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解.问题解决例1 方程的解是________.试一试原方程变形为,再把此方程化为一般方程求解.例2 若关于的方程无解,只有一个解,有两个解,则,,的大小关系为().A.B..D.试一试从方程有解的条入手.例3 解下列方程:(1);(2);(3).试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例 4 如图,数轴上有、两点,分别对应的数为、,已知与互为相反数.点为数轴上一动点,其对应的数为.(1)若点到点、点的距离相等,求点对应的数.(2)数轴上是否存在点,使点到点、点的距离之和为?若存在,请求出的值;若不存在,说明理由;(3)当点以每分钟个单位长度的速度从点向左运动时,点以每分钟个单位长度的速度向左运动,点以每分钟个单位长度的速度向左运动,问几分钟时点到点、点的距离相等?试一试由绝对值的几何意义建立关于的绝对值方程.例讨论关于的方程的解的情况.分析与解与方程中常数、有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具.数轴上表示数的点到数轴上表示数和的点的距离和的最小值为,由此可得原方程的解的情况是:(1)当时,原方程有两解;(2)当时,原方程有无数解;(3)当时,原方程无解.数学冲浪知识技能广场1.若是方程的解,则_______;又若当时,则方程的解是_____.2.方程的解是_______;_______是方程的解;解方程,得_______.3.如果,那么的值为________.4.已知关于的方程的解满足,则的值为().A.或B.或.或D.或.若,则等于().A.或B.或.或D.或6.方程的解的个数为()A.个B.个.无数个D.不确定7.解下列方程(1);(2);(3);(4).8.求关于的方程的所有解的和.9.解方程.10.已知、、、都是整数,且,则_______.11.若、都满足条,且,则的取值范围是_______.12.满足方程的所有的和为________.13.若关于的方程有三个整数解,则的值为()A.B..D.14.方程的整数解的个数有()A.B..D.1.若是方程的解,则等于()A.B..D.16.解下列方程(1);(2).17.当满足什么条时,关于的方程有一解?有无数多个解?无解?应用探究乐园18.如图,若点在数轴上对应的数为,点在数轴上对应的数为,且,满足.(l)求线段的长;(2)点在数轴上对应的数为,且是方程的解,在数轴上是否存在点,使得?若存在,求出点对应的数;若不存在,说明理由;(3)在(1)、(2)的条下,点,,开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分剐以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其常数值.19.已知,求的最大值和最小值.微探究从三阶幻方谈起相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出,就是一个阶幻方,也就是在的方阵中填入,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在的方阵图中,每行、每列、每条对角线上个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在的方格中填入个不同的数,使得各行各列及两条对角线上个数的和都相等,且为,若最中间数为,则.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方.(3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1 如图①,有个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试虽然问题要求的只是左上角的数,但是问题的条还与其他的数相关.故为充分运用已知条,需引入不同的字母表示数(如图②).例2 如图,在的方格表中填入九个不同的正整数:,,,,,,,和.使得各行、各列所填的三个数的和都相等,请确定的值,并给出一种填数法.试一试如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即为正整数,又,从估计和的最小值入手.整体核算法整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,、、、、、、、、分别代表,,,,,,,,中某一个数,不同字母代表不同的数,使每个小圆内个数的和都相等,那么的值是多少?分析与解设这个相等的和是,现将这个小圆中个数求和,可得:,故.先从所在的小圆看,至少是,最多只能是,再从所在的小圆看,最多只能是,由于,所以必须,,由此可以求得图②.对照图①与图②中各数的位置,可看到.当然也可以有另一解法.将含、含、含、含、含与含的个小圆内个数求和,可得:,即,所以.练一练1.将到这个自然数填入图中的个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的个数的和是_______.2.请构造“幻角”,将这个整数填入图中的小三角形内(和已填好),使图中每个大三角形内四数之和都等于.3.请将,,,,,,,,,这个数分别填入图中方阵的个空格,使行、列、条对角线上的个数的和都是.4.如图,、、、、、均为有理数,图中各行各列及两条对角线上的和都相等,求的值..如图是一个的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求的值.6.图中显示的填数“魔方”只填了一部分,将下列个数:,,,,,,,,填入方格中,使得所有行、列及对角线上各数相乘的积相等,求的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中行、列以及条对角线上的点数之和都等于,是一种“ 阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从阶到阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用了对称思想.例如,用,,,…,构造阶幻方的方法是:先将,,,…,依次排成图③,然后以外四角对换,即与对换,与对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的阶幻方.8.把数字,,,…,分别填入图中的个圈内,要求三角形和三角形的每条边上三个圈内数字之和都等于.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础.(1);(2)利润=售价-进价;(3)售价=进价+利润=进价×(利润率).例1 一家商店将某商品按成本价提高后,标价为元,又以折出售,则售出这商品可获利润_______元.试一试从求出成本价切入.例 2 某商店出售某种商品每可获利元,利润率为.若这种商品的进价提高,而商店将这种商品的售价提高到每仍可获利元,则提价后的利润率为().A.B..D.试一试利用获利不变建立方程.例 3 某房地产开发商开发一套房子的成本随着物价上涨比原增加了,为了赚钱,开发商把售价提高了倍,利润率比原增加了,求开发商原的利润率.试一试因售价=成本×(利润率),故还需设出成本.例4 某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于元,则不予优惠;(2)若一次购物满元,但不超过元,按标价给予九折优惠;(3)若一次购物超过元,其中元部分给予九折优惠,超过元部分给予折优惠.小明两次去该超市购物,分别付款元与元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?分析与解第一次付款元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当元为购物不打折付的钱时,所购物品的原价为元,又,其中元为购物元打九折付的钱,元为购物打八折付的钱,(元).因此,元所购物品的原价为(元),于是购买小明花(元)所购的全部物品,小亮一次性购买应付(元).情形2 当元为购物打九折付的钱时,所购物品的原价为(元).仿情形1的讨论,购(元)物品一次性付款应为(元).练一练1.某商品的进价为元,售价为元,则该商品的利润率可表示为_______.2.某商店老板将一进价为元的商品先提价,再打八折卖出,则卖出这商品所获利润为_______元.3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为元的商品,共带省元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为元,打七折售出后,仍可获利”,你认为售货员应标在标签上的价格为________..一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每按原销售价的八折销售,售价为元,则这款羊毛衫每的原销售价为_______元.6.甲用元购买了一些股票,随即他将这些股票转卖给乙,获利.而后乙又将这些股票反卖给甲,但乙损失了,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲().A.盈亏平衡B.盈利元.盈利元D.亏损元7.年爆发的世界金融危机,是自世纪年代以世界最严重的一场金融危机,受金融危机的影响,某商品原价为元,连续两次降价后售价为元,下列所列方程正确的是().A.B..D.8.某商店出售某种商品每可获利元,利润率为.若这种商品的进价提高,而商店将这种商品的售价提高到每仍可获利元,则提价后的利润率为().A.B..D.9.某种商品的进价为元,出售标价为元,后由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最多可打().A.新B.折.折D.折10.某商场对顾客实行优惠,规定:①如一次购物不超过元,则不予折扣;②如一次购物超过元但不超过元,按标价给予九折优惠;③如一次购物超过元,则其中元按第②条给予优惠,超过元的部分则给予八折优惠.某人两次去购物,分别付款元和元,如果他只去一次购买同样的商品,则应付款是().A.元B.元.元D.元11.某商场用元购进、两种新型节能台灯共盏,这两种台灯的进价、标价如下表所示:类别价格型型进价(元/盏)标价(元/盏)(1)这两种台灯各购进多少盏?(2)若型台灯按标价的九折出售,型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?12.某公司销售、、三种产品,在去年的销售中,高新产品的销售金额占总销售金额的.由于受国际金融危机的影响,今年、两种产品的销售金额都将比去年减少,因而高新产品是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过元的不给优惠,超过元而不超过元时,按该次购物全额折优惠,超过元的其中元仍按折优惠,超过部分按折优惠.小美两次购物分别用了元和元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元?微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离.例1 (1)在公路上,汽车、、分别以、、的速度匀速行驶,从甲站开往乙站,同时,、从乙站开往甲站.在与相遇小时后又与相遇,则甲、乙两站相距_____ .(2)小王沿街匀速行走,他发现每隔从背后驶过一辆路公交车;每隔迎面驶一辆路公交车.假设每辆路公交车行驶速度相同,而且路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______ .试一试对于(2),“背后驶过与迎面驶”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例 2 (1)一艘轮船从港到港顺水航行,需小时,从港到港逆水需小时,若在静水条下,从港到港需()小时.A.B..D.(2)甲、乙两动点分别从正方形的顶点、同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的倍,则它们第次相遇在边().A.上B.上.上D.上试一试对于(2),设正方形边长为,甲的速度为,相遇时甲行的路程为,利用“相遇时甲、乙两动点运动时间相等”建立方程,把用的代数式表示.例 3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了圈,此时它们行驶了多少分钟?试一试当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比.例4 甲、乙二人分别从、两地同时出发,在距离地千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达地、地后,又在距地千米处相遇,求、两地相距多少千米?解法一第一次相遇时,甲、乙两人所走的路程之和,正是、两地相距的路程,即当甲、乙合走完、间的全部路程时,乙走了千米,第二次相遇时,两人合走的路程恰为两地间距离的倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为(千米).考虑到乙从地走到后又返回了千米,所以、两地间的距离为(千米).解法二甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例.到第一次相遇,甲走了(全程)千米,乙走了千米;到第二次相遇,甲走了(全程)千米,乙走了(全程)千米.设全程为,易得到下列方程,解得,(舍去),所以、两地相距千米.解法三设全程为千米,甲、乙两人速度分别为,.则,①÷②得,解得或(舍去).乘车方案例老师带着两名学生到离学校千米远的博物馆参观,老师乘一辆摩托车,速度为千米/时,这辆摩托车后座可带乘一名学生,带人速度为千米/时,学生步行的速度为千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过个小时.分析若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键.解要使师生三人都到达博物馆的时间尽可能短,可设计如下方案:设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆.如图,设老师带甲乘摩托车行驶了千米,用了小时,比乙多行了(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了(小时).乙遇到老师时,已经步行了(千米),离博物馆还有(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有,解得.即甲先乘摩托车千米,用时小时,再步行千米,用时小时,共计小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过个小时.另解:设乙先步行的时间为小时,步行的路程为,则(千米),此时老师带甲走的路程为(千米),老师返回接乙走的路程为.故有,解得,甲乘车的时间为(小时),故甲从学校到博物馆共用(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则小时相遇;若同向而行,则小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需小时,从乙地到甲地逆流行驶需小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为和,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______.4.甲、乙分别自、两地同时相向步行,小时后中途相遇,相遇后,甲、乙步行速度都提高了千米/时,当甲到达地后立刻按原路向地返行,当乙到达地后也立刻按原路向地返行.甲、乙两人在第一次相遇后小时分又再次相遇,则、两地的距离是_______千米..甲、乙两人沿同一路线骑车(匀速)从到,甲需要分钟,乙需要分钟.如果乙比甲早出发分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有米,丙距终点还有米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从地到地,小明骑自行车从地到地,两人都匀速前进.已知两人在上午时同时出发,到上午时,两人还相距千米,到中午时,两人又相距千米,求、两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟出发,上高速公路途经舟跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了小时;返回时平均速度提高了千米/时,比去时少用了半小时回到舟.(1)求舟与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:大桥名称舟跨海大桥杭州湾跨海大桥大桥长度千米千米过桥费元元据浙江省交通部门规定:轿车的高速公路通行费(元)的计算方法为:,其中(元/千米)为高速公路里程费,(千米)为高速公路里程(不包括跨海大桥长),(元)为跨海大桥过桥费,若林老师从舟到嘉兴所花的高速公路通行费为元,求轿车的高速公路里程费.9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为千米/时,骑车人的速度为千米/时,如果有一列火车从他们背后开过,它通过行人用了秒,通过骑车人用了秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在、两地同时相向而行,于处相遇后,甲继续向地行走,乙则休息了分钟,再继续向地行走.甲和乙到达和后立即折返,仍在处相遇.已知甲每分钟行走米,乙每分钟行走米,则和两地相距多少米?11.某单位有人要到千米外的某地参观,因为步行时速只有千米,为了使他们上午到达,配备了一辆最多载人名、时速千米的大客车.于是早晨时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图.12.、、三辆车在同一条直路上同向行驶,某一时刻,在前,在后,在、正中间.分钟后,追上;又过了分钟,追上.问再过多少分钟,追上?̳9.绝对值与方程问题解决例1 由,得或,所以或.经检验知时,方程左右两边不等,故舍去.从而原方程的解为.例2 A ,,,由题意得,,,从而,.例3 (1)或.原方程化为或,即或.(2)当时,原方程化为,得.当时,原方程化为,得.当时,原方程化为,得.综上知原方程的解为,,.(3)由绝对值的几何意义得原方程的解为.例4 (1);(2)存在,或(3)或数学冲浪1.;或2.或;;或3.4.A .D 6.7.(1)或;(2);(3)或;(4)或.8.,,,得,,,,故.9.当,原方程无解;当时,原方程有两解:或;当时,原方程化为,此时原方程有四解:;当时,原方程化为,此时原方程有三解:或或;当时,原方程有两解:.10.或,又、都是整数,得,,.当,则,即矛盾;若,令,满足题意;若,令,满足题意.11.12.13.14.B 由数轴知,且为偶数1.D16.(1)或可以得到;(2).17.由绝对值几何意义知:当时,方程有一解;当时,方程有无穷多个解,当或时,方程无解.18.(1),,;(2)存在点,点对应的数为或;(3),为常数.19.,同理,,得.当且仅当,,时,上面各式等号成立.又,由得①+②③,,因此,的最大值为,最小值为.从三阶幻方谈起(微探究)例l 由已知条得:,这样前面两个式子之和等于后面的两个式子之和,即,,得.例 2 与的最小值是,所以,即.而为整数,且是不同于,,,,,,,的正整数,故.练一练1.,,;,,设中间的圆圈中的数是,同一直线上的个数的和是,则,.2.如图3.如图:4.由条得:,,.上述三式相加有,故..如图,由及,得,,从而(注:这个幻方是可以完成的,如第行为,,;第行为,,;第行为,,).6.这个数的积为,所以每行、每列、每条对角线上三个数字积为,得,,,、、、分别为、、、中的某个数,推得.。
