数值计算课后答案3
《数值计算方法》习题答案
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
应用数值分析(第四版)课后习题答案第3章
第三章习题解答1.试讨论a 取什么值时,下列线性方程组有解,并求出解 。
123123123123212312311(1)1(2)1ax x x ax x x x ax x x ax x a x x ax x x ax a⎧++=++=⎧⎪⎪++=++=⎨⎨⎪⎪++=++=⎩⎩ 解:(1)111111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为1001/(2)0101/(2)0011/(2)a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦ 当2a ≠-时,方程组有解,解为111(,,).222Tx a a a =+++ (2)21111111a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为2100(1)/(2)0101/(2)001(21)/(2)a a a a a a -++⎡⎤⎢⎥+⎢⎥⎢⎥+++⎣⎦当2a ≠-时,方程组有解,解为21121(,,).222Ta a a x a a a +++=-+++2.证明下列方程组Ax=b12341123421233234432432385x x x x b x x x x b x x x b x x x b+--=⎧⎪-+-=⎪⎨+-=⎪⎪-+-=⎩ 当(1)(10,4,16,3).T b =-时无解;(2)(2,3,1,3).T b =时有无穷多组解。
解:(1) r(A)=3≠r(A,b)=4 当(10,4,16,3).T b =-时无解;(2) r(A)=3,r(A,b)=3 当(2,3,1,3).T b =时有无穷多组解。
3.用列主元高斯消元法求解Ax=b2233(1)477,12457A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 1231(2)234,13462A b ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)x=(2,-2,1)T (2)x=(0,-7,5)T4.证明上(下)三角方阵的逆矩阵任是上(下)三角方阵。
数值计算方法课后习题答案
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)
丁丽娟《数值计算方法》五章课后实验题答案(源程序都是自己写的,很详细,且保证运行无误)我做的五章数值实验作业题目如下:第二章:1、2、3、4题第三章:1、2题第四章:1、2题第六章:2、3题第八章:1、2题第二章1:(1) 对A进行列主元素三角分解:function [l u]=myfun(A) n=size(A); for k=1:n for i=k:n sum=0; m=k; for j=1:(k-1) sum=sum+A(i,j)*A(j,k); end s(i)=A(i,k)-sum; if abs(s(m))<abs(s(i)) m=i; end end for j=1:n c=A(m,j); A(m,j)=A(k,j); A(k,j)=c; end for j=k:n sum=0; for r=1:(k-1) sum=sum+A(k,r)*A(r,j); end u(k,j)=A(k,j)-sum; A(k,j)=u(k,j); end for i=1:n l(i,i)=1; end for i=(k+1):n sum=0; for r=1:(k-1) sum=sum+A(i,r)*u(r,k); end l(i,k)=(A(i,k)-sum)/u(k,k); A(i,k)=l(i,k); end end 的列主元素三角分解:求A的列主元素三角分解:>>A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; >>[L,U]=myfun(A) 结果:L = 1.0000 0 0 0 0 1.0000 1.0000 0 0 0 1.0000 0.5000 1.0000 0 0 1.0000 0.7500 0.7500 1.0000 0 1.0000 0.2500 0.7500 -1.0000 1.0000 U = 1.0000 1.0000 1.0000 1.0000 1.0000 0 4.0000 14.0000 34.0000 69.0000 0 0 -2.0000 -8.0000 -20.5000 0 0 0 -0.5000 -2.3750 0 0 0 0 -0.2500 (2) 求矩阵的逆矩阵A -1: inv(A) 结果为:ans = 5 -10 10 -5 1 -10 30 -35 19 -4 10 -35 46 -27 6 -5 19 -27 17 -4 1 -4 6 -4 1 (3)检验结果:E=diag([1 1 1 1 1]) A\E ans = 5 -10 10 -5 1 -10 30 -35 19 -4 10 -35 46 -27 6 -5 19 -27 17 -4 1 -4 6 -4 1 2: 程序:程序:function d=myfun(a,b,c,d,n) for i=2:n l(i)=a(i)/b(i-1); a(i)=l(i); u(i)=b(i)-c(i-1)*a(i); b(i)=u(i); y(i)=d(i)-a(i)*d(i-1); d(i)=y(i); end x(n)=d(n)/b(n); d(n)=x(n); for i=(n-1):-1:1 x(i)=(d(i)-c(i)*d(i+1))/b(i); d(i)=x(i); end 求各段电流量程序:求各段电流量程序:for i=2:8 a(i)=-2; end b=[2 5 5 5 5 5 5 5]; c=[-2 -2 -2 -2 -2 -2 -2]; V=220; R=27; d=[V/R 0 0 0 0 0 0 0]; n=8; I=myfun(a,b,c,d,n) 运行程序得:运行程序得:I = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477 3:程序:(1)求矩阵A和向量b的matlab程序:function [A b]=myfun(n) for i=1:n X(i)=1+0.1*i; end for i=1:n for j=1:n A(i,j)=X(i)^(j-1); end end for i=1:n b(i)=sum(A(i,:)); end 求n=5时A1,b1及A1的2-条件数程序运行结果如下:条件数程序运行结果如下: n=5;[A1,b1]=myfun(n) A1 = 1.0000 1.1000 1.2100 1.3310 1.4641 1.0000 1.2000 1.4400 1.7280 2.0736 1.0000 1.3000 1.6900 2.1970 2.8561 1.0000 1.4000 1.9600 2.7440 3.8416 1.0000 1.5000 2.2500 3.3750 5.0625 b1 = 6.1051 7.4416 9.0431 10.9456 13.1875 cond2=cond(A1,2)cond2 = 5.3615e+005 条件数程序运行结果如下:求n=10时A2,b2及A2的2-条件数程序运行结果如下:n=10; [A2,b2]=myfun(n) A2 = 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.9487 2.1436 2.3579 1.0000 1.2000 1.4400 1.7280 2.0736 2.4883 2.9860 3.5832 4.2998 5.1598 1.0000 1.3000 1.6900 2.1970 2.8561 3.7129 4.8268 6.2749 8.1573 10.6045 1.0000 1.4000 1.9600 2.7440 3.8416 5.3782 7.5295 10.5414 14.7579 20.6610 1.0000 1.5000 2.2500 3.3750 5.0625 7.5938 11.3906 17.0859 25.6289 38.4434 1.0000 1.6000 2.5600 4.0960 6.5536 10.4858 16.7772 26.8435 42.9497 68.7195 1.0000 1.7000 2.8900 4.9130 8.3521 14.1986 24.1376 41.0339 69.7576 118.5879 1.0000 1.8000 3.2400 5.8320 10.4976 18.8957 34.0122 61.2220 110.1996 198.3593 1.0000 1.9000 3.6100 6.8590 13.0321 24.7610 47.0459 89.3872 169.8356 322.6877 1.0000 2.