2020-2021深圳实验学校初中部八年级数学上期中一模试卷附答案

合集下载

2020-2021学年广东省深圳中学初中部八年级(上)期中数学试卷

2020-2021学年广东省深圳中学初中部八年级(上)期中数学试卷

2020-2021学年广东省深圳中学初中部八年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1. 下列各数中,是无理数的是( )A. 3.5B. 227C. √2D. √42. 在△ABC 中,若∠B +∠C =90°,则( )A. BC =AB +ACB. AC 2=AB 2+BC 2C. AB 2=AC 2+BC 2D. BC 2=AB 2+AC 2 3. 下列变形正确的是( )A. √179=±43B. √273=±3C. √(−4)2=−4D. ±√121=±114. 方程2x +y =5与下列方程构成的方程组的解为{x =3y =−1的是( ) A. x −y =4 B. x +y =4 C. 3x −y =8 D. x +2y =−15. 平面直角坐标系中,点A 在第四象限,点A 到x 轴的距离为2,到y 轴的距离为3,则点A 的坐标为( )A. (2,−3)B. (−3,2)C. (3,−2)D. (−2,3) 6. 已知点(−4,y 1),(2,y 2)都在直线y =12x +2上,则y 1和y 2的大小关系是( )A. y 1>y 2B. y 1=y 2C. y 1<y 2D. 无法确定7. 如图所示,OA 、BA 分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者比慢者每秒多跑( )A. 25mB. 6.25mC. 1.5mD. 1.25m8. 一次函数y =kx +b 的图象如图所示,则以k 、b 为坐标的点(k,b)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.若a2=4,b2=9,且ab<0,则a−b的值为()A. −2B. ±5C. 5D. −510.“今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.求得的结果有()A. 3种B. 4种C. 5种D. 6种11.如图,长方体的长为20cm,宽为15cm,高为10cm,点B离点C为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()A. 5√29cmB. 25cmC. 5√37cmD. 16cm12.如图,在长方形ABCD中,AB=6,BC=18,点E是BC边上一点,且AE=EC,点P是边AD上一动点,连接PE,PC,则下列结论:①BE=8;②当AP=10时,PE平分∠AEC;③△PEC的周长最小值为2√61;④当AP=25时,AE平分∠BEP.其4中正确的个数有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共4小题,共12.0分)13.若√3x−6在实数范围内有意义,则x的取值范围是______.14.在平面直角坐标系中,已知点P(m+5,m−2)在y轴上,则m=______ .15.已知关于x的方程mx+n=0的解是x=−2,则直线y=mx+n与x轴的交点坐标是______ .x+8的图象与x轴、y轴分别16.如图,一次函数y=−43交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.三、解答题(本大题共7小题,共52.0分)17. 计算:√27−(−2020)0+(13)−1−|√3−2|.18. 解方程组:(1){2a −b =32 ①a −3b =1 ②;(2){3(x −1)=y +5x+22=y−13+1.19. 已知点A(−1,3a −1)与点B(2b +1,−2)关于x 轴对称,点C(a +2,b)与点D 关于原点对称.(1)求点A 、B 、C 、D 的坐标;(2)顺次联结点A 、D 、B 、C ,求所得图形的面积.20.小明在解决问题:已知a=2+√3,求2a2−8a+1的值,他是这样分析与解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3.∴a−2=−√3.∴(a−2)2=3,即a2−4a+4=3.∴a2−4a=−1.请你根据小明的分析过程,解决如下问题:(1)计算:√2+1=______;(2)计算:√2+1√3+√2√4+√3⋯√2020+√2019;(3)若a=√5−2,求2a2−8a+1的值.21.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(ℎ),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是______ km/ℎ,乙的速度是______ km/ℎ;(2)对比图①、图②可知:a=______ ,b=______ ;(3)乙出发多少时间,甲、乙两人路程差为7.5km?22.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?x+3与x轴交于点A,与y轴交于点B,点C与点A关于y 23.如图1,已知函数y=12轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为8,求点M的坐标;3②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.答案和解析1.【答案】C【解析】解:A、3.5是有限小数,属于有理数,故本选项不合题意;B、227是分数,属于有理数,故本选项不合题意;C、√2是无理数,故本选项符合题意;D、√4=2,是整数,属于有理数,故本选项不合题意;故选:C.根据无理数的定义即可判定选择项.此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】D【解析】解:∵在△ABC中,若∠B+∠C=90°,∴∠A=90°,∴BC2=AB2+AC2,故选:D.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.【答案】D【解析】解:A.√179=43,此选项错误;B.√273=3,此选项错误;C.√(−4)2=4,此选项错误;D.±√121=±11,此选项正确;故选:D.根据算术平方根和立方根及平方根的定义求解可得.本题主要考查立方根,解题的关键是掌握算术平方根和立方根及平方根的定义.4.【答案】A【解析】解:A 、联立得:{2x +y =5①x −y =4②, ①+②得:3x =9,解得:x =3,把x =3代入②得:y =−1,符合题意;B 、联立得:{2x +y =5①x +y =4②, ①−②得:x =1,把x =1代入②得:y =3,不符合题意;C 、联立得:{2x +y =5①3x −y =8②, ①+②得:5x =13,解得:x =135,不符合题意;D 、联立得:{2x +y =5①x +2y =−1②, ①×2−②得:3x =11,解得:x =113, 把x =113代入②得:y =−73,不符合题意, 故选:A .各项方程与已知方程联立求出解,即可作出判断.此题考查了二元一次方程组的解,以及二次一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.【答案】C【解析】解:∵点A 在第四象限,点A 到x 轴的距离为2,到y 轴的距离为3, ∴点A 的横坐标是3,纵坐标是−2,∴点A 的坐标为(3,−2).故选:C .根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.6.【答案】C【解析】【分析】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.直接把点(−4,y1),(2,y2)代入直线y=12x+2上,求出y1和y2的值,并比较出其大小即可.【解答】解:∵点(−4,y1),(2,y2)都在直线y=12x+2上,∴y1=12×(−4)+2=−2+2=0,y2=12×2+2=1+2=3,∵0<3,∴y1<y2.故选C.7.【答案】D【解析】解:由图象可得,快者的速度为:100÷(20−4)=100÷16=6.25(m/s),慢者的速度为:100÷20=5(m/s),6.25−5=1.25(m/s),即快者比慢者每秒多跑1.25m,故选:D.根据函数图象中的数据,可以分别求得快者和慢者的速度,然后作差即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】C【解析】解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0,∴以k、b为坐标的点(k,b)在第三象限内.故选:C.根据一次函数图象的位置确定出k与b的正负,即可作出判断.此题考查了待定系数法求一次函数解析式,以及一次函数图象与系数的关系,弄清一次函数图象与系数的关系是解本题的关键.9.【答案】B【解析】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=−3,a=−2,b=3,则a−b的值为:2−(−3)=5或−2−3=−5.故选:B.利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a−b的值.此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.10.【答案】B【解析】解:设大圈舍的间数是x间,小圈舍的间数是y间,由题意,得6x+4y=50..整理,得y=25−3x2因为25−3x>0,且x、y都是非负整数,.所以0≤x<253故x可以取0,1,2,3,4,5,6,7,8,当x=0时,y=12.5(舍去)当x=1时,y=11.当x=2时,y=9.5(舍去)当x=3时,y=8.当x=4时,y=6.5(舍去)当x=5时,y=5当x=6时,y=3.5(舍去)当x=7时,y=2当x=8时,y=0.5(舍去)综上所述,只有4种情况符合题意.故选:B.设大圈舍的间数是x间,小圈舍的间数是y间,根据一共有50只鹿进圈舍列出方程并解答.注意:x、y都是非负整数.考查了二元一次方程的应用,读懂题意,找到等量关系,列出方程并解答,求解时,注意x、y的取值范围.11.【答案】B【解析】解:如图所示,将长方体展开,连接AB,根据题意可知,BD=5+10=15cm,AD=20cm,由勾股定理得:AB=√AD2+BD2=√202+152=25cm;如图所示,将长方体展开,连接AB,根据题意可知,AC=10+20=30cm,BC=5cm,由勾股定理得:AB=√AC2+BC2=√302+52=5√37cm;如图所示,将长方体展开,连接AB,根据题意可知,AC=20+5=25cm,BC=10cm,由勾股定理得:AB=√AC2+BC2=√252+102=5√29cm;则需要爬行的最短距离是25cm.故选:B.求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.本题考查了平面展开−最短路径问题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.12.【答案】B【解析】解:∵AB=6,BC=18,∴AE=EC=BC−BE=18−BE,∵AB2+BE2=AE2,∴62+BE2=(18−BE)2,∴BE=8,故①正确;∴AE=CE=10,∵AP=10,∴AP=AE,∴∠APE=∠AEP,∵AP//CE,∴∠APE=∠PEC,∴∠AEP=∠PEC,∴PE平分∠AEC,故②正确;如图1,作C关于直线AD的对称点G,连接GE交AD于P,则此时,△PEC周长最小,且△PEC周长的最小值=GE +CE ;∴CE =10,CG =2CD =12,∴GE =√CG 2+CE 2=√122+102=2√61,∴△PEC 周长的最小值为2√61+10,故③错误;如图2,过E 作EH ⊥AD 于H ,则AH =BE =8,EH =AB =6,∵AP =254, ∴PH =74, ∴PE =√PH 2+HE 2=√(74)2+62=254,∴AP =PE ,∴∠PAE =∠PEA ,∵AP//BC ,∴∠PAE =∠AEB ,∴∠PEA =∠AEB ,∴AE 平分∠BEP ,故④正确;故选:B .根据勾股定理得到BE =8,故①正确;求得AE =CE =10,根据平行线的性质和等腰三角形的性质即可得到PE 平分∠AEC ,故②正确;如图1,作C 关于直线AD 的对称点G ,连接GE 交AD 于P ,根据勾股定理得到GE ,求得△PEC 周长的最小值为2√61+10,故③正确;如图2,过E 作EH ⊥AD 于H ,根据勾股定理得到PE =254,求得∠PAE =∠PEA ,根据平行线的性质得到∠PAE =∠AEB ,求得∠PEA =∠AEB ,于是得到AE 平分∠BEP ,故④正确.本题考查了轴对称−最短路线问题,矩形的性质,勾股定理,等腰三角形的判定和性质,角平分线的定义,正确的作出辅助线是解题的关键.13.【答案】x ≥2【解析】解:由题意得:3x −6≥0,解得x ≥2,故答案为:x ≥2.让二次根式的被开方数为非负数列式求解即可.考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.14.【答案】−5【解析】解:由题意,得m+5=0,解得m=−5,故答案为:−5.根据y轴上点的横坐标等于零,可得答案.本题考查了点的坐标,利用y轴上点的横坐标等于零得出方程是解题关键.15.【答案】(−2,0)【解析】解:∵方程的解为x=−2,∴当x=−2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=−2时,y=0.∴直线y=mx+n与x轴的交点坐标是(−2,0).求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=−2.因此可得答案.本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.,0)或(−24,0)16.【答案】(83x+8的图象与x轴、y轴分别交于A、B两点,可得【解析】解:由一次函数y=−43AO=6,BO=8,AB=10,分两种情况:①当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6−x,AC=10−8=2,在Rt△ACP中,由勾股定理可得x2+22=(6−x)2,,解得x=83∴P(8,0);3②当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6+x,AC=10+8=18,在Rt△ACP中,由勾股定理可得x2+182=(6+x)2,解得x=24,∴P(−24,0);,0)或(−24,0).故答案为:(83分两种情况讨论:当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8;当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,分别依据勾股定理得到方程,即可得到点P的坐标.本题主要考查了折叠问题以及一次函数的图象,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.17.【答案】解:原式=3√3−1+3−(2−√3)=3√3−1+3−2+√3=4√3.【解析】直接利用算术平方根以及绝对值的性质、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:(1)由②,可得:a =3b +1③,③代入①,可得:2(3b +1)−b =32,整理,可得:5b +2=32,解得b =6,把b =6代入③,解得a =19,∴原方程组的解是{a =19b =6.(2)由{3(x −1)=y +5x+22=y−13+1,可得 {3x −y =8 ①3x −2y =−2 ②①−②,可得:y =10, 把y =10代入①,可得:3x −10=8,解得x =6,∴原方程组的解是{x =6y =10.【解析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.【答案】解:(1)∵点A(−1,3a −1)与点B(2b +1,−2)关于x 轴对称,∴2b +1=−1,3a −1=2,解得a=1,b=−1,∴点A(−1,2),B(−1,−2),C(3,−1),∵点C(a+2,b)与点D关于原点对称,∴点D(−3,1);(2)如图所示:四边形ADBC的面积为:12×4×2+12×4×4=12.【解析】(1)根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,分别求出a,b的值,进而求出点A、B、C的坐标,再根据关于原点的对称点,横纵坐标都变成相反数求出点D的坐标;(2)把这些点按A−D−B−C−A顺次连接起来,再根据三角形的面积公式计算其面积即可.本题考查的是作图−轴对称变换,熟知关于x、y轴对称的点的坐标特点是解答此题的关键.20.【答案】√2−1【解析】解:√2+1=√2−1(√2+1)(√2−1)=√2−1,故答案为:√2−1;(2)原式=√2−1+√3−√2+√4−√3+⋯+√2020−√2019=√2020−1=2√505−1;(3)∵a=√5+2,∴a2=(√5+2)2=9+4√5,∴2a2−8a+1=2(9+4√5)−8(√5+2)+1=18+8√5−8√5−16+1=3.答:2a2−8a+1的值为3.(1)根据小明的解答过程即可进行计算;(2)结合(1)进行分母有理化,再合并即可得结果;(3)根据平方差公式,可分母有理化,根据整体代入,可得答案.本题考查了分母有理化的应用,能求出a的值和正确变形是解此题的关键.21.【答案】25 10 10 56【解析】解:(1)由图可得,甲的速度为:25÷(1.5−0.5)=25÷1=25(km/ℎ),乙的速度为:25÷2.5=10(km/ℎ),故答案为:25,10;(2)由图可得,a=25×(1.5−0.5)−10×1.5=10,25(b−0.5)=10b,得b=56,故答案为:10;56;(3)由题意可得,前0.5ℎ,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x−0.5)−10x=7.5,解得,x=43,25−10x=7.5,得x=74;即乙出发43ℎ或74ℎ时,甲、乙两人路程差为7.5km.(1)根据题意和函数图象中的数据可以求得甲乙的速度;本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.【答案】解:(1)设该店11月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:{10x +16y =180013x +18y =1800+400, 解得{x =100y =50, 答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(130−a)千克, 根据题意得:w =10a +20(130−a)=−10a +2600;(3)根据题意得,a ≤80,由(2)得,w =−10a +2600,∵−10<0,w 随a 的增大而减小,∴a =80时,w 有最小值w 最小=−10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.【解析】(1)设该店11月份购进甲种水果x 千克,购进乙种水果y 千克,根据总价=单价×购进数量,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(130−a)千克,根据总价=单价×购进数量,即可得出w 关于a 的函数关系式;(3)根据甲种水果不超过90千克,可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于a 的函数关系式.23.【答案】解:(1)对于y =12x +3由x =0得:y =3,∴B(0,3)由y =0得:0=12x +3,解得x =−6,∴A(−6,0),∵点C 与点A 关于y 轴对称∴C(6,0)设直线BC 的函数解析式为y =kx +b ,则{b =36k +b =0, 解得{k =−12b =3. ∴直线BC 的函数解析式为y =−12x +3;(2)设M(m,0),则P(m,12m +3)、Q(m,−12m +3) 如图1,过点B 作BD ⊥PQ 于点D ,∴PQ =|(−12m +3)−(12m +3)|=|m|,BD =|m|, ∴S △PQB =12PQ ⋅BD =12m 2=83, 解得m =±4√33, ∴M(4√33,0)或M(−4√33,0);(3)如图2,当点M 在y 轴的左侧时,∵点C 与点A 关于y 轴对称∴AB =BC ,∴∠BAC =∠BCA∵∠BMP =∠BAC ,∴∠BMP=∠BCA∵∠BMP+∠BMC=90°,∴∠BMC+∠BCA=90°∴∠MBC=180°−(∠BMC+∠BCA)=90°∴BM2+BC2=MC2设M(x,0),则P(x,12x+3),∴BM2=OM2+OB2=x2+9,MC2=(6−x)2,BC2=OC2+OB2=62+32=45∴x2+9+45=(6−x)2,解得x=−32.∴P(−32,9 4).当点M在y轴的右侧时,如图3,同理可得P(32,154),综上,点P的坐标为(−32,94)或(32,154).【解析】(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;(2)先表示出PQ,最后用三角形面积公式即可得出结论;(3)分点M在y轴左侧和右侧,当点M在y轴左侧,设M(x,0),则P(x,12x+3),先判断出∠MBC=90°,进而利用勾股定理建立方程即可x2+9+45=(6−x)2;同理可求当点M在y轴右侧时P点坐标.此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,直角三角形的判定,勾股定理,坐标轴上点的特点,分类讨论是解本题的关键.第21页,共21页。