人教版七年级上册数学《绝对值》专题讲义(含答案)
绝对值1. 掌握绝对值的概念与化简 2. 绝对值的几何意义3. 分类讨论思想在绝对值中的应用模块一 绝对值的意义及其化简1. 绝对值的几何意义:一个数a 的绝对值就是数轴上表示a 的点与原点的距离。
数a 的绝对值记作a2. 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3. 绝对值的性质:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩,②(0)(0)a a a a a ≥⎧=⎨-<⎩或(0)(0)a a a a a >⎧=⎨-≤⎩4. 绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④222a a a ==☞绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】13a =±【巩固】绝对值等于2的数有 个,是 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】2个,2±例题精讲重难点【巩固】绝对值不大于7且大于4的整数有 个,是 【难度】2星【解析】绝对值的代数意义,几何意义 【答案】6个,5±、6±、7±☞绝对值化简【例2】 计算:3π-= ,若23x -=,则x = 【难度】1星 【解析】绝对值化简 【答案】3π-,5x =或1-【巩固】若220x x -+-=,则x 的取值范围是 【难度】2星 【解析】绝对值化简 【答案】2x ≤【巩固】已知:①52a b ==,,且a b <;分别求a b ,的值 【难度】3星 【解析】绝对值化简【答案】解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±【例3】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【难度】3星 【解析】绝对值化简【答案】解:如图所示,得0a b <<,01c <<∴0a b +<,10b -<,0a c -<,10c ->∴原式=()(1)()(1)a b b a c c -++-+---=11a b b a c c --+-+--+=2-【巩固】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【难度】3星 【解析】绝对值化简【答案】解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y -> ∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=【巩固】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【难度】3星 【解析】绝对值化简【答案】解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=【例4】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+- 【难度】3星 【解析】绝对值化简【答案】解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b < ∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=【巩固】已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 【难度】3星 【解析】绝对值化简【答案】解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例5】 若42a b -=-+,则_______a b +=【难度】2星【解析】绝对值的非负性【答案】解:∵42a b -=-+ ∴420a b -++=∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【难度】2星【解析】绝对值的非负性 【答案】解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-【例6】 设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b =∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =【巩固】已知2()55a b b b +++=+,且210a b --=,那么ab =_______【难度】3星【解析】绝对值化简与非负性【答案】解:∵2()0a b +≥,50b +≥,且2()55a b b b +++=+∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =-∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =-模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例7】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【难度】3星 【解析】零点分段法【答案】解:⑴令20x +=,40x -=,则2x =-,4x =⑵零点为2x =-,4x =,则可分三段进行讨论:2x <-,24x -≤<,4x ≥ ①当2x <-时,则20x +<,40x -<∴2(2)2x x x +=-+=--,4(4)4x x x -=--=-+ ∴原式=24x x ---+=22x -+②当24x -≤<时,则20x +≥,40x -< ∴22x x +=+,4(4)4x x x -=--=-+ ∴原式=24x x +-+=6③当4x ≥时,则20x +>,40x -≥ ∴22x x +=+,44x x -=- ∴原式=24x x ++-=22x -综上所述,当2x <-时,24x x ++-=22x -+当24x -≤<时,24x x ++-=6 当4x ≥时,24x x ++-=22x -【巩固】化简12m m m +-+-的值 【难度】3星 【解析】零点分段法【答案】解:令0m =,10m -=,20m -=,则零点为0m =,1m =,2m =则可分四段进行讨论:0m <,01m ≤<,12m ≤<,2m ≥ ①当0m <时,10m -<,20m -<∴m m =-,11m m -=-+,22m m -=-+ ∴原式=12m m m --+-+=33m -+ ②当01m ≤<时,10m -<,20m -< ∴m m =,11m m -=-+,22m m -=-+ ∴原式=12m m m -+-+=3m -+ ③当12m ≤<时,10m -≥,20m -< ∴m m =,11m m -=-,22m m -=-+ ∴原式=12m m m +--+=1m + ④当2m ≥时,10m -≥,20m -≥ ∴m m =,11m m -=-,22m m -=- ∴原式=12m m m +-+-=33m -综上所述:当0m <时,12m m m +-+-=33m -+当01m ≤<时,12m m m +-+-=3m -+ 当12m ≤<时,12m m m +-+-=1m + 当2m ≥时,12m m m +-+-=33m -【巩固】化简:121x x --++.【难度】4星 【解析】零点分段法【答案】解:令10x -=,120x --=,10x +=,∴120x --=,则3x =或1x =-∴零点有1x =-,1x =,3x =∴分四段进行讨论1x <-,11x -≤<,13x ≤<,3x ≥ ①当1x <-时,则10x -<,10x +<,10x --> ∴11x x -=-+,11x x +=--,11x x --=--∴原式=121x x -+---=11x x ----=11x x ----=22x -- ②当11x -≤<时,则10x -<,10x +≥,10x --≤ ∴11x x -=-+,11x x +=+,11x x --=+∴原式=121x x -+-++=11x x --++=11x x +++=22x + ③当13x ≤<时,10x -≥,10x +>,30x -< ∴11x x -=-,11x x +=+,33x x -=-+ ∴原式=121x x --++=31x x -++=31x x -+++=4 ④当3x ≥时,10x ->,10x +>,30x -≥ ∴11x x -=-,11x x +=+,33x x -=-∴原式=121x x --++=31x x -++=31x x -++=22x -综上所述,当1x <-时,121x x --++=22x --当11x -≤<时,121x x --++=22x + 当13x ≤<时,121x x --++=4 当3x ≥时,121x x --++=22x -模块四 绝对值的几何意义的拓展1. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.2. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例8】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=, 则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑸ 当1x =-时,则22x x -++=【难度】3星【解析】绝对值的几何意义【答案】解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图P B A 112则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==【例9】 已知m 是实数,求12m m m +-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m =设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图PC B A①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA + ∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>PC B A②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,原式取得最小值 ∵此时不包含点B ,∴原式2>P CB A③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2PC B A④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC + ∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为2【巩固】已知m 是实数,求2468m m m m -+-+-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+> ③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+=④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥ 当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8【例10】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?城市【难度】3星【解析】绝对值的几何意义【答案】解:活动中心应该建在村庄C ,使各村到活动中心的路程之和最短【巩固】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【难度】3星【解析】绝对值的几何意义【答案】解:长途汽车站应该设在点D,如果在点P 又建了一个工厂,那么此时长途汽车站应该设在DE 之间1.4x-的几何意义是数轴上表示的点与表示的点之间的距离,若42x-=,则x=.【难度】2星【解析】绝对值的几何意义【答案】x、4、2或62.化简:212x x x-++-【难度】4星【解析】零点分段法【答案】解:令10x-=,20x+=,0x=,∴零点为1x=、2x=-、0x=∴可分四段讨论:2x<-、20x-≤<、01x≤<、1x≥①当2x<-时,则10x-<,20x+<∴11x x-=-+,22x x+=--,x x=-∴原式=2(1)2()222x x x x x x-+----=-+--+=2x-②当20x-≤<时,则10x-<,20x+≥∴11x x-=-+,22x x+=+,x x=-∴原式=2(1)2()222x x x x x x-+++--=-++++=4课堂检测③当01x ≤<时,则10x -<,20x +> ∴11x x -=-+,22x x +=+,x x =∴原式=2(1)2222x x x x x x -+++-=-+++-24x =-+④当1x ≥时,10x -≥,20x +> ∴11x x -=-,22x x +=+,x x =∴原式=2(1)22222x x x x x x x -++-=-++-=综上所述,当2x <-时,212x x x -++-=2x -当20x -≤<时,212x x x -++-=4当01x ≤<时,212x x x -++-=24x =-+当1x ≥时,212x x x -++-=2x3. 化简124x x --+-【难度】4星【解析】零点分段法 【答案】解:令10x -=,40x -=,12x -=, ∴零点有1x =,4x =,3x =,1x =-则可以分五段来分类讨论:1x <-,11x -≤<,13x ≤<,34x ≤<,4x ≥ ①当1x <-时,10x -<,40x -<,10x --> ∴11x x -=-+,44x x -=-+,11x x --=--∴原式=124x x -+--+=14x x ---+=14x x ---+=23x -+②当11x -≤<时,10x -<,40x -<,10x --≤ ∴11x x -=-+,44x x -=-+,11x x --=+∴原式=124x x -+--+=14x x ---+=14x x +-+=5③当13x ≤<时,10x -≥,40x -<,30x -< ∴11x x -=-,44x x -=-+,33x x -=-+∴原式=124x x ---+=34x x --+=34x x -+-+=27x -+④当34x ≤<时,10x ->,40x -<,30x -≥ ∴11x x -=-,44x x -=-+,33x x -=-∴原式=124x x ---+=34x x --+=34x x --+=1⑤当4x ≥时,10x ->,40x -≥,30x -> ∴11x x -=-,44x x -=-,33x x -=-∴原式=124x x --+-=34x x -+-=34x x -+-=27x -综上所述,当1x <-时,124x x --+-=23x -+ 当11x -≤<时,124x x --+-=5 当13x ≤<时,124x x --+-=27x -+当34x ≤<时,124x x --+-=1当4x ≥时,124x x --+-=27x -1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .1. 化简:2121x x x -++--【难度】3星【解析】零点分段法 【答案】解:令210x -=,20x +=,10x -=, ∴零点有12x =,2x =-,1x = 则可分四段进行讨论:2x <-,122x -≤<,112x ≤<,1x ≥ ①当2x <-时,210x -<,20x +<,10x -<∴2121x x -=-+,22x x +=--,11x x -=-+∴原式=212(1)x x x -+----+=2121x x x -+--+-=22x --②当122x -≤<时,210x -<,20x +≥,10x -< ∴2121x x -=-+,22x x +=+,11x x -=-+∴原式=212(1)x x x -+++--+=2121x x x -++++-=2课后作业总结复习③当112x ≤<时,210x -≥,20x +>,10x -< ∴2121x x -=-,22x x +=+,11x x -=-+ ∴原式=212(1)x x x -++--+=2121x x x -+++-=4x ④当1x ≥时,210x ->,20x +>,10x -≥ ∴2121x x -=-,22x x +=+,11x x -=- ∴原式=212(1)x x x -++--=2121x x x -++-+=22x +综上所述,当2x <-时,2121x x x -++--=22x -- 当122x -≤<时,2121x x x -++--=2 当112x ≤<时,2121x x x -++--=4x 当1x ≥时,2121x x x -++--=22x +。