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 512.0000 b2 = 1.0e+003 * 0.0159 0.0260 0.0426 0.0698 0.1133 0.1816 0.2866 0.4451 0.6801 1.0230 cond2=cond(A2,2) cond2 = 8.6823e+011 条件数程序运行结果如下:求n=20时A3,b3及A3的2-条件数程序运行结果如下:n=20; [A3,b3]=myfun(n) A3 = 1.0e+009 * Columns 1 through 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 11 through 20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0013 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0007 0.0015 0.0032 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0014 0.0032 0.0075 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0012 0.0029 0.0070 0.0167 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0023 0.0058 0.0146 0.0364 0.0000 0.0000 0.0001 0.0002 0.0006 0.0017 0.0044 0.0113 0.0295 0.0766 0.0000 0.0001 0.0002 0.0004 0.0011 0.0030 0.0080 0.0215 0.0581 0.1570 0.0000 0.0001 0.0002 0.0007 0.0018 0.0051 0.0143 0.0400 0.1119 0.3133 0.0000 0.0001 0.0004 0.0010 0.0030 0.0086 0.0250 0.0726 0.2105 0.6103 0.0001 0.0002 0.0005 0.0016 0.0048 0.0143 0.0430 0.1291 0.3874 1.1623 b3 = 1.0e+009 * Columns 1 through 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0010Columns 11 through 20 0.0025 0.0059 0.0132 0.0287 0.0606 0.1246 0.2494 0.4874 0.9316 1.7434 cond2=cond(A3,2) cond2 =3.2395e+022 由上述运行结果可知:它们是病态的,而且随着n的增大,矩阵的病态变得严重。
数值计算方法与算法第三版课后习题答案
数值计算方法与算法第三版课后习题答案1. 矩阵乘法问题描述给定两个矩阵A和B,尺寸分别为n×m和m×p,求矩阵A 和矩阵B的乘积矩阵C,尺寸为n×p。
算法实现import numpy as npdef matrix_multiplication(A, B):n, m = A.shapem, p = B.shapeC = np.zeros((n, p))for i in range(n):for j in range(p):for k in range(m):C[i][j] += A[i][k] * B[k][j] return C示例A = np.array([[1, 2], [3, 4]])B = np.array([[5, 6], [7, 8]])C = matrix_multiplication(A, B)print(C)输出结果:[[19. 22.][43. 50.]]2. 数值积分问题描述给定一个函数f(x),以及积分区间[a, b],求函数f(x)在区间[a, b]上的定积分值∫abf(x)dx。
算法实现简单的数值积分算法是采用小梯形法,将区间[a, b]均分成n个子区间,然后计算每个子区间的面积,最后将这些子区间面积相加得到定积分值。
def numerical_integration(f, a, b, n):h = (b - a) / nintegral =0for i in range(n):x1 = a + i * hx2 = a + (i +1) * hintegral += (f(x1) + f(x2)) * h /2 return integral示例import mathf =lambda x: math.sin(x)a =0b = math.pin =100result = numerical_integration(f, a, b, n) print(result)输出结果:1.99983550388744363. 非线性方程求解问题描述给定一个非线性方程f(x) = 0,求方程的根x。
丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)
丁丽娟《数值计算方法》五章课后实验题答案(源程序都是自己写的,很详细,且保证运行无误)我做的五章数值实验作业题目如下:第二章:1、2、3、4题第三章:1、2题第四章:1、2题第六章:2、3题第八章:1、2题第二章1:(1)对A进行列主元素三角分解:function [l u]=myfun(A)n=size(A);for k=1:nfor i=k:nsum=0;m=k;for j=1:(k-1)sum=sum+A(i,j)*A(j,k);ends(i)=A(i,k)-sum;if abs(s(m))<abs(s(i))m=i;endendfor j=1:nc=A(m,j);A(m,j)=A(k,j);A(k,j)=c;endfor j=k:nsum=0;for r=1:(k-1)sum=sum+A(k,r)*A(r,j);endu(k,j)=A(k,j)-sum;A(k,j)=u(k,j);endfor i=1:nl(i,i)=1;endfor i=(k+1):nsum=0;for r=1:(k-1)sum=sum+A(i,r)*u(r,k);endl(i,k)=(A(i,k)-sum)/u(k,k);A(i,k)=l(i,k);endend求A的列主元素三角分解:>>A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; >>[L,U]=myfun(A)结果:L =1.0000 0 0 0 01.0000 1.0000 0 0 01.0000 0.5000 1.0000 0 01.0000 0.7500 0.7500 1.0000 01.0000 0.2500 0.7500 -1.0000 1.0000U =1.0000 1.0000 1.0000 1.0000 1.00000 4.0000 14.0000 34.0000 69.00000 0 -2.0000 -8.0000 -20.50000 0 0 -0.5000 -2.37500 0 0 0 -0.2500(2)求矩阵的逆矩阵A-1:inv(A)结果为:ans =5 -10 10 -5 1-10 30 -35 19 -410 -35 46 -27 6-5 19 -27 17 -41 -4 6 -4 1(3)检验结果:E=diag([1 1 1 1 1])A\Eans =5 -10 10 -5 1-10 30 -35 19 -410 -35 46 -27 6-5 19 -27 17 -41 -4 6 -4 1 2:程序:function d=myfun(a,b,c,d,n)for i=2:nl(i)=a(i)/b(i-1);a(i)=l(i);u(i)=b(i)-c(i-1)*a(i);b(i)=u(i);y(i)=d(i)-a(i)*d(i-1);d(i)=y(i);endx(n)=d(n)/b(n);d(n)=x(n);for i=(n-1):-1:1x(i)=(d(i)-c(i)*d(i+1))/b(i);d(i)=x(i);end求各段电流量程序:for i=2:8endb=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2];V=220;R=27;d=[V/R 0 0 0 0 0 0 0];n=8;I=myfun(a,b,c,d,n)运行程序得:I =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.04773:(1)求矩阵A和向量b的matlab程序:function [A b]=myfun(n)for i=1:nX(i)=1+0.1*i;endfor i=1:nfor j=1:nA(i,j)=X(i)^(j-1);endfor i=1:nb(i)=sum(A(i,:));end求n=5时A1,b1及A1的2-条件数程序运行结果如下:n=5;[A1,b1]=myfun(n)A1 =1.0000 1.1000 1.2100 1.3310 1.46411.0000 1.2000 1.4400 1.72802.07361.0000 1.3000 1.69002.1970 2.85611.0000 1.4000 1.96002.74403.84161.0000 1.50002.25003.3750 5.0625 b1 =6.10517.4416 9.0431 10.9456 13.1875cond2=cond(A1,2)cond2 =5.3615e+005求n=10时A2,b2及A2的2-条件数程序运行结果如下:n=10;[A2,b2]=myfun(n)A2 =1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.94872.1436 2.35791.0000 1.2000 1.4400 1.72802.0736 2.4883 2.98603.58324.29985.15981.0000 1.3000 1.69002.1970 2.85613.71294.8268 6.2749 8.1573 10.60451.0000 1.4000 1.96002.74403.8416 5.3782 7.5295 10.5414 14.7579 20.66101.0000 1.50002.25003.3750 5.0625 7.5938 11.3906 17.0859 25.6289 38.44341.0000 1.60002.5600 4.0960 6.5536 10.4858 16.7772 26.8435 42.9497 68.71951.0000 1.70002.8900 4.9130 8.3521 14.1986 24.1376 41.0339 69.7576 118.58791.0000 1.8000 3.2400 5.8320 10.4976 18.8957 34.0122 61.2220 110.1996 198.35931.0000 1.9000 3.6100 6.8590 13.0321 24.7610 47.0459 89.3872 169.8356 322.68771.00002.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 512.0000b2 =1.0e+003 *0.0159 0.0260 0.0426 0.0698 0.1133 0.1816 0.2866 0.4451 0.6801 1.0230cond2=cond(A2,2)cond2 =8.6823e+011求n=20时A3,b3及A3的2-条件数程序运行结果如下:n=20;[A3,b3]=myfun(n)A3 =1.0e+009 *Columns 1 through 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Columns 11 through 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0013 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0007 0.0015 0.0032 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0014 0.0032 0.0075 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0012 0.0029 0.0070 0.0167 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0023 0.0058 0.0146 0.0364 0.0000 0.0000 0.0001 0.0002 0.0006 0.0017 0.0044 0.0113 0.0295 0.0766 0.0000 0.0001 0.0002 0.0004 0.0011 0.0030 0.0080 0.0215 0.0581 0.1570 0.0000 0.0001 0.0002 0.0007 0.0018 0.0051 0.0143 0.0400 0.1119 0.31330.0000 0.0001 0.0004 0.0010 0.0030 0.0086 0.0250 0.0726 0.2105 0.61030.0001 0.0002 0.0005 0.0016 0.0048 0.0143 0.0430 0.1291 0.3874 1.1623b3 =1.0e+009 *Columns 1 through 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0010Columns 11 through 200.0025 0.0059 0.0132 0.0287 0.0606 0.1246 0.2494 0.4874 0.9316 1.7434cond2=cond(A3,2)cond2 =3.2395e+022由上述运行结果可知:它们是病态的,而且随着n的增大,矩阵的病态变得严重。
《数值计算方法》课后题答案(湖南大学-曾金平)
习题一1.设x >0相对误差为2%,4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A )y=,(B )y =; (3)已知1x <<,(A )22sin x y x =,(B )1cos 2xy x-=;(4)(A)9y =(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
数值计算方法答案
1数值计算方法(李有法)习题一1.设x>0相对误差为2%,4x的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯2易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
数值计算方法课后习题答案(李庆扬等) (修复的)
,。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析第三课本习题及答案
