概率论与数理统计公式整理(大学考试必备)
概率论与数理统计超全公式总结
Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n
概率论与数理统计-重要公式
概率论与数理统计-重要公式一、随机事件与概率二、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt≤-∞⎧=⎪=≤=<≤=-⎨⎪⎩∑⎰ 概率密度函数计算概率:2、离散型随机变量及其分布3、续型型随机变量及其分布1)(=⎰+∞∞-dx x f ⎰=≤≤badxx f b X a P )()(一般正态分布的概率计算公式分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:4、随机变量函数Y=g(X)的分布离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型: ①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调 h(y)是g(x)的反函数三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j ==== 联合分布函数(,)i i ijx x y yF X Y p≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====联合密度函数2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数:⎰⎰∞-∞-=x ydudv v u f y x F ),(),(⎰∞-=≤=x dtt f x X P x F )()()(∑≤==≤=xk k X P x X P x F )()()()()('x f x F =⎰∞-=≤=xdtt f x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=),(y x f 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,连续型:(,)()()X Y f x y f x f y = 离散型:..ij i j p p p = ,4、二维随机变量和函数的分布(卷积公式)离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑注意部分可加性连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dxx xf X E )()(②性质:(),E C C = )()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =(正对逆错)随机变量g(X)的数学期望2、方差 ①定义:②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=± 当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov②相关系数: ()()XY D X D Y ρ=,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++Cov(x,a)=0(a 为常数),),(2)()()(22Y X abCov Y D b X D a bY aX D ±+=±4、常见随机变量分布的数学期望和方差}{}{},{j Y P i X P j Y i X P =====∑=kkk p x g X g E )())((五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律:①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i ii i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<=⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n P ni iXn113、★中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n 充分大时有:1((0,1)~nn k k Y X n n N μσ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:22lim }()2t x n P x dt x π-→∞≤==Φ⎰③近似计算:1()nk k P a X b n n σσ=≤≤≈Φ-Φ∑ 六、数理统计的基本概念1、总体和样本的分布函数设总体X ~F(x),则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni ini i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=k X n A ni k i k样本k 阶中心距:11(),1,2,3nk k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布(卡方分布):设随机变量X ~B(0,1)(1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T 。
概率论与数理统计公式整理(超全免费版)
f (x) ,对任意实数 x ,有
x
F (x) f (x)dx
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函
数或密度函数,简称概率密度。
密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1
2°
。
P(X x) P(x X x dx) f (x)dx
第 1 章 随机事件及其概率
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行
(1)排列组合公 式
排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进
行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,
第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方
(1)pij≥0(i,j=1,2,…);
(2)
pij 1.
ij
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边分别平行
于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
P{(X ,Y) D} f (x, y)dxdy,
为标准正态分布,记为 X ~ N (0,1) ,
其密度函数记为
(x)
1
x2
e2
2
,
x ,
分布函数为
(x) 1
x
t2
e 2 dt 。
2
( x) 是不可求积函数,其函数值,已
概率论和数理统计公式集锦
概率论和数理统计公式集锦一、随机事件与概率公式名称 公式表达式德摩根公式 B A B A =,B A B A =古典概型 ()m A P A n ==包含的基本事件数基本事件总数 几何概型 ()()()A P A μμ=Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -=加法公式 P(A ∪B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A ∪B)=P(A)+P(B)减法公式 P(A-B)=P(A)-P(AB),B A ⊂时P(A-B)=P(A)-P(B) 条件概率公式 与乘法公式)()()(A P AB P A B P =()()()()P ABC P A P BA P C AB = 全概率公式1()()()ni i i P A P B P A B ==∑贝叶斯公式 (逆概率公式) 1()()()()()i i i niii P B P A B P B A P B P A B ==∑两个事件 相互独立()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;二、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt ≤-∞⎧=⎪=≤=<≤=-⎨⎪⎩∑⎰ 2、离散型随机变量及其分布分布名称 分布律 0–1分布(1,)X b p1,0,)1()(1=-==-k p p k X P k k二项分布 (,)X b n p n k p p C k X P kn k kn,,1,0,)1()( =-==-泊松分布 ()X P λ(),0,1,2,!kP X k e k k λλ-===3、续型随机变量及其分布分布名称 密度函数 分布函数均匀分布 (,)X U a b ⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f 0,(),1,<⎧⎪-⎪=≤<⎨-⎪≥⎪⎩x a x a F x a x bb ax b分布名称 密度函数分布函数指数分布 ()X e λ ⎪⎩⎪⎨⎧≤>=-0,00,)(x x e x f x λλ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F x λ 正态分布2(,)XNμσ22()21()2μσπσ--=-∞<<+∞x f x ex22()21()d 2μσπσ---∞=⎰t xF x et标准正态分布(0,1)X N221()2ϕπ-=-∞<<+∞x x ex2121()2t xx edt π--∞Φ=⎰4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j ====分布函数(,)i i ijx x y yF X Y p≤≤=∑∑边缘分布律:()i i ijjp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数:⎰⎰∞-∞-=x ydudv v u f y x F ),(),(性质:2(,)(,)1,(,),F x y F f x y x y ∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yYdudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=, 离散型:..ij i j p p p = ,连续型:(,)()()X Y f x y f x f y = 4、二维随机变量和函数的分布离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k kp xX E ,连续型⎰+∞∞-=dx x xf X E )()(②性质:(),E C C =)()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E = 2、方差①定义:222()[(())]()()D X E X E X E X E X =-=-②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=± 当X 、Y 相互独立时:)()()(Y D X D Y X D +=± 3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov ②相关系数: (,)()()XYCov X Y D X D Y ρ=,当X 、Y 相互独立时:0=XYρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov = ),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++ 4、常见随机变量分布的数学期望和方差分布 数学期望 方差 0-1分布),1(p b p p(1-p) 二项分布),(p n b np np(1-p)泊松分布)(λP λ λ均匀分布),(b a U 2ba + 12)(2a b - 正态分布),(2σμNμ2σ指数分布)(λeλ121λ五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律: ①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<=⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n P ni iXn113、中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n 充分大时有:1()(0,1)~nn k k Y X n n N μσ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:221lim {}()(1)2t xn X np P x e dt x np p π--∞→∞-≤==Φ-⎰③近似计算:1()()()nk k b n a n P a X b n n μμσσ=--≤≤≈Φ-Φ∑六、数理统计的基本概念1、总体和样本的分布函数 设总体()X F x ,则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量 样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=kXn A ni ki k样本k 阶中心距:11(),1,2,3nk k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布:设随机变量(0,1)iX N (1,2,,)i n =且相互独立,则称统计量222212nX X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T性质:①()0(1),()(2)2n E T n D T n n =>=>-②221lim ()()2x n n f x x eϕπ-→∞==(3)F 分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)FF m n ,则1~(,)F n m F七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧L 估计总体参数θ,称12(,,,)n X X X θ∧L 为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。
概率论与数理统计公式大全
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计公式整理(超全版)
第[章随机事件及其概率第二章随机变量及其分布第三童二维随机变量及其分布个有序对<x,y),则称g 为离散型随机量。
设纟二(X, Y)的所有可能取值为(m )(ij = 12…), 且事件{纟=a,儿)}的概率为PH ,,称P{ (X, Y)=(兀,儿)}= “沁 J = 1,2,…)为疔=(X, 丫)的分布律或称为X 和丫的联合分布律。
联合分这里內具有下而两个性质:(1) P&0 (i,j=1,2,-): (2)工工 P'6i J(1)联合离散型分布如果二维随机向量纟(X, Y)的所有可能取值为至多可列设n 个随机变量…、X.相互独立,且服从标准正态分 布,可以证明它们的平方和的分布密度为“1 S1— -------- H - e 2 u > 0,y (w )= J 2I r I'{2) 0,u < 0.我们称随机变星w 服从自由度为n 的力2分布,记为w 〜 Z 2(n)>英中所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。
力2分布满足可加性:设kZ+〃2 +・ • +代)・/-I*分布X ~AW )V ~F S ),可以证明函数T 亠 ylYIn的概率密度为我们称随机变量F 服从第一个自由度为山,第二个自由度为n 2 的F 分布,记为F-f(n b n 2).第四章随机变量的数字特征(1)离散型 连续型t 分布 设X, 丫是两个相互独立的随机变量.且H +I―(-co<r <+oc ).F 分布我们称随机变量T 服从自由度为n 的t 分布,记为T 〜t(n).设X ~力2(/“)丁~力2(心),且X 与丫独立,可以证明 尸=土仙的概率密度函数为Yin,t 2 + — n第五章大数定律和中心极限定理特姝情形:若X2,…具有相同的数学期望E(X I )=M , 则上式成为设u 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对于任意的正数£ •有lim;?->x伯努利大数左律说明,当试验次数n 很大时,事件A 发生 的频率与概率有较大判别的可能性很小,即这就以严格的数学形式描述了频率的稳立性。