2020-2021深圳实验学校初二数学上期中试卷带答案

2020-2021深圳实验学校初二数学上期中试卷带答案

2020-2021深圳实验学校初二数学上期中试卷带答案一、选择题1.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=12.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③3.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点4.如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A.高B.角平分线C.中线D.不能确定5.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±206.化简2111xx x+--的结果是( )A.x+1B.11x+C.x﹣1D.1xx-7.如图,已知a∥b,∠1=50°,∠3=10°,则∠2等于()A .30°B .40°C .50°D .60°8.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 9.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-110.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠ 11.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .412.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14二、填空题13.若4a 4﹣ka 2b+25b 2是一个完全平方式,则k=_____.14.多项式241a +加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)15.若226m n -=-,且3m n -=-,则m n + =____.16.若22(5)0a b -+-=,则点P (a ,b )关于x 轴对称的点的坐标为____.17.在实数范围因式分解:25a -=________.18.因式分解:m 3n ﹣9mn =______.19.因式分解:x 2y ﹣y 3=_____.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 上一点,BD =BC ,过点D 作AB 的垂线交AC 于点E ,连接CD ,交BE 于点F.求证:BE 垂直平分CD .22.已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .23.已知关于x 的方程233x m x x -=--解为正数,求m 的取值范围. 24.解分式方程: 2216124x x x --=+-. 25.如图,P 和Q 为△ABC 边AB 与AC 上两点,在BC 边上求作一点M ,使△PQM 的周长最小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.3.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.4.C解析:C【解析】试题分析:三角形ABD 和三角形ACD 共用一条高,再根据S △ABD =S △ADC ,列出面积公式,可得出BD=CD .解:设BC 边上的高为h ,∵S △ABD =S △ADC , ∴,故BD=CD ,即AD 是中线.故选C .考点:三角形的面积;三角形的角平分线、中线和高.5.B解析:B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.6.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】解:原式=2211(1)(1)1 1111x x x xxx x x x-+--===+ ----故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.7.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.8.C解析:C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --aa b-=b aa b--=-1,所以答案选择D.【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.10.D解析:D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.11.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.12.A解析:A【解析】【分析】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可.【详解】∵2n +2n +2n +2n =2,∴4×2n =2, ∴2×2n =1, ∴21+n =1,∴1+n=0,∴n=﹣1,故选A .【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n (m ,n 是正整数).二、填空题13.±20【解析】∵4a4-ka2b+25b2是一个完全平方式∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2∴k=±20故答案为:±20解析:±20【解析】∵4a 4-ka 2b+25b 2是一个完全平方式,∴4a 4-ka 2b+25b 2=(2a 2±5b )2=4a 4±20a 2b+25b 2, ∴k=±20, 故答案为:±20.14.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a 或-4a ②当4a2是乘积二倍项时4a4+解析:4a 或4a -或44a【解析】分①4a 2是平方项,②4a 2是乘积二倍项,然后根据完全平方公式的结构解答. 解:①4a 2是平方项时,4a 2±4a+1=(2a±1)2,可加上的单项式可以是4a 或-4a ,②当4a 2是乘积二倍项时,4a 4+4a 2+1=(2a 2+1)2,可加上的单项式可以是4a 4,综上所述,可以加上的单项式可以是4a 或-4a 或4a 4.本题主要考查了完全平方式,注意分4a 2,是平方项与乘积二倍项两种情况讨论求解,熟记完全平方公式对解题非常重要.15.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握解析:2【解析】【分析】将22m n -利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。

广东省深圳市深圳实验学校中学部2020-2021学年度第一学期阶段检测八年级数学试题(含答案)

广东省深圳市深圳实验学校中学部2020-2021学年度第一学期阶段检测八年级数学试题(含答案)
【详解】解:设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .
故答案是: .
【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
17.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是_______.
5.一个自然数的立方根为a,则下一个自然数的立方根是( )
A.a+1B. C. D.a3+1
【答案】C
【解析】
【分析】首先根据立方根的定义求得这个自然数,即可求解.
【详解】解:根据题意得:这个自然数为a3,
∴它下一个自然数的立方根是 .
故选:C.
【点睛】此题主要考查了立方根的定义,理解定义是关键.
6.下列各点中,位于平面直角坐标系第三象限的点是()
三.解答题
19.计算:
(1)( ﹣ )﹣( ﹣ );
(2)( )( )+( )2.
【答案】(1) ;(2) .
【解析】
【分析】(1)先化简二次根式、去括号,再计算二次根式的加减法即可得;
(2)先利用平方差公式、完全平方公式计算二次根式的乘法,再计算二次根式的加减法即可得.
【详解】(1)原式 ,

(2)原式 ,


【点睛】本题考查了二次根式的乘法与加减法、平方差公式、完全平方公式,熟记运算法则和公式是解题关键.
20.解方程组:(1)
(2)
【答案】(1) ;(2)
【解析】
【分析】(1)利用加减消元法,①+②求得m的值,代入求得n的值;
(2)利用代入消元法,由②得 ,把 代入①得x的值,即可求解.

2020-2021深圳市八年级数学上期中试卷带答案

2020-2021深圳市八年级数学上期中试卷带答案

2020-2021深圳市八年级数学上期中试卷带答案一、选择题1 .下列四个图形中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个 C 2个 D. 1个2 .已知一个正多边形的内角是140° ,则这个正多边形的边数是()A. 9B, 8C. 7D. 63 .要使分式有意义,则a 的取值应满足()a 3A. a 3B. a 3C. a 3D. a 34 .将多项式4x 2 1加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单 项式错误的是( )A. 4xB. 4x 4C. 4x 4D. 4x7 .如图,AD , CE 分别是 那BC 的中线和角平分线.若 AB=AC , / CAD=20 ,则/ ACE 的度数是( )5.如图,VABC 是等腰直角三角形, BC 是斜边,将VABP 绕点A 逆时针旋转后,能与VACP 重合,如果 AP 3,那么PP 的长等于()A_D. 3 36.如图,已知AABC 中,/ ABC=45 , F 是高AD 和BE 的交点, CD=4 ,贝U 线段DF 的长C. 3.2D. 4-28 .为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施10米,结果提前2天完成.若原计划每天绿化 X 米,则所列方程正确11 .如图所示,在平行四边形 ABCM,分别以AB AD 为边作等边△ ABE 和等边△ADF 分别连接CE ,CF 和EF,则下列结论,一定成立的个数是(① ^CDW AEBC ②4CEF 是等边三角形; ③/ CDF= / EAB ④CE// DFEA. 1B. 2C. 3D. 412 .把代数式2x 2-18分解因式,结果正确的是( )A. 2 (x2-9)B. 2 (x-3) 2C. 2 (x+3) ( x-3)D, 2(x+9) (x-9)二、填空题A. 20°B. 35°C. 40°D. 70°工队每天比原计划多绿化 的是()A.4000 4000 x x 10B.4000 x 104000 「 2 x9. A. C. 4000 x 1040004000 4000 2x 10卜列各式能用平方差公式计算的是 (3a+b)(a-b) (-3a-b)(- B. D. (3a+b)(-3a-b)10.如图,在 ABC 中, A 64ABC 与 ACD 的平分线交于点 A,得 A;A 2,得A2 ;A ni BC 与A n 〔CD 的平分C. 6D. 7B D CA i BC 与 ACD 的平分线相交于点 ,则 n 的最大值为(13.使有意义的x取值范围是 ;若分式ELf 的值为零,则x=;分式x 2 x 31 1的最简公分母是 .x x x x14.在代数式上」,1,2中,分式有个.5 x 215.若x2+2mx + 9是一个完全平方式,则m的值是16.因式分解:a3-2a2b+ab2=.17. 一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.18.若分式一6-的值为正数,则x的取值范围 .7 x19.计算:30 (1) 1| 2| .20.如图,AABC中.点D在BC边上,BD=AD=AC E为CD的中点.若/ CAE=16 ,则/ B 为度.2x 321.解分式方程:旦—2 x 1 x 122.如图,已知A (3, 0) , B (0, - 1),连接AB,过B点作AB的垂线段BC,使BA = BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△ BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P, Q三点共线,求此时/ APB的度数及P点坐标.〃、巾 x 1 4 ,24.解万程: --------- 、一 1 .x 1 x 125.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求 每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1. . B解析:B 【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B.考点:1.轴对称图形;2.中心对称图形.2. A解析:A 【解析】分析:根据多边形的内角和公式计算即可 .详解:20袋大米,A A 、B 型机器人= 36。

2020-2021学年广东省深圳八年级上册期中数学检测试卷

2020-2021学年广东省深圳八年级上册期中数学检测试卷

2020-2021学年广东省深圳八年级上册期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A. 2B. 4C. 6D. 82.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是√16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0.其中错误的有()A. 0个B. 1个C. 2个D. 3个3.36的平方根是()A. 6B. ±6C. −6D. 44.下列数中与√19−1最接近的是()A. 2B. 3C. πD. 45.下列说法中,能确定物体位置的是()A. 天空中的一只小鸟B. 电影院中18座C. 东经118°,北纬40°D. 北偏西35°方向6.在平面直角坐标系中,点(–1,–2)在第()象限.A. 一B. 二C. 三D. 四7.已知点A(2,−2),如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()A. (2,2)B. (−2,2)C. (−1,−1)D. (−2,−2)8.若直线y=2x+3与y=3x−2b相交于直线y=x上同一点,则b的值是()A. −3B. −32C. 6 D. −949.一次函数y=x+2的图象与x轴的交点坐标是().A. (0,2)B. (0,−2)C. (2,0)D. (−2,0)10.如图,已知直线y1=a1x+b1和直线y2=a2x+b2的图象交于点P(−1,2),则根据图象可得不等式a1x+b1≤a2x+b2的解集是()A. x>−1B. x≤−1C. 0≤x≤2D. −1≤x≤1二、填空题(本大题共7小题,共28.0分)11.√16的平方根是___________.12.计算:(√5+√6)(√5−√6)=__________.13.计算√16的结果是________.14.已知|x+2|+(y−3)2=0,且x−2y+z2+5=12y+x+z,则z的值为______ .15.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是________.16.点F(x,y)在第二象限,则Q(x,−y)在第______ 象限.17.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费______元.三、计算题(本大题共2小题,共12.0分)18.计算:(1)√8+√18√2(2)(2√6+√3)(2√6−√3)−(3√3−√2)219. 计算题:(1)√27+√13−√12;(2)√185×2√5÷(−2√2).四、解答题(本大题共6小题,共50.0分)20. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A 与欲到达地点B 相距50米,结果他在水中实际行走的路程比河的宽度多10米,求该河的宽度BC .21.如图,是一个圆柱形容器,高18cm,底面周长为60cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm的点F出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?22.某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L).(1)求y与x之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.23.已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;,1)是否在这个函数的图象上,为(3)请你判断点P(−32什么?24.观察下列等式:√3+1=√3−1(√3+1)(√3−1)=√3−12;5+3=√5−√3(5+3)(5−3)=√5−√32;1√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√5…回答下列问题:(1)利用你观察到的规律,化简:5+√23(2)计算:1+√3√3+√5√5+√7⋯3√11+√101.25.如图,已知直线y=−34x+3分别与x,y轴交于点A和B.(1)求点A,B的坐标;(2)求原点O到直线l的距离.答案和解析1.【答案】D【解析】【分析】本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.利用勾股定理将AB2+AC2转化为BC2,再求值.【解答】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选D.2.【答案】D【解析】【分析】本题考查了实数,相反数,绝对值,平方根及立方根,熟练掌握各自的定义是解本题的关键.利用实数的分类,无理数定义,立方根及平方根定义判断即可.【解答】解:①实数和数轴上的点是一一对应的,正确;②无理数不一定是开方开不尽的数,例如π,错误;③负数有立方根,错误;④16的平方根是±4,用式子表示是±√16=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确;则其中错误的是3个,故选D.3.【答案】B【解析】解:∵(±6)2=36,∴36的平方根是±6,故选:B.根据平方根的定义求解即可.本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.4.【答案】C【解析】【分析】此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.估算确定出结果即可.【解答】解:∵4.32=18.49,4.42=19.36即18.49<19<19.36,∴4.3<√19<4.4,即3.3<√19−1<3.4∴与√19−1最接近的是π,故选:C.5.【答案】C【解析】解:A、天空中的一只小鸟,不能确定物体的位置,故本选项不合题意;B、电影院中18座,不能确定物体的位置,故本选项不符合题意;C、东经118°北纬40°,能确定物体的位置,故本选项符合题意.D、北偏西35°方向,没有距离,不能确定物体的位置,故本选项不合题意;故选:C.平面确定一个物体的位置,一般需要两个数据.找到有两个数据的选项即为所求.此题主要考查了确定位置,要明确,平面确定一个物体的位置,一般需要两个数据.6.【答案】C【分析】根据在平面直角坐标系中点的符号特征求解即可.本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(−,+),第三象限内点的坐标特征为(−,−),第四象限内点的坐标特征为(+,−),x轴上的点纵坐标为0,y轴上的点横坐标为0.【解答】解:∵−1<0,−2<0,∴点(–1,–2)在第三象限.故选C.7.【答案】D【解析】【分析】本题考查的关于x轴,y轴,原点对称的点的坐标,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数;关于纵轴的对称点,纵坐标不变,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,−y),关于原点的对称点是(−x,−y),据此解答.【解答】解:A关于x轴的对称点是B的坐标是(2,2),∵点B关于原点的对称点是C,∴C点的坐标是(−2,−2).故选:D.8.【答案】A【解析】本题主要考查的是两直线的位置关系的有关知识.由题意得{y =2x +3y =x求出交点坐标,然后代入y =3x −2b 进行求解即可. 【解答】解:由题意得{y =2x +3y =x, 解得:{x =−3y =−3, 将{x =−3y =−3代入y =3x −2b 得: −3=3×(−3)−2b ,解得:b =−3.故选A .9.【答案】D【解析】【分析】此题考查了一次函数图象上的点的坐标特征有关知识,当y =0时,求出x 的值,即可得到一次函数图象与x 轴的交点坐标.【解答】解:当y =0时,0=x +2,则x =−2∴一次函数y =x +2的图象与x 轴的交点坐标为(−2,0).故选D10.【答案】B【解析】解:∵直线y 1=a 1x +b 1和直线y 2=a 2x +b 2的图象交于点P(−1,2), ∴不等式a 1x +b 1≤a 2x +b 2的解集是x ≤−1,故选:B .根据一次函数的图象和两函数的交点坐标即可得出答案.此题考查了一次函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.11.【答案】±2【解析】【分析】此题主要考查了平方根、算术平方根的定义,属于基础题.首先根据算术平方根的定义求出√16,然后再求出它的平方根即可解决问题.【解答】解:∵√16=4,而4的平方根是±2,故答案为±2.12.【答案】−1【解析】【分析】本题考查二次根式的乘法及平方差公式的应用.根据平方差公式进行相乘,再根据二次根式的性质化简即可.【解答】解:原式=(√5)2−(√6)2=5−6=−1.故答案为−1.13.【答案】4【解析】【分析】本题考查了算术平方根.掌握算术平方根的定义是解题的关键.根据算术平方根的定义即可求解.【解答】解:√16=4.故答案为4.14.【答案】3【解析】解:∵|x+2|+(y−3)2=0,∴x+2=0,y−3=0,∴x=−2,y=3,把x=−2,y=3代入x−2y+z2+5=12y+x+z,得−4+12z+5=−12+z,解得z=3,故答案为3.根据非负数的性质得出x,y的值,再代入得出z的值即可.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.15.【答案】x=2【解析】【分析】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.16.【答案】三【解析】解:∵点F(x,y)在第二象限,∴x<0,y>0,∴−y<0,∴Q(x,−y)在第三象限.故答案为:三.根据第二象限内点的横坐标是负数,纵坐标是正数求出x、y的正负情况,再进行判断即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).17.【答案】(1.2x−24)【解析】解:先求出超出60立方米的煤气用量,即x−60,所以超出的费用是1.2(x−60)=1.2x−72元.所以,某户用煤气x立方米应交煤气费是1.2x−72+60×0.8=1.2x−24.应交煤气费=前60立方米的付费+超过60立方米的付费.【分析】解决问题的关键是读懂题意,找到所求的量的等量关系.18.【答案】解:(1)原式=√82+√182=2+3=5;(2)原式=24−3−(27−6√6+2)=21−29+6√6=6√6−8.【解析】(1)根据二次根式的除法法则运算;(2)利用平方差公式和完全平方公式计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.【答案】解:(1)原式=3√3+√33−2√3=4√33;(2)原式=3√105×2√5×2√2)=3√2×√55×2√5×2√2)=−3.【解析】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简、二次根式的乘除法以及同类二次根式的合并.(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法运算法则进行运算即可.20.【答案】解:设BC=x米,根据题意可知AB=50米,AC=(x+10)米,由勾股定理得AC2=AB2+BC2,即(x+10)2=502+x2,解得x=120.所以该河的宽度BC为120米.【解析】【分析】本题考查勾股定理的应用,根据题意可知△ABC为直角三角形,设BC=x米,根据题意可知AB=50米,AC=(x+10)米,由勾股定理得AC2=AB2+BC2,即(x+ 10)2=502+x2解方程即可解答.21.【答案】解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm),FB=18―1―1=16(cm),在Rt△SBF中,∠SBF=90°,由勾股定理得,SF===34(cm),所以蜘蛛所走的最短路线的长度是34cm.【解析】本题考查了最短路径问题,解题思路为:①先根据题意把立体图形展开成平面图形后并画出展开图,再确定两点之间的最短路径.一般情况是两点之间,线段最短;②构建直角三角形,利用勾股定理列式解出.x=−0.1x+40,22.【答案】解:(1)根据题意,得y=40−10100∴y与x之间的函数表达式为y=−0.1x+40;(2)根据题意,得:y≥40×1,4即:−0.1x+40≥10,x≤300.∴汽车最多行驶的路程300km.【解析】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数解析式.(1)根据题意可以直接写出相应的函数解析式;(2)根据题意可以得到相应的不等式,从而可以得到x的取值范围;23.【答案】解:(1)由图可知点A(−1,2),代入y=kx得:−k=2,k=−2,则正比例函数解析式为y =−2x ;(2)将点B(m,m +3)代入y =−2x ,得:−2m =m +3,解得:m =−1;(3)当x =−32时,y =−2×(−32)=3≠1,所以点P 不在这个函数图象上.【解析】(1)将点A(−1,2)代入y =kx 求得k 的值即可得;(2)将点B 坐标代入函数解析式可得m 的方程,解之即可得;(3)在所求函数解析式中求出x =−32时y 的值,看是否等于1即可得出结论.本题主要考查待定系数法求出一次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式及一次函数图象上点的坐标特征.24.【答案】解:(1)原式=√23(5+√23)(5−√23)=5−√232;(2)原式=√3−1(1+3)(3−1)√5−√3(5+3)(5−3)√7−√5(7+5)(7−5)⋯+√101−3√11(101+311)(101−311) =12(√101−1).【解析】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.(1)根据观察,可发现规律;√n+2+√n =√n+2−√n 2,根据规律,可得答案; (2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化. 25.【答案】解:(1)当x =0时,y =−34x +3=3,∴点B 的坐标为(0,3);当y =0时,有−34x +3=0,解得:x =4,∴点A 的坐标为(4,0).(2)∵点A 的坐标为(4,0),点B 的坐标为(0,3),∴OA =4,OB =3,∴AB =√OA 2+OB 2=5,∴原点O到直线AB的距离=OA⋅OBAB =125.【解析】略。