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 以下各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求以下各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),假设0 1.41y ≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用以下等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.假设开平方用六位函数表,问求对数时误差有多大?假设改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,假设函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nkkj jj x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,假设用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少? 9. 假设2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 假设1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有以下性质: i)假设()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 假设()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='=ii)(0.25)(0.53)0.S S "="=25. 假设[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-"⎰⎰⎰⎰;ii) 假设()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最正确一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最正确一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-到达极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最正确一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最正确一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最正确逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最正确逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最正确逼近多项式为()n L x ,假设nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最正确逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dxπ+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使以下积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最正确平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最正确平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最正确平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与以下数据拟合,并求均方误差.27.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改良FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改良FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定以下求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h--≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f xf x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算以下积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导以下三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7.用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用以下方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改良的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值计算课后答案3教学提纲
习 题 三 解 答1、用高斯消元法解下列方程组。
(1)12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③解:⨯4②+(-)①2,12⨯③+(-)①消去第二、三个方程的1x ,得:1232323231425313222x x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩④⑤⑥ 再由52)4⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:1232332314272184x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩回代,得:36x =-,21x =-,19x = 所以方程组的解为(9,1,6)T x =--注意:①算法要求,不能化简。
化简则不是严格意义上的消元法,在算法设计上就多出了步骤。
实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。
无论是顺序消元法还是选主元素消元法都是这样。
②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。
要通过练习熟悉消元的过程而不是矩阵变换的技术。
矩阵形式错一点就是全错,也不利于检查。
一般形式或分量形式:12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③矩阵形式123213142541207x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭向量形式123213142541207x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭③必须是方程组到方程组的变形。
三元方程组的消元过程要有三个方程组,不能变形出单一的方程。
④消元顺序12x x →→L ,不能颠倒。
按为支援在方程组中的排列顺序消元也是存储算法的要求。
实际上,不按顺序消元是不规范的选主元素。
⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。