(完整版)大学概率论与数理统计公式全集
大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质FbF(aba<≤=P-X)(b()()bFX()P=≤)2、离散型随机变量3、连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的联合分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),( 4、连续型二维随机变量边缘分布函数与边缘密度函数边缘分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 边缘密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布+∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY==ρρ 若XY 相互独立则:0=XYρ即XY 不相关7、协方差和相关系数的性质 (1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8、常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<- 2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n 11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有:⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b X a P nk knk k -Φ--Φ≈-≤-≤-=≤≤∑∑==1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X n X 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
概率论与数理统计公式精选常用公式一览
概率论与数理统计公式精选常用公式一览为了帮助读者更好地掌握概率论与数理统计的知识,本文将为大家整理并介绍一些常用的公式。
这些公式是在学习和应用概率论与数理统计过程中必备的工具,相信对大家的学习和研究具有重要的参考价值。
一、概率论常用公式1. 概率公式在概率论中,我们经常需要计算事件发生的概率。
以下是几个常用的概率公式:(1)加法公式设A和B为两个事件,则A与B的和事件概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
(2)乘法公式设A和B为两个独立事件,则A与B的积事件概率为P(A∩B) =P(A) * P(B)。
2. 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。
以下是条件概率的计算公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示A与B的交事件的概率,P(A|B)表示在B发生的条件下A发生的概率。
3. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,它用于根据已知条件,计算一个事件的后验概率。
贝叶斯公式如下所示:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率;P(A)和P(B)分别表示事件A和事件B的先验概率。
二、数理统计常用公式1. 期望和方差在数理统计中,我们经常需要计算一组数据的期望和方差。
以下是期望和方差的计算公式:(1)期望的计算公式设X为一个离散型随机变量,其取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则X的期望为:E(X) = x1 * p1 + x2 * p2 + ... + xn * pn。
(2)方差的计算公式设X为一个离散型随机变量,其取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则X的方差为:Var(X) = E[(X - E(X))^2] = (x1 - E(X))^2 * p1 + (x2 - E(X))^2 * p2 + ... + (xn - E(X))^2 * pn。
(完整版)概率论与数理统计公式整理(超全版)
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。
2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。
3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。
4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。
5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。
2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。
3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。
4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。
5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。
6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。
以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。
掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。
概率论与数理统计考前必备公式
概率论与数理统计考前必备公式==================================概率论与数理统计是大学生必修的数学课程之一,也是多个专业领域的基础知识。
这门课程主要研究随机现象以及随机事件的概率,探索统计规律,并应用于实际问题的分析与决策。
在概率论与数理统计的学习过程中,我们会接触到大量的公式,这些公式是我们进行问题求解的基础。
本文档将为大家整理并介绍概率论与数理统计考前必备的公式,帮助大家在考试中更好地把握重点,提高成绩。
1.随机变量与分布1.1随机变量随机变量是一种数值型的随机量,它的取值由随机实验的结果决定。
我们将随机变量分为离散型和连续型两类。
1.离散型随机变量定义:$X$是一个随机变量,如果它的取值有穷多个或者可列无穷多个,那么$X$是离散型随机变量。
2.连续型随机变量定义:$X$是一个随机变量,如果它的取值为一个区间或者多个区间,那么$X$是连续型随机变量。
1.2分布函数分布函数是描述随机变量取值情况的函数,记作$F(x)$,其中$x$为实数。
根据随机变量的类型,分布函数可为离散型随机变量的概率质量函数或连续型随机变量的概率密度函数。
1.离散型随机变量概率质量函数概率质量函数描述离散型随机变量取值的概率分布。
对于离散型随机变量$X$,其概率质量函数定义如下:$$P(X=x_i)=p_i,\q u ad i=1,2,\d ot s$$2.连续型随机变量概率密度函数概率密度函数描述连续型随机变量取值的概率分布。
对于连续型随机变量$X$,其概率密度函数定义如下:$$F(x)=\in t_{-\in f ty}^{x}f(x)d x$$1.3均匀分布均匀分布是最简单的连续型随机变量分布之一,主要用于描述在一个区间内所有点出现的概率相等的情况。
1.均匀分布的概率密度函数均匀分布的概率密度函数定义如下:$$f(x)=\be gi n{cas e s}\f ra c{1}{b-a},&a\le qx\l eq b\\0,&\t ex t{其他}\e n d{ca se s}$$其中$a$为区间下界,$b$为区间上界。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。