2020-2021深圳市深圳中学初中部初二数学上期中试卷(及答案)

2020-2021深圳市深圳中学初中部初二数学上期中试卷(及答案)

2020-2021深圳市深圳中学初中部初二数学上期中试卷(及答案)一、选择题1.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为()A.100B.80C.50或80D.20或802.下列分式中,最简分式是()A.B.C.D.3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图,ABC是等腰直角三角形,BC是斜边,将ABP绕点A逆时针旋转后,能与ACP'重合,如果3AP=,那么PP'的长等于()A.32B.23C.42D.335.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7B.8C.6D.56.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形7.小淇用大小不同的 9 个长方形拼成一个大的长方形ABCD ,则图中阴影部分的面积是()A.(a + 1)(b + 3)B.(a + 3)(b + 1)C.(a + 1)(b + 4)D.(a + 4)(b + 1)8.下列图形中,周长不是32 m的图形是( )A.B.C.D.9.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3B.1C.0D.﹣310.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 11.如图,△ABC与△A1B1C1关于直线MN对称,P为MN上任一点,下列结论中错误的是( )A.△AA1P是等腰三角形B.MN垂直平分AA1,CC1C.△ABC与△A1B1C1面积相等D.直线AB、A1B的交点不一定在MN上12.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.从n 边形的一个顶点出发有四条对角线,则这个n 边形的内角和为______度.14.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.15.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.16.若226m n -=-,且3m n -=-,则m n + =____.17.若a+b=17,ab=60,则a-b 的值是__________.18.若关于x 的方程x 1m x 5102x -=--无解,则m= . 19.化简的结果是_______.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.先化简,再求值:1-222442a ab b a b a ab a b +++÷-- ,其中a 、b 满足(22b+1=0a - .22.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.23.材料阅读:若一个整数能表示成a 2+b 2(a 、b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b)2+b 2(a 、b 是正整数),所以a 2+2ab +2b 2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x 2+9y 2)·(4y 2+x 2)(x 、y 是正整数)是否为“完美数”,并说明理由.24.如图,P 和Q 为△ABC 边AB 与AC 上两点,在BC 边上求作一点M ,使△PQM 的周长最小.25.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x3 +.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80,顶角为180808020--=;()2等腰三角形的顶角为80.因此这个等腰三角形的顶角的度数为20或80.故选D.【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.2.A解析:A【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.A解析:A【解析】【分析】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3, 根据勾股定理得:223332'=+=PP ,故选A .5.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B .【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.6.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).【点睛】本题主要考查了列代数式.平移后再求解能简化解题.8.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.9.A解析:A【解析】【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得3﹣m=0,再解得出答案.【详解】解:(x﹣m)(x+3)=x2+3x﹣mx﹣3m=x2+(3﹣m)x﹣3m,∵乘积中不含x的一次项,∴3﹣m=0,解得:m=3,故选:A.【点睛】此题考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.10.C解析:C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11.D解析:D【分析】根据轴对称的性质即可解答.【详解】∵△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,∴△A A1P是等腰三角形,MN垂直平分AA1、CC1,△ABC与△A1B1C1面积相等,∴选项A、B、C选项正确;∵直线AB,A1B1关于直线MN对称,因此交点一定在MN上.∴选项D错误.故选D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.B解析:B【解析】【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【详解】∵△ABC为等边三角形,∴AB=AC,∵∠1=∠2,BE=CD,∴△ABE≌△ACD,∴AE=AD,∠BAE=∠CAD=60°,∴△ADE是等边三角形,故选B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.【解析】【分析】一个多边形的一个顶点出发一共可作4条对角线则这个多边形的边数7边形的内角和可以表示成代入公式就可以求出内角和【详解】由题意得:所以这个n边形的内角和为度故填:【点睛】本题主要考查多边解析:900【解析】一个多边形的一个顶点出发,一共可作4条对角线,则这个多边形的边数7,n 边形的内角和可以表示成2180n -︒(),代入公式就可以求出内角和.【详解】由题意得:()432180900+-⨯︒=︒所以这个n 边形的内角和为900度故填:900.【点睛】本题主要考查多边形内角、多边形的对角线,熟练掌握计算公式是关键.14.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC=A 1C 1,∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM=5,∴CC 1长为5.故答案为5.考点:等边三角形的判定与性质.15.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和16.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握解析:2【解析】【分析】将22m n -利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。

2020-2021深圳市沪教院福田实验学校八年级数学上期中一模试题含答案

2020-2021深圳市沪教院福田实验学校八年级数学上期中一模试题含答案

2020-2021深圳市沪教院福田实验学校八年级数学上期中一模试题含答案一、选择题1.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48° 2.已知一个等腰三角形一内角的度数为80o ,则这个等腰三角形顶角的度数为( )A .100oB .80oC .50o 或80oD .20o 或80o 3.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

他做对的个数是( ) A .1B .2C .3D .4 4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE的度数是( )A .20°B .35°C .40°D .70°5.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形6.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠7.下列图形中,周长不是32 m 的图形是( )A .B .C .D .8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°9.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .2510.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 211.如图,已知在△ABC,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.已知x2+mx-6=(x-3)(x+n),则m n=______.15.已知:a+b=32,ab=1,化简(a﹣2)(b﹣2)的结果是.16.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.17.若分式62m-的值是正整数,则m可取的整数有_____.18.若11x y+=2,则22353x xy yx xy y-+++=_____19.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.20.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,连接CD,交BE于点F.求证:BE垂直平分CD.22.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.23.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.25.如图所示90,A D AB DC ∠=∠=︒=,点,E F 在BC 上且BE CF =.(1)求证:AF DE =;(2)若PO 平分EPF ∠,则PO 与线段BC 有什么关系?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80o ,顶角为180808020o o o o --=;()2等腰三角形的顶角为80o .因此这个等腰三角形的顶角的度数为20o 或80o .故选D .【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.3.A解析:A【解析】分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.详解:①-22=-4,故本小题错误;②a 3+a 3=2a 3,故本小题错误;③4m -4=44m ,故本小题错误; ④(xy 2)3=x 3y 6,故本小题正确;综上所述,做对的个数是1.故选A .点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.4.B解析:B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°. 【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°. ∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°. 故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键. 5.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.6.A解析:A【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.7.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.8.A解析:A解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .9.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy 的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y )2=x 2+2xy+y 2=25,将xy=6代入得:x 2+12+y 2=25,则x 2+y 2=13.故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.11.C解析:C【解析】解:∵AB =AC ,∴∠ABC =∠ACB .∵以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,∴BE =BC ,∴∠ACB =∠BEC ,∴∠BEC =∠ABC =∠ACB ,∴∠BAC =∠EBC .故选C . 点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.12.D解析:D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.二、填空题13.120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.2【解析】【分析】根据多项式相乘的法则展开然后代入数据计算即可【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4当a+b=ab=1时原式=1﹣2×+4=2故答案为2考点:整式的混合运算—化简求解析:2【解析】【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=32,ab=1时,原式=1﹣2×32+4=2.故答案为2.考点:整式的混合运算—化简求值.16.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.17.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m-2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m-2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】解:∵分式62m的值是正整数,∴m-2=1或2或3或6,∴m=3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m-2是6的约数是解题的关键.18.【解析】【分析】由=2得x+y=2xy整体代入所求的式子化简即可【详解】=2得x+y=2xy则==故答案为【点睛】本题考查了分式的基本性质解题关键是用到了整体代入的思想解析:3 11【解析】【分析】由11x y+=2,得x+y=2xy,整体代入所求的式子化简即可.【详解】11x y+=2,得x+y=2xy则22353x xy yx xy y-+++=22325xy xyxy xy⋅-⋅+=331111xyxy=,故答案为3 11.【点睛】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.19.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS);③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此,只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将32-可以被10到20之间的某两个整数整除,2121-利用平方差公式分解因式,根据32即可得到两因式分别为15和17.【详解】因式分解可得:3221-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.证明见解析.【解析】试题分析:首先根据互余的等量代换,得出∠EBC=∠EBD,然后根据线段垂直平分线的性质即可证明.试题解析:∵BD=BC,∴∠BCD=∠BDC.∵ED⊥AB,∴∠EDB=90°,∴∠EDB-∠BDC=∠ACB-∠BCD,即∠ECD=∠EDC,即DE=CE,∴点E在CD的垂直平分线上.又∵BD=BC,∴点B在CD 的垂直平分线上,∴B E垂直平分CD.点睛:本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.22.问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】【分析】问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,依题意,得:3000x -30001.2x =20, 解得:x=25, 经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 23.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元. 由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元) 由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.24.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,则△ADE 的周长=AD +DE +EA =BC ,即可得出结论;(2)根据等边对等角,把∠BAD +∠CAE =60°转化为∠B +∠C =60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴△ADE 的周长=AD +DE +AE =DB +DE +EC =BC =5;(2)∵DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠BAD +∠CAE =∠B +∠C =60°,∴∠BAC =180°-(∠B +∠C )=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键.25.(1)证明见解析;(2)PO 垂直平分BC ;理由见解析.【解析】【分析】(1)根据已知条件证明()Rt ABF Rt DCE HL ∆≅∆即可得出结论;(2)根据Rt ABF Rt DCE ∆≅∆可得出E F ∠=∠,即PEF ∆为等腰三角形,又因为PO 平分EPF ∠,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】解:(1)证明:∵BE CF BC CB ==,∴BF CE =,在Rt ABF ∆与Rt DCE ∆中,∵BF CE AB DC =⎧⎨=⎩∴()Rt ABF Rt DCE HL ∆≅∆∴AF DE =(2)PO 垂直平分BC ,∵Rt ABF Rt DCE ∆≅∆,∴E F ∠=∠,∴PEF ∆为等腰三角形,又∵PO 平分EPF ∠,∴PO BC ⊥(三线合一),EO FO =(三线合一)又∵EB FC =,∴BO CO =,∴PO 垂直平分BC .【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力.。

2020-2021深圳万科城实验学校初中部八年级数学上期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部八年级数学上期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部八年级数学上期中第一次模拟试卷含答案一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.下列各式中,分式的个数是()2 x ,22a b+,a bπ+,1aa+,(1)(2)2x xx-++,ba+.A.2 B.3 C.4 D.53.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣344.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.146.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠CB.∠A=12∠B=13∠CC.∠A:∠B:∠C=1:2:3D.∠A=2∠B=3∠C7.一个正多边形的每个外角都等于36°,那么它是()A .正六边形B .正八边形C .正十边形D .正十二边形8.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b)9.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°10.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .411.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.14.当x=_________时,分式33xx-+的值为零.15.如图△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有_____个16.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.17.如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为_____°.18.已知x m=6,x n=3,则x2m﹣n的值为_____.19.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.20.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B 为_____度.三、解答题21.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =-. 22.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 2﹣4x ﹣1=0. 23.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件;(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元.24.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(l )第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价325a 元进行促销,结果第二批车厘子的销售利润为1520元,求a 的值。

广东深圳实验学校2020--2021学年八年级上学期期中数学试卷(详解)

广东深圳实验学校2020--2021学年八年级上学期期中数学试卷(详解)

广东省深圳实验学校2020—2021学年八年级上学期期中考数学卷详解一.选择题(每小题3分共30分)1.以下列各数为边长,能构成直角三角形的是( )A. 1,2,2B. 1,√3,2C. 4,5,6D. 1,1,√32.有5cm ,13cm 两根木条,现想找一根木条组成直角三角形,则下列木条长度适合的是( )A. 8cmB. 12cmC. 18cmD. 20cm3.下列二次根式,最简二次根式的是( )A. √9B. √7C. √20D. √194.下列说法不正确的是( )A. 21的平方根是 √21B. √21是21的一个平方根C. √21是21的平方根D. 21的平方根是√215.一个自然数的立方根为a ,则下一个自然数的立方根是( )A. a+1B. √a +13C. √a 3+13D. a 3+16.下列各点中,位于平面直角坐标系第三象限的点是( )A. (2,1)B. (-2,-1)C. (2,-1)D. (-2,1)7.在平面直角坐标系中,若点M(-1,3)与点N(-1,a)的横坐标之间的距离是5,则a 的值是( )A. -2B. 8C. 2或8D. -2或88.已知,点A(m-1,3)与点B(2,n-1)关于x 轴对称,则(m +n)2020的值是( )A. 0B. 1C. -1D. 320209.下列四组数中,是方程组{x +y =7 x −y =1的解的是( ) A. {x =3 y =4 B. {x =5 y =2C. {x =6 y =1D. {x =4 y =3 10.“分母有理化”是我们常用的一种化简方法,如√32−√3=√3)(2+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可用平方之后再开方的方式来化简一些有特点的无理数,如:对于√3+√5√3−√5,设x =√3+√5−√3−√5,易知√3+√5>√3−√5,故x>0,由x 2=(√3+√5−√3−√5)2=3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x =√2,即√3+√5√3−√5=√2,根据以上方法,化简√3−√2√3+√2√6−3√3√6+3√3后的结果为( ) A. 5+3√6 B. 5+√6 C. 5−√6 D. 5−3√6二.填空题(每小题3分共24分)11.如图,所有阴影四边形都是正方形,两个空白三角形均为直角三角形,且A,B,C 三个正方形的边长分别为2,3,4,则正方形D 的面积为________12.在实数:1,−√4,√93,227,π,3.1313313331…(两个1之间一次多1个3),无理数有______个.13.如图,各个小正方形格子的边长均为1,图中A,B 两点的坐标分别为(-3,5)、(3,5),则C 在同一坐标系下的坐标为_____________14.若方程(n −1)x |n|−3y m−2021=5是关于x,y 的二元一次方程,则n m =_____________15.如图,一只蚂蚁从点A 沿圆柱表面爬到点B ,圆柱高为8cm ,底面半径为6πcm ,那么最短的路线长是_____16.某活动小组购买了3个篮球和4个足球,共花费了330元,其中篮球的单价比足球少5元,求篮球的单价和足球的单价。

深圳实验学校初中部2024-2025学年上学期八年级期中考试数学试卷(解析版)

深圳实验学校初中部2024-2025学年上学期八年级期中考试数学试卷(解析版)

