离散数学2联结词(否定、合取)

合集下载

离散数学第2版课后习题答案

离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。

离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。

而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。

本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。

第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。

命题变量用字母表示,代表一个命题。

命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。

括号用于改变命题联结词的优先级。

习题2:列举命题逻辑的基本定律。

答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。

1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。

集合的基本运算包括并、交、差和补等。

习题2:列举集合的基本定律。

答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。

第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。

答:命题逻辑的推理规则是用来推导命题的逻辑规则。

常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。

习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。

答:假言推理规则可以用来证明该命题。

根据假言推理规则,如果A成立,则B成立。

又根据假言推理规则,如果B不成立,则A不成立。

2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。

与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。

《离散数学》复习提纲(2018)

《离散数学》复习提纲(2018)

《离散数学》期末复习大纲一、数理逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足)8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量词分配)和置换规则(置换规则、换名规则)9、一阶逻辑前束范式(定义、求法)本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与解释、求前束范式。

[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。

2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。

4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;掌握命题的符号化。

7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。

8、掌握求一阶逻辑前束范式的方法。

二、集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理)3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根律等)及应用本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。

离散数学定义列表

离散数学定义列表

A.定义1.简单命题/原子命题、复合命题2.定义1.1:否定式、否定联结词3.定义1.2:合取式、合取联结词4.定义1.3:析取式、析取联结词定义1.4:蕴含式、前件、后件、蕴含联结词;规定19.4、20.45.定义1.5:等价式、等价联结词;规定6.联结词的定义(真值表)表1.1、优先级7.命题常项、命题变项(不是命题)、合式公式8.定义1.6:原子命题公式、公式、子公式9.定义1.7:公式层次10.定义1.8:赋值/解释、成真赋值、成假赋值11.定义1..9:真值表12.定义1..10:重言式/永真式、矛盾式/永假式、可满足式13.哑元************************重点:命题逻辑等值演算***************15.等值演算、置换规则4.116.定义2.2:文字、简单析取式、简单合取式17.定义2.3:析取范式、合取范式、范式18.定义2.4:极小项、极大项定义2.5:主析取范式、主合取范式********************************一阶逻辑**********************19.个体词、个体常项、个体变项、个体域/论域、全总个体域20.谓词、谓词常项、谓词变项、n元谓词、0元谓词量词、全称量词、存在量词全称蕴含、存在合取P71 5.3********************************集合代数**********************21.定义6.1:子集、包含22.定义6.2:相等23.定义6.3:真子集定义6.4:空集P139 124.n元集、m元子集、(单元集)25.定义6.5:幂集公式:26.定义6.6:全集27.定义6.7:并集、交集、相对补集、不交28.定义6.8:对称差集29.定义6.9:绝对补集30.定义6.10:广义并31.定义6.11:广义交幂等律、结合律、交换律、分配律、同一律、零律、排中律、矛盾律、吸收律、德摩根律、双重否定律eg6.8,P108 36****************************重点:二元关系***********************32.定义7.1:有序对/序偶33.定义7.2:笛卡尔积性质P11134.定义7.3:二元关系/关系P139 735.定义7.4:从A到B的二元关系、A上的二元关系、空关系36.定义7.5:A上的全域关系(E)、恒等关系(I)、小于等于关系(L)、整除关系(D)、包含关系(R)37.关系矩阵(x行,y列)、关系图38.定义7.6:定义域、值域、域39.定义7.7:逆关系40.定义7.8:右复合(左复合)41.定义7.9:R在A上的限制、A在R下的像42.定义7.10:关系的n次幂定义7.11:自反、反自反定义7.12:对称、反对称定义7.13:传递43.定义7.15:等价关系(性质)P142 32(4)、4144.定义7.16:等价类45.定义7.17:商集46.定义7.18:划分、划分块 P134 eg7.1847.定义7.19:偏序关系(性质)48.定义7.20:小于、可比49.定义7.21:全序关系/线序关系50.定义7.22:偏序集P13551.定义7.23:偏序集中顶点的覆盖关系(为画哈斯图)P143 43(2)***************************函数*******************************53.定义8.1:函数54.定义8.2:函数相等55.定义8.3:从A到B的函数P171 6(8)(9)56.定义8.4:从A到B的函数的集合B A57.