部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.5绝对值【名师点睛】1.概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.3.绝对值的非负性:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.【典例剖析】【例1】化简下列各数:(1)﹣(﹣5)(2)﹣(+7)(3)﹣[﹣(+23)](4)﹣[﹣(﹣a)](5)|﹣(+7)|(6)﹣|﹣8|(7)|﹣|+4 7 ||(8)﹣|﹣a|(a<0)【分析】(1)根据相反数定义求出即可;(2)根据相反数定义求出即可;(3)根据相反数定义求出即可;(4)根据相反数定义求出即可;(5)根据绝对值定义求出即可;(6)根据绝对值定义求出即可;(7)根据绝对值定义求出即可;(8)根据绝对值定义求出即可.【解析】(1)﹣(﹣5)=5;(2)﹣(+7)=﹣7;(3)﹣[﹣(+23)]=23;(4)﹣[﹣(﹣a)]=﹣a;(5)|﹣(+7)|=7;(6)﹣|﹣8|=﹣8;(7)|﹣|+47||=47;(8)﹣|﹣a|(a<0)=﹣(﹣a)=a.【点评】本题考查了绝对值,相反数的应用,注意:一个负数的绝对值等于它的相反数,一个正数的绝对值等于它本身,0的绝对值是0.【变式】化简:(1)﹣(﹣3);(2)﹣|﹣3.2|;(3)+(﹣0.5);(4)﹣|+13 |.【分析】(1)根据相反数的定义解决此题.(2)根据绝对值以及相反数的定义解决此题.(3)根据去括号法则解决此题.(4)根据绝对值以及相反数的定义解决此题.【解析】(1)﹣(﹣3)=3.(2)﹣|﹣3.2|=﹣3.2.(3)+(﹣0.5)=﹣0.5.(4)―|+13|=―13.【点评】本题主要考查绝对值以及相反数的定义,熟练掌握相反数的定义是解决本题的关键.【例2】已知a为整数(1)|a|能取最 小 (填“大”或“小”)值是 0 .此时a= 0 .(2)|a|+2能取最 小 (填“大”或“小”)值是 2 .此时a= 0 .(3)2﹣|a﹣1|能取最 大 (填“大”或“小”)值是 2 .此时a= 1 .(4)|a﹣1|+|a+2|能取最 小 (填“大”或“小”)值是 3 .此时a= ﹣2≤a≤1 .【分析】(1)由绝对值的性质即可得出答案;(2)由绝对值的性质即可得出答案;(3)由绝对值的性质即可得出答案;(4)由绝对值的性质即可得出答案.【解析】(1)|a|能取最小值是0.此时a=0.故答案为:小,0,0;(2)|a|+2能取最小值是2.此时a=0.故答案为:小,2,0;(3)2﹣|a﹣1|能取最大值是2.此时a=1.故答案为:大,2,1;(4)|a﹣1|+|a+2|能取最小值是3.此时﹣2≤a≤1;故答案为:小,3,﹣2≤a≤1.【点评】本题考查了绝对值的非负性质;熟练掌握绝对值的非负性质是解题的关键.【变式】.(1)如果|x|=2,则x= ±2 ;(2)如果x=﹣x,则x= 0 ;(3)如果|x|=x,求x的取值范围;(4)如果|x|=﹣x,求x的取值范围.【分析】(1)利用绝对值的定求解即可,(2)利用相反数的定义求解,(3)利用绝对值的性质求解即可,(4)利用绝对值的性质求解即可.【解析】(1)如果|x|=2,则x=±2;故答案为:±2.(2)如果x=﹣x,则x=0;故答案为:0.(3)如果|x|=x,则x≥0;(4)如果|x|=﹣x,则x≤0.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【满分训练】一.选择题(共10小题)1.(2022•通辽)﹣3的绝对值是( )A.―13B.3C.13D.﹣3【分析】应用绝对值的计算方法进行计算即可得出答案.【解析】|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解析【解析】∵|a|=5 4,∴a=±5 4.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.3.(2022•百色)﹣2023的绝对值等于( )A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解析】因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.4.(2022•绥化)化简|―12|,下列结果中,正确的是( )A.12B.―12C.2D.﹣2【分析】利用绝对值的意义解析即可.【解析】|―12|的绝对值是12,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.5.(2022•南充)下列计算结果为5的是( )A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解析】A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.6.(2021秋•河东区期末)若ab≠0,那么|a|a+|b|b的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b >0;分别计算即可.【解析】∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,|| a +||b=1+1=2;②当a<0,b<0时,|| a +||b=―1﹣1=﹣2;③当a>0,b<0时,|| a +||b=1﹣1=0;④当a<0,b>0时,|| a +||b=―1+1=0;综上所述,||a+||b的值为:±2或0.故选:C.【点评】本题考查绝对值的定义,运用分类讨论思想和熟练掌握并正确运用绝对值的定义是正确解题的关键.7.(2021秋•泗洪县期末)在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是( )A.2023B.2021C.1011D.1【分析】先根据A、B的位置关系,判断出a、b的大小关系,化简|a﹣b;再根据a取最大值,求出a的值;最后求出b的值.【解析】∵点A在点B左侧,∴a﹣b<0,∴|a﹣b|=b﹣a=2022;a为负整数,取最大值时为﹣1,此时b﹣(﹣1)=2022,则b=2021;故选:B.【点评】考查绝对值的化简和数轴.解题的关键在于能够结合数轴判断a、b的大小关系,进而化简|a﹣b|.注意:最大的负整数是﹣1.8.(2021秋•霍邱县期中)若|a|=﹣a,则在下列选项中a不可能是( )A.﹣2B.―12C.0D.5【分析】根据||=―a,结合绝对值性质可知:a≤0,不可能是正数.【解析】∵||=―a,∴实数a是非正数,即a≤0,∴选项中的数a不可能是正数,故选:D.【点评】本题考查了绝对值定义和性质,熟练掌握并正确运用绝对值性质是解题关键.9.(2020秋•九龙坡区校级期末)已知﹣1≤x≤2,则化简代数式3|x﹣2|﹣|x+1|的结果是( )A.﹣4x+5B.4x+5C.4x﹣5D.﹣4x﹣5【分析】由于﹣1≤x≤2,根据不等式性质可得:x﹣2≤0,x+1≥0,再依据绝对值性质化简即可.【解析】∵﹣1≤x≤2,∴x﹣2≤0,x+1≥0,∴3|x﹣2|﹣|x+1|=3(2﹣x)﹣(x+1)=﹣4x+5;故选:A.【点评】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.10.(2020秋•长垣市月考)若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有( )A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解析】①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.二.填空题(共8小题)11.(2022•常德)|﹣6|= 6 .【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解析】﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=a(a≥0)―a(a<0).12.(2022•泰州)若x=﹣3,则|x|的值为 3 .【分析】利用绝对值的代数意义计算即可求出值.【解析】∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.(2020秋•达孜区期末)绝对值不大于4的整数有 9 个.【分析】根据绝对值的性质解析即可.【解析】根据绝对值的概念可知,绝对值不大于4的整数有4,3,2,1,0,﹣1,﹣2,﹣3,﹣4,一共9个.【点评】解析此题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.14.(2020秋•吴江区期中)若|x|=﹣(﹣8),则x= ±8 .【分析】根据绝对值的性质解析可得.【解析】∵|x|=﹣(﹣8),∴x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.15.(2020秋•兴化市月考)当a= ﹣2 时,式子10﹣|a+2|取得最大值.【分析】根据任何数的偶次方是非负数,即可求解.【解析】∵|a+2|≥0,且当a+2=0,即a=﹣2时,|a+2|=0,∴当a=﹣2时,代数式10﹣|a+2|取得最大值是10.故答案是:﹣2.【点评】此题主要考查了非负数的性质,解题的关键是明确初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).16.(2022春•东台市期中)|x﹣2|+9有最小值为 9 .【分析】根据绝对值的非负性即可得出答案.【解析】∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.【点评】本题考查了绝对值的非负性,掌握|a|≥0是解题的关键.17.(2021秋•玄武区校级月考)如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 ﹣1 .【分析】根据绝对值的非负数的性质分别求出a、b,代入计算即可.【解析】∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2021秋•虎林市期末)|a+3|+|b﹣2|=0,则a+b= ﹣1 .【分析】根据绝对值非负数的性质列式求解即可得到a、b的值,然后再代入代数式进行计算即可求解.【解析】根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a+b=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.三.解析题(共4小题)19.在有理数3,﹣1.5,﹣312,0,2.5,﹣4,﹣(+3.5),|―12|中,求出其中分数的相反数和绝对值.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值;【解析】﹣1.5的相反数1.5,绝对值是1.5;﹣312的相反数是312,绝对值是312;2.5的相反数是﹣2.5,绝对值是2.5;﹣(+3.5)=﹣3.5相反数是3.5,绝对值是3.5;|―12|=12相反数是―12,绝对值是12.【点评】本题考查了绝对值,利用了绝对值得性质:正数的绝对等于它本身,负数的绝对值等于它的相反数.20.求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【分析】根据绝对值的含义和求法,求出每个数的绝对值各是多少即可.【解析】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解析此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x= ﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x= 1或7 .【分析】(1)根据绝对值解析即可;(2)根据绝对值的非负性解析即可.【解析】(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或7【点评】此题考查绝对值,关键是根据绝对值的非负性和概念解析.22.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b| ≥ |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解析】(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.。
初中数学绝对值重点难点突破(含练习题和答案)
初中数学知识点绝对值重点难点突破(含练习题和答案)一、绝对值定义数轴上表示数a的点与原点的距离,叫做数a的绝对值。
数a的绝对值记作|a|,读作a的绝对值.二、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即(1)如果a>0,那么|a|=a;(2)如果a=0,那么|a|=0;(3)如果a<0,那么|a|=-a.用式子可表示为:三、重点归纳①绝对值为正数的数有两个,它们互为相反数.②两个互为相反数的数的绝对值相等.反之,绝对值相等的两个数相等或互为相反数。
③求一个数的绝对值就是去绝对值符号,所以求一个数的绝对值,必须先判断绝对值符号里的数,再去绝对值符号.如果绝对值里的数是非负数,那么这个数的绝对值就是它本身,如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数,当绝对值里面的数的正负性不能确定时,要分类讨论,即将其分成大于0、小于0、等于0、这三类来计论。
例题1|x-2|的绝对值为答案解析(1)如果x-2>0,即x>2,那么|x-2|=x-2(2)如果x-2=0,即x=2,那么|x-2|=0(3)如果x-2<0,即x<2,那么|x-2|=2-x④一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。
⑤在数轴上,由于距离总是正数和零,则有理数的绝对值不可能是负数,因此任何一个有理数的绝对值都是非负数,即a取任意有理数,都有|a|≥0.绝对值的这一性质表现为:(1) |a|≥0,即 |a| 有最小值;(2)若几个非负数的和为零,则每一个非负数都为零,即|a|+|b| +|c|+…+|z|=0,则a=b=c=…=z=0.例题2已知|3-x|+(2x-y)²=0,那么x+y的值为答案 9解析由绝对值和偶次幂的非负性可得3-x=0,x=3;2x-y=0,y=6,所以x+y=9.练习题1、检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,4个足球检测质量分别是,+0.9,-3.6,-0.8,+2.5,从轻重的角度看,最接近标准的是。
七级数学思维探究(九)绝对值与方程(含答案)
商高是公元前11世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为3和4时,直角三角形的斜边就是5,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前6世纪发现的. 9.绝对值与方程 解读课标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有: 1.最简绝对值方程形如()0ax b c c +=≥是最简单的绝对值方程,可化为两个一元一次方程ax b c +=与ax b c +=-. 2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解. 问题解决例1 方程525x x -+=-的解是________.试一试 原方程变形为552x x -=--,再把此方程化为一般方程求解.例2 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m ,n ,k 的大小关系为( ).A . m n k >>B .n k m >>C .k m n >>D .m k n >> 试一试 从方程ax b c +=有解的条件入手. 例3 解下列方程: (1)314x x -+=; (2)311x x x +--=+; (3)134x x ++-=.试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例4 如图,数轴上有A 、B 两点,分别对应的数为a 、b ,已知()21a +与3b -互为相反数.点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,说明理由;(3)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问几分钟时点P 到点A 、点B 的距离相等? 试一试 由绝对值的几何意义建立关于x 的绝对值方程. 例5 讨论关于x 的方程25x x a -+-=的解的情况.分析与解 a 与方程中常数2、5有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具.数轴上表示数x 的点到数轴上表示数2和5的点的距离和的最小值为3,由此可得原方程的解的情况是:(1)当3a >时,原方程有两解;(2)当3a =时,原方程有无数解()25x ≤≤; (3)当3a <时,原方程无解. 数学冲浪 知识技能广场-2-131.若9x =是方程123x m -=的解,则m =_______;又若当1n =时,则方程123x n -=的解是_____. 2.方程3121x x -=+的解是_______;x =_______是方程()3115xx -=+的解;解方程399019951995x +=,得x =_______.3.如果()2230x x y -+-+=,那么()2x y +的值为________.4.已知关于x 的方程()22ax a x +=-的解满足1102x --=,则a 的值为( ). A .10或25 B .10或25- C .10-或25 D .10-或25-5.若20042004202004x +=⨯,则x 等于( ).A .20或21-B .20-或21C .19-或21D .19或21- 6.方程880m m +++=的解的个数为( )A .2个B .3个C .无数个D .不确定 7.解下列方程(1)142132x -+=; (2)221x x -=-;(3)3548x -+=; (4)213x x -+=. 8.求关于x 的方程()21001x a a ---=<<的所有解的和. 9.解方程32x k +-=.10.已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d +=_______. 11.若1x 、2x 都满足条件21234x x -++=,且12x x <,则12x x -的取值范围是_______. 12.满足方程2006182006x --+=的所有x 的和为________. 13.若关于x 的方程21x a --=有三个整数解,则a 的值为( ) A .0 B .2 C .1 D .314.方程27218a a ++-=的整数解的个数有( ) A .5 B .4 C .3 D .215.若a 是方程20042004a a -=+的解,则2005a -等于( ) A .2005a - B .2005a -- C .2005a + D .2005a -+ 16.解下列方程(1)200520052006x x -+-=; (2)154x x -+-=.17.当a 满足什么条件时,关于x 的方程25x x a ---=有一解?有无数多个解?无解? 应用探究乐园18.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足()2210a b ++-=.(l )求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程12122x x -=+的解,在数轴上是否存在点P ,使得PA PB PC +=?若存在,求出点P 对应的数;若不存在,说明理由; (3)在(1)、(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分剐以每秒4个单位长度和9个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其常数值.ABO19.已知()()()12213136x x y y z z ++--++-++=,求23x y z ++的最大值和最小值. 微探究从三阶幻方谈起相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出来,就是一个3阶幻方,也就是在33⨯的方阵中填入1~9,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在33⨯的方阵图中,每行、每列、每条对角线上3个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在33⨯的方格中填入9个不同的数,使得各行各列及两条对角线上3个数的和都相等,且为S ,若最中间数为m ,则3S m =.