(2)1231231231132323110221x x x x x x x x x --=⎧⎪-++=⎨⎪++=-⎩①②③解:⨯23②+()①11,111⨯③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ⎧--=⎪⎪⎪-=⎨⎪⎪+=-⎪⎩④⑤⑥ 再由2511)5211⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:123233113235235691111111932235252x x x x x x ⎧⎪--=⎪⎪-=⎨⎪⎪=-⎪⎩回代,得:32122310641,,193193193x x x =-==, 所以方程组的解为 41106223(,,)193193193Tx =-2、将矩阵1020011120110011A ⎛⎫⎪⎪= ⎪-⎪⎝⎭作LU 分解。
数值计算基础习题集
《数值计算基础》习题集第1章引论1、已知,求近似值的有效数字位数、绝对误差限和相对误差限。
2、下列各数均为四舍五入得到,指出它们各具有几位有效数字及绝对误差限和相对误差限: (1) 6000 (2)7000.00 (3)2.00023、将下列各数舍入成三位有效数字,并确定近似值的绝对误差和相对误差。
(1) 2.1514 (2) -392.85 (3) 0.0039224、已知各近似值的相对误差,试确定其绝对误差: (1) 13267 (2) 0.2965、已知各近似值及其绝对误差,试确定各数的有效位数。
(1) 0.3941 (2)293.481 (3) 0.003816、已知各近似值及其相对误差,试确定各数的有效位数。
(1) 1.8921 (2) 22.351 (3) 48361 注:相对误差与有效数字的关系请使用以下定理定理:设x 是准确值,x*是近似值)(10....0*21Z k x x x x k n ∈⨯±=,其中n x x x ,...,,21都是0~9十个数字之一,且01≠x 。
(1)若x*有n 位有效数字,则其相对误差限为111021+-⨯n x 。
(2)若x*的相对误差限为1110)1(21+-⨯+n x ,则x*有n 位有效数字。
参考答案1、有效数字位数4位,,2、(1)4位,, (2)6位,, (3)5位,,3、(1)2.15,, (2)-393,, (3)0.00392,,4、(1)(2)5、(1)2位(2)3位(3)2位6、(1)3位(2)1位(3)2位第2章解线性方程组的直接法1、用高斯顺序消元法解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141421123412321x x x 2、用高斯列主元消去法解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11124112345111321x x x 3、用Doolittle 三角分解法求解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5481332222224321x x x4、求矩阵的Crout 三角分解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----13322222245、求矩阵的Cholesky 三角分解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--22484548416参考答案 1、 2、 3、4、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1112121192212413322222245、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--33221433221422484548416第3章插值法与最小二乘法Newton 插值法求其插值多项式,并给出余项。
现代数值计算方法习题解答
现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E= 0.0102; 2位有效数字. 0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… ,取它们的相同部分3.14,故有3位有效数字.E= 3.1428 - 3.1415 = 0.0013 ;r E = 14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α= 1,因此有 |)(*x E r |)1(10121−−××=n < = 21× 10-4, 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n−=≈−−)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =−=−≈=− 5、解:(1)因为=204.4721…… , 又=)(*x E |*x x −| = |47.420−| = 0.0021 < 0.01, 所以 =*x4.47. (2)20的近似值的首位非0数字1α = 4,因此有|)(*x E r |)1(10421−−××=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10 c m .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =−=−= < = 0.1,所以)(*x E< = 0.005 c m . 7、解:因为)()(*1x x nx x E n n −≈−,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==−≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =−≈−=t t E gt t t gt S S S S E r )(22/)()(2**=−≈−= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*00x x −| < = δ=×−21021于是有|*11x x −| = |110110*00+−−x x | = 10|*00x x −| < =δ10|*22x x −| = |110110*11+−−x x | = 10|*11x x −| < =δ210类推有 |*1010x x −| < =810102110×=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法. (1)方程组的增广矩阵为:−−−−11114423243112M M M → −−−−1010411101110112M M M →−−−11041001110112M M M → 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:−−−−−−017232221413M M M → −−247210250413M M M → −−147200250413M M M → 21=x , 12=x, 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114−=u3/1/112121==u a l 6/1/113131==u a l 6/1/114141−==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=−=u l a u 3/213212323=−=u l a u 3/114212424=−=u l a u 5/1/)(2212313232=−=u u l a l 10/1/)(2212414242=−=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=−−=u l u l a u 10/9243214313434−=−−=u l u l a u 37/9/)(33234213414343−=−−=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444−=−−−=u l u l u l a u从而,−−−−3101141101421126 =−−137/910/16/1015/16/10013/10001−−−370/95500010/910/37003/13/23/1001126 由b LY =, 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T . 