定义8.5:A1在ƒ下的像、函数的像、完全原像定义8.6:满射、单射、双射/一一映射P173 2558.定义8.7: 常函数、恒等函数、单调递增、单调递减、严格单调递减、特征函数、自然映射59.反函数(双射)*************************代数系统*****************************60.定义9.2:一元运算定义9.3:可交换/交换律定义9.4:可结合/结合律定义9.5:幂等律、幂等元61.定义9.6:可分配/分配律62.定义9.7:吸收律63.定义9.8:左单位元(右单位元)、单位元/幺元64.定义9.9:左零元(右零元)65.定义9.10:左逆元(右逆元)、逆元、可逆66.定义9.11:消去律、左消去律(右消去律)注意P183 eg9.667.定义9.12:代数系统/代数、特异元素/代数常数68.定义9.13:具有相同的构成成分/同类型69.定义9.14:子代数系统/子代数、平凡的子代数、真子代数(函数对子集封闭)70.定义9.15:积代数、因子代数************************************群与环***************************************半群与群都是具有一个二元运算的代数系统71.定义 10.1:半群()、幺半群/独异点()、群()72.有理数加群、整数加群、实数加群、复数加群、四元群、子代数、语言73.定义 10.2:有限群、无限群、平凡群、交换群/Abel群74.定义 10.3:n次幂75.定义 10.4:(元素的)阶/周期、k阶元、无限阶元***********************************格与布尔代数**********************************格与布尔代数是具有两个二元运算的代数系统定义11.1:格(偏序集定义的)P22176.幂集格、子群格77.定义11.2:对偶命题、格的对偶原理78.定义11.3:格(代数系统定义的)79.定义11.4:子格80.定义11.5:分配格81.定义11.6:全上界、全下界82.定义11.7:有界格83.定义11.8:补元84.定义11.9:有补元定义11.10:布尔格/布尔代数(有补分配格)85.定义11.11:布尔代数(代数系统定义)86.定义11.12:原子**********************************14.图的基本概念********************************87.无序积A&B88.定义14.1:无向图、顶点集、顶点/结点、边集、无向边/边89.定义14.2:有向图、无向边/边90.(P294)图、阶、n阶图;零图、平凡图;空图;标定图、非标定图;基图;端点、关联、关联次数、环、相邻;始点、终点、孤立点;邻域、闭邻域、关联集、后继元集、先驱元集91.定义14.3:平行边、重数、多重图、简单图92.定义14.4:度数/度、出度、入度、最大度、最小度、悬挂顶点、悬挂边、偶度(奇度)顶点93.度数列、可图化的、可简单图化的,出度列、入度列94.定义14.6:n阶无向完全图/n阶完全图、n阶有向完全图、n阶竞赛图95.定义14.7:k-正则图96.定义14.8:母图、真子图、生成子图、导出的子图97.定义14.10:删除边e、删除E’、删除顶点v、删除V‘、边的收缩、新加边删点边不留,删边点还在98.定义14.11:通路、始点、终点、长度、回路、简单通路、简单回路、初级通路/路径、初级回路/圈、奇圈、偶圈、复杂通路、复杂回路99.定义14.12:连通、连通图、非连通图100.定义14.13:连通分支、连通分支数101.定义14.14:短程线、距离102.定义14.15:点割集、割点103.定义14.16:边割集/割集、割边/桥104.定义14.21:弱连通图/连通图、单向连通图、强连通图105.定义14.22:二部图/二分图/偶图,完全二部图定义14.23:无向图关联次数、关联矩阵定义14.24:有向图关联矩阵定义14.25:邻接矩阵定义14.26可达矩阵**********************************15.欧拉图与哈密顿图****************************106.定义15.1:欧拉通路、欧拉回路、欧拉图、半欧拉图107.定义15.2:哈密顿通路、哈密顿回路、哈密顿图、半哈密度图**********************************16.树*****************************************108.定义16.1:无向树/树、森林、平凡树、树叶、分支点109.定义16.2:生成树、树枝、弦、余树110.定义16.:5:权、最小生成树111.避圈法(Kruskal算法)B.定理1.定理2.1:简单析取式是重言式的充要条件;简单合取式是矛盾式的充要条件2.定理2.2:析取范式(矛盾式)、合取范式(重言式)3.定理2.3:范式存在定理4.定理2.4:极小项和极大项关系5.定理2.5:主析、主合存在并唯一6.定理6.1:子集是一切集合的子集推论:空集是唯一的7.定理7.1:逆关系性质8.定理7.2:复合结合律、逆9.定理7.3:关系与恒等关系复合10.定理7.4:复合分配律注意交11.定理7.5:限制和像的分配律注意像的交12.定理7.6:有穷集上只有又穷多个不同的二元关系13.定理7.7:关系的幂性质14.定理7.8:有穷集A上的关系R的幂序列R0,R1,R2等是一个呈现周期性变化的序列15.定理7.9:五大性质16.定理7.14:等价关系的性质17.定理8.1:函数的复合(关系的右复合)推论1:函数复合结合律推论2:ƒ:A→B,g:B→C,则ƒ。

离散数学复习提纲(完整版)解析

离散数学复习提纲(完整版)解析

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。

2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。

4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。

具体方法有两种,一是真值表法,二是等值演算法。

2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。

关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。

3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。

例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。

离散数学第一章

离散数学第一章

离散数学第一章1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1 否定联结词﹁PP P0 11 01.2.2 合取联结词∧P∧P Q Q0 0 00 1 01 0 01 1 11.2.3 析取联结词∨P∨P Q Q0 0 00 1 11 0 11 1 11.2.4 条件联结词→P Q Q0 0 10 1 11 0 01 1 11.2.5 双条件联结词?P?P Q Q0 0 10 1 01 0 01 1 11.2.6 与非联结词↑P↑P Q Q0 0 10 1 11 0 11 1 0性质:(1)P↑P?﹁(P∧P)?﹁P;(2)(P↑Q)↑(P↑Q)?﹁(P↑Q)? P∧Q;(3)(P↑P)↑(Q↑Q)?﹁P↑﹁Q? P∨Q。