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方. (3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1 如图①,有9个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试 虽然问题要求的只是左上角的数,但是问题的条件还与其他的数相关.故为充分运用已知条件,需引入不同的字母表示数(如图②).例2 如图,在33⨯的方格表中填入九个不同的正整数:1,2,3,4,5,6,7,8和x .使得各行、各列所填的三个数的和都相等,请确定x 的值,并给出一种填数法.试一试 如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即123456781233x x ++++++++=+为正整数,又2121233x xa b c d x +=+=+-=-,从估计a b +和c d+的最小值入手.整体核算法图①1319?图②1913x 4x 3x 2x 1xdcbax整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,a 、b 、c 、d 、e 、f 、g 、h 、i 分别代表1,2,3,4,5,6,7,8,9中某一个数,不同字母代表不同的数,使每个小圆内3个数的和都相等,那么a d g ++的值是多少?分析与解 设这个相等的和是S ,现将这9个小圆中()3927⨯=个数求和,可得:()()()912923129345135S a b c d e f g h i =++++⨯++++++++=⨯+++=⨯=,故15S =.先从9所在的小圆看,h 至少是1,i 最多只能是5,再从1所在的小圆看,a 最多只能是9,由于115i a ++=,所以必须5i =,9a =,由此可以求得图②.对照图①与图②中各数的位置,可看到93618a d g ++=++=. 当然也可以有另一解法.将含1、含2、含4、含5、含7与含8的6个小圆内()3618⨯=个数求和,可得:()615124578a b c d e f g h i a d g ⨯=+++++++++++++++++,即9072a d g =+++,所以907218a d g ++=-=. 练一练1.将2到10这9个自然数填入图中的9个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的3个数的和是_______.2.请构造“幻角”,将1~10这10个整数填入图中的小三角形内(2和4已填好),使图中每个大三角123456789i h g f edc b a图①987654321987654321图②形内四数之和都等于25.3.请将4-,3-,2-,1-,0,1,2,3,4,这9个数分别填入图中方阵的9个空格,使3行、3列、2条对角线上的3个数的和都是0.4.如图,a 、b 、c 、d 、e 、f 均为有理数,图中各行各列及两条对角线上的和都相等,求a b c d e f +++++的值.5.如图是一个33⨯的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求k 的值.6.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中3行、3列以及2条对角线上的点数之和都等于15,是一种“3阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从3阶到10阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用42-134 fedc b a 1211k64x32了对称思想.例如,用1,2,3,…,16构造4阶幻方的方法是:先将1,2,3,…,16依次排成图③,然后以外四角对换,即1与16对换,4与13对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的4阶幻方.8.把数字1,2,3,…,9分别填入图中的9个圈内,要求三角形ABC 和三角形DEF 的每条边上三个圈内数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究 商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础.(1)100%=⨯利润利润率进价; (2)利润=售价-进价;(3)售价=进价+利润=进价×(1+利润率).例1 一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润_______元.试一试 从求出成本价切入.例2 某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( ). A .25% B .20% C .16% D .12.5% 试一试 利用获利不变建立方程.例3 某房地产开发商开发一套房子的成本随着物价上涨比原来增加了10%,为了赚钱,开发商把售价提高了0.5倍,利润率比原来增加了60%,求开发商原来的利润率. 试一试 因售价=成本×(1+利润率),故还需设出成本. 例4 某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予8折优惠.图①图②98765321416151413121110987654321图③图④FE DCBA小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?分析与解 第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当198元为购物不打折付的钱时,所购物品的原价为198元,又554450104=+,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,1040.8130÷=(元). 因此,554元所购物品的原价为130500630+=(元),于是购买小明花198630828+=(元)所购的全部物品,小亮一次性购买应付()5000.98285000.8712.4⨯+-⨯=(元).情形2 当198元为购物打九折付的钱时,所购物品的原价为1980.9220÷=(元). 仿情形1的讨论,购220630850+=(元)物品一次性付款应为()5000.98505000.8730⨯+-⨯=(元). 练一练1.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为_______.2.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润为 _______元.3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共带省2800元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为________. 5.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原销售价的八折销售,售价为120元,则这款羊毛衫每件的原销售价为_______元.6.甲用1000元购买了一些股票,随即他将这些股票转卖给乙,获利10%.而后乙又将这些股票反卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲( ).A .盈亏平衡B .盈利1元C .盈利9元D .亏损1.1元7.2008年爆发的世界金融危机,是自20世纪30年代以来世界最严重的一场金融危机,受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下列所列方程正确的是( ). A .()22001%148a += B .()22001%148a -= C .()20012%148a -= D . ()22001% 148a -=8.某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( ). A .25% B .20% C .16% D .12.5%9.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( ). A .6新 B .7折 C .8折 D .9折 10.某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元,按标价给予九折优惠;③如一次购物超过500元,则其中500元按第②条给予优惠,超过500元的部分则给予八折优惠. 某人两次去购物,分别付款168元和423元,如果他只去一次购买同样的商品,则应付款是( ). A .522.8元 B .510.4元 C .560.4元 D .472.8元B 两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(2)若A 型台灯按标价的九折出售,B 型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元? 12.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品C 的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物全额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元? 微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下: 1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离. 2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离. 例1 (1)在公路上,汽车A 、B 、C 分别以80km/h 、70km/h 、50km/h 的速度匀速行驶,A 从甲站开往乙站,同时,B 、C 从乙站开往甲站.A 在与B 相遇2小时后又与C 相遇,则甲、乙两站相距_____km . (2)小王沿街匀速行走,他发现每隔6min 从背后驶过一辆18路公交车;每隔3min 迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______min . 试一试 对于(2),“背后驶过与迎面驶来”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例2 (1)一艘轮船从A 港到B 港顺水航行,需6小时,从B 港到A 港逆水需8小时,若在静水条件下,从A 港到B 港需( )小时.A .7B .172C .667D .162(2)甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边( ). A . AB 上 B .BC 上 C .CD 上 D .DA 上试一试 对于(2),设正方形边长为a ,甲的速度为x ,相遇时甲行的路程为y ,利用“相遇时甲、乙两动点运动时间相等”建立方程,把y 用a 的代数式表示.例3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔113分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了多少分钟?试一试 当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比. 例4 甲、乙二人分别从A 、B 两地同时出发,在距离B 地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A 地后,又在距A 地4千米处相遇,求A 、B 两地相距多少千米? 解法一 第一次相遇时,甲、乙两人所走的路程之和,正是A 、B 两地相距的路程,即当甲、乙合走完A 、B 间的全部路程时,乙走了6千米,第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为6318⨯=(千米). 考虑到乙从B 地走到A 后又返回了4千米,所以A 、B 两地间的距离为18414-=(千米).甲解法二 甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例. 到第一次相遇,甲走了(全程6-)千米,乙走了6千米;到第二次相遇,甲走了(2⨯全程4-)千米,乙走了(全程4+)千米.设全程为s ,易得到下列方程62464s s s --=+, 解得114s =,20s =(舍去), 所以A 、B 两地相距14千米.解法三 设全程为s 千米,甲、乙两人速度分别为1v ,2v .则 121266244s v v s s v v -⎧=⎪⎪⎨-+⎪=⎪⎩①②,①÷②得66244s s s -=-+, 解得14s =或0s =(舍去). 乘车方案例5 老师带着两名学生到离学校33千米远的博物馆参观,老师乘一辆摩托车,速度为25千米/时,这辆摩托车后座可带乘一名学生,带人速度为20千米/时,学生步行的速度为5千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过3个小时. 分析 若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键. 解 要使师生三人都到达博物馆的时间尽可能短,可设计如下方案: 设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆.如图,设老师带甲乘摩托车行驶了x 千米,用了20x 小时,比乙多行了()3205204x x ⨯-=(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了()3255440xx ÷+=(小时).乙遇到老师时,已经步行了3520408xx x ⎛⎫+⨯= ⎪⎝⎭(千米),离博物馆还有3338x -(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有3338x x =-,解得24x =.即甲先乘摩托车24千米,用时1.2小时,再步行9千米,用时1.8小时,共计3小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过3个小时.另解:设乙先步行的时间为x 小时,步行的路程为2s ,则25s x =(千米),此时老师带甲走的路程为233335s x -=-(千米),老师返回接乙走的路程为23323310s x -=-.故有33533102025x xx --+=,解B (乙)(甲)A①②学校博物馆乙得 1.8x =,甲乘车的时间为335 1.220x-=(小时),故甲从学校到博物馆共用1.8 1.23+=(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为150m 和200m ,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为10秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______. 4.甲、乙分别自A 、B 两地同时相向步行,2小时后中途相遇,相遇后,甲、乙步行速度都提高了1千米/时,当甲到达B 地后立刻按原路向A 地返行,当乙到达A 地后也立刻按原路向B 地返行.甲、乙两人在第一次相遇后3小时36分又再次相遇,则A 、B 两地的距离是_______千米.5.甲、乙两人沿同一路线骑车(匀速)从A 到B ,甲需要30分钟,乙需要40分钟.如果乙比甲早出发6分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有5米,丙距终点还有10米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A 、B 两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;据浙江省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:5y ax b =++,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费,若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/时,骑车人的速度为10.8千米/时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在A 、B 两地同时相向而行,于E 处相遇后,甲继续向B 地行走,乙则休息了14分钟,再继续向A 地行走.甲和乙到达B 和A 后立即折返,仍在E 处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A 和B 两地相距多少米?乙11.某单位有135人要到50千米外的某地参观,因为步行时速只有5千米,为了使他们上午到达,配备了一辆最多载人50名、时速25千米的大客车.于是早晨6时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图.12.A 、B 、C 三辆车在同一条直路上同向行驶,某一时刻,A 在前,C 在后,B 在A 、C 正中间.10分钟后,C 追上B ;又过了5分钟,C 追上A .问再过多少分钟,B 追上A ?乙E BA9.绝对值与方程 问题解决例1 由552x x -=--,得552x x -=--或()552x x -=---,所以0x =或10x =-.经检验知0x =时,方程左右两边不等,故舍去.从而原方程的解为10x =-. 例2 A 23x m -=-,34x n -=-,45x k -=-,由题意得0m -<,0n -=,0k ->,从而0m >,0k <.例3 (1)54x =-或32x =.原方程化为314x x -+=或314x x -+=-,即314x x +=-或314x x +=+.(2)当3x <-时,原方程化为()()311x x x -++-=+,得5x =-. 当31x -<≤时,原方程化为311x x x ++-=+,得1x =-. 当1x ≥时,原方程化为()311x x x +--=+,得3x =. 综上知原方程的解为5x =-,1-,3.(3)由绝对值的几何意义得原方程的解为13x -≤≤.例4 (1)1x =;(2)存在,32x =-或72(3)223或415数学冲浪1.1;9或3 2.2或0;107±;0或1- 3.494.A 5.D 6.C7.(1)1x =-或3x =-;(2)1x =;(3)3x =或13x =;(4)43x =-或2x =.8.()2101x a a -=±<<,()21x a -=±±,()21x a =±±,得13x a =+,23x a =-,31x a =+,41x a =-,故12348x x x x +++=.9.当0k <,原方程无解;当0k =时,原方程有两解:1x =-或5x =-;当02k <<时,原方程化为32x k +=±,此时原方程有四解:()32x k =-±±;当2k =时,原方程化为322x +=±,此时原方程有三解:1x =或7x =-或3x =-;当2k >时,原方程有两解:()32x k =-±+.10.0或1 2d a +≤,又a 、d 都是整数,得2d a +=,1,0.