2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。
3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。
4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。
5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。
6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。
7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。
二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。
2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。
3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。
4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。
5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。
6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。
7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。
概率论与数理统计公式整理大学考试必备
若有某些 相等,则应将对应的 相加作为 的概率。
连续型
先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。
第三章 二维随机变量及其分布
(1)联合分布
离散型
如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列与非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验与随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
, 其中 ,
则称随机变量 服从参数为 , 的二项分布。记为 。
当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)F(x,y)分别对x与y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
概率论与数理统计公式集锦完整版
概率论与数理统计公式集锦HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计公式集锦一、随机事件与概率二、随机变量及其分布1、分布函数2、离散型随机变量及其分布3、续型随机变量及其分布4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调三、多维随机变量及其分布1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P Xx Y y p i j ====分布函数(,)i i ijx x y yF X Y p ≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====2、连续型二维随机变量及其分布①联合分布函数及性质分布函数:⎰⎰∞-∞-=xydudvv u f y x F ),(),(=P (X<=x,Y<=y )性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,离散型:..ij i j p p p = ,连续型:(,)()()X Y f x y f x f y =4、二维随机变量和函数的分布 离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dx x xf X E )()(②性质:(),E C C =)()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =2、方差①定义:222()[(())]()()D X E X E X E X E X =-=-②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=±当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov ②相关系数:XY ρ,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++4、常见随机变量分布的数学期望和方差五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律: ①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<= ⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n P ni iXn113、中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n充分大时有:1((0,1)~nn k k Y X n N μ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:③近似计算:1()nk k P a X b =≤≤≈Φ-Φ∑ 概率论与数理统计公式整理1、总体和样本的分布函数 设总体()XF x ,则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=kXnA ni ki k样本k 阶中心距:11(),1,2,3n k k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布:设随机变量(0,1)i X N (1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T性质:①()0(1),()(2)2n E T n D T n n =>=>-②22lim ()()x n n f x x ϕ-→∞== (3)F 分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)F F m n ,则1~(,)F n m F七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧估计总体参数θ,称12(,,,)n X X X θ∧为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。
概率论与数理统计公式整理
概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。
3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。
5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。
6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。
二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。
2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。
5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。
6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。
概率论和数理统计公式集锦
