中考数学专题-实数
专题01实数(共43题)【解析版】
专题01实数(共43题)一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:―10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)―2022的相反数是()A.2022B.―2022C.―12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.|―2|B.3C.0D.―5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、|―2|=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.―(+5)B.+(―5)C.―(―5)D.―|―5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、―|―5|=―5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.―12B.12C.2D.―2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40 000 000m,用科学记数法可以把数字40 000 000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】故选:A.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a|<10,n是正整数,正确确定a n的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】故选:B.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数,变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n<1时,n是负数,确定a与n的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,a×10n的形式中a的取值范围必须是1≤|a|<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成a×10n(1≤a<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握a×10n(1≤|a|<10)中a的取值范围和n的取值方法是解题的关键.13.(2022我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917人,将这个数用科学记数法表示为()A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法)是解题关键.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数【详解】75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是―3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.―10℃C.4℃D.―4℃【答案】B【解析】【分析】根据有理数减法计算―3―7=―10℃即可.【详解】解: ∵中午12时的气温是―3℃,经过6小时气温下降了7℃,∴当天18时的气温是―3―7=―10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:198000=1.98×105.故选:C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数,确定a与n的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.―13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是―13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成a×10n的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.(―1)2=―2B=1C.a6÷a3=a2D.=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.(―1)2=1,故A错误;―=―=1,故B正确;C.a6÷a3=a3,故C错误;D.―=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)―2的倒数是()A.2B.12C.―2D.―12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是―12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵―2<0<1<2,∴最小的数是―2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在―2,1,3,2中,是无理数的是()2A.―2B.1C.3D.22【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】,2是有理数,3是无理数,解:∵-2,12故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(―2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:(―2)2=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(a2)3=a5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(a2)3=a2×3=a6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=32,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)―4=()A.―2B.―12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:―4=-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.30.(2022年重庆市中考数学真题(B卷))估计54―4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54―4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54―4<4,即54―4的值在3到4之间,【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:|―4|+(3―π)0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:|―4|+(3―π)0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2―2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2―2=1,30=1,然后比较大小即可.4【详解】解:2―2=1,30=1,4<1,∵14∴2―2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|―2|+(3―5)0=_________.【答案】3【分析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|―2|+(3―5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=―1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022+2―1+2cos45°―|―12|.【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2×22―12=2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9―(―2022)0+2―1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9―(―2022)0+2―1=3―1+12=5.2【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(―10)×―16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5―4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(―1)2022+|―2|――2tan45°.【答案】0【解析】【分析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(―2022)0―2tan45°+|―2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1―2×1+2+3=1―2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022―16+(―2)2.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】―16+(―2)2=1―4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(20221―9+3tan30°+|3―2|.(2)解不等式组:3(x+2)≥2x+5 ①x2―1<x―23 ②.【答案】(1)1;(2)―1≤x<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(11―9+3tan30°+|3―2|=2―3+3×33+2―3 =―1+3+2―3=1.(2)3(x+2)≥2x+5 ①x2―1<x―23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+(3.14―π)0―3tan60°+|1―3|+(―2)―2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14―π)0―3tan60°+|1―3|+(―2)―2=23+1―33+3―1+1 4=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b 最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)16=15―2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,∵F(A)+G(A)为整数,16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12―b,∵a>b>c,∴12―b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12―b代入5a+5c+b=8k得:5(12―b)+b=8k,整理得:b=15―2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12―3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12―5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