深圳实验学校初中部2024-2025学年第一学期八年级期中考试数学试卷一.选择题(每题3分,共30分)1. 【答案】B【详解】本题考查无理数的识别,解题的关键是掌握无理数的定义(无限不循环小数).据此进行判断即可.5=,是整数,,227,3π,0.1212212221…(两个1之间依次多一个2)5个数中,其中3π,0.1212212221…(两个1之间依次多一个2)3个.故选:B .2. 【答案】D【详解】解:A 33≠−,故该选项不符合题意;B 33≠±,故该选项不符合题意;C 33=−≠±,故该选项不符合题意;D 3=,故该选项符合题意;故选:D .3. 【答案】B【详解】解:=22a ∴+=,解得0a =.故选:B .4. 【答案】B【详解】解:∵点P 到x 轴的距离是3,到y 轴的距离是1,∴点P 的横坐标的绝对值为1,纵坐标的绝对值为3,又∵点P 在第二象限,∴点P 的坐标为()1,3−.故选:B .5. 【答案】B【详解】解:A 、222b c a −= ,222a c b ∴+=,∴ABC 是直角三角形,故选项A 不符合题意;B 、::3:4:5A BC ∠∠∠= ,∴最大角518075345C ∠=°×=°++, ∴ABC 不是直角三角形,故选项B 符合题意;C 、A B C ∠=∠−∠ ,A CB ∴∠+∠=∠,180A B C ∠+∠+∠=° ,90B ∴∠=°,∴ABC 是直角三角形,故选项C 不符合题意;D 、设8a k =,15b k =,17c k =,222(8)(15)(17)k k k += ,222a b c ∴+=, ∴ABC 是直角三角形,故选项D 不符合题意;故选:B .6. 【答案】B【详解】∵牡丹园的坐标是(2,2),南门的坐标是(0,3)−,∴中心广场的位置是原点,∴湖心亭的坐标为(3,1)−,故选:B .7. 【答案】B【详解】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 故选B .8. 【答案】B【详解】解:将直线2y x =向上平移3个单位长度后得到直线23y x =+, A 、函数的图象与y 轴的交点坐标是()0,3,原说法错误,不符合题意;B 、函数图象经过第一、二、三象限,正确,符合题意;C 、当2x =−时,1y =−,所以点()21−−,不在函数23y x =+图象上,原说法错误,不符合题意; D 、直线23y x =+,y 随x 的增大而增大,若12x x <,则12y y <,原说法错误,不符合题意; 故选:B .9. 【答案】B【详解】解:由题意可知,中间小正方形的边长为m n −,∴()25m n −=,即2225m n mn +−=①,∵()221m n +=,∴22221m n mn ++=②,①+②得()22226m n +=, ∴大正方形的面积2213m n +=,故选:B .10. 【答案】D详解】A 、根据图象可知:点()5,1500指甲从A 开始出发,此选项正确,不符合题意;B 、根据题意乙的速度为()15005300m/min ÷=,设甲的原速度为m/min x , ∴()253002552500x ×−−=,解得:250x =,此选项正确,不符合题意; C 、∵乙骑行25分钟后,甲以原速度的85继续骑行, ∴此时甲的速度为()8250=400m/min 5×, 【∴()250040030025÷−=, 则甲与乙相遇时,甲出发了2525545+−=(分钟), 此选项正确,不符合题意;D 、当86x =时,甲到达B 地,此时乙距离B 地还有()250204008625300863600×+×−−×=(米),需要360030012÷=(分钟), ∴乙比甲晚12分钟到达B 地,此选项错误,符合题意; 故选:D .二.填空题11. 【答案】5a ≥∴50−≥a∴5a ≥.故答案为:5a ≥.12. 【答案】x =1【详解】解:由表格数据可知,直线l 1:y =-2x +a 和l 2:y =x +b 交于(1,-1)点, ∴方程-2x +a =x +b 的解是x =1,故答案为:x =1.13.【答案】6【详解】解:根据题意得:91016<<, ∴34<<, ∴的整数部分3a =,小数部分3b=−,∴)336a b −=−=−,故答案为:6−.14. 【答案】20cm【详解】如图1,∵AB=18cm ,BC=GF=12cm ,BF=10cm ,∴BM=18﹣6=12,BN=10+6=16,∴;如图2,∵AB=18cm ,BC=GF=12cm ,BF=10cm ,∴PM=18﹣6+6=18,NP=10,∴.∵20<∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为20cm15. 【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==∴AQ ∵1122ABC S AB CG AQ BC =×=× ,∴BC AQ CG AB ×==.三.解答题16.【答案】(1)2(2)3−【解析】【小问1详解】解:(201202132− ++−134=+++2=+;【小问2详解】解:(22−+,46=−−4665=−−+3=−17. 【答案】(1)13x y = = (2)3114x y = =【解析】【小问1详解】2147x y x y −=− +=①② 由①+②得66x =∴1x =将1x =代入①得21−=−y ∴3y =∴13x y = = 【小问2详解】3314312x y −−−=两边同时乘以12得()()33431x y −−−= ∴342x y −=− ∴414342x y x y += −=−①② ①+②得412x =∴3x =将3x =代入①得3414y +=∴114y = ∴3114x y = =.18. 【答案】(1)见解析,(4,1)−−;(2)ABC 是直角三角形,理由见解析;(3)见解析【详解】解:(1)如图,111A B C 即为所求作的图形,点1C ()4,1−−, 故答案为()4,1−−;(2)ABC 是直角三角形,理由如下:由勾股定理得220AB =,25BC =,225AC =,∴222AB BC AC +=,∴ABC 是直角三角形;(3)如图点D 即为所求,.19. 【答案】(1)2y x =+(2)3a =(3)()0,3或()0,7−【解析】【小问1详解】解:根据题意得:353k b k b += −+=−, 解得:12k b = =, ∴函数表达式为2y x =+;【小问2详解】解: 点()2,21C a a ++在该函数图象上,2122a a ∴+=++,3a ∴=;【小问3详解】解:设点()0,P m ,直线2y x =+与y 轴交于点C ,当0x =时,2y =∴交点C 的坐标为(0,2),()1215152ABP S m =+×−−= , |2|5m ∴+=,3m ∴=或−7,∴点P 坐标()0,3或()0,7−.20. 【答案】(1)1k =,6m =(2)见解析 (3)①1;②增大;③1b >【解析】【小问1详解】将()0,2代入1y x k =++得:012k ++=, 解得:1k =, ∴11y x =++,当4x =时,4116y =++=,∴6m =.【小问2详解】根据表格中的对应值在直角坐标系中描点、连线,如图为所求.【小问3详解】根据图象可得,①该函数的最小值为1; ②当1x >−时,函数值y 随自变量x 的增大而增大; ③∵关于x 的方程11x b +=−有两个不同的解, ∴由图象可得,b 的取值范围为1b >. 故答案为:1;增大;1b >. 21. 【答案】(1)①4 ②1 (2)1或5【解析】【小问1详解】解:①如图1,∵线段AB 上点B 到x 轴的距离最大, ∴4AB d ;②∵()1,3A −,()2,4B ,∴A ,B 关于直线2y =的对称点()1,1C −,()2,0D , 如图2,∵线段CD 上点C 到x 轴的距离最大,∴1CD d =;【小问2详解】解:∵()1,E m −,()2,2F m +,∴E ,F 关于直线2y =的对称点()1,4G m −−,()2,2H m −, 当42m m −≥−时,∵3GH d =, ∴43m −=, ∴1m =或7(舍去); 当42m m −<−时,∵3GH d =, ∴23m −=, ∴5m =或1−(舍去); 综上,1m =或5.22. 【答案】(1)1005t −(2)6 (3)203或152【解析】【小问1详解】解:如图1,作PR AO ⊥于点R ,四边形OABC 是矩形,且顶点A ,C 分别在x 轴和y 轴上,(20,10)B , 20AO BC ∴==,10CO AB ==,BC AO ∥,90OAB ∠=°, AB AO ∴⊥,10PR AB ∴==,20AQ AO OQ t =−=− ,11(20)10100522APQ S AQ PR t t ∴=⋅=×−×=− , 故答案为:1005t −;【小问2详解】解:如图2,作MN BC ⊥于点N ,由折叠得MP BP =,10CM AB ==,90CMP B ∠=∠=°, 222CM MP CP += ,且20MPBP CP ==−, ()2221020CP CP ∴+−=, 解得252CP =, 25152022MP ∴=−=, 1122PCM CP MN CM MP S ⋅=⋅= ,∴125115102222MN ×=××, ∴解得6MN =,∴此时M 到直线BC 的距离为6;【小问3详解】解:①如图3,当AP PQ =时,作PT AQ ⊥于点T ,则AT QT =,∴AB PT ∥,且AT AB ⊥,BP AB ⊥, ∴四边形ABPT 是矩形, AT BP t ∴==,20AQt =− ,且2AQ AT =, 202t t ∴−=, 解得203t =; ②当AP AQ =时,222AB BP AP += ,且10AB =,BP t =,20APAQ t ==−, 22210(20)t t ∴+−, 解得152t =, 综上所述,t 的值为203或152.。

广东省深圳市深圳实验学校中学部2021-2022学年八年级上学期期中数学试题(解析版)

广东省深圳市深圳实验学校中学部2021-2022学年八年级上学期期中数学试题(解析版)

2021-2022学年广东省深圳实验学校中学部八年级(上)期中数学试卷一、单选题(每小题3分,共30分)1. 下列各数中,是无理数的是()A. 3.5B. 227C.D.【答案】C【解析】【分析】根据无理数定义(无理数是指无限不循环小数)逐个判断即可.【详解】A、3.5是小数,即分数,属于有理数;B、227是分数,属于有理数;C是无理数;D=2,是整数,属于有理数;故选C.【点睛】本题考查了无理数的定义,能理解无理数的定义的内容是解此题的关键,注意:无理数有:①开方开不尽的根式,②含π的,③无限不循环小数.2. 下列各组数中,是勾股数的是()A. 9,16,25B. 1,1C. 12 D. 8,15,17【答案】D【解析】【分析】利用勾股数定义进行分析即可.【详解】解:A、92+162≠252,不是勾股数,故此选项不合题意;B不是正整数,不是勾股数,故此选项不合题意;CD、82+152=172,都是正整数,是勾股数,故此选项符合题意;故选:D.【点睛】此题主要考查了勾股数,关键是掌握满足a2+b2=c2的三个正整数,称为勾股数.3. 下面哪个点不在函数112y x=+的图象上()的A. (2,1)B. (-2,1)C. (2,0)D. (-2,0)【答案】ABC【解析】 【分析】分别把x =2和x =−2代入解析式求出对应的y 值来判断点是否在函数图象上.【详解】解:当x =2时,y =2,所以(2,1)不在函数112y x =+的图象上,(2,0)也不在函数112y x =+的图象上,故A 、C 符合题意; 当x =−2时,y =0,所以(−2,1)不在函数112y x =+的图象上,(−2,0)在函数112y x =+的图象上,故B 符合题意,D 不符合题意.故选ABC . 【点睛】本题考查知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.4. 下列运算正确的是( )B. 6126 【答案】D【解析】【分析】根据各个选项中的式子进行计算得出正确的结果,从而可以解答本题.【详解】解:A.,故本选项错误;B. 3=,故本选项错误;C. ,故本选项错误;6,故本选项正确.故选:D. 【点睛】本题考查二次根式的乘法运算,解答本题的关键是明确二次根式乘法运算的计算方法. 5. 满足下列条件的△ABC 不是直角三角形的是( )A. BC =1,AC =2,ABB. BC =1,AC =2,ABC. ∠A =∠B +∠CD. ∠A :∠B :∠C =3:4:5【答案】D 的【解析】【分析】根据勾股定理逆定理判断A 、B 选项,利用三角形的内角和定理,可判断C 、D 选项,即可求解.【详解】解:A 、因为222222142BCAB AC +=+=== ,是直角三角形,不符合题意;B 、22222125BC AC +=+== ,是直角三角形,不符合题意;C 、因为∠A =∠B +∠C ,又∠A +∠B +∠C =180°,所以90A ∠=° ,是直角三角形,不符合题意;D 、设3,4,5A x B x C x ∠=∠=∠= ,则345180x x x ++=° ,解得15x=° ,则45,60,75A B C ∠=°∠=°∠=° ,不是直角三角形,符合题意;故选:D【点睛】本题主要考查了勾股定理逆定理,三角形的内角和定理,熟练掌握勾股定理逆定理,三角形的内角和定理是解题的关键.6. 已知点P (m ,n )在第四象限,则直线y=nx+m 图象大致是下列的( )A. B. C.D.【答案】D【解析】【详解】∵点P (m ,n )在第四象限,∴m >0,n <0,∴图象经过一、二、四象限,故选:D .7. 一次函数y =﹣2x +3上有两点(﹣2,y 1)和(0,y 2),则y 1与y 2的大小( )A. y 1>y 2B. y 1<y 2C. y 1=y 2D. 无法比较【答案】A【解析】 【分析】根据一次函数图象的性质可知:y 随x 的增大而减小,然后比较这两点的横坐标即可得出结论.【详解】解:∵一次函数y =﹣2x +3中,-2<0∴y 随x 的增大而减小∵一次函数y =﹣2x +3上有两点(﹣2,y 1)和(0,y 2),其中﹣2<0∴y 1>y 2故选A .【点睛】本题考查了一次函数的图象与性质,属于基础题型,熟练掌握一次函数的性质是关键. 8. 数轴上表示1的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )1 B. 1 C. 2−2− 【答案】C【解析】【分析】根据数轴上两点之间的距离计算、对称的性质即可解决.【详解】根据对称的性质得:AC =AB设点C 表示的数为a ,则11a −=−解得:2a =故选:C .【点睛】本题考查了数轴上两点之间的距离,图形对称的性质,关键是由对称的性质得到AC =AB . 9. 如图,在平面直角坐标系中,点(5,2)A ,点(0,3)B ,点P 是x 轴上一个动点,且点A ,B ,P 不在同一条直线上,当ABP △的周长最小时,点P 的坐标为( )A. (2,0)B. (2.5,0)C. (3,0)D. (1.5,0)【答案】C【解析】 【分析】作B 点关于x 轴的对称点B ',连接AB ′,利用待定系数法求出AB '的解析式后,令y =0,即可得到AB '与x 轴的交点P 的坐标,此时△ABP 的周长为最小.【详解】解:如图,作B 点关于x 轴的对称点B ',连接AB ',则AB '与x 轴的交点P 即为所求,∵B (0,3),∴B '(0,-3),设AB '的解析式为y=kx+b ,则可得:352b k b =− +=,解得:k =1,b =-3,∴AB '的解析式为y=x -3,令y =0,则x =3,∴P 点坐标为(3,0),故选C .【点睛】本题考查一次函数的综合应用,熟练掌握待定系数法求一次函数解析式的方法及利用轴对称求线段和的最小值是解题关键 .10. 甲乙两人在同一条笔直的公路上步行从A 地去往B 地,已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y (千米)与甲步行的时间t (小时)的函数关系图象如图所示,下列说法: ①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A 地21千米;④A ,B 两地距离为27千米.其中正确的数为( )A. ①②④B. ①②③C. ②③④D. ①②③④【答案】B【解析】 【分析】①由函数图象数据可以求出甲的速度,再由追击问题的数量关系建立方程就可以求出乙的速度; ②根据函数图象的数据由乙到达终点时走的路程减去甲走的路程就可以求出结论;③乙或甲行驶的路程就是乙追上甲时,两人距A 地的距离;④求出乙到达终点的路程就是A ,B 两地距离.【详解】解:①由题意,可得:甲速度为:1243(/)km h ÷=, 设乙的速度为a 千米/时,由题意,可得:的−=×,a(74)37a=,解得:7即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:−×−×=,km(94)7938()故②正确;③当乙追上甲时,两人距A地距离为:×=,km7321()故③正确;④A,B两地距离为:km×−=,7(94)35()故④错误;综上所述:正确的是①②③;故选B.【点睛】本题考查了一次函数的图象的应用,解题的关键是分析清楚函数图象的数据之间的关系.二、填空题(每小题3分,共15分)11. 点(-3,5)到x轴上的距离是_______.【答案】5【解析】【分析】根据点到x轴的距离等于纵坐标的长度解答.【详解】点(-3,5)到x轴上的距离是5.故答案为5.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.12.的结果是___.【答案】【解析】【分析】根据二次根式的运算法则计算即可得出答案.=,故答案为:【点睛】本题考查了二次根式的计算,解题的关键是熟练掌握二次根式的运算法则.13. (2﹣b )2=0=___.【答案】11+【解析】【分析】根据二次根式的性质和平方的非负性,可得1,2a b == ,即可求解.(2﹣b )2=0, ∴10,20a b −=−= , 解得:1,2a b == ,111+=+=+.故答案为:1+【点睛】本题主要考查了二次根式的化简和二次根式的混合运算,熟练掌握二次根式的性质是解题的关键.14. 如图,已知点A (2,3),O 是原点,OA =OA 1,OA ⊥OA 1,则点A 1的坐标是_____.【答案】(-3,2)【解析】【分析】如图所示,过点A 作AC ⊥x 轴,过点A 1作A 1B ⊥x 轴,根据题意证明1A BO OCA ≌可求出BO 和A 1B 的长度,即可求出点A 1的坐标.【详解】解:如图所示,过点A 作AC ⊥x 轴,过点A 1作A 1B ⊥x 轴,∵1190A BO A OA OCA ∠=∠=∠=°, ∴1119090A A OBCOA A OB ∠+∠=°∠+∠=°,, ∴1A COA ∠=∠, ∴在1A BO 与OCA 中,111A BO OCA A COA A O AO ∠=∠ ∠=∠ = ∴()1A BO OCA AAS ≌,∴123A BOC BO AC ====,, 又∵点A 1在第二象限,∴点A 1的坐标(-3,2).故答案为:(-3,2).【点睛】此题考查了三角形全等的证明,点的坐标和线段的关系,解题的关键是根据题意做出辅助线构造全等三角形.15. 如图,平面直角坐标系中,A (4,4),B 为y 轴正半轴上一点,连接AB ,在第一象限作AC =AB ,∠BAC =90°,过点C 作直线CD ⊥x 轴于D ,直线CD 与直线y =x 交于点E ,且ED =5EC ,则直线BC 解析式为_____.【答案】y=﹣15x+10【解析】【分析】过A作AM⊥y轴,交y轴于M,交CD于N,证△ABM≌△CAN,推出AN=BM,CN=AM=4,设EC=a,ED=5a,求出a=2,得出B、C的坐标,设直线BC的解析式是y=kx+10,把C(10,8)代入求出直线BC的解析式.【详解】解:过A作AM⊥y轴,交y轴于M,交CD于N,则∠BMA=∠ANC=90°,∵∠BAC=90°,∴∠BAM+∠CAN=90°,∠BAM+∠ABM=90°,∴∠ABM=∠CAN,∵A(4,4),∴OM=DN=4,AM=4,在△ABM和△CAN中,, ABM CANAMB ANCAB AC∠=∠∠=∠=,,∴△ABM≌△CAN(AAS),∴AN=BM,CN=AM=4,∵ED=5EC,∴设EC=a,ED=5a,∵A(4,4),∴点A在直线y=x上,∵CN=4a﹣4,则4a﹣4=4,∴a=2,即CD=8,ED=10.∵点E在直线y=x上,∴E(10,10),∴MN =10,C (10,8),∴AN =BM =10﹣4=6,∴B (0,10),设直线BC 的解析式是y =kx +10,把C (10,8)代入得:k =﹣15, 即直线BC 的解析式是y =﹣15x +10, 故答案为:y =﹣15x +10.【点睛】本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定等,主要考查学生综合运用性质进行推理和计算的能力.三、解答题:(共7小题,共55分)16. 计算:(1)2)+−;(2(32(+;(4+−+.【答案】(1)2;(2−;(3)9;(412【解析】【分析】(1)根据平方差公式计算即可;(2)根据二次根式的性质和运算法则计算即可;(3)利用二次根式的性质和立方根运算计算即可解答;(4)根据分母有理化和二次根式的运算法则计算即可.【详解】解:(1)2)+−=222−=6﹣4=2;(2=−−;(32(+=6﹣3+6=9;(4+−+−12−.【点睛】本题考查二次根式的混合运算、平方差公式、二次根式的性质、立方根、分母有理化,熟练掌握二次根式的性质和运算法则是解答的关键.17. 如图,已知A(0,4),B(﹣2,2),C(3,0).(1)请在直角坐标系中作出△ABC关于x轴对称的△A1B1C1;(2)写出点A1、B1、C1的坐标:A1(,),B1(,),C1(,)【答案】(1)见解析;(2)0 -4 -2 -2 3 0【解析】【分析】(1)根据关于x 轴对称性质画出对称图形即可;(2)根据画出的图形直接写出对应点的坐标即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求作的图形:(2)根据图形,点A 1坐标为(0,-4),点B 1坐标为(-2,-2)、C 1坐标为(3,0),故答案为:0,-4,-2,-2,3,0.【点睛】本题考查作轴对称图形、坐标与图形变换-轴对称,熟练掌握轴对称图形的性质是解答的关键. 18.23的整数部分为2﹣2,请你观察上述式子规律后解决下面问题.(1)规定用符号[m ]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:+2]= ;[5]= .(2)如果5的小数部分为a,5的小数部分为b,求a2﹣b2的值.【答案】(1)5,1;(2)a2﹣b2的值为7【解析】【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为3的整数部分为3,∴2]5.=+=;[51故答案为5、1.(2)根据题意,得34<<,∴<<859,∴=+−=−583a.<−<152514∴=−−=b,a b∴+=,71a b−=−.22()()∴−=+−a b a b a b7−.a b−的值为7−.∴22【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.19. 如图,在△ABC中,AB=8cm,AC=6cm,∠A=90°,点D在AB上,且BD=CD.(1)求BC和BD的长.(2)求△BDC的面积.【答案】(1)10BC =;254BD =;(2)754BDC S =△. 【解析】 【分析】(1)根据勾股定理即可求出BC 的长度,设BD x =,在ADC 中根据勾股定理列方程即可求出BD 的长;(2)根据三角形面积公式求解即可.【详解】解:(1)∵AB =8cm ,AC =6cm ,∠A =90°,∴由勾股定理得,10BCcm ,设BD x =,∴CD x =,8AD AB BD x =−=−,∴在Rt ACD △中,222AD AC CD +=,即()22286x x −+=, 解得:254x =, ∴254BD =. (2)由题意可得,11257562244BDC S BD AC =××=××=△. 【点睛】此题考查了勾股定理的运用,三角形面积的求法,等腰三角形的性质,解题的关键是根据勾股定理求出BC 的长度.20. 在如图直角坐标系中:(1)画出y =﹣2x +6函数的图象;(2)分别写出函数y =﹣2x +6与x 轴、y 轴的交点A 、B 的坐标;(3)在x 轴上有一点C ,且△ABC 的面积为12,求点C 的坐标.【答案】(1)图见解析(2)A(3,0)、B(0,6);(3)(-1,0)或(7,0)【解析】【分析】(1)求出直线与坐标轴的交点,故可画出函数图像;(2)根据(1)所求即可得到答案;(3)求出三角形的底边长,故可求出C点坐标.【详解】(1)令y=﹣2x+6函数中x=0,得到y=6∴函数与y轴交于(0,6)令y=0,即﹣2x+6=0,解得x=3∴函数与x轴交于(3,0)故作出函数图像如下:(2)由(1)可得与x轴、y轴的交点A、B的坐标分别为A(3,0)、B(0,6);(3)∵△ABC的面积为12∴112 2AC OB×=∴1612 2AC×=解得AC=4∴可得C点为坐标为(-1,0)或(7,0).【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数与坐标轴的坐标求解方法. 21. 某市为了节约用水,采用分段收费标准.设居民每月应交水费y (元),用水量x (立方米). 用水量x (立方米) 应交水费y (元) 不超过12立方米每立方米3.5元 超过12立方米 超过的部分每立方米4.5元(1)若某户居民某月用水10立方米,应交水费 元;若用水15立方米,应交水费 元. (2)求每月应交水费y (元)与用水量x (立方米)之间的函数关系式;(3)若某户居民某月交水费78元,则该户居民用水多少立方米?【答案】(1)35;55.5;(2)当0≤x ≤12时,y =3.5x ,当x >12时,y =4.5x −12;(3)20.【解析】【分析】(1)根据题意第一个空把10x =代入 3.5y x =即可求解,第二个空根据题意列出12 3.53 4.5×+×即可求解;(2)根据不超过12立方米时应缴水费=3.5×用水量,超过12立方米时应缴水费=3.5×12+4.5×超出12立方米的用水量,即可得出y 关于x 的函数关系式;(3)根据3.5×12=42(元),78>42,即可得出该户居民月用水量超出12立方米,将y =78代入y =4.512x −中,求出x 值即可.【详解】解:(1)某户居民某月用水10立方米小于12立方米,则应交水费10 3.535×=(元); 为某户居民某月用水15立方米大于12立方米,则应交水费为12 3.53 4.555.5×+×=(元); (2)当0≤x ≤12时,y =3.5x ,当x >12时,y =3.5×12+4.5(x −12)=4.5x −12;(3)3.5×12=42(元),78>42,即可得出该户居民月用水量超出12立方米,将y =78代入y =4.512x −中,78 4.512x =−,解得:20x = ;答:该户居民用水20立方米【点睛】本题考查了一次函数的应用,解题的关键是根据题意列出y 关于x 的函数关系式,再根据函数关系式求值.22. 正方形ABCD 在平面直角坐标系中的位置如图所示,////AD BC x 轴,AD 与y 轴交于点E ,1OE =,且AE ,DE 10−=.(1)求点A 的坐标;(2)若()4,1P −−,求EPC 的面积;(3)在(2)的条件下,正方形ABCD 的边上是否存在点M ,使2EPC CEM S S =△△?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)()3,1A −;(2)9;(3)存在,19,14M − ,25,34M −− 【解析】【分析】(1)根据二次根式和绝对值的非负性可求出AE ,DE 的值,即可得出结果;(2)如图1,过点P 做x 轴的垂线,交DA 和CB 的延长线于点F 和点G ,利用EPC S S =△长方形DCFG DEC EFP CGP S S S −−−△△△即可得解;(3)通过2EPC CEM S S =△△可知92CEM S = ,分别讨论M 点在四条边上时是否存在即可.【详解】(1)0≥,10DE −≥10−=, 30AE ∴−=,10DE −=.3AE ∴=,1DE =.1OE = ,()3,1A ∴−.(2)如图1,过点P 做x 轴的垂线,交DA 和CB 的延长线于点F 和点G .3AE = ,1DE =,4AD DC AB BC ∴====.()4,1P −− ,4FE ∴=,5GC =.1DE OE == ,2PG FP ∴==.S ∴长方形DCFG 4520=×=, ∴11422DEC S =××=△, ∴2444EFP S 1=××=△, ∴12552CGP S =××=△. ∴EPC S S =△长方形DCFG 202459DEC EFP CGP S S S −−−−−−△△△. (3)正方形ABCD 的边上存在点M ,使2EPC CEM S S =△△,9EPC S =△,92CEM S ∴= , 如图2,当点M 在线段AD 上时,111111194,2229,49,14CEM S EM CD EM EM M ==×=∴= ∴−; 当点M 在线段BC 上时,()222221194,2229,41,3,5,34CEM S CM CD CM CM C M ==×=∴=− ∴−−;当点M 在线段CD 上时,12,2CEM CDE S S CD DE ≤== ∴此时不存; 当点M 在线段AB 上时,可知当点M 在点A 的位置时到CE 的距离最近,16,2CEM ACE S S AE CD ∴≥== ∴此时不存在, ∴19,14M − ,25,34M −− .【点睛】本题主要考查平面直角坐标系中点的坐标,面积以及动点问题,有一定综合性,也有一定难度,需要利用数形结合的思想解题,熟练掌握平面直角坐标系中面积的求解方法是解题的关键.在。