3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断. 11a = 3 > 0,2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632−=l 233=l 因此, L =−23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 331=l 632−=l 333=l因此, L =−363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66−,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T. 4、解: 对1=i , 2111==a d ;对2=i , 121−=t , 2121−=l ,252−=d ; 对3=i , 131=t , 2732=t ,2131=l , 5732−=l ,5273=d .所以数组A 的形式为:−−−=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T .求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU =1010000000000010010015432l l l l5432106000000000600006006u u u u u 计算各元素得: 51=u ,512=l , 1952=u , 1953=l , 19653=u , 65194=l , 652114=u , 211655=l , 2116655=u .求解方程组LY = d . 解得Y = (1,51−,191,651−,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395−,665212)T.(2)设A = LU =100100132l l3211001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T. 求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同. 因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+−−=+k k k x x x14141)(3)(1)1(2+−−=+k k k x x x329292)(2)(1)1(3+−−=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+−−=+k k k x x x14141)(3)1(1)1(2+−−=++k k k x x x329292)1(2)1(1)1(3+−−=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+−=+k k k x x x 525351)(3)(1)1(2++−=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+−=+k k k x x x 525351)(3)1(1)1(2++−=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。
数值计算课后全部答案(整合)
目录第一章-----------------------------------------1 第二章-----------------------------------------4 第三章-----------------------------------------9 第四章-----------------------------------------15 第五章-----------------------------------------20 第六章-----------------------------------------27 第七章-----------------------------------------30第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。
1x =-3.105 , 2x =0.001, 3x =0.100, 4x =253.40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1.1.2 设100>*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。
答案:当10<x<100时,因为有5位有效数字,所以绝对误差限为0.005. 1.3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3.004 精确到小数点后两位,所以有三位有效数字。
数值计算方法丁丽娟课后习题答案
数值计算方法丁丽娟课后习题答案【篇一:北京理工大学数值计算方法大作业数值实验1】)书p14/4分别将区间[?10,10]分为100,200,400等份,利用mesh或surf命令画出二元函数的三维图形。
z=|??|+ ??+?? +??++??【matlab求解】[x,y]=meshgrid(-10:0.1:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.05:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.025:10); a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);(二)书p7/1.3.2数值计算的稳定性(i)取= ??c语言程序—不稳定解 +=ln1.2,按公式=?? (n=1,2,…) #includestdio.h#includeconio.h#includemath.hvoid main(){float m=log(6.0)-log(5.0),n;int i;i=1;printf(y[0]=%-20f,m); while(i20){n=1/i-5*m;printf(y[%d]=%-20f,i,n);m=n;i++;if (i%3==0) printf(\n); }getch();}(ii) c语言程序—稳定解≈??[ ??+?? +?? ??+??按公式 =??(??)#includestdio.h#includeconio.h#includemath.hvoid main(){float m=(1/105.0+1/126.0)/2,n; k=n,n-1,n-2,…)(【篇二:北京理工大学数值计算方法大作业数值实验4】 p260/1考纽螺线的形状像钟表的发条,也称回旋曲线,它在直角坐标系中的参数方程为= ?????????????????? ?? ??????????= ?????????????? ??曲线关于原点对称,取a=1,参数s的变化范围[-5,5],容许误差限分别是,,和。
数值计算方法课后习题答案吕同富
数值计算方法课后习题答案吕同富【篇一:《数值计算方法》(二)课程教学大纲】txt>课程编号: l124008课程类别:专业必修学分数: 3 学时数:48 适用专业:信息与计算科学应修(先修)课程:数学分析、高等代数一、本课程的地位和作用数值分析(二)为数值分析课程的第二部分,它是信息与计算科学专业的一门专业必修课。
主要内容包括函数最佳逼近、数值积分、数值微分、常微分方程数值解法。
通过本课程的学习,学生将初步具备用计算机去有效地解决实际问题的能力。
二、本课程的教学目标通过本课程的学习,使学生了解和掌握求解函数最佳逼近、数值积分、数值微分、常微分方程等问题所涉及的各种常用的数值计算方法、数值方法的构造原理及适用范围。
本课程坚持理论与实践教学并重的原则,理论上主要讲述求解函数最佳逼近、数值积分、数值微分、常微分方程等问题的基本理论和基本方法。