中考数学实数专题训练
实数专题训练一、填空题:1、-2 的倒数是____。
2、4 的平方根是____。
3、-27 的立方根是____。
4、3-2 的绝对值是____。
5、2004年我国外汇储备327000亿美元,用科学记数法表示为____亿美元。
6、比较大小:-12 ____-13。
7、近似数0.020精确到____位,它有____个有效数字。
8、若 n 为自然数,则(-1)2n+(-1)2n+1=____。
9、若实数 a、b 满足|a-2|+( b+12)2=0,则 ab=____。
10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。
11、已知一个矩形的长为 3cm,宽为 2cm,试估算它的对角线长为____。
二、选择题:1、下列各数中是负数的是()A、-(-3)B、-(-3)2C、-(-2)3D、|-2|2、绝对值大于 1 小于 4 的整数的和是()A、0B、5C、-5D、103、|-22|的值是()A.-2 B.2 C.4 D.-44、下列说法不正确的是()A.没有最大的有理数 B.没有最小的有理数C.有最大的负数 D.有绝对值最小的有理5、下列命题中正确的个数有()①实数不是有理数就是无理数② a<a+a ③121的平方根是±11④在实数范围内,非负数一定是正数⑤两个无理数之和一定是无理数A、1 个B、2 个C、3 个D、4 个6、已知| x |=3,| |=7,且 x<0,则 x+的值等于()A、10B、4C、±10D、±4三、计算:1、-212 ÷(-5)×152、(134-78-712)÷yyy(-13 4 )3、(-11 2 )3×3-2+2° 4、π+3-2 3(精确到0.01)5.计算:212221-+-- 6、计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.7.计算:0(π2009)|2|-.四、解答题:1、把下列各数填入相应的大括号里。
中考数学复习《实数》专项测试卷(带答案)
中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
中考数学专题复习《实数的运算》测试卷-附带答案
中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
中考数学考点《实数》专项练习题-附答案
中考数学考点《实数》专项练习题-附答案学校: 班级: 姓名: 考号:一、单选题1.对 √2 描述不正确的一项是( )A .面积为2的正方形的边长B .它是一个无限不循环小数C .它是2的一个平方根D .它的小数部分大于2- √2 2.下列各式比较大小正确的是( )A .-√2<-√3B .-√55>-√66C .-π<-3.14D .-√10>-3 3.在实数−23,0,√43,π,√9中,无理数有 ( )A .1个B .2个C .3个D .4个4.估算√5+√15的运算结果应在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.满足 −√2<x <√5 的整数x 是( )A .-1,0,1,2B .-2,-1,0,1C .-1,1,2,3D .0,1,2,36.若某自然数的立方根为a ,则它前面与其相邻的自然数的立方根是( )A .a −1B .√a −13C .√a 3−13D .a 3−17.如图,已知数轴上的点A ,B ,C ,D 分别表示数﹣2、1、2、3,则表示数的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上8.如图,将五个边长为1的小正方形组成的十字形纸板沿虚线剪开,把剪下的①放在②的位置,③放在④的位置,⑤放在⑥的位置,⑦放在⑧的位置,这样重新拼成一个大正方形,则大正方形的边长为( )A .2B .4C .5D .√5二、填空题9.一个正数x 的平方根分别是2a ﹣3与5﹣a ,则x 等于 .10.若n 为整数,且n<√93<n+1,则n 的值是 .11.-64的立方根是 , √16 的平方根是 .12.已知:x-2的平方根是±2, 2x +y +7 的立方根为3,则 x 2+y 2 的算术平方根为 .13.如图,正方形 OABC 的边 OC 落在数轴上,点 C 表示的数为 1 ,点 P 表示的数为 −1 ,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点 D ,则点 D 表示的数为 .三、解答题14.在数轴上表示下列各数,并用“<”连接起来.-(-2),-|-3.5|,0, √14 和(-2)215. 计算:(1)√16−√−83+√−1273; (2)√9+√−1253+|√3−2|.16.已知实数a ,b ,满足 √3a−b+|a 2√a+7 =0,c 是 √35 的整数部分,求a+2b+3c 的平方根.17.将一个体积为 125cm 3 的立方体体积增加V ,而保持立方体的形状不变,则棱长应该增加多少?(用含有V 的代数式表示);若 V =875cm 3 ,则棱长应增加多少厘米?18.阅读下面的文字,解答问题:大家知道 √2 是无理数,而无理是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小明用 √2 ﹣1来表示 √2 的小数部分,事实上,小明的表示方法是有道理的,因为 √2 的整数部分是1,将这个数减去其整数部分,差就是 √2 的小数部分,又例如:∵23<( √7 )2<32,即2< √7 <3,∴√7 的整数部分为2,小数部分为( √7 ﹣2). 请解答(1)√11 的整数部分是 ,小数部分是 .(2)如果 √5 的小数部分为a , √41 的整数部分为b ,求a+b ﹣ √5 的值.(3)已知x 是3+ √5 的整数部分,y 是其小数部分,直接写出x ﹣y 的值.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】4910.【答案】211.【答案】-4;±212.【答案】1013.【答案】D14.【答案】解:描点如图所示:所以-|-3.5|< 3√−27 <0< √14<-(-2)><(-2)2.15.【答案】(1)解:原式=4−(−2)+(−13)=4+2−1 3=523;(2)解:原式=3−5+2−√3=−√3.16.【答案】解:∵实数a,b,满足√3a−b+|a2√a+7=0 ∴a2﹣49=0∴a=±7∵a+7>0∴a=7∵3a ﹣b=0∴b=21∵c 是 √35 的整数部分∴c=5∴a+2b+3c=7+2×21+3×5=64∴a+2b+3c 的平方根为±817.【答案】解:依题意得:棱长应该增加: √125+V 3−√1253=√125+V 3−5 (厘米) 当 V =875 时√125+V 3−5=√125+8753−5=10−5=5 (厘米). 18.【答案】(1)3;√11−3(2)解:∵√4<√5<√9∴2<√5<3∵√5 的小数部分为a∴a=√5−2;∵√36<√41<√49∴6<√41<7∵√41 的整数部分为b∴b=6;∴ a+b ﹣ √5 =√5−2+6−√5=4.(3)解: 7−√5。
中考数学专题:实数与代数式
专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)
知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。
有括号的先算括号,先算小括号,再算中括号,最后算大括号。
2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。
3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。
乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。
③分母有理化。
即()()b a ba ba b a b a ba −=±=± 1。
④二次根式的加减法:()m b a m b m ±=±。
4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。
5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。
中考数学总复习《实数》专项测试卷附答案
中考数学总复习《实数》专项测试卷附答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作( )A.+100℃B.-100℃C.+50℃D.-50℃2.-|-2024|的倒数是( )A.-2024B.2024C.-12024D.120243.有理数a,b在数轴上的表示如图所示,则下列结论正确的是( )A.-b<aB.ab>0C.|a|<|b|D.b+a<04.“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为( ) A.6×103 B.60×103C.0.6×105D.6×1045.下列四个数中,绝对值最大的是( )A.0B.-13C.-3D.√76.如图,数轴上表示√2的点是( )A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x <2,化简√(x -1)2+|x -2|的结果为( )A .-1B .1C .2x -3D .3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1= .9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为 .10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是( )A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A.676B.674C.1 348D.1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025参考答案A层·基础过关1.(中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作(B)A.+100℃B.-100℃C.+50℃D.-50℃2.(2024·德州二模)-|-2024|的倒数是(C)A.-2024B.2024C.-12024D.120243. (2024·济南二模)有理数a,b在数轴上的表示如图所示,则下列结论正确的是(A)A.