概率论和数理统计公式集锦一、随机事件与概率公式名称 公式表达式德摩根公式 B A B A =,B A B A =古典概型 ()m A P A n ==包含的基本事件数基本事件总数 几何概型 ()()()A P A μμ=Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -=加法公式 P(A ∪B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A ∪B)=P(A)+P(B)减法公式 P(A-B)=P(A)-P(AB),B A ⊂时P(A-B)=P(A)-P(B) 条件概率公式 与乘法公式)()()(A P AB P A B P =()()()()()P ABP A P B A P B P A B ==()()()()P ABC P A P B A P C AB = 全概率公式1()()()ni i i P A P B P A B ==∑贝叶斯公式 (逆概率公式) 1()()()()()i i i niii P B P A B P B A P B P A B ==∑两个事件 相互独立()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;二、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt ≤-∞⎧=⎪=≤=<≤=-⎨⎪⎩∑⎰ 2、离散型随机变量及其分布分布名称 分布律 0–1分布(1,)X b p1,0,)1()(1=-==-k p p k X P k k二项分布 (,)X b n p n k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布 ()X P λ(),0,1,2,!kP X k e k k λλ-===3、续型随机变量及其分布分布名称 密度函数 分布函数均匀分布 (,)X U a b ⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f 0,(),1,<⎧⎪-⎪=≤<⎨-⎪≥⎪⎩x a x a F x a x bb ax b分布名称 密度函数分布函数指数分布 ()X e λ ⎪⎩⎪⎨⎧≤>=-0,00,)(x x e x f x λλ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F x λ 正态分布2(,)XN μσ22()21()2μσπσ--=-∞<<+∞x f x ex22()21()d 2μσπσ---∞=⎰t xF x et标准正态分布(0,1)X N221()2ϕπ-=-∞<<+∞x x ex2121()2t xx edt π--∞Φ=⎰4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j ====分布函数(,)i i ijx x y yF X Y p≤≤=∑∑边缘分布律:()i i ijjp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数:⎰⎰∞-∞-=x ydudv v u f y x F ),(),(性质:2(,)(,)1,(,),F x y F f x y x y ∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yYdudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=, 离散型:..ij i j p p p = ,连续型:(,)()()X Y f x y f x f y = 4、二维随机变量和函数的分布离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k kp xX E ,连续型⎰+∞∞-=dx x xf X E )()(②性质:(),E C C =)()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E = 2、方差①定义:222()[(())]()()D X E X E X E X E X =-=-②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=± 当X 、Y 相互独立时:)()()(Y D X D Y X D +=± 3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov ②相关系数: (,)()()XYCov X Y D X D Y ρ=,当X 、Y 相互独立时:0=XYρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov = ),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++ 4、常见随机变量分布的数学期望和方差分布 数学期望 方差 0-1分布),1(p b p p(1-p) 二项分布),(p n b np np(1-p)泊松分布)(λP λ λ均匀分布),(b a U 2ba + 12)(2a b - 正态分布),(2σμNμ2σ指数分布)(λeλ121λ五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律: ①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<=⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n P ni iXn113、中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n 充分大时有:1()(0,1)~nn k k Y X n n N μσ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:221lim {}()(1)2t xn X np P x e dt x np p π--∞→∞-≤==Φ-⎰③近似计算:1()()()nk k b n a n P a X b n n μμσσ=--≤≤≈Φ-Φ∑六、数理统计的基本概念1、总体和样本的分布函数 设总体()X F x ,则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量 样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=kXn A ni ki k样本k 阶中心距:11(),1,2,3nk k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布:设随机变量(0,1)iX N (1,2,,)i n =且相互独立,则称统计量222212nX X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T性质:①()0(1),()(2)2n E T n D T n n =>=>-②221lim ()()2x n n f x x eϕπ-→∞==(3)F 分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)FF m n ,则1~(,)F n m F七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧L 估计总体参数θ,称12(,,,)n X X X θ∧L 为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)基本事件、样本空间和事件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
1° 。
2° 。
(3)离散与连续型随机变量的关系
积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。
(4)分布函数
设 为随机变量, 是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率: ,
(7)概率的公理化定义
设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
这种试验称为伯努利概型,或称为 重伯努利试验。
用 表示每次试验伯努利试验中 出现 次的概率,
, 。
第二章 随机变量及其分布
(1)离散型随机变量的分布律
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
第1章 随机事件及其概率
(1)排列组合公式
从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n