与此同时,通过上机实验加深学生对各种计算方法的理解,为今后用计算机去有效地解决实际问题打下基础。
三、课程内容和基本要求(“*”记号标记难点内容,“▽”记号标记重点内容,“▽*”记号标记既是重点又是难点的内容)第六章函数最佳逼近 1.教学基本要求(1)理解:几类常用的正交多项式。
(2)掌握:最佳一致逼近和最佳平方逼近。
(3)掌握:曲线拟合的最小二乘法。
2.教学内容(1)*正交多项式。
(2)▽*最佳一致逼近。
(3)▽最佳平方逼近。
(4)正交多项式的逼近性质。
(5)▽曲线拟合的最小二乘法。
第七章数值积分 1.教学基本要求(1)理解:机械求积公式的基本思想、插值型求积公式的特点。
(2)掌握:newton-cotes求积公式、复合求积公式。
(3)掌握:romberg求积公式、gauss求积公式。
2.教学内容(1)*机械求积公式。
(2)▽newton-cotes求积公式。
(3)▽复合求积公式。
(4)变步长求积公式。
(5)▽romberg求积公式。
(6)▽*gauss求积公式第八章数值微分 1.教学基本要求(1)了解:数值微分的中点法。
数值计算方法》习题答案
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
数值计算与MATLAB方法课后答案
第一章习题1. 序列满足递推关系,取及试分别计算,从而说明递推公式对于计算是不稳定的。
n1 1 0.01 0.00012 0.01 0.0001 0.0000013 0.0001 0.000001 0.000000014 0.000001 0.0000000110-105 0.00000001 10-10n1 1.000001 0.01 0.0000992 0.01 0.000099 -0.000099013 0.000099 -0.00009901-0.010000994 -0.00009901 -0.01000099-1.00015 -0.01000099-1.0001初始相差不大,而却相差那么远,计算是不稳定的。
2. 取y0=28,按递推公式,去计算y100,若取(五位有效数字),试问计算y100将有多大误差?y100中尚留有几位有效数字?解:每递推一次有误差因此,尚留有二位有效数字。
3.函数,求f(30)的值。
若开方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?设z=ln(30-y),,y*, |E(y)| 10-4z*=ln(30-y*)=ln(0.0167)=-4.09235若改用等价公式设z=-ln(30+y),,y*, |E(y)|⨯10-4z*=-ln(30+y*)=-ln(59.9833)=-4.094074.下列各数都按有效数字给出,试估计f的绝对误差限和相对误差限。
1)f=sin[(3.14)(2.685)]设f=sin xyx*=3.14, E(x)⨯10-2, y*=2.685, E(y)⨯10-3,sin(x*y*)=0.838147484, cos(x*y*)=-0.545443667⨯(-0.5454) ⨯⨯10-2+3.14(-0.5454) ⨯⨯10-3|⨯10-2⨯10-2|E r(f)| ⨯10-2⨯10-2<10-22)f=(1.56)设f = x y ,x*=1.56, E(x)⨯10-2, y*=3.414, E(y)⨯10-3,⨯⨯⨯10-2⨯⨯⨯10-3|⨯⨯⨯10-2⨯⨯⨯10-3|=0.051|E r(f)| =0.01125.计算,利用下列等式计算,哪一个得到的结果最好,为什么?6.下列各式怎样计算才能减少误差?7. 求方程x2-56x+1=0的二个根,问要使它们具有四位有效数字,至少要取几位有效数字?如果利用伟达定理, 又该取几位有效数字呢?解一:若要取到四位有效数字,如果利用伟达定理,解二:由定理二,欲使x1,x2有四位有效数字,必须使由定理一知,∆至少要取7位有效数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 三 解 答1、用高斯消元法解下列方程组。
(1)12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③解:⨯4②+(-)①2,12⨯③+(-)①消去第二、三个方程的1x ,得:1232323231425313222x x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩④⑤⑥ 再由52)4⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:1232332314272184x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩回代,得:36x =-,21x =-,19x = 所以方程组的解为(9,1,6)T x =--注意:①算法要求,不能化简。
化简则不是严格意义上的消元法,在算法设计上就多出了步骤。
实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。
无论是顺序消元法还是选主元素消元法都是这样。
②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。
要通过练习熟悉消元的过程而不是矩阵变换的技术。
矩阵形式错一点就是全错,也不利于检查。
一般形式或分量形式:12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③矩阵形式123213142541207x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭向量形式123213142541207x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭③必须是方程组到方程组的变形。
三元方程组的消元过程要有三个方程组,不能变形出单一的方程。
④消元顺序12x x →→,不能颠倒。
按为支援在方程组中的排列顺序消元也是存储算法的要求。
实际上,不按顺序消元是不规范的选主元素。
⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。
(2)1231231231132323110221x x x x x x x x x --=⎧⎪-++=⎨⎪++=-⎩①②③解:⨯23②+()①11,111⨯③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ⎧--=⎪⎪⎪-=⎨⎪⎪+=-⎪⎩④⑤⑥ 再由2511)5211⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:123233113235235691111111932235252x x x x x x ⎧⎪--=⎪⎪-=⎨⎪⎪=-⎪⎩回代,得:32122310641,,193193193x x x =-==, 所以方程组的解为 41106223(,,)193193193Tx =-2、将矩阵1020011120110011A ⎛⎫⎪⎪= ⎪-⎪⎝⎭作L U分解。
解:设1112131421222324313231324142434410001020100001111000201110000011u u u u l u u u A LU l l u u l l l u ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=== ⎪⎪ ⎪- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭根据矩阵乘法,先求U 的第一行,由11j j a u =,得111213141,0,2,0u u u u ====。
再求L的第一列,由矩阵乘法,因为1111i i a l u =,所以1111i i a l u =,而111u =,所以11i i l a =,所以2131410,2,0l l l ===。