1.2.7 或非联结词↓P↓P Q Q0 0 10 1 01 0 0性质:(1)P↓P?﹁(P∨Q)?﹁P;(2)(P↓Q)↓(P↓Q)?﹁(P↓Q)?P∨Q;(3)(P↓P)↓(Q↓Q)?﹁P↓﹁Q?﹁(﹁P∨﹁Q)?P∧Q。

1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、P?Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。

例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)?(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)?(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。

离散数学第二章知识点

离散数学第二章知识点

命题逻辑等值演算等值式定理:设A,B两个命题公式(即前面的合式公式),若A,B构成的等价式A↔B为重言式,则A与B是等值的,记作A⇔B(可以说该式子为等值式模式)常用的16组等值式模式:双重否定律:A⇔﹁﹁A幂定律:A⇔A∧A,A⇔A∨A交换律:A∨B⇔B∨A,A∧B⇔B∧A结合律:(A∨B)∨C⇔A(B∨C)(A∧B)∧C⇔A(B∧C)分配律:A∨(B∧C)⇔(A∨B)∧(A∨C)A∧(B∨C)⇔(A∧B)∨(A∧C)德摩根律:﹁(A∨B)⇔﹁A∧﹁B﹁(A∧B)⇔﹁A∨﹁B吸收律:A∨(A∧B)⇔A,A∧(A∨B)⇔A零律:A∨1⇔1,A∧0⇔0同一律:A∨0⇔A,A∧1⇔1排中律:A∨﹁A⇔1矛盾律:A∧﹁A⇔0蕴涵等值式: A→B⇔﹁A∨B等价等值式: A↔B⇔(A→B)∧(B→A)假言易位:A→B⇔﹁B→﹁A(这里可以用逆否命题的概念证明)等价否定等值式:A↔B⇔﹁A↔﹁B(或写成﹁B↔﹁A,这里可以用逆否命题的概念证明)归谬(miu)论:(A→B)∧(A→﹁B)⇔﹁A(此处可以通过蕴涵等值式,交换律以及结合律进行结合证明)上述等值式模式可以通过真值表证明等值式的验证1.等值演算法(即通过等值式模式对原式进行变形)举例:(p∨q)→r⇔(p→r)∧(q→r)证明时可以从左边开始演算也可以从右边开始演算,无硬性要求,这里我们从右边开始演算。

(p→r)∧(q→r)⇔(﹁p∨r)∧(﹁q∨r) //蕴涵等值式⇔(﹁p∧﹁q)∨r //分配律⇔﹁(p∨q)∨r //德摩根律⇔(p∨q)→r //蕴涵等值式2.真值表法(我在第一章的最后有叙述,这里不再重述)3.观察法(也可称为带入法,此处适合用以证明两式不等值的情况)关于等值演算法的补充:等值演算法可以用以证明公式的类型。

1.当最后结果为1时为重言式(永真式)2.当最后结果为0时为矛盾式(永假式)3.当最后结果只能化成某个命题变项或公式时为可满足式析取范式与合取范式简单析取式:p,﹁p,p∨q,﹁p∨q,p∨﹁q,,﹁p∨﹁q,﹁p∨﹁q∨r等(这里可以发现的是里面都只含有析取联结词,简单析取式结构就是由析取联结词和命题变项组成的一个公式)简单合取式:p,﹁p,p∧q,﹁p∧q,p∧﹁q,,﹁p∧﹁q,﹁p∧﹁q∧r等(这里可以发现的是里面都只含有合取联结词,简单合取式结构就是由合取联结词和命题变项组成的一个公式)课本中的定理:命题变项及其否定统称为文字。

离散数学第一章知识点

离散数学第一章知识点

命题逻辑的基本概念命题与联结词命题:非真即假的陈述句。

真值:命题的陈述句所表达的判断结果,真值只取真或假两种情况。

假命题:真值为假的命题。

真命题:真值为真的命题。

简单命题(原子命题):无法继续拆分的命题。

复合命题:多个原子命题通过联结词联结而成的命题。

悖论:自相矛盾的陈述句。

否定联结词:符号﹁(复合命题非p称作p的否定式,记作﹁p)合取联结词:符号∧(复合命题p且q称作p与q的合取式记作p∧q)析取联结词:符号∨(复合命题p或q称作p与q的析取式记作p∨q)蕴涵联结词:符号→(复合命题如果p,则q称为p与q的蕴涵式记作p→q,p为蕴涵式的前件,q为蕴涵式的后件)蕴涵联结词的使用及判定方法:使用:1:因为p所以q这类直抒胸臆的表达时可以直接看作:p→q2:只有p才q这类具有转折性的表达时可以直接看作:q→p判定:1:同假时为真2:后件为真前件为假时为真3:后件为真前件为真时为真其他情况皆为假等价联结词:符号↔(复合命题p当且仅当q称为p与q的等价式)等价联结词的判定:1:当p与q同时为真时为真2:当p与q同时为假时为假命题公式及其赋值命题常项(命题常元):可以直接理解为原子命题或简单命题命题变项(命题变元):真值可以变化的陈述句,因此命题变项不是命题合式公式:命题变项使用联结词组合成的符号串(可以当作命题用联结词组合成的复合命题)合式公式层数的判定:下面p和q都是公式或者命题常项1:当个命题变项为0层公式。