-b<aB.ab>0C.|a|<|b|D.b+a<04.(2024·青岛中考)“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为(D)A.6×103B.60×103C.0.6×105D.6×1045.(2024·临沂二模)下列四个数中,绝对值最大的是(C)A.0B.-13C.-3D.√76.(2024·南充中考)如图,数轴上表示√2的点是(C)A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x<2,化简√(x-1)2+|x-2|的结果为(B)A.-1B.1C.2x-3D.3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1=3.9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为2.780 9×104.10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.【解析】原式=-2×(-3)-3+2-1=6+2-3-1=4.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.【解析】(π-3)0-2sin 60°+|-√3|=1-2×√32+√3=1-√3+√3=1. 12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°. 【解析】70+(16)-1+|-12|-(√5)2-sin 30° =1+6+12-5-12 =2.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是(C)A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在(C)A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为(D)A .676B .674C .1 348D .1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的8×103倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为1.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=5.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12【解析】(1)-1+(π-2 022)0-3tan 30°+|√3-√2|2+√3-√2=2+1-3×√33=2+1-√3+√3-√2=3-√2.)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12【解析】原式=1+2-√3+√3-4=3-4=-1.C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是(D)A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025。
2023-2024学年九年级中考数学复习《实数》考题汇集专项练附答案解析
2023-2024学年九年级中考数学复习《实数》考题汇集专项练【满分100分】一、选择题(每小题3分,共36分)1.在-711,√93,√949,-√273,0,π2,-√10,0.3·,0.616 116 111 6…(相邻两个6之间依次多一个1)中,有无理数( C ) A.2个B.3个C.4个D.5个2.(2021鄂尔多斯)在实数0,π,|-2|,-1中,最小的数是( C ) A.|-2|B.0C.-1D.π3.(-5)2的平方根是( C ) A.5 B.-5C.±5D.√54.下列运算中正确的是( D )A.√16=±4B.√-83=2 C.√(-2)2=-2 D.√(-3)33=-35.估计5√6-√24的值应在( C )A.5和6之间B.6和7之间C.7和8之间D.8和9之间6.用数学教材上使用的某种计算器进行计算,则按键的结果为( D )A.21B.15C.84D.677.已知a,b 为实数,且√2a +6+|b-√2|=0,则a+b 的绝对值为( A ) A.3-√2 B.√2-3 C.-3+√2 D.3+√2 8.下列说法正确的是( D ) A.125的立方根是±5B.-18没有立方根 C.立方根等于本身的数是0 D.√-273=-√2739.如图所示,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上表示的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E,点E 表示的实数是( B ) A.√5+1 B.√5-1 C.√5D.1-√5第9题图10.如图所示,在数轴上表示1,√2的点分别为A,B,点B 关于点A 的对称点为C,则C 点所表示的数是( C )A.√2-1B.1-√2C.2-√2D.√2-2第10题图11.已知:√23.63=2.868,-√a 3=28.68,则a 等于( D ) A.2 360 B.-2 360C.23 600D.-23 60012.请你观察、思考下列计算过程:因为112=121,所以√121=11; 因为1112=12 321,所以√12 321=111;…,由此猜想√12 345 678 987 654 321等于( D ) A.111 111B.1 111 111C.11 111 111D.111 111 111二、填空题(每小题3分,共18分)13.√81的平方根是 ±3 ,92的平方根是 ±9 ,-5是 -125 的立方根. 14.写出一个比2大比3小的无理数(用含根号的式子表示): √5(答案不唯一) . 15.若一个正数的两个平方根分别是m+2和3m-1,则这个正数 为4916.16.已知m 是√133的整数部分,n 是√13的小数部分,则m-n 的值 为 5-√13 .17.(2021广元)如图所示,实数-√5,√15,m 在数轴上所对应的点分别为A,B,C,点B 关于原点的对称点为D.若m 为整数,则m 的值为 -3 .18.观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,…,根据你发现的规律,若式子√x +1y =13√1y (x,y 为正整数)符合以上规律,则√x +y = √26 . 三、解答题(共46分)19.(8分)(1)已知8x 3=27,求x 的值; (2)计算:√(-3)2+√-643-|1-√3|.解:(1)因为8x 3=27, 则x 3=278. 解得x=32.(2)√(-3)2+√-643-|1-√3|=3-4-(√3-1) =-1-√3+1 =-√3.20.(8分)把下列各数填入相应的集合内:-27,√363,-π+2 010,√9,3. 141 5926,-|-√100|,0,√2-1,√32,-√8.整数集合:{ …}; 分数集合:{ …};无理数集合:{ …}. 解:整数集合:{√9,-|-√100|,0,…}. 分数集合:{-27,3.141 592 6,…}.无理数集合:{√363,-π+2 010,√2-1,√32,-√8,…}.21.(8分)已知2a-1的平方根是±3,3a+b+10的立方根是3. (1)求a,b 的值; (2)求a+b 的算术平方根.解:(1)因为3和-3是2a-1的平方根,所以2a-1=9,解得a=5. 因为3a+b+10的立方根是3,所以3a+b+10=27, 把a=5代入,得3×5+b+10=27, 解得b=2,故a=5,b=2.(2)因为a=5,b=2,所以a+b=7,所以√a +b =√7, 即 a+b 的算术平方根是√7.22.(10分)学校计划围一个面积为50 m 2的长方形场地,一边靠旧墙(墙长为10 m),另外三边用篱笆围成,并且它的长与宽之比为5∶2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地.”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么? 解:说法都不正确.理由如下: 设长方形场地的长为5x m,宽为2x m, 根据题意,得5x ·2x=50. 解得x=√5.所以长为5√5 m,宽为2√5 m. 因为2<√5<3, 所以2√5<6,5√5>10.若长与墙平行,墙长只有10 m,故不能围成满足条件的长方形场地; 若宽与墙平行,则能围成满足条件的长方形场地. 即只有以墙长为宽时,才能围成. 所以他们的说法都不正确.23.(12分)甲同学用如图所示的方法作出C 点,表示数√13.在△OAB 中,∠OAB=90°,OA=2,AB=3,且点O,A,C 在同一数轴上,OB=OC. (1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在数轴上描出表示-√29的点.解:(1)在Rt△AOB中,根据勾股定理,有OA2+AB2=OB2,所以OB=√OA2+AB2=√22+32=√13.因为OC=OB=√13,所以点C表示的数为√13.(2)如图所示,取OB′=5,过点B′作B′C′⊥OB′,取B′C′=2.在Rt△OB′C′中,根据勾股定理,有OB′2+B′C′2=OC′2,所以OC′=√OB'2+B'C'2=√52+22=√29.因为OA′=OC′=√29.所以点A′表示的数为-√29.。
中考《数学》实数的有关概念与计算专题练习题(共53题)
实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。
数学中考一轮复习专题01实数课件
知识点梳理
3.运算顺序:
知识点3 :实数的运算
先算乘方,再算乘除,最后算加减;同级运算,从左到右进行;如有括号,先进 行 括号内的 运算,一般按小括号、中括号、大括号依次进行 .
【注意】在进行负整数指数幂的运算时,防止出现以下错误:
(1)3-2= 1 9
(2)2a-2=
1 2a
2
知识点3 :实数的运算
①掌握实数的加、减、乘、
除、乘方及简单的混合运算( 运算法则、运算顺序的理解、运用
实数的混合 以三步为主);②理解实数的 和计算的准确性、迅速性.
5
运算
运算律,能运用运算律简化 以选择题、填空题为主,有时也以
运算,并能运用实数的运算 简单解答题的情势命题.
解决简单的问题.
思维导图
知识点1 :实数的有关概念
0的相反数是0.知识点1 来自实数的有关概念典型例题
【例4】(4分)(202X•安徽1/23)﹣9的绝对值是( )
A.9
B.﹣9
C. 1 9
D. 1 9
【考点】绝对值.
【分析】根据绝对值的代数意义即可求解.
【解答】解:﹣9的绝对值是9, 故选:A. 【点评】本题考查了绝对值的代数意义,负数的绝对值等于它的相反数,这是解
④与π有关的数:如 ,π-1等.
3
判断一个数是不是无理数,不要只看情势,要看化简结果是不是无限不循环小数.
知识点梳理
知识点1 :实数的有关概念
2.数轴:
规定了原点、正方向和 单位长度 的直线叫做数轴. 数轴上的点与实数一一对应.
3.相反数:
a的相反数是-a,0的相反数为0;
a、b互为相反数⇔a+b=0.