2020-2021学年广东省深圳实验学校中学部八年级(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳实验学校中学部八年级(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳实验学校中学部八年级(上)期中数学试卷1.下列数是无理数的是()A. πB. −227C. |−2|D. 0.23⋅2.下列说法正确的是()A. 负数没有立方根B. √16=±4C. 无理数包括正无理数、负无理数和零D. 实数和数轴上的点是一一对应的3.若二次根式√5x−1有意义,则x的取值范围是()A. x>15B. x≥15C. x≤15D. x≤54.下列二次根式中是最简二次根式的是()A. √0.3B. √7C. √12D. √235.以下列长度的线段为边,不能组成直角三角形的是()A. 1,1,√2B. √2,√3,√5C. 2,3,4D. 8,15,176.如果用(2,15)表示会议室里的第2排15号座位,那么第5排9号座位可以表示为()A. (2,15)B. (2,5)C. (5,9)D. (9,5)7.点M(−4,3)关于x轴对称的点的坐标为()A. (3,−4)B. (4,−3)C. (−4,−3)D. (4,3)8.如图所示的图象分别给出了x与y的对应关系,其中表示y是x的函数的是()A. B.C. D.9.已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是()A. B. C. D.10.把y=2x+1的图象沿y轴向下平移5个单位后所得图象的关系式是()A. y=2x+5B. y=2x+6C. y=2x−4D. y=2x+411.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A. 12cmB. 14cmC. 20cmD. 24cm12.在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=aℎ.例如:三点坐标分别为A(1,2),B(−3,1),C(2,−2),则“水平底”a=5,“铅垂高”ℎ=4,“矩面积”S=aℎ=20,若D(1,2)、E(−2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A. −3或7B. −4或6C. −4或7D. −3或613.9的平方根是______.414.点P(2,4)与点Q(−3,4)之间的距离是______.15.直角三角形的两边长分别为5和3,该三角形的第三边的长为______.16. 如图,在正方形ABCD 中,点E 是BC 边上的一点,BE =4,EC =8,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC于点G ,连接AG ,现在有如下四个结论:①∠EAG =45°;②FG =FC ;③FC//AG ;④S △GFC =14.4.其中结论正确的序号是______.17. 计算:(1)(2√6+3√5)(2√6−3√5);(2)√24+(3−√6)0−√32+(2√2)2. 解方程组:(3){x +y =62x +y =7; (4){x+3y2=355(x −2y)=−4.18. 先化简,再求值:(a −3)2+2(3a −1),其中a =√2.19. 我校要对如图所示的一块地进行绿化,已知AD =4米,CD =3米,AD ⊥DC ,AB =13米,BC =12米,求这块地的面积.20.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值.(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C坐标.21.如图,在平面直角坐标系中,已知A(−2,2),B(2,0),C(3,3),P(a,b)是三角形ABC的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P′(a−2,b−4).(1)写出D,E,F三点的坐标;(2)画出三角形DEF;22.为了防范新型冠状病毒的传播,小唐的爸爸用1200元资金为全家在大型药店购进普通医用口罩、N95口罩两种口罩共300个,该大型药店的普通医用口罩、N95口罩成本价和销售价如表所示:类别/单价成本价(元/个)销售价(元/个)普通医用口罩0.82N95口罩48(1)小唐的爸爸在大型药店购进普通医用口罩、N95口罩各多少个?(2)销售完这300个普通医用口罩、N95口罩,该大型药店共获得多少利润?23.平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于点B、A,直线BC与直线y=−x交于点E(−4,4).(1)直接写出直线AB关于x轴对称的直线BC的解析式______;(2)如图1,点P为y轴上一点,PE=PB,求P点坐标;(3)如图2,点P为y轴上一点,∠OEB=∠PEA,直线EP与直线AB交于点M,求M点的坐标.答案和解析1.【答案】A【解析】解:A.π是无限不循环小数,属于无理数;B .−227是分数,属于有理数;C .|−2|=2,是整数,属于有理数;D .0.23.是循环小数,属于有理数.故选:A .无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】D【解析】解:A 、负数有立方根,故选项A 不符合题意;B 、√16=4,故选项B 不符合题意;C 、无理数包括零,故选项C 不符合题意;D 、数轴上的点与实数一一对应,说法正确;故选:D .根据算术平方根的定义、立方根的定义、无理数的定义及实数与数轴的关系判断即可. 此题考查实数问题,关键是根据算术平方根的定义、立方根的定义、无理数的定义及实数与数轴的关系解答.3.【答案】B【解析】【分析】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x−1≥0,解得,x≥15,故选:B.4.【答案】B【解析】解:A、√0.3=√310=√3010,被开方数含分母,不是最简二次根式;B、√7,是最简二次根式;C、√12=√4×3=2√3,被开方数中含能开得尽方的因数,不是最简二次根式;D、√23=√63,被开方数含分母,不是最简二次根式;故选:B.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键.5.【答案】C【解析】解:A、12+12=(√2)2,能组成直角三角形;B、(√2)2+(√3)2=(√5)2,能组成直角三角形;C、22+32≠42,不能组成直角三角形;D、82+152=172,能组成直角三角形.故选:C.只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.6.【答案】C【解析】解:第5排9号座位可以表示为(5,9),根据位置的表示方法可得答案.此题主要考查了坐标确定位置,关键是是掌握每个数表示的意义.7.【答案】C【解析】解:点M(−4,3)关于x轴对称的点的坐标为:(−4,−3).故选:C.直接利用关于x轴对称,横坐标相同,纵坐标互为相反数进而得出答案.此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.8.【答案】C【解析】解:在选项A,B,D中,每给x一个值,y都有2个值与它对应,所以A,B,D选项中y不是x的函数,在选项C中,给x一个正值,y有唯一一个值与之对应,所以y是x的函数.故选:C.利用函数的定义,对于给定的x的值,y都有唯一的值与其对应,进而判断得出结论.本题考查了函数的定义:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.9.【答案】D【解析】解:∵正比例函数y=kx,且y随x的增大而减少,∴k<0.在直线y=2x+k中,∵2>0,k<0,∴函数图象经过一三四象限.故选:D.先根据正比例函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.10.【答案】C【解析】解:把y=2x+1的图象沿y轴向下平移5个单位,那么平移后所得图象的函数解析式为:y=2x+1−5,即y=2x−4.故选:C.直接利用一次函数平移规律,“上加下减”进而得出即可.此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.11.【答案】D【解析】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A′,连接A′B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+ BF的长,即AF+BF=A′B=20cm,延长BG,过A′作A′D⊥BG于D,∵AE=A′E=DG=4cm,∴BD=16cm,Rt△A′DB中,由勾股定理得:A′D=√202−162=12cm,∴则该圆柱底面周长为24cm.故选:D.将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.12.【答案】C【解析】解:∵D(1,2)、E(−2,1)、F(0,t),∴“水平底”a =1−(−2)=3.“铅垂高“ℎ=1或|2−t|或|1−t|①当ℎ=1时,三点的“矩面积”S =1×3=3≠15,不合题意;②当ℎ=|2−t|时,三点的“矩面积”S =3×|2−t|=15,解得:t =7或t =−3(舍去);③当ℎ=|1−t|时,三点的“矩面积”S =3×|1−t|=15,解得:t =−4或t =6(舍去);综上:t =−4或7.故选:C .根据矩面积的定义表示出水平底”a 和铅垂高“h ,利用分类讨论对其铅垂高“h 进行讨论,从而列出关于m 的方程,解出方程即可求解.本题考查坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.13.【答案】±32【解析】解:94的平方根是±32.故答案为:±32.根据平方根的定义解答即可.本题考查了平方根的运用.解题的关键是掌握平方根的定义,注意:一个正数有两个平方根,它们互为相反数.14.【答案】5【解析】解:∵点P(2,4),点Q(−3,4)∴PQ//x 轴,∵x 轴上或平行于x 轴的直线上两点的距离为两点横坐标的差的绝对值,∴PQ =|−3−2|=5,故答案为5.根据x 轴上或平行于x 轴的直线上两点的距离为两点横坐标的差的绝对值解答即可.本题考查了两点间的距离,理解x轴上或平行于x轴的直线上两点距离为两点横坐标的差的绝对值是解题的关键.15.【答案】4或√34【解析】解:(1)设第三边x<5,∴x2+32=52,∴x2=52−32=16,解得:x=4;(2)设第三边y>5,∴y2=52+32=34.∴y=√34,故该三角形的第三边的长为:4或√34.故答案为:4或√34.根据勾股定理,分两种情况解答:(1)第三边小于5;(2)第三边大于5,再利用勾股定理求出即可.此题主要考查了勾股定理,解答此题要用到勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.16.【答案】①③④【解析】解:如图,连接DF.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△AGF(HL),∴DG=FG,∠GAF=∠GAD,设GD=GF=x,(∠BAF+∠DAF)=45°,故①正确,∴∠EAG=∠EAF+∠GAF=12在Rt△ECG中,∵EG2=EC2+CG2,∴(4+x)2=82+(12−x)2,∴x =6,∵CD =BC =BE +EC =12,∴DG =CG =6,∴FG =GC ,∵FG >EF ,∴F 不是EG 的中点,∴FG ≠FC ,故②错误,∵GF =GD =GC ,∴∠DFC =90°,∴CF ⊥DF ,∵AD =AF ,GD =GF ,∴AG ⊥DF ,∴CF//AG ,故③正确,∵S △ECG =12×6×8=24,FG :FE =6:4=3:2,∴FG :EG =3:5,∴S △GFC =35×24=725=14.4,故④正确,故答案为:①③④.①正确.证明∠GAF =∠GAD ,∠EAB =∠EAF 即可.②错误.可以证明DG =GC =FG ,显然△GFC 不是等边三角形,可得结论.③正确.证明CF ⊥DF ,AG ⊥DF 即可.④错误.证明FG :EG =3:5,求出△ECG 的面积即可.本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.17.【答案】解:(1)原式=24−45=−21;(2)原式=2√6+1−√62+8 =3√62+9;(3){x +y =6①2x +y =7②, ②−①得x =1,把x =1代入①得1+y =6,解得y =5,所以方程组的解为{x =1y =5; (4)方程组整理为{5x +15y =6①5x −10y =−4②, ①−②得25y =10,解得y =25,把y =25代入①得5x +6=6,解得x =0,所以方程组的解为{x =0y =25.【解析】(1)利用平方差公式计算;(2)先根据零指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可;(3)利用加减消元法解方程组;(4)先把原方程组整理为{5x +15y =6①5x −10y =−4②,然后利用加减消元法解方程组. 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.18.【答案】解:原式=a 2−6a +9+6a −2=a 2+7.当a =√2时,原式=(√2)2+7=9.【解析】根据整式的混合运算顺序进行化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先进行整式的化简,再代入值求解.19.【答案】解:连接AC .由勾股定理可知AC =√AD 2+CD 2=√42+32=5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积−△ACD的面积12×5×12−12×3×4=24(m2).【解析】考查了直角三角形面积公式以及勾股定理的应用,关键是作出辅助线得到直角三角形.连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.20.【答案】解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0解得b=−4;(2)∵S△AOC=4,点A(2,0),∴OA=2,∴12⋅OA⋅y C=4,解得y C=4,把y=4代入y=2x−4得2x−4=4,解得x=4,∴C(4,4).【解析】(1)将点A坐标代入一次函数解析式y=2x+b,可得b=−4;(2)由S△AOC=4,根据三角形面积公式得到y C=4,代入y=2x−4中,即可求得C的坐标.本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,根据三角形面积求得C的纵坐标是解题的关键.21.【答案】解:(1)D(−4,−2),E(0,−4),F(1,−1);(2)如图所示:△DEF即为所求;=7.【解析】(1)直接利用P 点平移变化规律得出答案;(2)直接利用各对应点位置进而得出答案;(3)利用三角形DEF 所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.22.【答案】解:(1)设小唐的爸爸在大型药店购进普通医用口罩x 个,N 95口罩y 个,依题意,得:{x +y =3002x +8y =1200, 解得:{x =200y =100. 答:小唐的爸爸在大型药店购进普通医用口罩200个,N 95口罩100个;(2)200×(2−0.8)+100×(8−4)=640(元),答:该超市共获利润640元.【解析】(1)设小唐的爸爸在大型药店购进普通医用口罩x 个,N 95口罩y 个,根据“用1200元资金为全家在大型药店购进普通医用口罩、N 95口罩两种口罩共300个”求得答案即可;(2)用总的售价减去总的成本即可求得利润.考查了二元一次方程组的应用,解题的关键是找到两个等量关系,难度不大.23.【答案】y =−2x −4【解析】解:(1)∵直线y =2x +4与x 轴、y 轴分别交于点B 、A .∴A(0,4),B(−2,0),∵直线AB 与直线BC 关于x 轴对称,∴C(0,−4),设直线BC 的解析式为y =kx +b ,∴{−2k +b =0b =−4, 解得,{k =−2b =−4, ∴直线BC 的解析式为y =−2x −4.故答案为:y =−2x −4.(2)∵E(−4,4),∴AE⊥AO,设OP=a,AP=4−a,在Rt△BOP和Rt△EAP中,BP2=4+a2,PE2=16+(4−a)2,∵PE=PB,∴4+a2=16+(4−a)2,解得a=3.5.∴P(0,3.5).(3)①如图,当点P在点A的下方,∵∠OEB=∠PEA,∠AEO=45°,∴∠PEB=45°,过点B作BN⊥BE交直线EP于点N,过点N作NQ⊥OB于Q,过点E作EH⊥OB于点H,∴△EBN为等腰直角三角形,∴EB=BN,∵∠BEH+∠EBH=90°,∠EBH+∠NBQ=90°,∴∠BEH=∠NBQ,又∵∠EHB=∠BQN=90°,∴△EHB≌△BQN(AAS),∴NQ=BH=2,BQ=EH=4,∴N(2,2),设直线EN的解析式为y=kx+b,由{−4k +b =42k +b =2, 解得{k =−13b =83, ∴直线EN 的解析式为y =−13x +83,OP =83,∴PA =4−83=43, 由{y =−13x +83y =2x +4, 解得{x =−47y =207, 即M(−47,207);②P 点在A 点的上方,由①知,PA =43,∴OP =OA +PA =4+43=163,设直线EP 的解析式为y =mx +163, ∵E(−4,4),∴−4m +163=4, 解得m =13,∴直线EP 的解析式为y =13x +163,由{y =13x +163y =2x +4, 解得{x =45y =285,∴M(45,285).综合以上可得点M的坐标为(−47,207)或(45,285).(1)由轴对称的性质得出点C的坐标,则可得出答案;(2)求出点E的坐标为(−4,4),设OP=a,AP=4−a,由勾股定理得出4+a2=16+ (4−a)2,解得a=3.5.则可得出答案;(3)分两种情况:当点P在点A的下方或P点在A点的上方,求出直线EP的解析式,解方程组可求出答案.本题为一次函数的综合应用,考查了轴对称的性质,函数图象与坐标轴的交点,待定系数法,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,熟练掌握待定系数法是解题的关键.。