当2d a +=,则a b c d =-==-,即0d a +=矛盾;若1d a +=,令1a =,0b c d ===满足题意;若0d a +=,令1b =,0a c d ===满足题意.11.1220x x --<≤ 12.4012 13.C14.B 由数轴知72a -≤≤1,且2a 为偶数 15.D 0a ≤ 16.(1)1002或3008 可以得到220052006x -=; (2)15x ≤≤.17.由绝对值几何意义知:当33a -<<时,方程有一解;当3a =±时,方程有无穷多个解,当3a >或3a <-时,方程无解. 18.(1)2a =-,1b =,3AB =;(2)存在点P ,点P 对应的数为1-或3-;(3)()()''''53512A B B C t t -=+-+=,为常数.19.()12123x x x x ++-=--+-≥,同理213y y -++≥,314z z -++≥,得()()()12213136x x y y z z ++--++-++≥.当且仅当12x -≤≤,12y -≤≤,13x -≤≤时,上面各式等号成立. 又()()()12213136x x y y z z ++--++-++=,由12123x y z -⎧⎪-⎨⎪⎩①②-1③≤≤≤≤≤≤ 得①+②2⨯+③3⨯,62315x y z -++≤≤,因此,23x y z ++的最大值为15,最小值为6-.从三阶幻方谈起(微探究)例l 由已知条件得:123413241319x x x x x x x x x x ++=++=++=++,这样前面两个式子之和等于后面的两个式子之和,即1234123421319x x x x x x x x x ++++=+++++,21319x =+∴,得16x =.例2 a b +与c d +的最小值是123452+++=,所以21253x -≥,即212x ≤.而2123xa b +=-为整数,且x 是不同于1,2,3,4,5,6,7,8的正整数,故9x =. 练一练1.2,6,10;15,18,21设中间的圆圈中的数是x ,同一直线上的3个数的和是y ,则43231054y x -=+++=,4183x y =-.2.如图3.如图:4.由条件得:41 9a -+=,39b c ++=,9d e f ++=.上述三式相加有627a b c d e f ++++++=,故21a b c d e f +++++=.5.如图,由121a k b a c ++=++及11121c d b d ++=++,得121k b c +=+,110c b =+,从而110121231k =+=(注:这个幻方是可以完成的,如第1行为6,231,111;第2行为221,116,11;第3行为121,1,226).6.这9个数的积为31112481632646442⨯⨯⨯⨯⨯⨯⨯⨯=,所以每行、每列、每条对角线上三个数字积为64,得1ac =,1ef =,2ax =,a 、c 、e 、f 分别为14、12、2、4中的某个数,推得8x =.7.略 8.(1)略(2)显然有12945x y z ++=+++= ①图中六条边,每条边上三个圈中之数的和为18,得32618108z y x ++=⨯=. ② ②-①,得21084563x y +=-=. ③把AB 、BC 、CA 每一边上三圈中之数的和相加,得231854x y +=⨯=. ④ 联立③、④解得15x =,24y =,进而6z =.在1~9中三个数之和为24的仅有7,8,9,所以在D 、E 、F 三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中之数一旦确定,根据题目要求,其余六个圈内之数也隧之确56379181024-1-2340-4-321dc b k a 11121。
部编数学七年级上册专题1.2绝对值(压轴题专项讲练)(人教版)(解析版)含答案
专题1.2 绝对值【典例1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x= ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|= .(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.1.(2022•高邮市模拟)若|x|+|x﹣4|=8,则x的值为( )A.﹣2B.6C.﹣2或6D.以上都不对【思路点拨】根据绝对值的意义得出,|x|+|x﹣4|=8表示到原点和4的距离和是8的数,分两种情况求出x的值即可.【解题过程】解:∵|x|+|x﹣4|=8,∴当x>4时,x+x﹣4=8,解得x=6,当x<0时,﹣x+4﹣x=8,解得x=﹣2,故选:C.2.(2021秋•西峡县期末)|x+8|+|x+1|+|x﹣3|+|x﹣5|的最小值等于( )A.10B.11C.17D.21【思路点拨】由|x+8|+|x+1|+|x﹣3|+|x﹣5|所表示的意义,得出当﹣1≤x≤3时,这个距离之和最小,再根据数轴表示数的特点进行计算即可.【解题过程】解:|x+8|+|x+1|+|x﹣3|+|x﹣5|表示数轴上表示数x的点,到表示数﹣8,﹣1,3,5的点的距离之和,由数轴表示数的意义可知,当﹣1≤x≤3时,这个距离之和最小,最小值为|5﹣(﹣8)|+|3﹣(﹣1)|=13+4=17,故选:C.3.如果有理数a,b,c满足|a﹣b|=1,|b+c|=2,|a+c|=3,那么|a+2b+3c|等于( )A.5B.6C.7D.8【思路点拨】通过对式子|a+c|=3的变形,确定已知之间的关系,再进行分类讨论,结合对所求式子的变形,找到已知所求之间的关系,再进行求解.【解答过程】解:|a+c|=|a﹣b+b+c|=3,∵|a﹣b|=1,|b+c|=2,∴a﹣b=1,b+c=2或a﹣b=﹣1,b+c=﹣2,分两种情况讨论:①若a﹣b=1,b+c=2,则两式相加,得a+c=3,∴|a+2b+3c|=|a+c+2(b+c)|=|3+2×2|=7;②若a﹣b=﹣1,b+c=﹣2,则两式相加,得a+c=﹣3,∴|a+2b+3c|=|a+c+2(b+c)|=|﹣3+2×(﹣2)|=7.故选:C.4.(2021秋•洛川县校级期末)已知:m=|a b|c+2|b c|a+3|c a|b,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=( )A.4B.3C.2D.1【思路点拨】根据绝对值的意义分情况说明即可求解.【解题过程】解:∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m=|−c|c+2|−a|a+3|−b|b∴分三种情况说明:当a<0,b<0,c>0时,m=1﹣2﹣3=﹣4,当a<0,c<0,b>0时,m=﹣1﹣2+3=0,当a>0,b<0,c<0时,m=﹣1+2﹣3=﹣2,∴m共有3个不同的值,﹣4,0,﹣2,最大的值为0.∴x=3,y=0,∴x+y=3.故选:B.5.我们知道|x|=x,(x>0)0,(x=0)−x,(x<0),所以当x>0时,x|x|=xx=1;当x<0时,x|x|=x−x=−1.下列结论序号正确的是( )①已知a,b是有理数,当ab≠0时,a|a|+b|b|的值为0或±2;②已知a,b是不为0的有理数,当|ab|=﹣ab时,则2a|a|+b|b|的值为±1;③已知a,b,c是有理数,a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|=−1或3;④已知a,b,c是非零的有理数,且|abc|abc=−1,则|a|a+|b|b+|c|c的值为1或﹣3;⑤已知a,b,c是非零的有理数,a+b+c=0,则a|a|+b|b|+c|c|+abc|abc|的所有可能的值为0.A.①③④B.②③⑤C.①②④⑤D.①②④【思路点拨】关于绝对值化简的问题,就要严格利用绝对值的定义来化简,要考虑全面,有时可以用特殊值法.【解题过程】解:①因为ab≠0,所以有以下几种情况:a>0,b<0,原式值是0;a>0,b>0,原式值是2;a<0,b>0,原式值是0;a<0,b<0,原式值是﹣2.故①正确;②∵|ab|=﹣ab,a,b是不为0的有理数,∴ab <0,有以下两种情况:a >0,b <0,此时原式值是1;a <0,b >0,此时原式值是﹣1,故②正确;③已知a ,b ,c 是有理数且a +b +c =0,abc <0,则b +c =﹣a ,a +c =﹣b ,b +c =﹣a ,∴原式化为−a |a|+−b |b|+−c |c|a ,b ,c 两正一负,有四种情况:a >0,b >0,c <0,原式值为﹣1;a >0,b <0,c >0,原式值为﹣1;a <0,b >0,c >0,原式值为﹣1;故③错误;④∵|abc|abc=−1,∴abc <0,分四种情况(同③)∴原式值是﹣1和3,故④正确;⑤分两种情况:当一正两负时,a |a|,b |b|.c |c|有一个1,两个﹣1,而abc >0,所以abc |abc|=1,此时和为1+1﹣1﹣1=0;当一负两正时,a |a|,b |b|.c |c|有一个﹣1,两个1,而abc <0,所以abc |abc|=−1,此时和为﹣1+1+1﹣1=0.故⑤正确.故选:C .6.(2021秋•常州期末)已知x =20212022,则|x ﹣2|﹣|x ﹣1|+|x |+|x +1|﹣|x +2|的值是 20212022 .【思路点拨】根据x 的值,判断x ﹣2,x ﹣1,x +1,x +2的符号,再根据绝对值的定义化简后即可得到答案.【解题过程】解:∵x=20212022,即0<x<1,∴x﹣2<0,x﹣1<0,x+1>0,x+2>0,∴|x﹣2|﹣|x﹣1|+|x|+|x+1|﹣|x+2|=2﹣x﹣(1﹣x)+x+x+1﹣x﹣2=2﹣x﹣1+x+x+x+1﹣x﹣2=x=2021 2022,故答案为:2021 2022.7.(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是 2021 .【思路点拨】利用绝对值的定义,结合数轴可知最小值为1012到﹣1009的距离.【解题过程】解:∵|x+1009|=|x﹣(﹣1009)|,|x+506|=|x﹣(﹣506)|,由绝对值的定义可知:|x+1009|代表x到﹣1009的距离;|x+506|代表x到﹣506的距离;|x﹣1012|代表x到1012的距离;结合数轴可知:当x在﹣1009与1012之间,且x=﹣506时,距离之和最小,∴最小值=1012﹣(﹣1009)=2021,故答案为:2021.8.(2021春•杨浦区校级期末)已知a,b,c为整数,且|a﹣b|2021+|c﹣a|2020=1,则|a﹣b|+|b﹣c|+|c﹣a|= 0或2 .【思路点拨】因为a、b、c都为整数,而且|a﹣b|2021+|c﹣a|2020=1,所以|a﹣b|与|c﹣a|只能是0或者1,于是进行分类讨论即可得出.【解题过程】解:∵a、b、c为整数,且|a﹣b|2021+|c﹣a|2020=1,∴有|a﹣b|=1,|c﹣a|=0或|a﹣b|=0,|c﹣a|=1①若|a﹣b|=1,|c﹣a|=0,则a﹣b=±1,a=c,∴|b﹣c|=|c﹣b|=|a﹣b|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=1+1+0=2,②|a﹣b|=0,|c﹣a|=1,则a=b,c﹣a=±1,∴|b﹣c|=|c﹣b|=|c﹣a|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=0+1﹣1=0,故答案为:0或2.9.(2021秋•大田县期中)三个整数a,b,c满足a<b<c,且a+b+c=0.若|a|<10,则|a|+|b|+|c|的最大值为 34 .【思路点拨】根据a+b+c=0,a<b<c,可得a<0,c>0,a+b<0,则|a|>|b|,再由|a|<10,a,b,c都是整数,得到|a|≤9,则|b|≤8,根据|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,即可得到|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,由此求解即可.【解题过程】解:∵a+b+c=0,a<b<c,∴a<0,c>0,a+b<0,∴|a|>|b|,∵|a|<10,a,b,c都是整数,∴|a|≤9,∴|b|≤8,∵|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,∴|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,∴|a|+|b|+|c|的值最大为9+8+17=34,故答案为:34.10.(2021秋•雁塔区校级期中)如果|a+3|+|a﹣2|+|b﹣4|+|b﹣7|=8,则a﹣b的最大值等于 ﹣2 .【思路点拨】根据题意可得|a+3|+|a﹣2|=5,|b﹣4|+|b﹣7|=3,此时﹣3≤a≤2,4≤b≤7,可求得﹣10≤a﹣b≤﹣2,即可求解.【解题过程】解:|a +3|+|a ﹣2|≥5,|b ﹣4|+|b ﹣7|≥3,∴|a +3|+|a ﹣2|+|b ﹣4|+|b ﹣7|≥8,∵|a +3|+|a ﹣2|+|b ﹣4|+|b ﹣7|=8,∴|a +3|+|a ﹣2|=5,|b ﹣4|+|b ﹣7|=3,∴﹣3≤a ≤2,4≤b ≤7,∴﹣10≤a ﹣b ≤﹣2,∴a ﹣b 的最大值等于﹣2,故答案为:﹣2.11.(2021秋•江岸区校级月考)设有理数a ,b ,c 满足a >b >c ,这里ac <0且|c |<|b |<|a |,则|x−a b 2|+|x−b c 2|+|x +a c 2|的最小值为 2a b c 2 .【思路点拨】根据ac <0可知a ,c 异号,再根据a >b >c ,以及|c |<|b |<|a |,即可确定a ,﹣a ,b ,﹣b ,c ,﹣c 在数轴上的位置,而|x −a b 2|+|x −b c 2|+|x +a c 2|表示到 a b 2,b c 2,−a c 2三点的距离的和,根据数轴即可确定.【解题过程】解:∵ac <0,∴a ,c 异号,∵a >b >c ,∴a >0,c <0,又∵|c |<|b |<|a |,∴﹣a <﹣b <c <0<﹣c <b <a ,又∵|x −a b 2|+|x −b c 2|+|x +a c 2|表示到 a b 2,b c 2,−a c 2三点的距离的和,当x 在b c 2时距离最小,即|x −a b 2|+|x −b c 2|+|x +a c 2|最小,最小值是a b 2与−a c 2之间的距离,即2a b c 2.故答案为:2a b c 2.12.(2020秋•海曙区期末)已知a ,b ,c 为3个自然数,满足a +2b +3c =2021,其中a ≤b ≤c ,则|a ﹣b |+|b ﹣c |+|c ﹣a |的最大值是 1346 .【思路点拨】根据绝对值的性质化简式子,再确定a,b,c的值,由此解答即可.【解题过程】解:由题意知b≥a,则|a﹣b|=b﹣a,b≤c,则|b﹣c|=c﹣b,a≤c,则|c﹣a|=c﹣a,故|a﹣b|+|b﹣c|+|c﹣a|=b﹣a+c﹣b+c﹣a=2(c﹣a),上式值最大时,即c最大,且a最小时,(即c﹣a最大时),又a+2b+3c=2021,2021=3×673+2,故c的最大值为673,此时a+2b=2,a≤b,且a,b均为自然数,a=0时,b=1,此时a最小,故2(c﹣a)的最大值即c=673,a=0时的值,即:2×(673﹣0)=1346.故答案为:1346.13.设x是有理数,y=|x﹣1|+|x+1|.有下列四个结论:①y没有最小值;②有无穷多个x的值,使y取到最小值;③有x的值,使y=1.8;④使y=2.5的x有两个值.其中正确的是 (填序号).【思路点拨】依据绝对值的几何意义,|x﹣1|可以看成是x与1的距离,|x+1|可以看出是x与﹣1的距离,这样y可以看成两个距离之和,即在数轴上找一点x,使它到1和﹣1 的距离之和等于y.要从三个情形分析讨论:①x 在﹣1的左侧;②x在﹣1和1之间(包括﹣1,1);③x在1的右侧.【解答过程】解:∵|x﹣1|是数轴上x与1的距离,|x+1是数轴上x与﹣1的距离,∴y=|x﹣1|+|x+1|是数轴上x与1和﹣1的距离之和.∴当x在﹣1和1之间(包括﹣1,1)时,y的值总等于2.如下图:当x在﹣1的左侧时,y的值总大于于2.如下图:当x在1的右侧时,y的值总大于于2.如下图:综上,y有最小值2,且此时﹣1≤x≤1.∴①③不正确,②正确.∵使y=2.5的x有﹣1,25和1,25两个值,∴④正确.故答案为②④.14.有理数a,b满足|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,a2+b2的最大值为 ,最小值为 .【思路点拨】将|a+1|+|2﹣a|以及|b+2|+|b+5|拆分开来看,从而分别得到他们的最值小均为3,而根据已知知道,它们的和为6,从而得到|a+1|+|2﹣a|以及|b+2|+|b+5|的值均为3,从而得到a和b的取值范围,进而可以求出a2+b2的最大值和最小值.【解答过程】解:|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,∴|a+1|+|2﹣a|+|b+2|+|b+5|=6,∵|a+1|表示a到﹣1的距离,|2﹣a|表示a到2的距离,∴|a+1|+|2﹣a|≥3,又∵|b+2||表示b到﹣2的距离,|b+5|表示b到﹣5的距离,∴|b+2|+|b+5|≥3,又∵|a+1|+|2﹣a|+|b+2|+|b+5|=6,∴|a+1|+|2﹣a|=3,|b+2|+|b+5|=3,此时﹣1≤a≤2,﹣5≤b≤﹣2,∴a2的最大值为4,最小值为0,b2的最大值为25,最小值为4,∴a2+b2的最大值为29,最小值为4.故答案为:29,4.15.(2021秋•梁子湖区期中)已知|ab ﹣2|与|b ﹣2|互为相反数,求b 1a 1−b 2a−2+b 3a 3的值.【思路点拨】根据绝对值的非负性求出a ,b 的值,代入代数式求值即可.【解题过程】解:根据题意得|ab ﹣2|+|b ﹣2|=0,∵|ab ﹣2|≥0,|b ﹣2|≥0,∴ab ﹣2=0,b ﹣2=0,∴a =1,b =2,∴原式=32−4−1+54=32+4+54=274.16.(2021秋•贡井区期中)如图,数轴上的点A ,B ,C ,D ,E 对应的数分别为a ,b ,c ,d ,e ,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a ﹣c < 0,b ﹣a > 0,b ﹣d < 0(填“>“,“<“或“=“);(2)化简:|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |;(3)若|a |=|e |,|b |=3,直接写出b ﹣e 的值.【思路点拨】(1)根据数轴得出a <b <c <d <e ,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b 、e 的值,再代入求出即可.【解题过程】解:(1)从数轴可知:a <b <c <d <e ,∴a ﹣c <0,b ﹣a >0,b ﹣d <0,故答案为:<,>,<;(2)原式=|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |=﹣a +c ﹣2(b ﹣a )﹣(d ﹣b )=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.17.