知识点1 :实数的有关概念
2024中考数学一轮 考点 实数(学生版)
考点01实数实数这一考点在中考数学中属于较为简单的一类考点,数学中考中,有关实数的部分,通常以选择题、计算题题型考察,所考考点一般有:实数的相关概念,如相反数、绝对值、数轴、倒数、科学计算法等;实数的比较大小;实数的运算则多与二次根式、三角函数、负指数幂、绝对值等结合,以解答题形式考察;少数以填空题的形式出题。
对于实数的复习,需要学生熟练掌握实数相关概念及其性质的应用、实数运算法则和顺序等考点。
考向一、实数的相关概念;考向二、实数的分类;考向三、实数的比较大小;考向四、实数的运算;考向一:实数的相关概念注意事项与拓展1.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A .0.11×108B .1.1×107C .11×106D .1.1×1062.(2022•黄石)的绝对值是()A .1﹣B .﹣1C .1+D .±(﹣1)3.(2022•攀枝花)2的平方根是()A .2B .±2C .D .4.(2022•淄博)若实数a 的相反数是﹣1,则a +1等于()A .2B .﹣2C .0D .5.(2022•资阳)如图,M 、N 、P 、Q 是数轴上的点,那么在数轴上对应的点可能是()A .点MB .点NC .点PD .点Q考向二:实数的分类☆按定义分类:}}⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数正整数整数有理数实数0☆按正负分类:⎪⎩⎪⎨⎧负实数正实数实数0【易错警示】实数中的无理数常见的有4种形式:①含π的数,如-2π、4-π等;②开方开不尽的数的方根,如3-22、等;③某些三角函数,如sin45°、tan60°;④具有特定结构的数,如0.1010010001……(每两个1之间依次多加一个0);1.(2022•铜仁市)在实数,,,中,有理数是()A .B .C .D .2.(2022秋•漳州期中)下列实数是无理数的是()A .B .C .D .3.(2022•巴中)下列各数是负数的是()A .(﹣1)2B .|﹣3|C .﹣(﹣5)D .4.(2022•福建)如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是()A .B .C .D .π考向三:实数的大小比较注意事项与拓展1.(2022•安顺)下列实数中,比﹣5小的数是()A.﹣6B.﹣C.0D.2.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2B.b<1C.a>b D.﹣a>b3.(2022•泰州)下列判断正确的是()A.0<<1B.1<<2C.2<<3D.3<<44.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间5.(2022•绵阳)正整数a、b分别满足<a<、<b<,则b a=()A.4B.8C.9D.16考向四:实数的运算一、实数的运算种类:包括加、减、乘、除、乘方、开方,其中,减法转化为加法运算;除法、乘方都转化为乘法运算;二、零指数幂和负整数指数幂公式:)0(10≠=a a ;)0(1-≠=a a aPP;特别地:)0(11-≠=a aa ;三、实数的运算顺序:先算乘方、开方,再算乘除,最后算加减;如果有括号,就先算括号内的;同级运算,按照从左到右的顺序进行,能用运算律的可用运算律简化计算。
初中数学中考复习——实数专题(含答案)
初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。
一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。
一个数的绝对值是它到原点的距离,因此,|-5| 等于______。
如果一个数的平方根是4,则这个数的算术平方根是______。
立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。
例如,3 的立方根是______。
在实数大小比较中,数轴上右边的数总是比左边的数大。
因此,在数轴上,5 大于______。
中考数学《实数》专题含解析
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简:=.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b=.14.已知互为相反数,则a:b=.15.若的值在x与x+1之间,则x=.16.,则x y=.17.计算:=.18.化简二次根式:=.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解:=2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a>﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为 1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简:=.【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b=.【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x=2.【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y=﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算:=.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式:=﹣2.【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解:=3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵÷3=671,∴x=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
专题01实数中考数学真题分项汇编(全国通用)(解析版)
实数一、单选题1.(2022·湖北鄂州)实数9的相反数等于()A.﹣9B.+9C.19D.﹣19【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同.我们称其中一个数为另一个数的相反数.进行求解即可.【详解】解:实数9的相反数是-9.故选A.【点睛】本题主要考查了相反数的定义.熟知相反数的定义是解题的关键.2.(2022·湖南永州)如图.数轴上点E对应的实数是()A.2-B.1-C.1D.2【答案】A【解析】【分析】根据数轴上点E所在位置.判断出点E所对应的值即可.【详解】解:根据数轴上点E所在位置可知.点E在-1到-3之间.符合题意的只有-2.故选:A.【点睛】本题主要考查数轴上的点的位置问题.根据数轴上点所在位置对点的数值进行判断是解题的关键.3.(2022·21-.2这四个实数中.最大的数是()A.0B.1-C.2D2【答案】C【分析】正实数都大于0.负实数都小于0.正实数大于一切负实数.两个负实数绝对值大的反而小.据此判断即可.【详解】解:∵220>-1.∵2-1.2这四个实数中.最大的数是2.故选:C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数.两个负实数绝对值大的反而小.4.(2022·黑龙江绥化)下列计算中.结果正确的是( )A .22423x x x +=B .()325x x =C 3322-=-D 42=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.即可一一判定.【详解】解:A.22223x x x +=.故该选项不正确.不符合题意.B.()326x x =.故该选项不正确.不符合题意. 3322--.故该选项正确.符合题意. 42.故该选项不正确.不符合题意.故选:C .【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.熟练掌握和运用各运算法则是解决本题的关键.5.(2021·81 ) A .±3B .3C .±9D .9 【答案】A【解析】81.再求平方根即可.【详解】解:81=9.9的平方根是±3. 81±3.故选:A .【点睛】本题考查了算术平方根.平方根.熟练掌握相关知识是解题的关键.6.(2021·广西河池)下列4个实数中.为无理数的是( )A .-2B .0C 5D .3.14 【答案】C【解析】【分析】根据无理数的定义.无限不循环小数是无理数.即可解答.【详解】解:-2.0是整数.属于有理数.3.14是有限小数.属于有理数5.属于无理数.故C 符合题意.故选:C .【点睛】本题主要考查了无理数的定义.