2020-2021深圳市翠山试验学校初二数学上期中一模试卷(及答案)

2020-2021深圳市翠山试验学校初二数学上期中一模试卷(及答案)

2020-2021深圳市翠山试验学校初二数学上期中一模试卷(及答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7 2.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为( ) A .6B .8C .10D .8或10 3.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 4.分式可变形为( ) A . B . C . D .5.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 6.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -7.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+ B .40004000210x x -=+ C .40004000210x x -=-D .40004000210x x -=- 8.化简2111x x x+--的结果是( ) A .x+1 B .11x + C .x ﹣1D .1x x - 9.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-10.下列图形中,周长不是32 m 的图形是( )A .B .C .D .11.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .6 12.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 2二、填空题13.分式2311,26x y xy 的最简公分母是____________________. 14.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.15.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 16.已知8a b +=,224a b =,则222a b ab +-=_____________. 17.分解因式:2x 2﹣8=_____________18.若关于x 的分式方程111x x m +--=2有增根,则m =_____. 19.若实数,满足,则______. 20.已知13a a +=,则221+=a a_____________________; 三、解答题21.一个多边形的外角和等于内角和的27,求这个多边形的边数. 22.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程. 解:设x 2﹣4x =y原式=(y +1)(y +7)+9(第一步)=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式(x 2+2x )(x 2+2x +2)+1进行因式分解.23.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 24.如图,AB =AC ,MB =MC .直线AM 是线段BC 的垂直平分线吗?25.将下列多项式分解因式:(1)22()2()a b a b c c ++++.(2)24()a a b b -+.(3)22344xy x y y --.(4)()2224116a a +-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.2.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.3.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.4.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】 =.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键. 5.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===xy xy x xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.6.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.7.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.8.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】 解:原式=2211(1)(1)11111x x x x x x x x x -+--===+---- 故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.9.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 10.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.12.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.二、填空题13.【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的得到的因式的积就是最简公分母【详解】解: 解析:236x y【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】 解:分式2311,26x y xy的最简公分母为236x y , 故答案是:236x y .【点睛】本题考查了最简公分母,确定最简公分母的方法一定要掌握. 14.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.15.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k 解得x=6-k≠3解析:k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键. 16.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2. ①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.17.2(x+2)(x﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m﹣1=2x﹣2由分式方程有增根得到x﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m的值.【详解】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m ,n 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:, ∴∴; 故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值. 20.7【解析】【分析】把已知条件平方然后求出所要求式子的值【详解】∵∴∴=9∴=7故答案为7【点睛】此题考查分式的加减法解题关键在于先平方 解析:7【解析】【分析】把已知条件平方,然后求出所要求式子的值.【详解】 ∵13a a+=, ∴219a a ⎛⎫+= ⎪⎝⎭, ∴2212+a a + =9, ∴221+=a a =7. 故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.三、解答题21.9【解析】【分析】设边数为n ,根据外角与内角和关系列出方程求解即可.【详解】解:设这个多边形的边数为n ,则27(n -2)·180= 360 解之得 n=9答:这个多边形的边数是9.22.(1)C ;(2)(x ﹣2)4;(3)(x +1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C ;(2)(x 2﹣4x +1)(x 2﹣4x +7)+9,设x 2﹣4x =y ,则:原式=(y +1)(y +7)+9=y 2+8y +16=(y +4)2=(x 2﹣4x +4)2=(x ﹣2)4.故答案为:(x ﹣2)4;(3)设x 2+2x =y ,原式=y (y +2)+1=y 2+2y +1=(y +1)2=(x 2+2x +1)2=(x +1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.23.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.24.是,见解析.【解析】【分析】根据线段的垂直平分线的定义,分别证明A 、M 在线段BC 的垂直平分线上即可解决问题.【详解】是,证明:∵AB=AC ,∴点A 在线段BC 的垂直平分线上,∵MB=MC ,∴点M 在线段BC 的垂直平分线上,∴直线AM 是线段BC 的垂直平分线.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的判定方法,属于中考常考题型.25.(1)2()a b c ++;(2)()22a b -;(3)()22y x y --;(4)()()222121a a +-.【解析】【分析】 (1)利用完全平方公式进行因式分解;(2)先展开,再利用完全平方公式进行因式分解;(3)先提取公因式-y ,再利用完全平方公式进行因式分解;(4)先利用平方差公式进行分解,再利用完全平方公式继续分解.【详解】解:(1)原式2()a b c =++;(2)原式()222424a ab b a b =-+=-;(3)原式()()222442y x xy yy x y =--+=--; (4)原式()()()()22224144142121a aa a a a =+++-=+-. 【点睛】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

2020-2021深圳石岩街道宁远实验学校初二数学上期中第一次模拟试卷(附答案)

2020-2021深圳石岩街道宁远实验学校初二数学上期中第一次模拟试卷(附答案)

2020-2021深圳石岩街道宁远实验学校初二数学上期中第一次模拟试卷(附答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.下列各式中,分式的个数是( ) 2x ,22a b +,a b π+,1a a +,(1)(2)2x x x -++,b a +. A .2B .3C .4D .5 3.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠ 4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE的度数是( )A .20°B .35°C .40°D .70°5.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形6.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处7.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .7 8.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .11 9.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=- 10.若正多边形的内角和是540︒,则该正多边形的一个外角为( ) A .45︒B .60︒C .72︒D .90︒ 11.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9) 12.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4 B .480x -480+4x =20 C .480x -480+20x =4 D .4804x --480x=20 二、填空题 13.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)14.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.如图,在ABC ∆中,B Ð与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.17.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.18.已知8a b +=,224a b =,则222a b ab +-=_____________. 19.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________20.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.三、解答题21.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.22.先化简.再求值已知20a a -=,求222141•2211a a a a a a --÷+-+-的值. 23.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程. 解:设x 2﹣4x =y原式=(y +1)(y +7)+9(第一步)=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式(x 2+2x )(x 2+2x +2)+1进行因式分解.24.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.25.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.B解析:B【解析】【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】22a b +, a b π+的分母中均不含有字母,因此它们是整式,而不是分式;a 的分子不是整式,因此不是分式. 2x ,1 a a +,()()12 2x x x -++的分母中含有字母,因此是分式. 故选B.【点睛】本题考查了分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,A 叫做分式的分子,B 叫做分式的分母.注意π不是字母,是常数,所以a b π+不是分式,是整式. 3.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】 解:要使分式13a +有意义, 则a +3≠0,解得:a ≠-3.【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.4.B解析:B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.5.C解析:C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10.故选C.考点:多边形内角与外角.6.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.7.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.8.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.9.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.C解析:C【解析】【分析】n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180的360︒,依此可以求出多边形的一个外角.【详解】Q正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q多边形的外角和都是360︒,∴多边形的每个外角360572==.÷︒故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.11.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.12.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480x -480+20x =4 故答案为:C .【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.二、填空题13.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.14.120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.15.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.16.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数再根据角平分线的定义求出∠ABC+∠ACB最后利用三角形内角和定理解答即可【详解】解:在△PBC中∠BPC=130°∴∠PBC+【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数,再根据角平分线的定义,求出∠ABC+∠ACB,最后利用三角形内角和定理解答即可.【详解】解:在△PBC中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.17.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和18.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b=,∴ab=±2.①当a+b=8,ab=2时,222a bab+-=2()22a bab+-=642﹣2×2=28;②当a+b=8,ab=﹣2时,222a bab+-=2()22a bab+-=642﹣2×(﹣2)=36;故答案为28或36.本题考查完全平方公式;分类讨论.19.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD,∵△ABC的周长为27cm,AC=9cm,∴AB+BC=27-9=18 cm,∴AB+2BD=18 cm,∵AD=6cm,△ABD周长为19cm,∴AB+BD=19-6=13 cm,∴BD=5 cm,∴AB=8 cm,故答案为8 cm.20.10【解析】【分析】设正多边形的边数为n然后根据多边形的内角和公式列方程求解即可【详解】解:设正多边形的边数为n由题意得=144°解得n=10故答案为10【点睛】本题考查了多边形的内角与外角熟记公式解析:10【解析】【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n,由题意得,()2180nn-︒g=144°,解得n=10.故答案为10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.三、解答题21.()4,x+【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.22.-2【解析】【分析】根据分式乘法法则化简在代入a 的值计算.【详解】 原式=()()2222141••a 1a 1?•a 1a 1221211a a a a a a a a a a a +----+-=+-+-++--()()=(a-2)(a+1), ∵20a a -=,∴a(a-1)=0,∵a -1≠0,∴a≠1,由此得a=0,代入算式:(a-2)(a+1)=(0-2)(0+1)=-2.故答案为-2.【点睛】本题主要考察的是分式乘法法则等知识,熟练掌握是本题的解题关键.23.(1)C ;(2)(x ﹣2)4;(3)(x +1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C;(2)(x2﹣4x+1)(x2﹣4x+7)+9,设x2﹣4x=y,则:原式=(y+1)(y+7)+9=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4;(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.24.问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】【分析】问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x名员工,则甲公司有1.2x名员工,依题意,得:3000x-30001.2x=20,解得:x=25,经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,则△ADE的周长=AD+DE+EA=BC,即可得出结论;(2)根据等边对等角,把∠BAD+∠CAE=60°转化为∠B+∠C=60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠BAD+∠CAE=∠B+∠C=60°,∴∠BAC=180°-(∠B+∠C)=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键.。

2020-2021深圳市初二数学上期中一模试题(附答案)

2020-2021深圳市初二数学上期中一模试题(附答案)