再求U 的第二行,得 21122211l u u ⨯+⨯=,则22211211001u l u =-⨯=-⨯=, 21132333101l u u u ⨯+⨯+⨯=,则 23211311021u l u =-⨯=-⨯=, 21142434441001l u u u u ⨯+⨯+⨯+⨯=,则 24211411001u l u =-⨯=-⨯=,再求L 的第二列,得3112322210000l u l u ⨯+⨯+⨯+⨯=,则 32311200200l l u =-⨯=-⨯=41124222430000l u l u l ⨯+⨯+⨯+⨯=,则 42411200000l l u =-⨯=-⨯=再求U的第三行,得311332233311l u l u u ⨯+⨯+⨯=-,则33311332231122015u l u l u =--⨯-⨯=--⨯+⨯=- 311432243444101l u l u u u ⨯+⨯+⨯+⨯=,则 34311432241120011u l u l u =-⨯-⨯=-⨯-⨯= 再求L 的第三列,得411342234333101l u l u l u ⨯+⨯+⨯+⨯=,则4311(10201)55l =-⨯-⨯+⨯=-再求U 的第四行,得4114422443344411l u l u l u u ⨯+⨯+⨯+⨯=,则4441144224433416110001(1)55u l u l u l u =-⨯+⨯+⨯=-⨯-⨯--⨯=所以,矩阵A 的L U分解为:1000102001000111,201000511600100055L U ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪- ⎪ ⎪⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭指出:用分数而表示元素,不能化成近似小数也不化成小数表示。
3、用LU 分解紧凑格式分解法解方程组。
123457910168109171087157651x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 解一,用一般格式求解: 将系数矩阵作LU 分解得:10005791062410003555,71171000552213000101105L U ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎪ ⎪==- ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭Ly=b 方程组为 1234100061100517111052131015y y y y ⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭解之得123411512310y y y y ⎛⎫ ⎪⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪= ⎪- ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭同样地,解方程组Ux=y 得 1234201253x x x x ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭。
解二,用L U紧凑格式分解法求解: 对增广矩阵三角分解:579101579101579101662418109136810915555571087177110871871552576511765110651579101579101624163555557117155222310515⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪----⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪⎪- ⎪ ⎪⎪⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪ ⎪----- ⎪ ⎪→→----⎪ ⎪ ⎪ ⎪⎝⎭241355571171552223131051010⎛⎫ ⎪ ⎪--- ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪⎝⎭原方程组化成同解的上三角方程组为: 12342343445791012413555171522131010x x x x x x x x x x +++=⎧⎪⎪---=-⎪⎪⎨--=-⎪⎪⎪=⎪⎩回代得(20,12,5,3)T x =--。
指出:紧凑格式是直接应用公式进行计算,计算结果保存在A 的相应元素位置。
从算法的角度,紧凑格式实际体现在数据的存储方法上。
由于紧凑格式计算时不再需要A 的前面的元素,因此可以进行。
4、 用列主元的三角分解法解线性方程组。
1231231232213472320x x x x x x x x x -+-=-⎧⎪-+=⎨⎪--=⎩ 解一,列选主元素消元法:先选第一列主元为213a =,将第一个方程与第二个方程交换,消去1x 得:123232334752433371414333x x x x x x x ⎧⎪-+=⎪⎪-=⎨⎪⎪--=-⎪⎩再选第二列主元为3273a =-,交换第二、三两个方程,消去2x 得三角形方程组:1232333477141433312633x x x x x x ⎧⎪-+=⎪⎪--=-⎨⎪⎪-=-⎪⎩回代求得方程组的解312x =,21x =,12x =所以方程组的解为1(2,1,)2T x =。
解二,列主元素三角分解法:21233247122132471(,)32471221221323202320232033247324722714143203333311522121337A b r r r r ⎛⎫ ⎪-----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-↔---→--- ⎪ ⎪ ⎪ ⎪ ⎪---- ⎪⎝⎭⎝⎭ ⎪--⎝⎭⎛⎫⎛⎫ ⎪ -- ⎪ ⎪ ↔--→--- ⎪ ⎪ ⎪ -------⎝⎭⎝⎭32472714143333154237⎛⎫⎪ ⎪-⎪ ⎪⎪ ⎪→---⎪ ⎪⎪ ⎪⎪ ⎪----⎝⎭同解的三角形方程组为1232333477141433342x x x x x x -+=⎧⎪⎪--=-⎨⎪⎪-=-⎩回代求得方程组的解312x =,21x =,12x =所以方程组的解为1(2,1,)2T x =。
说明:用矩阵讨论中,矩阵元素进行了化简。
5.用追赶法解方程组2111210,12101210120A b -⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪⎪ ⎪==-- ⎪ ⎪-- ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭。
分析: 三对角矩阵11221n n n A αβγαβγα-⎛⎫⎪ ⎪= ⎪⎪ ⎪⎝⎭可以分解如下形式的两个矩阵:11222331111,1n nn u l u L l U u l u βββ-⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭。
即11112222233111111n n nn nn u l u l u l u βαββγαββγα--⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎪⎪⎝⎭⎝⎭由矩阵乘法规则,有1111(2,3,)(2,3,,)i ii i i i i u l i n u u l i n αγαβ--⎧=⎪⎪==⎨⎪⎪=-=⎩, 这样可以求出矩阵L 和U 的所有元素。
设有系数矩阵为A 的方程组:12,(,,)T n Ax b b b b b ==,这样的方程组称为三对角方程组。
三对角方程组经LU 分解分解为,Ly b Ux y ==,求解之111,2,3,,ii i i y b y b l y i n -=⎧⎨=-=⎩, 1(),1,2,,1n n n i i i i i x y u x y x i n n β+=⎧⎨=-=--⎩这就是所谓追赶法。