熟练掌握无限不循环小数是无理数是解题的关键. 7.(2021·贵州毕节)下列运算正确的是( )A .()031π-=-B 93=±C .133-=-D .()236a a -= 【答案】D【解析】【分析】直接计算后判断即可.【详解】 ()031π-=93=;1133-=;()236a a -=.故选D本题考查了零指数幂、算数平方根.负整数指数幂和幂的运算.关键是掌握概念和运算规则.8.(2020·贵州黔南)已知171a .a 介于两个连续自然数之间.则下列结论正确的是( )A .12a <<B .23a <<C .34a <<D .45a << 【答案】C【解析】【分析】 17.即可得出答案.【详解】解:∵4175<. ∵31714<. 171在3和4之间.即34a <<.故选:C .【点睛】 179.(2020·山东东营)利用科学计算器求值时.小明的按键顺序为.则计算器面板显示的结果为( )A .2-B .2C .2±D .4 【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】 42=.故选:B .【点睛】本题主要考查了算术平方根的求解方法.考生需要将其与平方根进行对比掌握. 10.(2022·3(235)的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间【答案】B【解析】【分析】 3(235)615=91516<<从而判定即可.【详解】 335)615= 91516<< ∵1543<<. ∵91510<6+<.故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算.熟练掌握无理数估算方法是解题的关键.11.(2020·湖北荆州)若x 为实数.在)31x的“”中添上一种运算符号(在+.-.×.÷中选择)后.其运算的结果是有理数.则x 不可能的是( )A 31B 31C .23D .13【答案】C【解析】【分析】根据题意填上运算符计算即可.【详解】 A.())31310-=,结果为有理数; B.())31312⋅= ,结果为有理数; C.无论填上任何运算符结果都不为有理数; D.()(31132+=,结果为有理数; 故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.12.(2022·广东广州)实数a .b 在数轴上的位置如图所示.则 ( )A .a b =B .a b >C .a b <D .a b >【答案】C【解析】【分析】根据数轴上点的位置.可得11a b -<<<.进而逐项分析判断即可求解.【详解】解:根据数轴上点的位置.可得11a b -<<<. ∴a b <. 故选C .【点睛】本题考查了实数与数轴.根据数轴上点的位置判断实数的大小.数形结合是解题的关键. 13.(2022·广东广州)下列运算正确的是( )A 382-=B .11a a a a +-=(0a ≠)C 5510D .235a a a ⋅= 【答案】D【解析】【分析】根据求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.逐项分析判断即可求解.【详解】 A.382-=-.故该选项不正确.不符合题意. B.111a a a +-=(0a ≠).故该选项不正确.不符合题意. C. 5525该选项不正确.不符合题意.D.235a a a ⋅=.故该选项正确.符合题意.故选D【点睛】本题考查了求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.正确的计算是解题的关键.14.(2021·17 )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 【答案】C【解析】【分析】直接利用估算无理数的方法分析得出答案.【详解】解:∵16<17<25.∵417 5. 174和5之间.故选:C .【点睛】此题主要考查了估算无理数的大小.1715.(2021·四川绵阳)下列数中.3803200 )A .3B .4C .5D .6【答案】C【解析】【分析】 3331258064>364=431255=333125200216<32166.即可得出结果.【详解】33364801253364=41255,.34805∴<. 又333125200216<32166.∴352006<<.3348052006∴<<.故选:C .【点睛】本题考查了估算无理数的大小.立方根.解决本题的关键是用有理数逼近无理数.求无理数的近似值.16.(2021·山东日照)下列命题:4的算术平方根是2.∵菱形既是中心对称图形又是轴对称图形.∵天气预报说明天的降水概率是95%.则明天一定会下雨.∵若一个多边形的各内角都等于108︒.则它是正五边形.其中真命题的个数是()A.0B.1C.2D.3【答案】B【解析】【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.【详解】解:42故原命题错误.是假命题.∵菱形既是中心对称图形又是轴对称图形.正确.是真命题.∵天气预报说明天的降水概率是95%.则明天下雨可能性很大.但不确定是否一定下雨.故原命题错误.是假命题.∵若一个多边形的各内角都等于108︒.各边也相等.则它是正五边形.故原命题错误.是假命题.真命题有1个.故选:B.【点睛】本题考查了命题与定理的知识.解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识.难度不大.17.(2020·广西贵港)下列命题中真命题是()A42B.数据2.0.3.2.3的方差是6 5C.正六边形的内角和为360°D.对角线互相垂直的四边形是菱形【答案】B【解析】【分析】A.根据算术平方根解题.B.根据方差、平均数的定义解题.C.根据多边形的内角和为180(n2)︒⨯-解题.D.根据菱形、梯形的性质解题.【详解】A. 42=.22.故A错误.B. 数据2.0.3.2.3的平均数是20323=25++++.方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦.故B 正确. C. 正六边形的内角和为180(62)720︒⨯-=︒.故C 错误.D. 对角线互相垂直的四边形不一定是菱形.可能是梯形.故D 错误.故选:B .【点睛】本题考查判断真命题.其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识.是基础考点.难度较易.掌握相关知识是解题关键.18.(2020·内蒙古赤峰)估计(123323 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算.再估算无理数的大小.【详解】 (123323=11332336 ∵4<6<9. 6<3. 6故选:A.【点睛】此题考查了二次根式的混合运算.无理数的估算.正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.19.(2020·山东烟台)利用如图所示的计算器进行计算.按键操作不正确的是( )A .按键即可进入统计计算状态B .计算8的值.按键顺序为:C .计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果D .计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333 【答案】B【解析】【分析】根据计算器的按键写出计算的式子.然后求值.【详解】解:A 、按键即可进入统计计算状态是正确的.故选项A 不符合题意. B 、计算8的值.按键顺序为:.故选项B 符合题意. C 、计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果是正确的.故选项C 不符合题意.D 、计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333是正确的.故选项D 不符合题意.故选:B .【点睛】 本题考查了科学计算器.熟练了解按键的含义是解题的关键.20.(2020·湖北荆州)定义新运算a b *.对于任意实数a.b 满足()()1a b a b a b *=+--.其中等式右边是通常的加法、减法、乘法运算.例如43(43)(43)1716*=+--=-=.若x k x *=(k 为实数) 是关于x 的方程.则它的根的情况是( ) A .有一个实根 B .有两个不相等的实数根 C .有两个相等的实数根 D .没有实数根【答案】B 【解析】 【分析】将x k *按照题中的新运算方法展开.可得()()1x k x k x k *=+--.所以x k x *=可得()()1x k x k x +--=.化简得:2210x x k ---=.()()222141145k k ∆=--⨯⋅--=+.可得0∆>.即可得出答案. 【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--.