2020-2021深圳市初二数学上期中一模试题(附答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.已知一个等腰三角形一内角的度数为80o ,则这个等腰三角形顶角的度数为( ) A .100oB .80oC .50o 或80oD .20o 或80o 3.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .42 4.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形5.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处6.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 7.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1- 8.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( ) A .3B .1C .0D .﹣3 9.把代数式2x 2﹣18分解因式,结果正确的是( ) A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9) 10.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 11.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.使分式的值为0,这时x=_____.15.当m=________时,方程233x m x x =---会产生增根. 16.多项式241a +加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)17.已知8a b +=,224a b =,则222a b ab +-=_____________. 18.分解因式:2x 2﹣8=_____________ 19.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 20.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.三、解答题21.如图,在等边△ABC 中,点D ,E 分别在边AC ,AB 上,且AD=BE ,BD ,CE 交于点P ,CF ⊥BD ,垂足为点F .(1)求证:BD=CE ;(2)若PF=3,求CP 的长.22.先化简.再求值已知20a a -=,求222141•2211a a a a a a --÷+-+-的值. 23.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,求降价后每枝玫瑰的售价是多少元?24.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.25.解分式方程(1)2101x x -=+. (2)2216124x x x --=+-【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80o ,顶角为180808020o o o o --=;()2等腰三角形的顶角为80o .因此这个等腰三角形的顶角的度数为20o 或80o .故选D .【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.3.B解析:B【解析】【分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可.【详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD ,∴∠EAF=∠FBD ,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC , ∴AD=BD ,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.5.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.6.A解析:A【解析】【分析】A .利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B .利用同底数幂的乘法法则计算得到结果,即可做出判断;C .利用单项式乘单项式法则计算得到结果,即可做出判断;D .利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A .(﹣x 3)2=x 6,本选项正确;B .a 2•a 3=a 5,本选项错误;C .2a •3b =6ab ,本选项错误;D .a 6÷a 2=a 4,本选项错误.故选A .【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.7.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 8.A解析:A【解析】【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得3﹣m =0,再解得出答案.【详解】解:(x ﹣m )(x+3)=x 2+3x ﹣mx ﹣3m =x 2+(3﹣m )x ﹣3m ,∵乘积中不含x 的一次项,∴3﹣m =0,解得:m =3,故选:A .【点睛】此题考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.9.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.10.A解析:A【解析】【分析】根据∠B =60°,AB =AC ,即可判定△ABC 为等边三角形,由BC =3,即可求出△ABC 的周长.【详解】在△ABC 中,∵∠B =60°,AB =AC ,∴∠B =∠C =60°,∴∠A =180°﹣60°﹣60°=60°,∴△ABC 为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.11.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,∴△A A1P是等腰三角形,MN垂直平分AA1、CC1,△ABC与△A1B1C1面积相等,∴选项A、B、C选项正确;∵直线AB,A1B1关于直线MN对称,因此交点一定在MN上.∴选项D错误.故选D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.C解析:C【解析】∵(x±2y)2=x2±4xy+4y2,∴在x2+mxy+4y2中,±4xy=mxy,∴m=±4.故选C.二、填空题13.11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】解:有两种情况:①腰长为3底边长为5三边为:33解析:11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13. 故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】 试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 15.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x-3)-x=m 求得x=-m ∵x-3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方解析:3【解析】【分析】根据分式性质、分式方程增根的条件进行求解.【详解】 ∵233x m x x ,=--- ∴233x m x x ,-=--- 2(x-3)-x=m,求得x=-m ,∵ x-3=0 即 x=3 时,原方程有增根∴-m=3m=-3故答案为-3.【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.16.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a 或-4a②当4a2是乘积二倍项时4a4+解析:4a 或4a -或44a【解析】分①4a 2是平方项,②4a 2是乘积二倍项,然后根据完全平方公式的结构解答. 解:①4a 2是平方项时,4a 2±4a+1=(2a±1)2,可加上的单项式可以是4a 或-4a ,②当4a 2是乘积二倍项时,4a 4+4a 2+1=(2a 2+1)2,可加上的单项式可以是4a 4,综上所述,可以加上的单项式可以是4a 或-4a 或4a 4.本题主要考查了完全平方式,注意分4a 2,是平方项与乘积二倍项两种情况讨论求解,熟记完全平方公式对解题非常重要.17.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2. ①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.18.2(x+2)(x ﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x ﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a由分式方程解为负数得到1-a<0且1-a≠-1解得:a>1且解析:12>≠且a a【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析20.6cm【解析】【分析】根据∠C=90°∠A=30°易求∠ABC=60°而BD是角平分线易得∠ABD=∠DBC=30°根据△BCD是含有30°角的直角三角形易求BD 然后根据等角对等边可得AD=BD从而解析:6cm【解析】【分析】根据∠C=90°,∠A=30°,易求∠ABC=60°,而BD是角平分线,易得∠ABD=∠DBC =30°,根据△BCD是含有30°角的直角三角形,易求BD,然后根据等角对等边可得AD=BD,从而可求AC.【详解】解:∵∠C=90°,∠A=30°,∴∠ABC=60°,又∵BD平分∠ABC,∴∠ABD=∠DBC=30°,在Rt△BCD中,BD=2CD=4cm,又∵∠A=∠ABD=30°,∴AD=BD=4cm,∴AC=6cm.故答案为6cm.【点睛】本题考查了角平分线定义、等角对等边、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD ,难度适中.三、解答题21.(1)见解析;(2)6【解析】【分析】(1)根据等边三角形的性质得到AB=BC ,∠BAC=∠ABC ,且AD=BE 则可得出△ABD ≌△BCE ,再利用全等三角形的性质即可得到答案;(2)根据(1)可知∠ABC=60º,△ABD ≌△BCE 得到∠FPC 的度数,再根据有一个角是30°的直角三角形的性质即可得到答案;【详解】解:(1)证明:∵△ABC 为等边三角形,∴ AB=BC ,∠BAC=∠ABC=60º,又∵AD=BE ,在△ABD 和△BCE 中,AB BC BAC ABC AD BE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△BCE (SAS ),∴BD=CE(2)由(1)可知∠ABC=60º,△ABD ≌△BCE ,∴∠ABD=∠BCE ,∴∠ABD+∠CBD =∠ABC=60º,∴∠BCE+∠CBD =60º,∴∠BPC =180º-60º=120º(三角形内角和定理),∴∠FPC =180º-120º=60º,∵CF ⊥BD ,∴△CPF 为直角三角形,∴∠FCP =30º,∴CP=2PF ,∵PF=3,∴CP=6【点睛】本题主要考查了全等三角形的判定和性质、三角形内角和定理、有一个角是30°的直角三角形的性质,熟练掌握各知识点并灵活运用是解题的关键.22.-2【解析】【分析】根据分式乘法法则化简在代入a 的值计算.【详解】 原式=()()2222141••a 1a 1?•a 1a 1221211a a a a a a a a a a a +----+-=+-+-++--()()=(a-2)(a+1), ∵20a a -=,∴a(a-1)=0,∵a -1≠0,∴a≠1,由此得a=0,代入算式:(a-2)(a+1)=(0-2)(0+1)=-2.故答案为-2.【点睛】本题主要考察的是分式乘法法则等知识,熟练掌握是本题的解题关键.23.降价后每枝玫瑰的售价是2元.【解析】分析:设降价后每枝玫瑰的售价是x 元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.详解:设降价后每枝玫瑰的售价是x 元,则降价前每枝玫瑰的售价是(x+1)元, 根据题意得:3030 1.51x x =⨯+, 解得:x=2,经检验,x=2是原分式方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 24.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x 元,则今年用水价格为每立方米1.2x 元 由题意列方程得:301551.2x x-= 解得x 2=经检验,x 2=是原方程的解 1.2x 2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.25.(1)x=-2;(2)无解【解析】【分析】【详解】(1)去分母得:2(1)0x x +-=,解此整式方程得:2x =-,检验:当2x =-时,(1)0x x +≠,∴原方程的解为:2x =-.(2)去分母得:22(2)164x x --=-,解此整式方程得:2x =-,检验:当2x =-时,(2)(2)0x x +-=,∴2x =-是原方程的增根,∴原方程无解.【点睛】解分式方程时需注意两点:(1)解分式方程的基本思路是“去分母,化分式方程为整式方程”;(2)求得对应的整式方程的解后,需检验,再作结论.。

2024-2025学年深圳实验中学部八年级上册数学期中考试答案

2024-2025学年深圳实验中学部八年级上册数学期中考试答案

深圳实验中学部八年级数学试卷一、选择题(共10小题)1.以下列各组数为边长,能够组成直角三角形的是()A.B.10,8,4C.7,12,15D.7,25,24【答案】D 【解析】【分析】本题主要考查勾股定理逆定理,根据勾股定理逆定理逐项判断即可.【详解】解:227,25 ,不能组成直角三角形,A 不正确;224880 ,210100 ,10,8,4不能组成直角三角形,B 不正确;22712193 ,215225 ,7,12,15不能组成直角三角形,C 不正确;22724625 ,215625 ,7,24,25能组成直角三角形,D 正确;故选:D .2.下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是9【答案】B 【解析】【详解】试题解析:A.8的平方根为 ,错误;B.−7是49的平方根,正确;C.立方根等于它本身的数有−1,0,1,错误;9 ,9的算术平方根为3,错误,故选B.3.的积仍为无理数的是()A.B.C.D.【答案】D 【解析】相乘,利用二次根式乘法法则计算得到结果,判断即可.解题的关键掌握二次根式的乘法法则:0,0a b .【详解】解:A 12,积为有理数,故此选项不符合题意;B 4 ,积为有理数,故此选项不符合题意;C 6 ,积为有理数,故此选项不符合题意;D,积为无理数,故此选项符合题意.故选:D .4.已知点P 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为4,则点P 坐标为()A.3,4 B.3,4 C.4,3 D.4,3 【答案】D 【解析】【分析】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.注意第四象限的点的符号特点是 ,.应先判断出点P 的横纵坐标的符号,进而根据到坐标轴的距离判断其具体坐标.【详解】解:∵第四象限内的点横坐标大于0,纵坐标小于0;点P 到x 轴的距离是3,到y 轴的距离为4,∴点P 的纵坐标为3 ,横坐标为4,∴点P 的坐标是 4,3 .故选:D .5.若点 4,5A m 与点 5,3B n 关于y 轴对称,则2024m n ()A.1B.1C.2024D.7【答案】A 【解析】【分析】本题考查了关于轴对称的点的性质和幂运算,根据两点关于y 轴对称,则它们的横坐标互为相反数,纵坐标相等,据此得出m ,m 的值,代入求值即可.【详解】解: 点 4,5A m 与点 5,3B n 关于y 轴对称,54n ,53m ,解得:1n ,2m ,2024202420242111m n ;故选:A .6.在平面直角坐标系中,一次函数23y x 的大致图象是()A. B. C. D.【答案】C 【解析】【分析】本题考查了一次函数图像与k ,b 符号的关系,熟练掌握知识点是解题的关键.由20,30k b 得图像经过第一、三、四象限.【详解】解:∵一次函数23y x 中20,30k b ,∴图像经过第一、三、四象限,故选:C .7.若方程组34526x y k x y k的解中2024x y ,则k 等于()A.2024B.2025C.2026D.2027【答案】B 【解析】【分析】本题考查了已知二元一次方程组的解的情况求参数问题,熟悉掌握运算法则是解题的关键.利用 5 ①+②可得:1x y k ,代入2024x y 求解即可.【详解】解:34526x y k x y k①②,①②可得:5555x y k ,∴同除5可得:1x y k ,∵2024x y ,∴12024k ,解得:2025k ,故选:B .8.一个带盖的长方体盒子的长,宽,高分别是8cm ,8cm ,12cm ,已知蚂蚁想从盒底的A 点爬到盒顶的B 点,则蚂蚁要爬行的最短行程是()A.28cmB. C. D.20cm【答案】D 【解析】【分析】将长方体的盒子按不同方式展开,得到不同的矩形,根据勾股定理求出不同矩形的对角线,最短者即为正确答案.【详解】如图1,把长方体侧面展开,根据勾股定理得,20 cm ;如图2,把长方体侧面展开,根据勾股定理得, cm.∵20<,∴蚂蚁要爬行的最短行程是20cm.故选D【点睛】此题考查了两点之间线段最短,解答时要进行分类讨论,利用勾股定理是解题的关键.9.我国明代《算法统宗》一书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x 尺,绳索长y 尺,根据题意可列方程组为()A.552x y yxB.525x y x yC.552x y yxD.552x yx y【答案】A 【解析】【分析】本题主要考查了从实际问题中抽象出二元一次方程组,设竿长x 尺,绳索长y 尺,根据用绳索去量竿,绳索比竿长5尺可得方程5x y ,根据将绳索对折后再去量竿,就比竿短5尺可得方程52y x ,据此可得答案.【详解】解:设竿长x 尺,绳索长y 尺,由题意得,552x y y x,故选:A .10.如图,在ABC 中,90ACB ,边BC 在x 轴上,点A 的坐标为51,2,直线 :20AB y kx k ,将正方形OCMN 沿x 轴向左移动.当点N 落在AB 边上时,点M 的坐标为()A.2,1 B.3,12C.1,1 D.5,14【答案】C 【解析】【分析】先根据点A 的坐标为51,2,求出一次函数解析式和正方形的边长,然后再将1y 代入122y x ,求出点N 在直线上时,点N 的横坐标,即可得出点M 的坐标.【详解】解:把点51,2代入2y kx 得:522k ,解得:12k,∴122y x,∵90ACB ,∴AC x 轴,∴1OC ,∵四边形OCMN 为正方形,∴1CM MN ON OC ,把1y 代入122y x 得:1122x ,解得:2x ,∴当点N 落在AB 边上时,点N 的横坐标为2 ,∵1MN ,∴点M 的横坐标为:211 ,∴点M 的坐标为: 1,1 ,故C 正确.故选:C .【点睛】本题主要考查了求一次函数解析式,正方形的性质,解题的关键是求出一次函数解析式.二、填空题(5小题)11.一个正方体木块的体积为3125cm ,则它的棱长为________cm .【答案】5【解析】【分析】根据正方体的体积等于棱长的立方,即求125的立方根即可.【详解】解: 正方体的体积为3125cm5 cm故答案为:5【点睛】本题考查了立方根的应用,理解正方体的体积公式以及求一个数的立方根是解题的关键.12.在如图所示的数轴上,以单位长度为边长画一个等腰直角三角形,以实数1对应的点为圆心,斜边长为半径画弧交数轴于点A,则点A所表示的实数是________.【答案】1 1【解析】【分析】根据勾股定理计算出正方形得对角线的长度,以对角线为半径画弧,根据数轴上点的特征即可计算出结果.【详解】解:如图:根据勾股定理得CD∵半圆以CD为半径,∴CD CA∴点A表示的实数是1故答案为:1【点睛】本题主要考查实数与数轴,勾股定理.掌握实数与数轴上的点是一一对应关系是解题关键.13.如图,两个较小正方形的面积分别为4,10,则字母A所代表的正方形的面积是_______.【答案】14【解析】【分析】本题考查了勾股定理,解题的关键是:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.结合勾股定理和正方形的面积公式,得字母A 所代表的正方形的面积等于其它两个正方形的面积之和.【详解】解:字母A 所代表的正方形的面积10414 .故答案为:14.14.如图,直线1l :2y x 与直线2l :y kx b 相交于点4()P m ,,则方程组2y x y kx b的解是_______.【答案】24x y 【解析】【分析】先将4()P m ,代入2y x 中,求出P 点坐标,则可得方程组2y x y kx b的解.本题考查了一次函数与二元一次方程组,熟练掌握“两条直线的交点坐标就是对应的二元一次方程组的解”是解题的关键.【详解】解:∵直线1l :2y x 经过4()P m ,,∴42m ,∴2m ,(2,4)P ,∴方程组2y x y kx b 的解是24x y.故答案为:24x y.15.如图,正方形111A B C O ,2221A B C C ,3332A B C C ,按如图所示放置,点1A ,2A ,3A 都在直线1y x 上,点1C ,2C ,3C 都在x 轴上,则点2023A 的坐标是______.【答案】20222022(21,2) 【解析】【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x 和y 轴交于1A ,1A 的坐标 0,1,即11OA ,四边形111C OA B 是正方形,111OC OA ,把1x 代入1y x 得:2y ,2A 的坐标为 1,2,121122C A C C ,211123OC OC C C ,3A 的横坐标为3,把3x 代入1y x 得:4y ,3A 的坐标为 3,4,同理可得:4A 的坐标为7,8总结规律得:n A 的坐标为1121,2n n ,20222022202321,2A .故答案为:20222022(21,2) .【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.三、解答题(共7小题)16.计算(1(2)(3)211π3;(4)22.【答案】(1)(2)1 5(37(4)7【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先计算括号内的加减运算,再计算除法运算即可;(3)先化简绝对值,求解零次幂与负整数指数幂,再合并即可;(4)先计算二次根式的乘法运算,分母有理化,再合并即可.【小问1详解】解:;【小问2详解】55 15;【小问3详解】 2011π31917 ;【小问4详解】22734527 ;【点睛】本题考查的是二次根式的混合运算,分母有理化,零次幂与负整数指数幂的含义,熟记运算法则与运算顺序是解本题的关键.17.解下列方程(组):(1)43525x y x y (2) 211690x .【答案】(1)13x y (2)114x ,212x 【解析】【分析】本题主要查了解二元一次方程组,解一元二次方程:(1)利用加减消元法解答,即可求解;(2)利用直接开平方法解答,即可求解.【小问1详解】解:43525x y x y ①②由3 ①②得:1010x ,解得:1x ,把1x 代入②得: 215y ,解得:3y ,∴原方程组的解为13x y;【小问2详解】解: 211690x ∴ 21169x ,∴113x ,解得:114x ,212x .18.如图,在下列带有坐标系的网格中,ABC 的顶点都在边长为1的小正方形的顶点上, 3,3,4,2,0,1A B C .(1)求ABC 的面积;(2)画出ABC 关于y 轴的对称的DEC (点D 与点A 对应,点E 与点B 对应);(3)求DEC 中EC 边上的高线DF 的长.【答案】(1)ABC 的面积为192;(2)见解析(3)17DF .【解析】【分析】(1)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(2)利用轴对称的性质分别作出A ,B 的对应点D ,E 即可;(3)利用三角形的面积公式即可求解.【小问1详解】解:11119451514342222ABC S △,ABC 的面积为192;【小问2详解】解:如图,DEC 即为所求,【小问3详解】解:CE ,∵1119222ABC S CE DF DF△,∴17DF .【点睛】本题考查作图-轴对称变换,勾股定理,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.如图,在四边形ABCD 中,20AB ,15AD ,7CD ,24BC ,90A .求四边形ABCD 的面积.【答案】234【解析】【分析】本题考查了勾股定理及其逆定理.连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD ,求得90C ,再利用三角形的面积公式即可求解.【详解】解:如图,连接BD ,∵20AB ,15AD ,90A ,∴25BD ,∵7CD ,24BC ,∴22224957662525CD BC BD ,∴CDB △是直角三角形,且90C .∴四边形ABCD 的面积1122AB AD BC CD 1120152471508423422.20.小明同学根据函数的学习经验,对函数y =|x ﹣2|+|x +4|进行了探究,下面是他的探究过程:(1)已知当x =﹣4时,|x +4|=0;当x =2时,|x ﹣2|=0,化简:①当x <﹣4时,y =;②当﹣4≤x ≤2时,y =;③当x >2时,y =.(2)在平面直角坐标系中画出y =|x ﹣2|+|x +4|的图象,根据图象写出该函数的一条性质:.(3)根据上面的探究解决下面问题:已知P (a ,0)是x 轴上一动点,A (﹣4,6),B (2,6),则AP +BP 的最小值是.【答案】(1)①﹣2﹣2x;②6;③2x+2;(2)函数图象关于直线x=﹣1对称;(3)【解析】【分析】(1)根据已知条件及绝对值的化简法则计算即可;(2)画出函数图象,则易得一条函数性质;(3)P(a,0)位于对称轴上时,AP+BP有最小值.【详解】解:(1)∵x=﹣4时|x+4|=0;x=2时|x﹣2|=0①当x<﹣4时,y=2﹣x﹣x﹣4=﹣2﹣2x;②当﹣4≤x≤2时,y=2﹣x+x+4=6;③当x>2时,y=x﹣2+x+4=2x+2;故答案为:﹣2﹣2x;6;2x+2.(2)在平面直角坐标系中画出y=|x﹣2|+|x+4|的图象,如图所示:根据图象,该函数图象关于直线x =﹣1对称.故答案为:函数图象关于直线x =﹣1对称;(3)作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于P 点,此时AP +BP 的值最小,为A ′B 的长,根据上面的探究可知:点A 的坐标为(-4,6),B (2,6),则点A (-4,-6),∴12AA ,6AB ,∴A B .故答案为:.【点睛】本题主要考查了一次函数得图象上的点的坐标特点,及绝对值的化简,数形结合是解题的关键是.21.根据如表素材,探索完成任务.背景深圳某学校在组织开展知识竞赛活动,去奶茶店购买A 、B 两种款式的奶茶作为奖品.素材1若买10杯A 款奶茶,5杯B 款奶茶,共需160元:若买15杯A 型奶茶,10杯B 型奶茶,共需270元.素材2为了满足市场的需求,奶茶店推出每杯2元的加料服务,顾客在选完款式后可以自主选择加料一份或者不加料.问题解决任务1问A 款奶茶和B 款奶茶的销售单价各是多少元?任务2在不加料的情况下,购买A 、B 两种款式的奶茶(两种都要),刚好花220元,请问有几种购买方案?任务3根据素材2,小华恰好用了380元购买A 、B 两款奶茶,其中A 款不加料的杯数是总杯数的13.则其中B 型加料的奶茶买了多少杯?【答案】任务1:A 款奶茶的销售单价是10元,B 款奶茶的销售单价是12元;任务2:有3种购买方案;任务3:3杯【解析】【分析】本题考查了二元一次方程(组)的应用,根据题意找出数量关系,列出二元一次方程(组)是解题的关键.任务1:设A 款奶茶的销售单价是x 元,B 款奶茶的销售单价是y 元,根据题意列出二元一次方程组,求解即可;任务2:设购买A 种款式的奶茶m 杯,购买B 种款式的奶茶n 杯,根据题意列出二元一次方程,求解即可;任务3:设小华购买的奶茶中,A 款不加料的奶茶买了a 杯,A 款加料的奶茶和B 款不加料的奶茶买了b 杯,则B 款加料的奶茶买了 3a a b 杯,即 2a b 杯,根据题意列出二元一次方程,求解即可.【详解】解:任务1:设A 款奶茶的销售单价是x 元,B 款奶茶的销售单价是y 元,由题意得:1051601510270x y x y,解得:1012x y,答:A 款奶茶的销售单价是10元,B 款奶茶的销售单价是12元;任务2:设购买A 种款式的奶茶m 杯,购买B 种款式的奶茶n 杯,由题意得:1012220m n ,整理得:6225m n ,m 、n 均为正整数,165m n 或1010m n 或415m n, 有3种购买方案;任务3:设小华购买的奶茶中,A 款不加料的奶茶买了a 杯,A 款加料的奶茶和B 款不加料的奶茶买了b 杯,则B 款加料的奶茶买了 3a a b 杯,即 2a b 杯,由题意得: 10121222380a b a b ,整理得:19190b a ,a 、b 、3a a b 均为正整数,1119a b 2211193a b ,答:B 款加料的奶茶买了3杯.22.如图,在平面直角坐标系中,直线28y x 与x 轴,y 轴分别交于点A ,C ,经过点C 的直线与x 轴交于点 8,0B .(1)求直线BC 的解析式;(2)如图(1),点G 是线段BC 上一动点,当G 点距离y 轴3个单位时,求ACG 的面积;(3)如图(2),已知D 为AC 的中点,点O 关于点A 的对称点为点Q ,点P 在直线BC 上,当45DQP 时,求点P 的坐标.【答案】(1)8y x(2)18(3)1640,33P或 12,4P 【解析】【分析】(1)先求出C 点坐标,待定系数法求出函数解析式即可;(2)根据G 点距离y 轴3个单位时,得到G 的横坐标为3 ,分两种情况进行求解即可;(3)先求出,D Q 坐标,分点P 在x 轴上方和x 轴下方,两种情况,构造等腰直角三角形和全等三角形,利用两直线的交点进行求解即可.【小问1详解】解:∵28y x ,∴当0x 时,8y ,当0y 时,4x ,∴A −4,0, 0,8C ,∴设直线BC 的解析式为8y kx ,把 8,0B 代入,得:1k ,∴8y x ;【小问2详解】如图所示,∵G 点距离y 轴3个单位,∴G 的横坐标为3 ,∴当3G x 时,385G y ,当3G x 时,3811G y ,∴ 3,5G 或 3,11G ,∵A −4,0, 0,8C ,当 3,5G 时, 111378753318222ACG S;当 3,11G 时 1113411483318222ACG S ;综上:ACG 的面积为18;【小问3详解】∵A −4,0, 0,8C ,D 为AC 的中点,∴ 2,4D ,∵点O 关于点A 的对称点为点Q ,∴ 8,0Q ,①当P 在x 轴下方时:连接DQ ,作EQ DQ ,且EQ DQ ,过点Q 作MN x 轴,过点D 作DM QM ,过点E 作EN QN ,则:6,4DM QM ,∴90DMQ ENQ ,∴90DQM NEQ NQE ,又EQ DQ ,∴DMQ QNE ≌,∴6,4QN DM EN MQ ,∴ 4,6E ,取DE 的中点F ,则: 3,1F ,连接QF ,则:1452DQF DQE,∵45DQP ,∴点P 在直线QF 上,设直线QF 的解析式为y ax b ,则:8031a b a b ,解得:1585a b,∴1855y x ,联立18558y x y x ,解得:124x y ;∴ 12,4P ;②当点P 在x 轴上方时,连接DQ ,作EQ DQ ,且EQ DQ ,过点D 作DM x 轴,过点E 作EN x轴,同法可得: 7,5F ,设直线QF 的解析式为y mx n ,则:7580m n m n ,解得:540m n ,∴540y x ,联立5408y x y x ,解得:163403x y,∴1640,33P.综上:1640,33P或 12,4P .【点睛】本题考查一次函数的综合应用,涉及一次函数与坐标轴的交点问题,分割法求三角形的面积,等腰三角形的性质,全等三角形的判定和性质,正确的求出函数解析式,利用数形结合,分类讨论的思想,进行求解,是解题的关键.。