(2021秋•铜山区期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离记为d,请回答下列问题:(1)数轴上表示﹣3和1两点之间的距离d为 4 ;(2)数轴上表示x和﹣5两点之间的距离d为 |x+5| ;(3)若x表示一个有理数,且x大于﹣3且小于1,则|x﹣1|+|x+3|= 4 ;(4)若x表示一个有理数,且|x+2|+|x+3|>1,则有理数x的取值范围为 x<﹣2或x>﹣3 .【思路点拨】(1)根据数轴上两点间的距离公式进行计算;(2)根据数轴上两点间距离公式列式;(3)根据绝对值的意义进行化简计算;(4)根据绝对值的意义和数轴上两点间的距离进行分析求解.【解题过程】解:(1)d=1﹣(﹣3)=1+3=4,∴数轴上表示﹣3和1两点之间的距离d为4,故答案为:4;(2)数轴上表示x和﹣5两点之间的距离d=|x﹣(﹣5)|=|x+5|,故答案为:|x+5|;(3)∵﹣3<x<1,∴x﹣1<0,x+3>0,∴|x﹣1|+|x+3|=1﹣x+x+3=4,故答案为:4;(4)|x+2|+|x+3|表示数轴上数x到数﹣2和数﹣3的距离之和,∵﹣2﹣(﹣3)=1,且|x+2|+|x+3|>1,∴x<﹣2或x>﹣3,故答案为:x<﹣3或x>﹣2.18.x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取最小值,最小值是多少?【思路点拨】利用绝对值的几何意义分析:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣1997|表示:点x到数轴上的1997个点(1、2、3、…、1997)的距离之和,进而分析得出最小值为:|999﹣1|+|999﹣2|+|999﹣3|+…|999﹣1997|求出即可.【解题过程】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤1997时,|x﹣1|+|x﹣1997|有最小值1996;当2≤x≤1996时,|x﹣2|+|x﹣1996|有最小值1994;…当x=999时,|x﹣999|有最小值0.综上,当x=999时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣1997|能够取到最小值,最小值为:|999﹣1|+|999﹣2|+|999﹣3|+…|999﹣1997|=998+997+996+…+0+1+2+998=(1998)×9982×2=997002.19.(2021秋•金乡县期中)我们知道:在研究和解决数学问题时,当问题所给对象不能进行统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如:我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当a<0时,|a|=﹣a.现在请你利用这一思想解决下列问题:(1)8|8|= 1 .−3|−3|= ﹣1 (2)a|a|= 1或﹣1 (a≠0),a|a|+b|b|= 2或0 (其中a>0,b≠0)(3)若abc≠0,试求a|a|+b|b|+c|c|+abc|abc|的所有可能的值.【思路点拨】(1)根据绝对值的定义即可得到结论;(2)分类讨论:当a>0时,当a<0时,当b>0时,当b<0时,根据绝对值的定义即可得到结论;(3)分类讨论:①当a>0,b>0,c>0时,②当a,b,c三个字母中有一个字母小于0,其它两个字母大于0时,③当a,b,c三个字母中有一个字母大于0,其它两个字母小于0时,④当a<0,b<0,c<0时,根据绝对值的定义即可得到结论.【解题过程】解:(1)8|8|=1,−3|−3|=−1,故答案为:1,﹣1;(2)当a>0时,a|a|=1;当a<0时,a|a|=−1;当b>0时,a|a|+b|b|=1+1=2;当b<0时,a|a|+b|b|=1﹣1=0;故答案为:1或﹣1,2或0;(3)①当a>0,b>0,c>0时,a|a|+b|b|+c|c|+abc|abc|=1+1+1+1=4,②当a,b,c三个字母中有一个字母小于0,其它两个字母大于0时,a|a|+b|b|+c|c|+abc|abc|=−1+1+1﹣1=0,③当a,b,c三个字母中有一个字母大于0,其它两个字母小于0时,a|a|+b|b|+c|c|+abc|abc|=1﹣1﹣1+1=0,④当a<0,b<0,c<0时,a|a|+b|b|+c|c|+abc|abc|=−1﹣1﹣1﹣1=﹣4,综上所述,a|a|+b|b|+c|c|+abc|abc|的所有可能的值为±4,0.20.(2021秋•江岸区期中)阅读下列材料.我们知道|x|=x(x>0)0(x=0)−x(x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1和x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:x<﹣1;﹣1≤x<2;x≥2.从而在化简|x+1|+|x﹣2|时,可分以下三种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=(x+1)﹣(x﹣2)=3;③当x≥2时,原式=(x+1)+(x﹣2)=2x﹣1.∴|x+1|+|x﹣2|=−2x+1(x<−1)3(−1≤x<2)2x−1(x≥2),通过以上阅读,解决问题:(1)|x﹣3|的零点值是x= 3 (直接填空);(2)化简|x﹣3|+|x+4|;(3)关于x,y的方程|x﹣3|+|x+4|+|y﹣2|+|y+1|=10,直接写出x+y的最小值为 ﹣5 .【思路点拨】(1)根据零点值的概念领x﹣3=0,求解;(2)仿照材料例题分x<﹣4;﹣4≤x<3;x≥3三种情况结合绝对值的意义化简求解;(3)仿照材料例题,分原式为|x﹣3|+|x+4|与|y﹣2|+|y+1|两部分进行分析求其最小值.【解题过程】解:(1)令x﹣3=0,解得:x=3,∴|x﹣3|的零点值是x=3,故答案为:3;(2)令x﹣3=0,x+4=0,解得:x=3,x=﹣4,①当x<﹣4时,原式=3﹣x﹣4﹣x=﹣2x﹣1,②当﹣4≤x<3时,原式=3﹣x+x+4=7,③当x>3时,原式=x﹣3+x+4=2x+1,综上,|x﹣3|+|x+4|=−2x−1(x<−4) 7(−4≤x<3)2x+1(x>3);(3)令x﹣3=0,x+4=0,y﹣2=0,y+1=0,解得:x=3,x=﹣4,y=2,y=﹣1,由(2)可得,当x<﹣4时,|x﹣3|+|x+4|=﹣2x﹣1,又∵x<﹣4,∴﹣2x>8,则﹣2x﹣1>7,当x>3时,|x﹣3|+|x+4|=2x+1,又∵x>3,∴2x>6,则2x+1>7,∴当﹣4≤x<3时,|x﹣3|+|x+4|取得最小值为7,同理,可得当﹣1≤y<2时,|y﹣2|+|y+1|取得最小值为3,∴当|x﹣3|+|x+4|+|y﹣2|+|y+1|=10时,﹣4≤x<3,﹣1≤y<2,∴此时x+y的最小值为﹣4+(﹣1)=﹣5,故答案为:﹣5.。
七年级数学绝对值数形结合(含答案)
绝对值数形结合【1、数轴与实际问题】例1 5个城市的国际标准时间(单位:时)在数轴上表示如下,那么北京时间2006年6月17日上午9时应是( )A 、伦敦时间2006年6月17日凌晨1时B 、纽约时间2006年6月17日晚上22时C 、多伦多时间2006年6月16日晚上20时D 、首尔时间2006年6月17日上午8时解:观察数轴很容易看出各城市与北京...的时差例2在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所。
已知青少年宫在学校东300米处,商场在学校西200米处,医院在学校东500米处。
将马路近似地看成一条直线,以学校为原点,以正东方向为正方向,用1个单位长度表示100米。
① 在数轴上表示出四家公共场所的位置。
② 计算青少年宫与商场之间的距离。
解:(1)(2)青少年宫与商场相距:3-(-2)=5 个单位长度 所以:青少年宫与商场之间的距离=5×100=500(米) 练习1、如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( ) A 、R 站点与S 站点之间 B 、P 站点与O 站点之间 C 、O 站点与Q 站点之间 D 、Q 站点与R 站点之间解:判断公交车在P 点右侧,距离P :(-1.3)+3=1.7(km),即在原点O 右侧1.7处,位于Q 、R 间城市名称 时差 北京时间 当地时间纽约 -5-8=-13 17日上午9时 9-13=-4,24-4=20,17日晚上20时 多伦多 -4-8=-12 17日上午9时 9-12=-3,24-3=21,17日晚上21时伦敦 0-8=-8 17日上午9时 9-8=1,16日凌晨1时 首尔9-8=+117日上午9时9+1=10,16日上午10时国际标准时间(时)98-5-4首尔北京伦敦多伦多纽约x商场医院青少年宫学校而公交车距Q 站点0.7km ,距离Q :0.7+1=1.7(km),验证了,这辆公交车的位置在Q 、R 间2、如图,在一条数轴上有依次排列的5台机床在工作,现要设置一个零件供应站P ,使这5台机床到供应站P 的距离总和最小,点P 建在哪?最小值为多少?解: (此题是实际问题,涉及绝对值表示距离,后面会有更深入的理解) 此题揭示了,问题过于复杂时,要“以退为进”,回到问题 的起点,找出规律。
初一数学绝对值难点突破(含答案)
绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.第1页(共9页)3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。
最新探究应用新思维-数学7年级1-10【精】整理版
1.数形结合话数轴 解读课标数学是研究“数”和“形”的一门学科,从古希腊时期起,人们就已试图把它们统一起 来.在日常生活中我们通常对有形的东西认识比较快, 而对抽象的东西认识比较慢, 这正是 现阶段数学学习的特点,以形助数是数学学习的一个重要方法.运用数形结合思想解题的关键是建立数与形之间的联系, 现阶段数轴是数形联系的有力 工具,主要反映在:1.利用数轴形象地表示有理数; 2.利用数轴直观地解释相反数; 3.利用数轴解决与绝对值有关的问题;4.利用数轴比较有理数的大小.问题解决 例 1 (1) 已知 a 、 b 为有理数, 且 a 0,b 0,a b 0,将四个数 a 、b 、 a 、 b 按由小到大的顺序排列是 .(《时代学习报》数学文化节试题)(2)已知数轴上有 A 、 B 两点, A 、B 之间的距离为 1,点 A 与原点 O 的距离为 3,那么 点 B 对应的数是 .(广西竞赛题)试一试 对于(1) ,赋值或借助数轴比较大小;对于 (2)确定 A 、 B 两点在数轴上的位 置,充分考虑 A 、 B 两点的多种位置关系 .例 2 如图, 数轴上标出若干个点, 每相邻两点相距 1 个单位, 点江苏省竞赛题)试一试 从寻找 d 与 a 的另一关系式入手.例 3 已知两数 a 、 b ,如果 a 比b 大,试判断 |a|与|b|的大小 .试一试 因 a 、 b 符号未定,故 a 比b 大有多种情形,借助数轴可直观全面比较 |a|与 |b| 的大小.例 4 电子跳蚤落在数轴上的某点 K 0,第一步从 K 0向左跳 1个单位到 K 1 ,第二步由 K 1 向 右跳 2 个单位到 K 2,第三步由 K 2向左跳 3个单位到 K 3 ,第四步由 K 3向右跳 4个单位到K 4 ,⋯⋯,按以上规律跳了 100步时,电子跳蚤落在数轴上的点 K 100 所表示的数恰是 19.94,试求电子跳蚤的初始位置 K 0点所表示的数.(“希望杯”邀请赛试题)试一试 设 K 0点表示的数为 x ,把 K 1、K 2、 、K 100点所表示的数用 x 的式子表A 、B 、C 、 D 对应的数分别是整数 a 是 ( ) .A. A 点B. B 点 b 、c 、d ,且 d 2a 10 ,那么数轴的原点应C. C 点D. D 点示.例 5 已知数轴上的点A 和点B 之间的距离为28个单位长度,点A 在原点的左边,距离原点8 个单位长度,点B 在原点的右边.(1)求A、B 两点所对应的数.(2)数轴上点A以每秒1个单位长度出发问左运动,同时点 B 以每秒3个单位长度的速度向左运动,在点C处追上了点A,求C点对应的数.(3) 已知在数轴上点M 从点A 出发向右运动,速度为每秒1个单位长度,同时点N 从点B 出发向右运动,速度为每秒2个单位长度,设线段NO 的中点为P ( O为原点 ),在运动的过程中线段PO AM 的值是否变化?若不变,求其值;若变化,请说明理由.分析与解对于(3) ,设M点运动时间为t秒,把PO AM用2的式子表示.(1) A、B两点所对应的数分别为8,20;(2) C 点对应的数为22 ;20 2t(3) AM t,OP 20 2t 10 t ( 为什么? ) ,则PO AM 10 t t 10,即2PO AM 的值不变.生活启示例 6 李老师从油条的制作中受到启发,设计了一个数学问题.如图,在数轴上截取从原点到1的对应点的线段AB ,对折后(点A与点B 重合),固定左端向右均匀地拉成1个单13 位长度的线段,这一过程称为一次操作 (例如,在第一次操作后,原线段AB上的1,3均44 变成1;1变成1;等等) .那么在线段AB上(除点A、点B外)的点中,在第二次操作22 后,求恰好被拉到与1重合的点所对应的数字之和 .(浙江省绍兴市中考题) 分析捕捉问题所蕴含的信息,阅读理解“一次操作”的意义:将线段沿中点翻折,中点左侧的点不动,中点右侧的点翻折到左侧的对应位置上,由原来的一个等分点变为两个等分点.解13 故在第二次操作后,恰好被拉到与1重合的点所对应的数字之和是 1 3 1 .44 数学冲浪知识技能广场1. ___________ 数轴上有A、B两点,若点A对应的数是2,且A 、B两点的距离为3,则点B对应的数是.32.电影《哈利·波特》中,小哈利,波特穿墙进入“ 93站台”的镜头(如示意图中的M 站4 台),构思奇妙,能给观众留下深刻的印象,若A、B 站台分别位于2,1处,AN 2NB,则N 站台用类似电影中的方法可称为“ __________________________ 站台”.“《时代学习报》数学文化节”试题)3. _________ 已知点A 、B 、P在数轴上,点B表示的数为6,AB 8,AP 5,那么点P表示的数是.4.如图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3 个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上数字0 所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、所对应的点分别与圆周上1、2 、0 、1 所对应的点重合 .这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1) __________________________________________ 圆周上的数字a 与数轴上的数5对应,则 a _________________________________ ;(2) __________________ 数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n的代数式表示).(江西省中考题)5. 有理数 a 、 b 在数轴上的位置如图所示: 确的是 ( ) .A. a b 0B. ab 0 (2012 年湖南省常德市中考题)6. 文具店、书店、玩具店依次坐落在一条东西走向的大街上,文具店在书店西 20米,玩具 店位于书店东 100米处.小明从书店沿街向东走了 40米,接着又向东走了 60 米,此时小明的位置在 ( ) .A.文具店B.玩具店C.文具店西边 40 米D.玩具店东 60米7. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是 1cm ),刻度尺上的“ 0cm ”“mc51 ” 分别对应数轴上的 3.6和 x ,则 ( ) .A. 9 x 10B.10 x 11C.11 x 12浙江省绍兴市中考题) 18. 在数轴上任取一条长度为 19991 的线段,则此线段在这条数轴上最多能盖住的整数点的9 个数是 ( ) .A. 1998B. 1999C. 2000D. 2001(重庆市竞赛题)9. 一个跳蚤在一条直线上,从 O 点开始,第 1次向右跳 1个单位,紧接着第 2次晾左跳 2 个 单位,第3次向右跳 3个单位,第4次向左跳 4个单位⋯⋯依此规律剧下去, 当它跳第 100次 落下时,求落点处离 O 点的距离(用单位表示) .(江苏省无锡市中考题)10. 已知数轴上有 A 、B 两点, A 、 B 之间的距离为 1,点 A 与原点 O 的距离为 3,求所有 满足条件的点 B 与原点 O 的距离的和.北京市“迎春杯”竞赛题)-- 思维方法天地 --11B 分别表示 1 和 1 ,则线段 AB 的中点所表示的数是35aa 12. 在数轴上,表示数 ( 2) ,的点 M 与表示数 ( 3) ,的点 N 关于原点对称,则23值为 _______ .13. 数形相伴,则下列各式正C.|a| b 0D. a b 0 D.12 x 13 11. 在数轴上,点 A 、 a 的 (1) 如图所示 点 A 、B 所代表的数分2 ,在数轴上画出与A、B两点的距离和为5的点(并标上字母) .(2) 若数轴上点A、B所代表的数分别为a、b,则A、B两点之间的距离可表示为AB |a b|,那么,当|x 1| |x 2| 7时,x _________ ;当| x 1| | x2| 5 时,数 x 所对应的点在数轴上的位置是在《时代学习报》数学文化节试题)1 14.点 A 、 B 分别是数 3、 在数轴上对应的点,使线段 AB 沿数轴向右移动为 A B , 2且线段 A B 的中点对应的数是 3,则点 A 对应的数是 _____ ,点 A 移动的距离是 (江苏省竞赛题)15.点A 1、A 2、A 3、 、A n ( n 为正整数)都在数轴上,点A 1在原点 O 的左边,且 A 1O 1, 点 A 2 在点 A 1的右边,且 A 2A 1 2;点 A 3在点 A 2 的左边,且 A 3A 2 3,点 A 4在点 A 3的右 边,且 A 4A 3 4, ,依照上述规律,点 A 2008 、 A 2009所表示的数分别为 ( )A. 2008, 2009B. 2008,2009C. 1004, 1005D. 1004, 1004(福建省泉州市中考题)16. 如图: ,数轴—上标出若干个点, 每相邻两点相距 1个单位, 点 A 、 B 、 C 、 D 对应的数分别是整数 a 、b 、c 、 d ,且 b 2a 9 ,那么数轴的原点 对应点是( ) .A. A 点B. B 点C.C 点 17. 有理数 a 、b 、 c 在数轴上的位置如图,式子|a b| |b c| 化简结果为 ( ) .A. 2a 3b cB. 3b cC. b c18. 不相等的有理数 a 、b 、c 在数轴上对应点分别为 那么点 B ( ) .A.在A 、 C 点右边B.在 A 、C.在 A 、 C 点之间D.以上均有可能 ( “希望杯”邀请赛题 )19. 在数轴上, N 点与 O 点的距离是 N 点与 30所对应点之间的距离的 4倍,那么 N 点表 示的数是多少 ?( “ CASIO 杯”河南省竞赛题 )20. 已知数轴上有 A 、 B 、 C 三点,分别代表 24、 10、10,两只电子蚂蚁甲、乙分别从 A 、 C 两点同时相向而行 . 甲的速度为 4个单位 / 秒.(1) 问多少秒后甲到 A 、 B 、C 的距离和为 40个单位 ?(2) 若乙的速度为 6个单位/秒,两只电子蚂蚁甲、 乙分别从 A 、C 两点同时相向 1而行, 问甲、乙在数轴上的哪个点相遇 ?