则x k x *=即为221x k x --=. 整理得:2210x x k ---=. 则21,1,1a b c k ==-=--.可得:()()222141145k k ∆=--⨯⋅--=+20k ≥.2455k ∴+≥.0∴∆>.∴方程有两个不相等的实数根.故答案选:B. 【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法.不能出错.在求一元二次方程根的判别式时.含有参数的一元二次方程要尤其注意各项系数的符号.21.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简.称之为“加算操作”.例如:()()x y z m n x y z m n ----=--++.()x y z m n x y z m n ----=--+-.….给出下列说法:∵至少存在一种“加算操作”.使其结果与原多项式相等. ∵不存在任何“加算操作”.使其结果与原多项式之和为0. ∵所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D 【解析】 【分析】给x y -添加括号.即可判断∵说法是否正确.根据无论如何添加括号.无法使得x 的符号为负号.即可判断∵说法是否正确.列举出所有情况即可判断∵说法是否正确. 【详解】解:∵()x y z m n x y z m n ----=---- ∵∵说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号.无法使得x 的符号为负号 ∵∵说法正确∵当括号中有两个字母.共有4种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有三个字母.共有3种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有四个字母.共有1种情况.()x y z m n ---- ∵共有8种情况 ∵∵说法正确 ∵正确的个数为3 故选D . 【点睛】本题考查了新定义运算.认真阅读.理解题意是解答此题的关键.22.(2021·广东)设610的整数部分为a .小数部分为b .则(210a b +的值是( ) A .6 B .10C .12D .10【答案】A 【解析】 【分析】10a 的值.进而确定b 的值.然后将a 与b 的值代入计算即可得到所求代数式的值. 【详解】∵3104. ∵26103<.∵6102a =. ∵小数部分6102410b ==∵(((210221041041041016106a b =⨯==-=. 故选:A . 【点睛】本题考查了二次根式的运算.正确确定610a 与小数部分b 的值是解题关键.23.(2021·湖北鄂州)已知1a 为实数﹐规定运算:2111a a =-.3211a a =-.4311a a =-.5411a a =- (1)11n n a a -=-.按上述方法计算:当13a =时.2021a 的值等于( )A .23- B .13C .12-D .23【答案】D 【解析】 【分析】当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现呈周期性出现.即可得到2021a 的值.【详解】解:当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现是以:213,,32-.循环出现的规律.202136732=⨯+.2021223a a ∴==. 故选:D . 【点睛】本题考查了实数运算规律的问题.解题的关键是:通过条件.先计算出部分数的值.从中找到相应的规律.利用其规律来解答.24.(2020·四川巴中)定义运算:若am =b .则log ab =m (a >0).例如23=8.则log 28=3.运用以上定义.计算:log 5125﹣log 381=( )A .﹣1B .2C .1D .44【答案】A 【解析】 【分析】先根据乘方确定53=125.34=81.根据新定义求出log 5125=3.log 381=4.再计算出所求式子的值即可. 【详解】解:∵53=125.34=81. ∵log 5125=3.log 381=4. ∵log 5125﹣log 381. =3﹣4. =﹣1. 故选:A . 【点睛】本题考查新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.掌握新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.解题关键理解新定义就是乘方的逆运算.25.(2021·湖北荆州)定义新运算“∵”:对于实数m .n .p .q .有[][],,m p q n mn pq =+※.其中等式右边是通常的加法和乘法运算.如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根.则k 的取值范围是( )A .54k <且0k ≠ B .54k ≤C .54k ≤且0k ≠ D .54k ≥【答案】C 【解析】 【分析】按新定义规定的运算法则.将其化为关于x 的一元二次方程.从二次项系数和判别式两个方面入手.即可解决. 【详解】解:∵[x 2+1.x ]∵[5−2k .k ]=0.∵()()21520k x k x ++-=.整理得.()2520kx k x k +-+=.∵方程有两个实数根.∵判别式0≥且0k ≠. 由0≥得.()225240k k --≥. 解得.54k ≤. ∵k 的取值范围是54k ≤且0k ≠. 故选:C 【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点.正确理解新定义的运算法则是解题的基础.熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制.要引起高度重视.26.(2022·广西贺州)某餐厅为了追求时间效率.推出一种液体“沙漏”免单方案(即点单完成后.开始倒转“沙漏”. “沙漏”漏完前.客人所点的菜需全部上桌.否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示.已知圆锥体底面半径是6cm .高是6cm .圆柱体底面半径是3cm .液体高是7cm .计时结束后如图(2)所示.求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm【答案】B 【解析】 【分析】由圆锥的圆锥体底面半径是6cm.高是6cm.可得CD =DE .根据园锥、圆柱体积公式可得液体的体积为63πcm 3.圆锥的体积为72πcm 3.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.根据题意.列出方程.即可求解. 【详解】解:如图.作圆锥的高AC .在BC 上取点E .过点E 作DE ∵AC 于点D .则AB =6cm.AC =6cm.∵∵ABC 为等腰直角三角形. ∵DE ∵AB . ∵∵CDE ∵∵CAB .∵∵CDE 为等腰直角三角形. ∵CD =DE .圆柱体内液体的体积为:233763cm ππ⨯⨯=圆锥的体积为2316672cm 3ππ⨯⨯=.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.∵21(6)(6)72633x x πππ⋅-⋅-=-. ∵3(6)27x -=. 解得:x =3.即此时“沙漏”中液体的高度3cm . 故选:B . 【点睛】本题考查圆柱体、圆锥体体积问题.解题的关键是掌握圆柱体、圆锥体体积公式.列出方程解决问题.27.(2020·湖南长沙)2020年3月14日.是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日.是因为3.14与圆周率的数值最接近的数字.在古代.一个国家所算的的圆周率的精确程度.可以作为衡量这个国家当时数学与科技发展的水平的主要标志.我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠.该成果领先世界一千多年.以下对圆周率的四个表述:∵圆周率是一个有理数.∵圆周率是一个无理数.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.其中正确的是( ) A .∵∵ B .∵∵C .∵∵D .∵∵【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值.叫做圆周率.用字母π表示.π是一个无限不循环小数.据此进行分析解答即可.【详解】解:∵圆周率是一个有理数.错误.∵π是一个无限不循环小数.因此圆周率是一个无理数.说法正确.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.说法正确.