2020-2021深圳市初二数学上期中第一次模拟试题(带答案)

2020-2021深圳市初二数学上期中第一次模拟试题(带答案)

2020-2021深圳市初二数学上期中第一次模拟试题(带答案)一、选择题1.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数( )A .24°B .25°C .30°D .35° 2.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 3.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是( )A .①B .②C .①②D .①②③ 4.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 5.如图,ABC V 是等腰直角三角形,BC 是斜边,将ABP V 绕点A 逆时针旋转后,能与ACP 'V 重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .336.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 7.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25278.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°9.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 210.已知x m =6,x n =3,则x 2m ―n 的值为( )A .9B .34C .12D .4311.如图,已知在△ABC,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE12.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .15.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是_____.16.如图,在ABC ∆中,B Ð与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.17.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 18.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 19.若22(5)0a b -+-=,则点P (a ,b )关于x 轴对称的点的坐标为____.20.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.三、解答题21.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.22.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;23.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(l )第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价325a 元进行促销,结果第二批车厘子的销售利润为1520元,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,即

, , 即
△ABC 和△DBC 同底等高, ∴
∴ 故 A,B,C 正确,D 错误. 故选:D. 【点睛】 考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.
8.B
解析:B 【解析】 【分析】
根据完全平方式的特点求解:a2±2ab+b2. 【详解】
∵x2+mx+25 是完全平方式, ∴m=±10, 故选 B. 【点睛】 本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这 里首末两项是 x 和 1 的平方,那么中间项为加上或减去 x 和 1 的乘积的 2 倍.
22.解分式方程
(1) 2 1 0 . x 1 x
(2) x 2 16 1 x 2 x2 4
23.计算:
(1)
1 x3
1 x2
x3 x 1

(2) x 4 x2 . 2 x x2 4x 4
24.如图,点 E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为 C、D. 求证:(1)∠ECD=∠EDC; (2)OC=OD; (3)OE 是线段 CD 的垂直平分线.
20.若
1 x
1 y
=2,则
2x xy 2 y 3x 5xy 3y
=_____
三、解答题
21.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形 ABCD 是一个筝形,其中
AB=CB,AD=CD,对角线 AC,BD 相交于点 O,OE⊥AB,OF⊥CB,垂足分别是 E,F,求证 OE=OF;
ABE EBF ECF 是解题的关键. 2.C
解析:C 【解析】 【分析】 根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范 围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长. 【详解】 解:设第三边为 a, 根据三角形的三边关系,得:4-3<a<4+3, 即 1<a<7, ∵a 为整数,
25.如图所示 A D 90, AB DC ,点 E, F 在 BC 上且 BE CF . (1)求证: AF DE ; (2)若 PO 平分 EPF ,则 PO 与线段 BC 有什么关系?为什么?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】 先根据 BC 的垂直平分线交 BD 于点 E 证明△BFE≌△CFE(SAS),根据全等三角形的性
9.D
解析:D 【解析】 【分析】 根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定 m 的值. 【详解】
∵ 4x2 mxy 9 y2 =(2x)2 2 2x 3y (3y)2 ,
∴ mxy 12xy ,
解得 m=±12. 故选:D. 【点睛】 本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记 完全平方公式对解题非常重要.
∴BE=EC=4, ∴AC=CE+AE=6.
故选:C. 【点睛】
本题考查了含 30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性 质.利用三角形外角性质得到∠AEB=60°是解题的关键.
5.D
解析:D
【解析】
【分析】
根据三角形内角和为 180°,直接进行解答. 【详解】
解:A 中∠A+∠B=∠C,即 2∠C=180°,∠C=90°,为直角三角形,同理,B,C 均为直角
17.若分式 6 的值是正整数,则 m 可取的整数有_____. m2
18.关于 x 的分式方程 2x a 1的解为负数,则 a 的取值范围是_________. x 1
19.如图,AD 是三角形 ABC 的对称轴,点 E、F 是 AD 上的两点,若 BD=2,AD=3,则图
中阴影部分的面积是_______.
10.C
解析:C 【解析】 【分析】 根据题意列出方程即可. 【详解】 由题意得
480 - 480 =4 x x+20
故答案为:C. 【点睛】 本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.
11.D
解析:D 【解析】 【分析】 根据轴对称的性质即可解答. 【详解】 ∵△ABC 与△A1B1C1 关于直线 MN 对称,P 为 MN 上任意一点, ∴△A A1P 是等腰三角形,MN 垂直平分 AA1、CC1,△ABC 与△A1B1C1 面积相等, ∴选项 A、B、C 选项正确; ∵直线 AB,A1B1 关于直线 MN 对称,因此交点一定在 MN 上. ∴选项 D 错误. 故选 D. 【点睛】 本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所 连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的 角、线段都相等.
A.2
B.4
C.6
D.8
5.具备下列条件的△ABC 中,不是直角三角形的是( )
A.∠A+∠B=∠C
B.∠A= 1 ∠B= 1 ∠C 23
C.∠A:∠B:∠C=1:2:3
D.∠A=2∠B=3∠C
6.如图,AB∥CD,DE⊥BE,BF、DF 分别为∠ABE、∠CDE 的角平分线,则∠BFD=
()
A.110°
14.使 1 有意义的 x 取值范围是_____;若分式 x 3 的值为零,则 x=_____;分式
x2
x3
1 x2
x
,1 x2
x
的最简公分母是_____.
15.当 m=________时,方程 x 2 m 会产生增根. x3 x3
16.七边形的内角和为_____度,外角和为_____度.
A.10
B.±10
C.20
D.±20
9.若二次三项式 4x2 mxy 9 y2 是一个完全平方式,则 m 的可能值是( )
A. 6
B.12
C. 6
D. 12
10.某农场开挖一条 480 米的渠道,开工后,实际每天比原计划多挖 20 米,结果提前 4 天
完成任务,若设原计划每天挖 x 米,那么所列方程正确的是( )
(
)
A.11 B.12 C.13 D.14
3.要使分式 1 有意义,则 a 的取值应满足( ) a3
A. a 3
B. a 3
C. a 3
D. a 3
4.如图,在 ABC 中, A 90 , C 30 , AD BC 于 D , BE 是 ABC 的平分
线,且交 AD 于 P ,如果 AP 2 ,则 AC 的长为( )
A. 480 + 480 =4 B. 480 - 480 =20 C. 480 - 480 =4 D. 480 - 480 =20
x x+20
x x+4
x x+20
x4 x
11.如图,△ABC 与△A1B1C1 关于直线 MN 对称,P 为 MN 上任一点,下列结论中错误的
是( )
A.△AA1P 是等腰三角形
12.B
解析:B 【解析】 分析:由于 3a×3b=3a+b,所以 3a+b=3a×3b,代入可得结论. 详解:∵3a×3b =3a+b
∴3a+b =3a×3b =1×2 =2 故选:B. 点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘, 底数不变,指数相加.
二、填空题
质和角平分线的性质得到 ABE EBF ECF ,再根据三角形内角和定理即可得到
答案. 【详解】
解:如图:
∵BC 的垂直平分线交 BD 于点 E, ∴BF=CF,∠BFE=∠CFE=90°, 在△BFE 和△CFE 中,
EF EF EFB EFC BF CF
∴△BFE≌△CFE(SAS),
故选 D.
【点睛】 本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同
旁内角互补.解决问题的关键是作平行线.
7.D
解析:D 【解析】
【分析】
根据同底等高判断△ABD 和△ACD 的面积相等,即可得到
同理可得△ABC 和△BCD 的面积相等,即
.
【详解】
∵△ABD 和△ACD 同底等高,
∴a 的最大值为 6, 则三角形的最大周长为 3+4+6=13. 故选:C. 【点睛】 本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.
3.B
解析:B 【解析】 【分析】 直接利用分式有意义,则分母不为零,进而得出答案. 【详解】
解:要使分式 1 有意义, a3
则 a +3≠0, 解得: a ≠-3. 故选:B. 【点睛】 此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键. 4.C 解析:C 【解析】 【分析】 易得△AEP 的等边三角形,则 AE=AP=2,在直角△AEB 中,利用含 30 度角的直角三角形 的性质来求 EB 的长度,然后在等腰△BEC 中得到 CE 的长度,则易求 AC 的长度 【详解】 解:∵△ABC 中,∠BAC=90°,∠C=30°,
2020-2021 深圳实验学校初中部八年级数学上期中一模试卷附答案
一、选择题
1.如图,在△ABC 中,BD 平分∠ABC,BC 的垂直平分线交 BD 于点 E,连接 CE,若 ∠A=60°,∠ACE=24°,则∠ABE 的度数为( )
A.24°
B.30°
C.32°
D.48°
2.一个三角形的两边长分别为 3 和 4,且第三边长为整数,这样的三角形的周长最大值是
B.MN 垂直平分 AA1,CC1
C.△ABC 与△A1B1C1 面积相等
D.直线 AB、A1B 的交点不一定在 MN 上
12.已知 3a 1,3b 2,则 3ab 的值为( )
相关文档
最新文档