(3) 在(1) 、(2) 的条件下,当甲到 A 、 B 、C 的距离和为 40个单位时,甲调头D. D 点|a| |b|D.c b A 、B 、C ,若|a b| |b c| |a c| C 点左边返回,问甲、乙还能在数轴上相遇吗 ?若能,求出相遇点;若不能,请说明理由 .21.操作与探究对数轴上的点P进行如下操作:先把点P表示的数乘以1再把所得数对应的点向右平3移1个单位,得到点P 的对应点P .点A, B在数轴上,对线段AB上的每个点进行上述操作后得到线段A B ,其中,点A,B 的对应点分别为A B , 如图所示,若点A表示的数是3, 则点A 表示的数是若点B 表示的数是2,则点B 表示的数是 ____ ;已知线段AB上的点E经过上述操作后得到的对应点E 与点E 重合,则点E表示的数是__ .〔 2012 年北京市中考题〕22.—动点P 从数轴上的原点出发,沿数轴的正方向以每前进5个单位、后退3个单位的程序运动 . 已知点P 每秒前进或后退1个单位,设x n 表示第n秒点P 在数轴上的位置所对应的数(如x4 4,x5 5,x6 4) ,求x2011所对应的数 .2.聚焦绝对值绝对值是数学中的一个基本概念,这一概念是学习相反数、有理数运算、算术根的基础;绝对值又是数学中的一个重要概念,绝对值与其他知识融合形成绝对值方程、绝对值不等式、绝对值函数等,在代数式化简求值、解方程、解不等式等方面有广泛的应用,理解、掌握绝对值应注意以下几个方面:1. 脱去绝对值符号是解绝对值问题的切入点脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法 .2. 恰当地运用绝对值的几何意义从数轴上看|a|表示数a的点到原点的距离;|a b|表示数a、数b的两点间的距离 .3.灵活运用绝对值的基本性质①|a| 0;②|a2| |a|2 a2;③|ab| |a| |b|;④ |a| |a|(b a)b |b|例 1已知: y |x b| |x 20| |x b 20|其中0 b 20, b x 20,那么y 的最小值为_________ .( “ CASIO杯”河南省竞赛题 ) 试一试结合已知条件判断出每一个绝对值符号内式子的正负性,再去掉绝对值符号 .a b ab例 2 式子的所有可能的值有 ( ).|a| |b| |ab|A. 2个B. 3个C.4个D.无数个试一试根据a、b的符号所有可能情况,去掉绝对值符号,这是解本例的关键 .1 1 1例 3 (1) 已知|a b 2 | a| 2 ,| 求 1 1 1ab (a 1)(b 1) (a 2)(b 2)的值 .(a 2005)(b 2006)( “华罗庚杯”香港中学竞赛题 )(2) 设a、b、c为整数,且|a b| |c a| 1,求|c a| |a b| |b c|的值.( “希望杯”邀请赛试题 ) 试一试对于(1), 由非负数的性质先导出a、b的值;对于(2) ,1写成两个非负整数的和的形式又有几种可能 ?这是解 (2) 的突破口 .例 4 阅读下列材料并解决有关问题:x(x 0), 我们知道|x| 0(x 0), 现在我们可以用这一结论来化简含有绝对值的代数式,如化x(x 0).简代数式|x 1| |x 2 ||时,可令:x 1 0和x 2 0 ,分别求得x 1,x 2 ( 称1,2分别为|x 1|与|x 2 |的零点值)在有理数范围内,零点值x 1和x 2可将全体有理数分成不重复且不遗漏的如下 3 种情况:(1) x 1;(2) 1 x 2;(3) x 2. 从而化简代数式|x 1| | x 2 |可分以下3种情况:(1) 当x 1 时,原式(x 1) (x 2) 2x 1;(2) 当1 x 2时,原式x 1 (x 2) 3;(3) 当x 2 时,原式x 1 x 2 2x 1.2x 1(x 1), 综上讨论,原式3( 1 x2), 2x 1(x 2).通过以上阅读,请你解决以下问题:(1) 分别求出| x 2|和|x 4 |的零点值;(2) 化简代数式| x 2| |x 4|.( 云南省中考题 ) 试一试在阅读理解的基础上化简求值 .例5 (1 )当x取何值时,|x 3|有最小值?这个最小值是多少 ?(2)当x取何值时,5 |x 2 |有最大值 ?这个最大值是多少 ?(3)求|x 4| |x 5|的最小值 .4)求|x 7| |x 8| |x 9 |的最小值 .分析对于( 3)、(4)可先运用零点分段讨论法去掉绝对值符号,再求最小值; 也可利用绝对值的几何意义,即在数轴上找一表示x的点,使之到表示4、5的点(: 或表示7、8、9 的点)的距离和最小 .解(1 )当x 3时,原式有最小值,最小值为0.( 2)当x 2 时,原式有最大值,最大值为5.(3)当4 x 5 时,原式有最小值,最小值为1.(4)当x 8 时,原式有最小值,最小值为2.对于( 3),给出另一种解法:当x 4时,原式(x 4)(x5)9 2x ,最小值为1;当4 x 5时,原式x 4 (x5)1,最小值为1;当x 5 时,原式x 4 x 5 2x 9, 最小值为1.综上所述,原式有最小值等于1.以退求进例 6 少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是 : 输人第一个整数x1 ,只显示不运算,接着再输人整数x2心后则显示|x1 x2 | 的结果,此后每输入一个整数都是与前次显示的结果进行求差取绝对值的运算. 现小明将从1到1991这1991个整数随意地一个一个地输人 , 全部输入完毕之后显示的最后结果设为P ,试求出P 的最大值,并说明理由 .分析先考虑输入个数较少的情形,并结合奇偶分析调整估值,一步步求出P 的最大值.解由于输入的数都是非负数,当x1 0, x2 0时,| x1 x2 |不超过x1、x2中最大的数,对x1 0,x2 0, x3 0,则||x1 x2| x3 |不超过工x1、x2 、x3中最大的数,设小明输入这1991 个数的次序是x1, x2, x1991. 相当于计算: || ||x1 x2 | x3 | x1990 | x1991 | P ,因此P 的值x1991 .另外从运算奇偶性分析,x1 、x2为整数,|x1 x2 |与|x1 x2 |奇偶性相同,因此P与x1 x2 x1991 的奇偶性相同,但x1 x2 x1991 1 2 1991 偶数 . 于是断定P x1990 ,我们证明P 可以取到1990.对1, 2, 3, 4, 按如下次序:|||1 3| 4| 2| 0,||| (4 k 1) (4k 3)| (4k 4)| (4k 2)| 0,对于k 0,1,2, 均成立 .因此,1~1988可按上述办法依次输入最后显示结果为 0,而后 ||1989 1990| 1991| 1990 ,故P 的最大 值为 1990.数学冲浪知识技能广场1.数 a 在数轴上的位置如图所示, ,且|a 1| 2,则|3a 7| ___ .2.已知 |a | 5, |b| 3, 且|a b | b a ,那么 a b( 北京市竞赛题)4. 已知有理数a 、b 、c 在数轴上的对应位置如图所示 : ,则|c 1| |a c| |a b |化简后的结果是5. 已知整数 a 1,a 2 ,a 3 ,a 4 , 满足下列条件: a 1 0, a 4 |a 3 3| , ,依次类推,则 a 2012 的值为( ).( “希望杯”遨请赛试题 ) 9. 化简(1) |3 x| ; 10. 阅读下面材料并回答问题 点 A 、 B 在数轴上分别表示实数 a 、b , A 、 B 两点之间的距离表示为 | AB|.3. 化简 a 2|a 1 1| ,a 3 |a 2 2|,A. 1005B. 1006C. 1007D. 20122012 年江苏省盐城市中考题) 6.已知 |a| a ,化简 |a 1| |a 2 |所得的结果是 ). A. 1 B.1 C. 2a 3 D.3 2a7. 若 m 是有理数,则 m m 定是). A.零 B.非负数 C.正数 D.负数8.有理数 a 、b 、 c 的大小关系如图 ( ) . A. a b c 0 B. |a b| c则下列式子中一定成立的是C.|a c | |a | cD. |b c| |c a|(2) |x 1| |x 2|.。
2023学年浙江七年级数学上学期专题训练专题2专题探究课之绝对值(解析版)
(1)根据5与-2两数在数轴上所对应的点之间的距离即可得出答案;
(2)根据 表示 与2两数在数轴上所对应的两点之间的距离为6,即可得出答案;
(3)因为2和-3两数在数轴上所对应的两点之间的距离就是5,所以使 成立的整数是2和-3之间的所有整数(包括2和-3),即可得出答案.
【详解】
解:(1)∵5与-2两数在数轴上所对应的点之间的距离是7,
【详解】
解:由数轴可得:
b<c<0<a,
∴ab<0,b-c<0,
∴ =c-b,
a-b可以看作a,b之间的相差的单位长度,c-b可以看作c,b之间的相差的单位长度,
∴a-b>a-c,
故选:D.
【点睛】
本题考查了数轴,绝对值和有理数的运算,能根据数轴得出b<c<0<a是解此题的关键.
二、填空题
10.(【新东方】初中数学20210625-021【初一上】) 的最小值为________.
【详解】
解:当 时,x-1<0,x+2<0,
∴ ,
当 时, ,
当x>1时,
∵当 时, ,
∴代数式 的最大值为3,最小值为-3,
∴a=3,b=-3,
∴ab=-9,
故答案为:3,-9.
【点睛】
本题主要考查了绝对值的化简,解题的关键是对x进行分类讨论,再化简代数式.
18.(2018·浙江七年级月考)代数式|x-1|-|x+6|-5的最大值是_______.
③ ,故正确;
④若 ,则 ,解得a=-12或-6,则原点未必一定为点 ,故错误;
故选D.
【点睛】
本题考查了数轴上的点表示有理数,数轴上两点之间的距离,绝对值的意义,方程的运用,解题的关键是根据题干条件求出各点表示的数.
七年级数学巧用绝对值的几何意义解题专题练习(含答案)
七年级数学巧用绝对值的几何意义解题专题练习试卷简介:全卷共一道大题,单选题,6小题,每题20分;满分120分,测试时间45分钟。
本套试卷立足绝对值的基础知识,考察了学生对绝对值的学习和掌握程度,侧重于考察学生对绝对值几何意义的灵活运用。
题目设计高于课本中的基础知识,但是又来源于课本,学生在做题过程中可以回顾所学知识点,认清自己对知识的掌握及灵活运用程度。
学习建议:本讲主要内容是绝对值中考必考点,在中考时占有重要的比重,大家需要在熟练掌握绝对值几何意义和代数意义知识的基础上,学会灵活运用。
题目设置灵活多变,但万变不离其宗,只要掌握了最基本的知识点,再多加练习,就能轻松掌握,灵活运用。
一、单选题(共6道,每道20分)1.方程|x-1|+|x+2|=4的解为()A.B.C.或D.无解答案:C解题思路:把数轴上表示x的点记为P,由绝对值的几何意义知,当-2≤x≤1时,|x-1|+|x +2|恒有最小值3,所以要使|x-1|+|x+2|=4成立,则点P必在-2的左边或1的右边,且到表示数-2或1的点的距离均为个单位,因此解为或易错点:首先,不知道利用绝对值的几何意义来解题,导致问题复杂化,其次,忘记分情况讨论,导致漏解试题难度:四颗星知识点:绝对值2.已知a是有理数,|a-2011|+|a-2012|的最小值是()A.2011B.1C.2012D.2023答案:B解题思路:由绝对值的几何意义知,| a-2011|+| a-2012|表示数轴上的一点到表示数2011和2012两点的距离的和,要使和最小,则这点必在2011~2012之间(包括这两个端点)取值,故| a-2011|+| a-2012|的最小值为1.易错点:绝对值的几何意义将绝对值之和最小值化为线段之和的最小值试题难度:三颗星知识点:绝对值3.|x-1|+|x-2|最小值是()A.0B.1C.2D.3答案:B解题思路:由绝对值的几何意义知,|x-1|+| x-2|表示数轴上的一点到表示数1和2两点的距离的和,即x到两点所表示的线段的重合部分越少则距离和越小.只有当x在1和2之间时没有重合部分,此时值为1.易错点:绝对值的几何意义试题难度:三颗星知识点:绝对值4.若方程|x+2|+|x-4|>a恒成立,则a的取值范围为()A.a>6B.a<6C.a 6D.a 6答案:B解题思路:由绝对值的几何意义知,|x+2|+|x-4|的最小值为6,而对于任意数x,|x+2|+|x -4|>a恒成立,所以a的最值范围是a<6.易错点:弄错临界状态,错误认为a是可以等于6的试题难度:五颗星知识点:绝对值5.|x-1|+|x-2|+|x-3|的最小值是()A.0B.1C.2D.3答案:C解题思路:由绝对值的几何意义知,|x-1|+| x-2|+| x-3|表示数轴上的一点到表示数1、2和3三点的距离的和,即x到三点所表示的线段的重合部分越少则距离和越小.只有当x在2处没有重合部分,此时值为2.易错点:绝对值的几何意义试题难度:三颗星知识点:绝对值6.若|x+1|+|2-x|=3,则x的取值范围是()A.-1<x<2B.-1≤x≤2C.x≥2D.x≤-1答案:B解题思路:由绝对值的几何意义知,|x+1|+|x-2|的最小值为3,此时x在-1~2之间(包括两端点)取值,故x的取值范围是-1≤x≤2易错点:由绝对值的几何意义得到最小值在两点之间取得(包括两端点)试题难度:四颗星知识点:绝对值。
数学竞赛专题讲座七年级第4讲解读绝对值(含答案)
第四讲 解读绝对值绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ;②ba ab ⋅=;③)0(≠=b ba b a; ④222a a a ==;⑤ba b a +≤+;⑥ba b a b a +≤-≤-.3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离.例题讲解【例1】(1)已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+= . (北京市“迎春杯”竞赛题) (2)已知d c b a 、、、是有理数,9≤-b a ,16≤-d c ,且25=+--d c b a ,那么=---c d a b . (“希望杯”邀请赛试题)(3)已知5=x ,1=y ,那么=+--y x y x _________.(北京市“迎春杯”竞赛题) (4)非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. (首届江苏省数学文化节基础闯关题)思路点拨 (1)由已知条件求出c b a 、、的值,注意条件c b a >>的约束;(2)若注意到9+16=25这一条件,结合绝对值的性质,问题可获解;(3)既可以对x ,y 的取值进行分类求解,又可以利用绝对值的几何意义解;(4)从把5拆分成两个正整数的和入手.【例2】 如果c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能的值为( ).A .0B . 1或1-C .2或2-D .0或2- (山东省竞赛题) 思路点拨 根据b a 、的符号所有可能情况,脱去绝对值符号,这是解本例的关键. 【例3】已知12--b •ab 与互为相反数,试求代数式:)2002)(2002(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值. (“五羊杯”竞赛题) 思路点拨 运用相反数、绝对值、非负数的概念与性质,先求出b a 、的值.【例4】化简(1)12-x ; (2)31-+-x x ; (3)121++--x x .思路点拨 (1)就012012<-≥-x x ,两种情形去掉绝对值符号;(2)将零点1,3在同一数轴上表示出来,就1<x ,1≤x<3,x ≥3三种情况进行讨论;(3)由02101=--=+x x ,,得3,11==-=x x x ,.【例5】已知a 为有理数,那么代数式4321-+-+-+-a a a a 的取值有没有最小值?如果有,试求出这个最小值;如果没有,请说明理由.思路点拨 a 在有理数范围变化,4321----a a a a 、、、的值的符号也在变化,解本例的关键是把各式的绝对值符号去掉,为此要对a 的取值进行分段讨论,在各种情况中选取式子的最小值.链接:①我们把大于或等于零的数称为非负数,现阶段a 、n a 2是非负数的两种重要形式,非负数有如下常用性质: (1)a ≥0,即非负数有最小值为0;(2)若0=+++h b a ,则0====h b a②形如(2)的问题称为多个绝对值问题,解这类问题的基本步骤是:求零点、分区间、定性质、去符号、即令各绝对值代数式为0,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可.请读者通过本例的解决,仔细体会上述解题步骤.【例6】已知36)13)(12)(21(=++-++--++z z y y x x ,求z y x 32++的最大值和最小值. (“希望杯”邀请赛试题) 思路点拨 解本例的关键是利用绝对值的几何意义确定括号内每个式子的取值范围.基础训练1.若有理数x 、y 满足+-2)1(2002x 0112=+-y x ,则=+22y x . 2.已知5=a ,3=b ,且a b b a -=-,那么b a += . 3.已知有理数c b a 、、在数轴上的对应位置如图所示:则b a c a c -+-+-1化简后的结果是 . (湖北省选拔赛题) 4.若b a 、为有理数,那么,下列判断中:(1)若b a =,则一定有b a =; (2)若b a >,则一定有b a >; (3)若b a >,则一定有b a >;(4)若b a =,则一定有22)(b a -=.正确的是 (填序号) .5.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 (江苏省竞赛题) 6.已知a 是任意有理数,则a a --的值是( ).A .必大于零B .必小于零C 必不大于零D .必不小于零7.若1++b a 与2)1(+-b a 互为相反数,则a 与b 的大小关系是( ). A .b a > B .b a = C .b a < D .b a ≥8.如图,有理数b a 、在数轴上的位置如图所示,则在b a +,a b 2-,a b -,b a -,2+a ,4--b 中,负数共有( ) A . 1个 B .2个 C .3个 D .4个9.化简:(1)3223++-x x ; (2)1331++--x x .10.求满足1=+-ab b a 的非负整数对),(b a 的值. (全国初中联赛题) 11.若2-<x ,则=+-x 11 ;若a a -=,则=---21a a . 12.能够使不等式0)1)((<+-x x x 成立的x 的取值范围是 . l3.a 与b 互为相反数,且54=-b a ,那么12+++-ab a b ab a = . 14.设c b a 、、分别是一个三位数的百位、十位和个位数字,并且c b a ≤≤,则a c cb b a -+-+-可能取得的最大值是 . (江苏省竞赛-232ba1-1题) 15.使代数式xx x 43-的值为正整数的x 值是( ).A .正数 B .负数 C .零 D .不存在的16.如果02=+b a ,则21-+-bab a 等于( ). A .2 B .3 C .4 D .5 17.如果150<<p ,那么代数式1515--+-+-p x x p x 在15≤≤x p 的最小值是( ).A .30 B .0 C .15 D .一个与p 有关的代数式 18.设0=++c b a ,0>abc ,则cba b a c a c b +++++的值是( ). A .3- B .1 C .3或1- D .3-或1 19.有理数c b a 、、均不为零,且0=++c b a ,设ba c ac b cb a x +++++=,试求代数式20029919+-x x 的值.20.