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.说法错误.故选:A.【点睛】本题考查了对圆周率的理解.解题的关键是明确其意义.并知道圆周率一个无限不循环小数.3.14只是取它的近似值.二、填空题28.(2022·湖南)2.1-.π.0.3这五个数中随机抽取一个数.恰好是无理数的概率是__.【答案】25##0.4【解析】【分析】先确定无理数的个数.再除以总个数.【详解】2π是无理数.P(恰好是无理数)25 =.故答案为:25.【点睛】本题主要考查了概率公式及无理数.熟练掌握概率公式及无理数的定义进行计算是解决本题的关键.29.(2022·山东威海)按照如图所示的程序计算.若输出y的值是2.则输入x的值是_____.【答案】1 【解析】 【分析】根据程序分析即可求解. 【详解】解:∵输出y 的值是2. ∵上一步计算为121x=+或221x =- 解得1x =(经检验.1x =是原方程的解).或32x = 当10x =>符合程序判断条件.302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程.理解题意是解题的关键. 30.(2021·105______. 【答案】10 【解析】 【分析】根据1010511<<.105 【详解】 解:100105121<<即1010511<<. 10510. 故答案为:10. 【点睛】本题主要考查无理数的估算.解题的关键是确定无理数位于哪两个整数之间. 31.(2021·()131820213π-⎛⎫--+-= ⎪⎝⎭___________. 【答案】-4 【解析】 【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解. 【详解】解:原式=()213-++- 51=-+4=-.故答案为:-4 【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点.熟知上述的各种运算法则是解题的基础.32.(2020·青海)(-3+8)的相反数是16________. 【答案】 5- 2± 【解析】 【分析】第1空:先计算-3+8的值.根据相反数的定义写出其相反数. 第216.再写出其平方根. 【详解】第1空:∵385-+=.则其相反数为:5- 第2空:164.则其平方根为:2± 故答案为:5-.2±. 【点睛】本题考查了相反数.平方根.熟知相反数.平方根的知识是解题的关键.33.(2020·四川遂宁)下列各数917.2﹣π.﹣34.无理数的个数有_____个. 【答案】3 【解析】 【分析】根据无理数的三种形式:∵开不尽的方根.∵无限不循环小数.∵含有π的绝大部分数.找出无理数的个数即可. 【详解】解:在所列实数中.无理数有1.212212221….2﹣343个. 故答案为:3. 【点睛】本题考查无理数的定义.熟练掌握无理数的概念是解题的关键.34.(2022·四川广安)若(a ﹣3)25-b 则以a 、b 为边长的等腰三角形的周长为________.【答案】11或13##13或11 【解析】 【分析】根据平方的非负性.算术平方根的非负性求得,a b 的值.进而根据等腰三角形的定义.分类讨论.根据构成三角形的条件取舍即可求解. 【详解】解:∵(a ﹣3)25-b ∵3a =.5b =.当3a =为腰时.周长为:26511a b +=+=. 当5b =为腰时.三角形的周长为231013a b +=+=. 故答案为:11或13. 【点睛】本题考查了等腰三角形的定义.非负数的性质.掌握以上知识是解题的关键.35.(2022·四川内江)对于非零实数a .b .规定a ∵b =11a b-.若(2x ﹣1)∵2=1.则x 的值为 _____. 【答案】56【解析】 【分析】根据题意列出方程.解方程即可求解. 【详解】 解:由题意得:11212x --=1.等式两边同时乘以2(21)x -得.2212(21)x x -+=-.解得:56x =.经检验.x =56是原方程的根. ∵x =56. 故答案为:56. 【点睛】本题考查了解分式方程.掌握分式方程的一般解法是解题的关键. 36.(2022·湖北随州)已知m 为正整数.189m .则根据1893337337m m m ⨯⨯⨯=⨯m 有最小值3721⨯=.设n 为正整数.300n于1的整数.则n 的最小值为______.最大值为______. 【答案】 3 75 【解析】 【分析】 根据n 为正整数.300n 1的整数.先求出n 的值可以为3、12、75.300.300n是大于1的整数来求解. 【详解】 解:30032525310n n n⨯⨯⨯⨯==300n 1的整数.30031n n=. ∵n 为正整数∵n 的值可以为3、12、75. n 的最小值是3.最大值是75. 故答案为:3.75. 【点睛】本题考查了无理数的估算.理解无理数的估算方法是解答关键.37.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一.其底面是正方形.侧面是全等的等腰三角形.51.它介于整数n 和1n +之间.则n 的值是______. 【答案】1 【解析】 【分析】551即可完成求解. 【详解】 解:5 2.236. 51 1.236≈.因为1.236介于整数1和2之间. 所以1n =; 故答案为:1. 【点睛】本题考查了对算术平方根取值的估算.55的整数部分即可.该题题干前半部分涉及到数学文化.后半部分为解题的要点.考查了学生的读题、审题等能力.38.(2021·内蒙古呼和浩特)若把第n 个位置上的数记为n x .则称1x .2x .3x .….n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y .3y …n y 其中n y 是这个数列中第n 个位置上的数.1n =.2.…k 且111101n n n n n x x y x x -+-+=⎧=⎨≠⎩并规定0n x x =.11n x x +=.如果数列A 只有四个数.且1x .2x .3x .4x 依次为3.1.2.1.则其“伴生数列”B 是__________. 【答案】0.1.0.1 【解析】 【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3.可得x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.根据定义其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1即可. 【详解】解:∵1x .2x .3x .4x 依次为3.1.2.1. ∵x 0=x 4=1.x 5=x 1=3.∵x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.∵x 0=2x =1.y 1=0.x 1≠x 3.y 2=1.2x =4x =1.y 3=0.3x ≠x 5.y 4=1. ∵其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1. 故答案为:0. 1. 0. 1.【点睛】本题考查新定义数列与伴生数列.仔细阅读题目.理解定义.抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键. 39.(2020·上海)已知f (x )=21x -.那么f (3)的值是____. 【答案】1. 【解析】 【分析】 根据f (x )=21x -.将3x =代入即可求解. 【详解】解:由题意得:f (x )=21x -. ∵将3x =代替表达式中的x . ∵f (3)=231-=1. 故答案为:1. 【点睛】本题考查函数值的求法.解答本题的关键是明确题意.利用题目中新定义解答. 40.(2020·浙江衢州)定义a ∵b =a (b +1).例如2∵3=2×(3+1)=2×4=8.则(x ﹣1)∵x 的结果为_____. 【答案】x 2﹣1 【解析】 【分析】根据规定的运算.直接代值后再根据平方差公式计算即可. 【详解】 解:根据题意得:(x ﹣1)∵x =(x ﹣1)(x +1)=x 2﹣1. 故答案为:x 2﹣1. 【点睛】本题考查了平方差公式.实数的运算.理解题目中的运算方法是解题关键. 41.(2020·青海)对于任意不相等的两个实数a.b ( a > b )定义一种新运算a ba b+-.如3232+-.那么12∵4=______ 2 【解析】 【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可. 【详解】 解:12∵41241621248+==- 2【点睛】此题考查二次根式的化简求值.理解规定的运算顺序与计算方法是解决问题的关键. 42.(2022·510.618-≈这个数叫做黄金比.著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设51a -=51b +=记11111S a b =+++.2222211S a b =+++ (100100100100100)11S a b=+++.