2:﹁p为1层公式3:p∧q为n+1层公式,n=max(p的层数,q的层数)4:p∨q为n+1层公式,n=max(p的层数,q的层数)5:p→q为n+1层公式,n=max(p的层数,q的层数)6:p↔q为n+1层公式,n=max(p的层数,q的层数)赋值(解释):对公式中的命题变项指定一个真值,真值为1即该命题变项为成真赋值,真值为0即该命题变项为成假赋值。

重言式(永真式):即该合式公式在任意赋值下取值都是真矛盾式(永假式):即该合式公式在任意赋值下取值都是假可满足式:即至少存在一种赋值下取值为真故重言式必是可满足式,可满足式不一定是重言式,可满足式必不是矛盾式,矛盾式必不是可满足式。

离散数学最全知识点

离散数学最全知识点

10 1 1
1
1
11 0 0
0
1
2、演绎法
事实库
规则匹配 新事实
事实=结论?
触发规则
N
公理库 将事实加入到事实库中
Y 结束
推理定理
推理规则
3、反证法
例 如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡 是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑。 所以羊不吃草。
例 有红、黄、蓝、白四队参加足球联赛。 如果红队第三,则当黄队第二时,蓝队第四; 或者白队不是第一,或者红队第三; 事实上,黄队第二。 因此,如果白队第一,那么蓝队第四。
莱布尼茨之梦
“精炼我们的推理的唯一方 式是使它们同数学一样切实,这 样我们能一眼就找出我们的错误, 并且在人们有争议的时候,我们 可以简单的说: 让我们计算, 而无须进一步的忙乱,就能看出 谁是正确的。”
莱布尼茨(1646年~1716年) 德国哲学家、数学家。
布尔与布尔代数
“以计算的符号语言来表示 它们,以此为基石建立逻辑的科 学,并且构造他们的方法。”
否定律 分配律
DeMorgan律
矛盾律 排中律 蕴涵 等价
判定公式是永真或永假的方法有:真值表法和公式推演法
法一
法二
例 试用较少的开关设计一个与下图有相同功 能的电路。
3.3 联结词的完备集
一、联结词的个数
1、一元联结词
0001 1 1010 1
2、二元联结词
00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

离散数学2.联结词(否定、合取)

离散数学2.联结词(否定、合取)
采用多媒体课件辅助,首先对联结词的含义和真值表进行分析,举例说明其用法;注意师生互动,以学生为教学主体,共同完成教学目标。
学情分析
学生已经掌握了命题的概念,思考把命题符号化。
教学评价
师生互动,启发式教学引导学生思考并进而解决问题;深入分析,用例题加深学生对知识点的理解。
课程资源
参考书目,网上教学视频,网络微课教学
则(1) P∧Q (2) P∧Q
(3) P∧Q (4)(P)∧Q
例4.翻译下列命题的合取:
(1) P:我们在C403教室.Q:今天是星期二.
(2) S:李平在吃饭.R:张明在吃饭.
解: (1) P∧Q :我们在C403教室且今天是星期二.
(2) S∧R:李平与张明在吃饭.
“∧”与日常语言中“与”“和”的不同之处:
“…与…”等都可以符号化为∧.
补充说明
记住最特殊的赋值
教学设计
课程名称
《离散数学》
教师姓名
授课题目
联结词(否定、合取)
授课章节
§1.2联结词
授课对象
数学与应用数学专业
教学目标
掌握否定、合取联结词的写法和含义、真值情况。
教学方式
启发式
教学内容
否定、合取联结词的写法、含义,真值情况,使用方法。
教学重点
联结词的含义和真值表
教学难点
条件联结词的含义和真值表
教学方法和策略
(1)逻辑学中允许两个相互独立无关,甚至相反的原子命题生成一个新命题.
(2)自然语言中有时在不同意义时可以同时使用“与”“和”,但是不能都用“∧”翻译.(如:我和你是好朋友。李敏和李华是姐妹。)
说明:“∧”属于二元运算符.
合取运算特点:只有参与运算的二命题全为真时,运算结果才为真,否则为假.自然语言中的表示“并且”意思的联结词,如“既…又…”、“不但…而且…”、“虽然…但是…”、“一面…一面…”、“…和…”、