若c b a 、、为整数,且19919=-+-ac b a ,求c b b a a c -+-+-的值.21.已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最大值与最小值.22.已知02003200232120032002321=-+-++-+-+-x x x x x , 求代数式20032002212222x x x x+--- 的值.答案:1. 37362.-2或-83.1-2c+b4.(4)5.D6.D7.C8.A9.(1)原式=351()2325()23251()3x xx xx x⎧--<-⎪⎪⎪-+-≤<⎨⎪⎪+≥⎪⎩(2)原式=43(2)121(2)3143(1)325(14)43(4)x xx xx xx xx x--<-⎧⎪⎪-+-≤<-⎪⎪⎪+-≤<⎨⎪+≤<⎪⎪-≥⎪⎪⎩10.(a,b)=(1,0),(0,1),(1,1) 提示:由条件得||1a bab-=⎧⎨=⎩或||01a bab-=⎧⎨=⎩11.-2-x、-1 12.x<-1 提示:因│x│≥x,│x│-x≥0,故1+x<0.13. 425提示:ab=-b2=-│b│2=-42514.16 15.D** 提示:原式= 17.C 18.B19.提示:a、b、c中不能全同号,必一正二负或二正一负,得a=-(b+c),b=-(c+a),c=-(a+b),即ab c+=-1,bc a+=-1,ca b+=-1,所以||ab c+,||bc a+,||ca b+中必有两个同号,另一个符号与其相反,•即其值为两个+1,一个-1或两个-1,一个+1,x=1,原式=1904. 20.提示:a、b、c都为整数,则a-b、c-a均为整数,则│a-b│、│c-a•│为两个非负整数,│a-b│19+│c-a│99=1, 只能│a-b│19=0且│c-a│99=1…………①或│a-b│19=1且│c-•a│99=0……………②,由①得a=b,且│c-a│=1,│b-c│=│c-a│=1;由②得c=a,且│a-b│=1,•│b-c│=│a-b│=1,无论①或②,都有│a-b│+│c-a│=1,且│b-c│=1,故│c-a│+•│a-b│+│b-c│=2.21.提示:-1≤x≤1,-1≤y≤1,│y+1│=y+1,│2y-x-4│=4+x-2y,当x+y≤0时,•M=5-2y,得3≤M≤7;当x+y≥0时,M=2x+5,得3≤M≤7;又当x=-1,y=1时,M=3;当x=-1,•y=-1时,M=7,故M的最大值为7,最小值为3.22.由题意得:x1=1,x2=2,… ,x2003=2003,原式=2-22-23-…22002+22003=22003-22002-…23-22+2=22002(2-1)-•22001-…-22+2=22002-22001-…-23-22+2=24-23-22+2=6.提高训练1.计算:214131412131---+-=______. (重庆市竞赛题)2.代数式131211++-++x x x 的最小值为______. (北京市“迎春杯”竞赛题) 3.已知c b a <<<0,化简式子:c b a c b a b a -+--++-2得______.4.若a 、b 、c 、d 为互不相等的有理数,且1=-=-=-b d c b c a 那么=-d a ___. 5.设a 是有理数,则a a -的值( ).A .可以是负数B .不可能是负数C .必是正数D .可以是正数,也可以是负数 (广东省中考题) 6.已知m m -=,化简21---m m 所得的结果是________. 7.若3=a ,5=b ,那么b a b a --+的绝对值等于________.(“希望杯”邀请赛试题) 8.有理数a 、b 、c 的大小关系如图,则下列式子中一定成立的是( ). A .0>++c b a B .c b a <+ C .c a c a +=- D .a c c b ->-9.已知abcabc cc bb aa x +++=,且a 、b 、c 都不等于0,求x 的所有可能值.(第2届“华罗庚杯”香港中学竞赛题) 10.已知a 、b 、c 满足0))()((=+++a c c b b a ,且0<abc ,则代数式ccb b a a ++的值为______. (四川省竞赛题) 11.若有理数m 、n 、p 满足1=++pp nn mm ,则mnpmnp32=______.cb a(“希望杯”邀请赛试题) 12.设a 、b 、c 是不为零的有理数,那么ccb b a a x -+=的值有( ). A .3种 B .4种 C .5种 D .6种 (“希望杯”邀请赛试题) 13.如图,已知数轴上的点A 、B 、C 所对应的数a 、b 、c 都不为零,且C 是AB 的中点.如果0222=-+--+--+c b a c b c a b a ,那么原点O 的位置在( ). A .线段AC 上 B .线段CA 的延长线上 C .线段BC 上 D .线段CB 的延长线上(江苏省竞赛题) 14.若2-<x ,则x y +-=11等于( ).A .x +2B .x --2C .xD .x - (四川省竞赛题) 15.已知a 、b 、c 、d 是有理数,9≤-b a ,16≤-d c ,且25=+--d c b a ,求c d a b ---的值. (“希望杯”邀请赛试题)16.▲在数轴上把坐标为1,2,3,…,2006的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?说明理由. (山东省竞赛题)B C A cba。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
祖冲之,中国古代著名的数学家和天文学家,于公元429年出生于建康(今江苏南京),祖冲之从小就对天文、数学知识产生浓厚的兴趣,“专攻数术,搜炼古今”,他在数学方面的成就,首推圆周率的计算,计算圆周率精确到小数点以后7位,是当时世界上最杰出的成就;在天文学方面,他编写了新的历法——大明历,这是当时最好的一部历法. 2.聚焦绝对值 解读课标绝对值是数学中的一个基本概念,这一概念是学习相反数、有理数运算、算术根的基础;绝对值又是数学中的一个重要概念,绝对值与其他知识融合形成绝对值方程、绝对值不等式、绝对值函数等,在代数式化简求值、解方程、解不等式等方面有广泛的应用.理解、掌握绝对值应注意以下几个方面: 1.脱去绝对值符号是解绝对值问题的切入点脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法. 2.恰当地运用绝对值的几何意义从数轴上看a 表示数a 的点到原点的距离;a b -表示数a 、数b 的两点间的距离. 3.灵活运用绝对值的基本性质①0a ≥;②222a a a ==;③ab a b =⋅;④()0a a b b b =≠.问题解决例1 已知2020y x b x x b =-+-+--,其中020b <<,20b x ≤≤,那么y 的最小值为_______. 试一试结合已知条件判断每一个绝对值符号内式子的正负性,再去掉绝对值符号.例2 式子a b aba b ab ++的所有可能的值有( ).A .2个B .3个C .4个D .无数个试一试 根据a 、b 的符号所有可能情况,去掉绝对值符号,这是解本例的关键.例3 (1)已知220ab a -+-=,求()()()()()()1111112220062006ab a b a b a b ++++++++++的值. (2)设a 、b 、c 为整数,且1a b c a -+-=,求c a a b b c -+-+-的值.试一试 对于(1),由非负数的性质先导出a 、b 的值;对于(2),1写成两个非负整数的和的形式又有几种可能?这是解(2)的突破口. 例4 阅读下列材料并解决有关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-,2分别为1x +与2x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不遗漏的如下3种情况:(1)1x <-;(2)12x -<≤;(3)2x ≥.从而化简代数式12x x ++-可分以下3种情况: (1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当12x -<≤时,原式()123x x =+--=; (3)当2x ≥时,原式1221x x x =++-=-.综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥, 通过以上阅读,请你解决以下问题: (1)分别求出2x +和4x -的零点值; (2)化简代数式24x x ++-.试一试 在阅读理解的基础上化简求值.例5 (1)当x 取何值时,3x -有最小值?这个最小值是多少? (2)当x 取何值时,52x -+有最大值?这个最大值是多少?(3)求45x x -+-的最小值.(4)求789x x x -+-+-的最小值.分析 对于(3)、(4)可先运用零点分段讨论法去掉绝对值符号,再求最小值;也可利用绝对值的几何意义,即在数轴上找一表示x 的点,使之到表示4、5的点(或表示7、8、9的点)的距离和最小.解 (1)当3x =时,原式有最小值,最小值为0. (2)当2x =-时,原式有最大值,最大值为5. (3)当45x ≤≤时,原式有最小值,最小值为1. (4)当8x =时,原式有最小值,最小值为2. 对于(3),给出另一种解法:当4x ≤时,原式()()4592x x x =---=-,最小值为1; 当45x <≤时,原式()451x x =---=,最小值为1;当5x >时,原式4529x x x =-+-=-,最小值为1. 综上所述,原式有最小值等于1. 以退求讲例6 少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程足:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果,此后每输入一个整数都是与前次显示的结果进行求差取绝对值的运算,现小明将从1到1991这1991个整数随意地一个一个地输入,全部输入完毕之后显示的最后结果设为P ,试求出P 的最大值,并说明理由. 分析 先考虑输入个数较少的情形,并结合奇偶分析调整估值,一步步求出P 的最大值.解 由于输入的数都是非负数,当10x ≥,20x ≥时,12x x -不超过1x 、2x 中最大的数,对10x ≥,20x ≥,30x ≥,则123x x x --不超过1x 、2x 、3x 中最大的数,设小明输入这1991个数的次序是1x ,2x ,…,1991x .相当于计算:12319901991x x x x x P ----=,因此P 的值1991≤.另外从运算奇偶性分析,1x 、2x 为整数,12x x -与12x x +奇偶性相同,因此P 与121991x x x +++的奇偶性相同.但121991121991x x x +++=+++=偶数,于是断定1990P ≤.我们证明P 可以取到1990. 对1,2,3,4,按如下次序:13420---=,()()()414344420k k k k +-+-+-+=,对于0k =,1,2,…均成立.因此,1~1988可按上述办法依次输入最后显示结果为0,而后1989199019911990--=,故P 的最大值为1990. 数学冲浪 知识技能广场1.数a 在数轴上的位置如图所示1a,且12a +=,则37a +=______.2.已知5a =,3b =,且a b b a -=-,那么a b +=_______.3.化简1111111120042003200320022002200120012004-+-+---=________. 4.已知有理数a 、b 、c 在数轴上的对应位置如图所示:-1cba,1c a c a b -+-+-化简后的结果是________.5.已知整数1a ,2a ,3a ,4a ,…满足下列条件:10a =,211a a =-+,322a a =-+,433a a =-+,…,依次类推,则2012a 的值为( ).A .1005-B .1006-C .1007-D .2012- 6.已知a a =-,化简12a a ---所得的结果是( ) A .1- B .1 C .23a - D .32a - 7.若m 是有理数,则m m -一定是( ). A .零 B .非负数 C .正数 D .负数8.有理数a 、b 、c 的大小关系如图:cb a ,则下列式子中一定成立的是( )A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 9.化简(1)3x -; (2)12x x +++. 10.阅读下面材料并回答问题.图①O (A )B b图②A B O 0ba图③O B A a b 0图④A B O ab点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图①,AB OB b a b ===-;当A 、B 两点都不在原点时,(1)如图②,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-; (2)如图③,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; (3)如图④,点A 、B 在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A 、B 两点之间的距离AB a b =-. 请回答:①数轴上表示2和5的两点之间的距离是_______,数轴上表示2-和5的两点之间的距离是_______,数轴上表示1和3-的两点之间的距离是________;②数轴上表示x 和1-的两点A 和B 之间的距离是__________,如果2AB =,那么x 为_________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是_________. 思维方法天地11.已知1a =,2b =,3c =,且a b c >>,那么a b c +-=_________.12.在数轴上,点A 表示的数是3x +,点B 表示的数是3x -,且A 、B 两点的距离为8,则x =______. 13.已知5x =,1y =,那么x y x y --+=_________. 14.(1)11x x ++-的最小值为________.(2)11213x x x ++-++的最小值为________. 15.有理数a 、b 在数轴上对应的位置如图所示:1-1ba,则代数式1111a ab a ba a ab b +---+-+--的值为( ) A .1- B .0 C .1 D .216.若()2210m n ++-=,则2m n +的值为( )A . 4-B .1-C .0D .417.如图,已知数轴上点A 、B 、C 所对应的数a 、b 、c 都不为0,且C 是AB 的中点.C B A cba如果2220a b a c b c a b c +--+--+-=,那么原点O 的位置在( )A .线段AC 上B .线段CA 的延长线上C .线段BC 上D .线段CB 的延长线上 18.设1m x x =+-,则m 的最小值为( )A .0B .1C .1-D .219.已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且()2410a b ++-=,A 、B 之间的距离记作AB .(1)求线段AB 的长AB ;(2)设点P 在数轴上对应的数为x ,当2PA PB -=时,求x 的值;(3)点P 在A 的左侧,M 、N 分别是PA 、PB 的中点,当点P 在A 的左侧移动时,式子PN PM -的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.20.已知a b c abcx a b c abc=+++,且a 、b 、c 都不等于0,求x 的所有可能值.应用探究乐园 21.绝对值性质(1)设a 、b 为有理数,比较a b +与a b +的大小.(2)已知a 、b 、c 、d 是有理数,9a b -≤,16c d -≤,且25a b c d --+=,求b a d c ---的值.22.已知数轴上两点A 、B 对应的数分别为1-,3,点P 为数轴上一动点,其对应的数为x . (1)若点P 到点A 、点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,请说明理由. (3)当点P 以每分钟1个单位长的速度从O 点向左运动时,点A 以每分钟5个单位长的速度向左运动,点B 以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等?2.聚焦绝对值 问题解决例l 20 ()()2020202040y x b x x b x b x x b x =-+--+---=--+-++=-⎡⎤⎡⎤⎣⎦⎣⎦,当20x =时,y 的值最小为20.例2 A 分0a >,0b >;0a <,0b <;0a >,0b <;0a <,0b >四种情况讨论. 例3 (1)由20ab -=,20a -=,得2a =,1b =.原式1111111111200711122334200720082232007200820082008=++++=-+-++-=-=⨯⨯⨯⨯. (2)因a 、b 、c 为整数,且1a b c a -+-=,故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=所以,原式1102=++=. 例4 (1)分别令20x +=和40x -=,分别求得2x =-和4x =, 2x +∴和4x -的零点值分别为2x =-和4x =.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式()246x x =+--=;当4x ≥时,原式2422x x x =++-=-.∴综上讨论,原式()()()222,624,224.x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥ 数学冲浪1.2 2.2-或8 3.0 4.12c b -+5.B 1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 对应的数分别为0,1-,1-,2-,2-,3-,3-,4-. 6.A 7.B 8.C9.(1)原式()()3333x x x x ⎧-<⎪=⎨-⎪⎩≥ (2)原式()()()232121231x x x x x --<-⎧⎪=-<-⎨⎪+-⎩≤≥ 10.①3,3;4 ②1x +;1或3- ③12x -≤≤ 11.2或0 12.413.2 分x ,y 同号、x ,y 异号两种情形讨论 14.(1)2 (2)25 15.D 16.C17.A 提示:2a bc += 原式化为a b b a +=-18.B19. (1)5AB =;(2)12x =-;(3)52PN PM -=,值不变.20.4或0或4- 21.(1)a b a b ++≤,当且仅当a 、b 同号或a 、b 至少有一为0时等号成立. (2)因9a b -≤,16c d -≤,故91625a b c d -+-+=≤,又因为()()2525a b c d a b d c a b d c =--+=-+--+-≤≤,所以9a b -=,16c d -=,故原式9167=-=-.22.(1)1;(2)3.5或 1.5-;(3)B 未追上A 时,223t =;B 追上A 时,415t =.。