离散数学(高教)概念整理

离散数学(高教)概念整理
等价联结词↔
p 等价 q 当且仅当,同时为真或假。(复合命题“p 当且仅当 q”称作 p 与 q 的等价式)
真值表
命题公式及其赋值 命题常项
原子命题(简单命题)的另一称呼,由于其真值确定
命题变项
真值可以变化的陈述句
合式公式(命题公式)A,B……
命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式
简单合取式中的命题变项及它的否定式恰好出现一次,并按照下标拍好,这样的简单合取式 叫做极小项。同理为极大项。 n 个命题变项可以产生 2 的 n 次方个极小项,每个极小项都有且仅有一个成真赋值,这一组 成真赋值(01 组成)转化为对应的十进制数 i,将这个极小项表示为 类似的,极大项为
主析取范式
主合取范式
公式中不含自由出现的个体变项.
解释 I
解释就是对抽象一阶语言的在 I 的具体含义,包括四个部分: ①非空个体域 D1②每一个个体常项在 D1 中的对应③每一个 n 元函数在 D1 上的对应④每一 个谓词符号在 D1 上的对应
永真式(逻辑有效式),永假式,可满足式
同上文。在任何解释下均为真的公式为永真式。这里不存在重言式的说法。
可满足式
命题公式 A 至少存在一个成真赋值
哑元
对公式 A 和 B 进行比较讨论,可知 A 和 B 共含有 n 个命题变项,其中 A 不含有的命题变项 称为 A 的哑元,其取值不影响 A 的值
命题逻辑等值演算 等值式⇔
如果命题 A 和 B 有相同的真值表,则有命题 A↔B 为重言式,这种情况下称 A 与 B 是等值的, 记作 A⇔B

所有简单合取式都是极小项的析取式,这是唯一的主析取范式。同理。
联结词的完备集
n 元真值函数 F

离散数学5.联结词(双条件)

离散数学5.联结词(双条件)

T
T
T
4
例1.分析下列命题的真值. (1) 2+2=4 当且仅当3是奇数 . P: 2+2=4. Q:3是奇数 . 命题可以符号化为:P Q.
(2) 2+2=4 当且仅当3不是奇数 .
(3) 2+2≠4 当且仅当3是奇数 .
(4) 2+2≠4 当且仅当3不是奇数 .
(P Q) (P Q) (P Q)
Q的双条件命题,记作P Q或 PQ,符号称为双条
件(等价)联结词.
P Q为真当且仅当
P
F
P,Q真值相同.
F
T
T
Q
P Q
F
T
T
F
F
F
T
T
3
注: (1)P仅当Q 可译为P→Q;
P当Q 可译为Q→P; P当且仅当Q 译为P Q. (2)“”属于二元运算符. (3)双条件命题P Q所表达的逻辑关系是, P与Q互为 充分必要条件,相当于(P Q) ∧(Q P).只要P与Q的 真值同为T或同为F, P Q的真值就为T, 否则P Q的 真值为F. 双条件联结词连接的两个命题之间可以没有因果关系.
联结词
----双条件
复合命题是用“联结词”将原子命题联结起来构成 的.
归纳自然语言中的联结词,定义了六个逻辑联结词: (1) 否定“” (2) 合取“∧”
(3) 析取“∨”和异或“ ”
(4) 条件(蕴涵) “” (5)双条件(等价)“”或记做“”
五、双条件(等价联结词)“”或 “”
设P,Q为二命题,复合命题“P当且仅当Q” 称为P与

约 定: 1. 运算次序优先级:┐,,,→, . 2. 相同的运算符按从左至右次序计算,否则要

离散数学2

离散数学2

1/13/2020 5:08 AM
Discrete Math. , huang liujia
13
例1.5 将下列命题符号化,并指出各复合命题的真值。CHAPTER
(1) 如果3+3 = 6, 则雪是白色的。
ONE
(2) 如果3+3 ≠6, 则雪是白色的。
(3) 如果3+3 = 6, 则雪不是白色的。
(4) 如果3+3 ≠6, 则雪不是白色的。
(5) 只要 a 能被4整除,则 a 一定能被2整除。
(6) a 能被4整除,仅当 a 能被2整除。
(7) 除非 a 能被2整除,a 才能被4整除。
(8) 除非 a 能被2整除,否则 a 不能被4整除。
(9) 只有 a 能被2整除,a 才能被4整除。
(10) 只有 a 能被4整除,a 才能被2整除。(a 是一个给定的正整数)。
注:p↔q 可理解为“q与p互为充分必要条件”;
它与(p→q)∧(q→p)的逻辑关系完全一致。
1/13/2020 5:08 AM
Discrete Math. , huang liujia
15
例 1.6 将下列命题符号化,并讨论它们的真值。CHAPTER ONE
(1) √3 是无理数当且仅当加拿大位于亚洲。 (2) 2+3=5的充要条件是√3是无理数。 (3) 若两圆的面积相等, 则它们的半径相等, 反之亦然。 (4) 当王小红心情愉快时, 她就唱歌, 反之, 当她唱歌时, 一定心情愉快。 解:(1)令p:√3是无理数;q: 加拿大位于亚洲,则符号化为
2
CHAPTER ONE
逻辑学: 研究人的思维形式和规律的科学.由于研究的 对象和方法各有侧重而又分为形式逻辑、辩证逻辑和数理逻 辑.

离散数学_命题逻辑_1.1

离散数学_命题逻辑_1.1

1.1命题与联结词
例1.1 判断下列语句是否是命题 不是命题 (7) x+8>0。 (8)你出去么? 不是命题 (9)5或6是素数。 不是命题 (10)如果行列式的两行对应成比 真命题 例,则行列式的值为0。 (11)角A与角B相等当且仅当A与角 假命题 B是对顶角。
1.1命题与联结词


2.命题的特点 命题一定是陈述句,但陈述句不一定是命 题。 命题的真值有时明确给出,有时还要依 靠环境、条件、实际情况等因素才能确 定其真值。
什么是离散?离散就是不连续。
线与点。 人的说话声,鸟叫声等;计算机里储存声音。 生活中,人眼见到的图像(非计算机里的);计 算机里用灰度值(从0到255)表示的图像。 计算机不能处理连续信息的,这是由计算机的 本质:0和1,决定的。因此,如果要用计算机 来处理连续信息,必须经过离散化。


离散数学的地位


离散数学的特点

提高抽象思维、严格推理以及综合归纳 分析能力 以研究离散量的结构和相互关系为主要 目标
显著特征是符号化和形式化


离散数学的用途

又称“计算机数学”,因为离散数学的 主要应用领域是计算机。
数理逻辑——数字逻辑电路、密码学 图论(包括树)——数据结构、操作系统 、编译 原理、计算机网络 集合论和关系代数——软件工程和数据库原理
其他分支
代数系统
图论
形式语言与 自动机
数理逻辑
集合论
离散数学 的构成
数理逻辑 命题逻辑
离散数学
集合论 集合及其运算 二元关系
谓词逻辑
函数
代数系统
图论 图的基本概念
群、环、域
Euler图与Hamilton图

离散数学要点

离散数学要点

1.1 命题1-1-1 命题命题是一个能表达判断并具有确定真值的陈述句。

1-1-2 真值作为命题的陈述句所表达的判断结果称为命题的真值。

真值只有真和假两种,通常记为T和F。

真值为真的命题称为真命题,真值为假的命题称为假命题。

真命题表达的判断正确,假命题表达的判断错误。

任何命题的真值都是唯一的。

1-1-3 命题变项用命题标识符(大写字母)来表示任意命题时,该命题标识符称为命题变项。

1-1-4 简单命题无法继续分解的简单陈述句称为简单命题或原子命题。

(不包含任何与、或、非一类联结词的命题)1-1-5 复合命题由一个或几个简单命题通过联结词复合所构成的新的命题,称为复合命题,也称分子命题。

1.2 命题联结词及真值表1-2-1 命题联结词命题联结词可将命题联结起来构成复杂的命题,是由已有命题定义新命题的基本方法。

命题联结词又可分为一元命题联结词、二元命题联结词和多元命题联结词。

常用的命题联结词包括否定词、合取词、析取词、蕴涵词和双条件词。

其它联结词还包括异或(不可兼或)、与非和或非等。

1-2-2 否定词否定词是一元命题联结词。

设P为一命题,P的否定是一个新的命题,记作P,读作非P。

若P为T,P为T;若P为F,P为T。

1-2-3 合取词合取词是二元命题联结词。

两个命题P和Q的合取构成一个新的命题,记作P∧Q。

读作P、Q的合取(或读作P与Q,P且Q)。

当且仅当P、Q 同时为T时,P∧Q为T。

否则,P∧Q的真值为F。

1-2-4 析取词析取词是二元命题联结词。

两个命题P和Q的析取构成一个新的命题,记作P∨Q。

读作P、Q的析取(也读作P或Q)。

当且仅当P、Q同时为F 时,P∨Q的真值为F。

否则,P∨Q的真值为T。

1-2-5 蕴涵词蕴涵词是二元命题联结词。

两个命题P和Q用蕴涵词“→”联结起来,构成一个新的命题,记作P→Q。

读作如果P则Q,或读作P蕴涵Q。

当且仅当P 的真值为T,Q的真值为F时,P→Q的真值为F,否则P∨Q的真值为T。

离散数学 逻辑

离散数学 逻辑

离散数学逻辑离散数学是一门研究离散量的数学学科,它研究的对象往往是离散的结构和离散的数量。

而离散数学的核心是尽可能避免连续性以及无限性的概念,因此其研究内容多以图论、代数、逻辑和组合数学为主。

在离散数学中,逻辑是非常重要的一个分支。

逻辑是研究正确推理和正确思维的学问,它是人们从事各种学科研究和社会实践活动的重要认识工具和方法论基础。

而离散逻辑是逻辑学中的一个非常重要的分支,其研究的对象是离散的命题和逻辑关系,并通过数学方式进行形式化研究。

逻辑思维是自然智能和人工智能的核心之一,它对于计算机科学、信息技术和人工智能技术的发展有着举足轻重的作用。

因此,学好离散逻辑对于从事计算机科学和信息技术领域的工作者来说是非常必要的。

下面我们就来简要介绍一下离散逻辑的一些基础概念和应用。

一、命题命题是指有真假性的陈述或句子,其句子结构简单,且具有确定的真值。

比如“今天是星期一”这个陈述就是一个命题,因为它可以是真,也可以是假。

而“跑步是好的”这个陈述就不是一个命题,因为它的真值不确定。

另外,需要注意的是,命题不一定是对的,也不一定是错的,而是具有确定的真假性。

二、联结词在逻辑学中,联结词指的是用来构成复合命题的词语。

常见的联结词有否定(not)、合取(and)、析取(or)、条件(if…then)、双条件(if and only if)等。

联结词的使用能够帮助我们构造更加复杂的命题。

三、真值表真值表是一种用来罗列命题真值情况的表格。

它是一个非常重要的逻辑工具,用来分析、比较和计算命题和逻辑关系的真值情况。

真值表的构造需要首先确定命题中各个命题变项的取值,然后通过逻辑运算得出复合命题的真值。

四、逻辑等价式逻辑等价式是指两个命题拥有相同的真值情况。

比如A∨B和B∨A就是逻辑等价的命题。

在离散逻辑中有许多的逻辑等价式,常见的有德摩根定理(De Morgan's Theorem)、双否定律(Double Negation Law)、交换律(Commutative Law)等,它们都是逻辑运算的基本定理。

离散数学知识汇总

离散数学知识汇总

离散数学知识汇总离散数学笔记第⼀章命题逻辑合取析取定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表⽰“如果……那么……”形式的语句定义 1. 1.5双条件联结词,表⽰“当且仅当”形式的语句定义 1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原⼦公式。

(2)若某个字符串A是合式公式,则?A、(A)也是合式公式。

(3)若A、B是合式公式,则 A ∧B、A∨B、A→ B、A?B 是合式公式。

(4)有限次使⽤(2)~(3)形成的字符串均为合式公式。

1.3等值式1.4析取范式与合取范式将⼀个普通公式转换为范式的基本步骤1.6推理定义1.6.1设A与 C 是两个命题公式,若 A → C 为永真式、重⾔式,则称 C 是A的有效结论,或称 A 可以逻辑推出 C,记为 A => C。

(⽤等值演算或真值表)第⼆章谓词逻辑2.1、基本概念:全称量词 ?:存在量词⼀般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时,带 “全称量词”的谓词公式形如"?x(H(x)→B(x)),即量词的后⾯为条件式,带“存在量词”的谓词公式形如?x(H(x )∨W L(x )),即量词的后⾯为合取式例题R(x)表⽰对象 x 是兔⼦,T (x)表⽰对象 x 是乌龟, H(x,y)表⽰x⽐ y 跑得快,L(x,y)表⽰x 与 y ⼀样快,则兔⼦⽐乌龟跑得快表⽰为: ?x ?y(R(x )∧T(y)→H(x,y))有的兔⼦⽐所有的乌龟跑得快表⽰为:?x ?y (R(x)∧T(y)→H(x,y))2.2、谓词公式及其解释定义 2.2.1、⾮逻辑符号:个体常元(如 a,b,c)、函数常元(如表⽰22y x 的f(x ,y))、谓词常元(如表⽰⼈类的 H(x ))。

定义 2.2.2、逻辑符号:个体变元、量词(??)、联结词(﹁∨∧→?)、逗号、括号。

离散数学知识点整理(一)

离散数学知识点整理(一)

离散数学知识点整理(⼀)离散数学数学语⾔与证明⽅法集合幂集运算交集并集相对补集绝对补集对称差集运算律交换律结合律分配律德摩根律恒等式证明⽅法直接证明归谬法分情况证明构造性证明数学归纳法命题逻辑命题简单命题p,q,r复合命题基本复合命题五种复杂复合命题真值真命题假命题命题符号化联结词否定联结词¬否定式合取联结词∧合取式析取联结词∨析取式相容或p∨q排斥或(¬p∧q)∨(p∧¬q)蕴含联结词蕴含式p->q真值p真q假,p->q为真其他全为真前件p后件q等价联结词等价式p<->q真值p,q真值相同,p<->q为真不同为假‘当且仅当’公式命题常项p,q,r为定值变项p,q,r为变量合式公式/命题公式A,B,C,D永真式重⾔式永假式⽭盾式可满⾜式赋值/解释成真赋值成假赋值等值演算A<->B,则A<=>B等价式为重⾔式常⽤等值公式蕴含等值式A→B⇔¬A∨B德摩根律 ¬(A∨B)⇔¬A∧¬B联结词集优先顺序扩展与⾮联结词p↑q⇔¬(p∧q)或⾮联结词p↓q⇔¬(p∨q)联结词完备集(1)S={¬,∧,∨}(2)S={↑}(3)S={↓}范式分类析取范式主析取范式极⼤项合取范式主合取范式极⼩项计算推理概念蕴含式为重⾔式⇒形式结构(A1∧A2∧...∧A k)⇒B前提结论证明推理规则前提引⼊结论引⼊置换规则等值置换A⇔B:A⇒B;B⇒A推理定律特殊证明⽅法附加前提证明法(A1∧A2∧...∧A k)⇒A→B(A1∧A2∧...∧A k∧A)⇒B归结证明法归结规则(L∨C1)∧(¬L∨C2)⇒C1∨C2基本思想归谬法证明步骤结论的否定引⼊前提把所有前提化成合取范式,并将简单析取式作为单个前提归结规则进⾏推理推出0则推理正确⼀阶逻辑表达个体与总体之间的内在联系与数量关系概念个体词个体常项a,b,c....个体变项个体域x,y,z....谓词谓词常项表⽰具体性质或关系⼦主题 2谓词变项表⽰抽象性质或关系F,G....0元谓词不带个体变项的谓词当谓词为谓词常项时为命题量词全称量词存在量词符号化不同个体域形式可能不同引⼊特性谓词公式分类原⼦公式合式公式/谓词公式闭式A中不含⾃由出现的个体变项概念x:指导变元A:辖域x在A中约束出现A中出现的除x所有其他个体变项都为⾃由出现解释/赋值定义封闭的公式在任何解释下都变成命题分类永真式/逻辑有效式A在任何解释和任何赋值下均为真永假式/⽭盾式A在任何解释和任何赋值下均为假可满⾜式⾄少存在⼀个解释和⼀个赋值使A为真代换实例重⾔式的代换实例都是重⾔式⽭盾式的代换实例都是⽭盾式等值演算命题逻辑的代换实例等值式消去量词等值式量词否定等值式量词辖域收缩与扩张等值式量词分配等值式规则置换规则换名规则前束范式存在但不唯⼀利⽤等值演算求前束范式Processing math: 100%。

离散数学命题与联结词

离散数学命题与联结词
20
例1.6求下列复合命题的真值1 0(1) 2+2=4 当且仅当 3+3=6.
(2) 2+2=4 当且仅当 3是偶数. (3) 2+2=4 当且仅当 太阳从东方升起. (4) 2+2=4 当且仅当 美国位于非洲. (5) 函数 f(x)在x0可导的充要条件是 它在x0连续.
1
0 0
21
以上给出了5个联结词:, , , , ,组成 一个联结词集合{, , , , }, 联结词的优先顺序为:, , , , ; ① ② ③ 如果出现的联结词同级,又无括号时,则按从左 到右的顺序运算; 若遇有括号时,应该先进行括 号中的运算.
25
7
例1.1
下列句子中哪些是命题? 真命题 假命题 真值不确定 疑问句 感叹句 祈使句 悖论 (3)—(7)都不是命题
8
(1) (3)
(4) (5) (6) (7)
2 是无理数. (2) 2 + 5 =8.
x + 5 > 3.
你有铅笔吗? 这只兔子跑得真快呀! 请不要讲话! 我正在说谎话.
命题的分类
10
联结词与复合命题
1.否定式与否定联结词“”
定义 设p为命题,复合命题 “非p”(或 “p 的 否定”)称为p的否定式,记作p,符号称
作否定联结词,并规定p 为真当且仅当p为
假.
例如:p:10是素数,则p:10不是素数.
11
2. 合取式与合取联结词“∧” 定 义 设 p, q 为 二 命 题 , 复 合 命 题 “ p 并 且 q ”( 或 “ p 与 q ”) 称为 p 与 q 的合取式,记作 p∧q ,∧ 称 作合取联结词,并规定 p∧q为真当且仅当p 与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

联结词
----否定、合取
复合命题是用“联结词”将原子命题联结起来构成的.
归纳自然语言中的联结词,定义了六个逻辑联结词:
(1)否定“⌝”
(2)合取“∧”
(3) 析取“∨”和异或“”

(4) 条件(蕴涵)“→”
(5)双条件(等价)“∆”或记做“↔”
一. 否定“⌝”
表示:“…不成立”,“不…”.
用于:对一个命题P的否定,写成⌝P,并读成“非P”.
⌝P的真值:与P真值相反.
例 P:2是素数.
⌝P:2不是素数. P ¬P F T T F
例1. P: 天津是一个城市.
Q: 3是偶数.
于是: ⌝ P: 天津不是一个城市.
⌝ Q: 3不是偶数.
例2. P:济宁学院处处清洁.
Q:这些都是男同学.
(注意,不是处处不清洁)⌝ P:济宁学院不处处清洁.
⌝ Q:这些不都是男同学.
二. 合取“∧”
表示:“并且”、“不但…而且...”、“既…又...” “尽管…还…”.
例 P:小王能唱歌.
Q:小王能跳舞.
P∧Q:小王能歌善舞. P∧Q读成P合取Q.
P∧Q的真值为真,当且仅当P和Q的真值均为真.P Q P∧Q F F F F T F T F F T T T
例3. 将下列命题符号化:
(1)李平既聪明又用功.
(2)李平虽然聪明, 但不用功.
(3)李平不但聪明,而且用功.
(4)李平不是不聪明,而是不用功.
解: 设P:李平聪明. Q:李平用功.
则 (1) P∧Q (2) P∧⌝ Q
(3) P∧Q (4) ⌝(⌝ P)∧⌝ Q
例4. 翻译下列命题的合取.
(1) P: 我们在C403教室. Q: 今天是星期二.
(2) S:李平在吃饭. R:张明在吃饭.
解: (1) P∧Q :我们在C403教室且今天是星期二.
(2) S∧R:李平与张明在吃饭.
“∧”与日常语言中“与”“和”的不同之处:
(1)逻辑学中允许两个相互独立无关,甚至相反的原子命题生成一个新命题.
(2)自然语言中有时在不同意义时可以同时使用“与”“和”,但是不能都用“∧”翻译.(如:我和你是好朋友.李敏和李华是姐妹.)
说明:“∧”属于二元运算符.
合取运算特点:只有参与运算的二命题全为真时,运算结果才为真,否则为假.自然语言中的表示“并且”意思的联结词,如“既…又…”、“不但…而且…”、“虽然…但是…”、“一面…一面…”、“…和…”、“…与…”等都可以符号化为∧.。

相关文档
最新文档