则12100S S S +++=_______.【答案】5050 【解析】 【分析】利用分式的加减法则分别可求S 1=1.S 2=2.S 100=100.•••.利用规律求解即可. 【详解】 解:51a -=51b +=51511ab -+==∴. 1112211112a b a b a b b b a bS a a ++++=+===+++++++. 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++.….10010010010010010010010010010010011100100111a b S a b a b a b+++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050 【点睛】本题考查了分式的加减法.二次根式的混合运算.求得1ab =.找出的规律是本题的关键. 43.(2021·内蒙古鄂尔多斯)下列说法不正确的是___________ (只填序号) ∵717 2.174.∵外角为60︒且边长为23∵把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-. ∵新定义运算:2*21m n mn n =--.则方程1*0x -=有两个不相等的实数根. 【答案】∵∵∵ 【解析】 【分析】17∵.先判断出正多边形为正六边形.再求出其内切圆半径即可判断∵.根据直线的平移规律可判断∵.根据新定义运算列出方程即可判断∵. 【详解】解:∵∵161725<<. ∵4175< ∵5174-<-- ∵27173<<∵717 2.小数部分为517故∵错误. ∵外角为60︒的正多边形的边数为:36060=6︒÷︒ ∵这个正多边形是正六边形.设这个正六边形为ABCDEF .如图.O 为正六边形的中心.连接OA .过O 作OG ∵AB 于点G .∵AB =2.∵BAF =120° ∵AG =1.∵GAO =60°∵3OG =,即外角为60︒且边长为23故∵正确. ∵把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-.故∵错误.∵∵新定义运算:2*21m n mn n =--.∵方程21*(1)210x x x -=-⨯--=.即2210x x ++=. ∵2=24110∆-⨯⨯=∵方程1*0x -=有两个相等的实数根.故∵错误. ∵错误的结论是∵∵∵ 帮答案为∵∵∵. 【点睛】此题主要考查了无理数的估算.正多边形和圆.直线的平移以及根的判别式.熟练掌握以上相关知识是解答此题的关键.44.(2021·湖北随州)2021年5月7日.《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家.他是第一个将圆周率π精确到小数点后第七位的人.他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法.其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有b d x ac <<.其中a .b .c .d 为正整数).则b da c ++是x 的更为精确的近似值.例如:已知15722507π<<.则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+.由于179 3.140457π≈<.再由17922577π<<.可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<.则使用两次“调日法”2为______. 【答案】1712【解析】 【分析】根据“调日法”的定义.第一次结果为:107.2 .所以710257.根据第二次“调日法”进行计算即可. 【详解】解:∵73252<<∵第一次“调日法”.结果为:7+310=5+27∵101.42862 7≈>∵710257 <<∵第二次“调日法”.结果为:7+1017=5+712故答案为:17 12【点睛】本题考查无理数的估算.根据定义.严格按照例题步骤解题是重点.45.(2020·湖南邵阳)在如图方格中.若要使横、竖、斜对角的3个实数相乘都得到同样的结果.则2个空格的实数之积为________.32231632【答案】62【解析】【分析】先将表格中最上一行的3个数相乘得到66然后中间一行的三个数相乘以及最后一行的三个数相等都是66即可求解.【详解】解:由题意可知.第一行三个数的乘积为:322366=设第二行中间数为x.则166⨯⨯=x解得6x设第三行第一个数为y.则3266⨯=y解得3y=∵2个空格的实数之积为2182xy=故答案为:62【点睛】本题考查了二次根数的乘法运算法则.熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.三、解答题46.(2022·北京)计算:0(1)4sin 458 3.π-+-+- 【答案】4 【解析】 【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解. 【详解】解:0(1)4sin 458 3.π-+-+-2=142232+⨯- =4.【点睛】本题考查了实数的混合运算.掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.47.(2022·江苏宿迁)计算:11122-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2 【解析】 【分析】先计算负整数指数幂.二次根式的化简.特殊角的三角函数值.再计算乘法.再合并即可. 【详解】解:11124sin 6023=2+23422233=+2=【点睛】本题考查的是特殊角的三角函数值的运算.负整数指数幂的含义.二次根式的化简.掌握“运算基础运算”是解本题的关键. 48.(2021·湖南张家界)计算:2021(1)222cos608-+-︒2 【解析】 【分析】。
2024成都中考数学复习专题 实数(含二次根式) (含答案)
2024成都中考数学复习专题 实数(含二次根式)基础题1. (2023江西)下列各数中,正整数...是( ) A. 3 B. 2.1 C. 0 D. -2 2. (2023武汉)实数3的相反数是( )A. 3B. 13C. -13 D. -33. (2023烟台)-23的倒数是( )A. 32B. 23C. -23D. -32 4. (2023大连)-6的绝对值是( )A. -6B. 6C. 16D. -165. (2023舟山)-8的立方根是( ) A. -2 B. 2 C. ±2 D. 不存在6. (2023河南)下列各数中最小的数是( )A. -1B. 0C. 1D. 37. 某段水域水位低于警戒线10 cm ,由于当天晚上下雨,第二天水位上涨了15 cm ,若以警戒线为基准,则第二天水位( ) A. 高于警戒线10 cm B. 高于警戒线15 cm C. 低于警戒线15 cm D. 高于警戒线5 cm8. (北师七上P33习题第5题改编)小红和她的同学共买了4袋标注质量为450 g 的食品,她们对这4袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记不足标注质量的克数)如下表:最接近标准质量的是( )A. 第1袋B. 第2袋C. 第3袋D. 第4袋9. (2023广东省卷)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186 000升燃油,将数据186 000用科学记数法表示为()A. 0.186×105B. 1.86×105C. 18.6×104D. 186×10310. “雪龙2”号极地科考破冰船是我国继“向阳红10”号、“极地”号和“雪龙”号之后的第4艘极地科考船,总长122.5米,排水量近1.4万吨,将数据1.4万用科学记数法表示为()A. 1.4×105B. 1.4×104C. 14×103D. 0.14×10611. (2023青羊区模拟)清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为0.000 008 4米,用科学记数法表示0.000 008 4=8.4×10n,则n为()A. -5B. 5C. -6D. 612. (2023包头)定义新运算“⊗”,规定:a⊗b=a2-|b|,则(-2)⊗(-1)的运算结果为()A. -5B. -3C. 5D. 313. (2023江西)若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 614. (北师七上P74复习题第9题改编)如图,数轴上的单位长度为1,有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()第14题图A. -2B. 0C. 1D. 415. (2023威海)面积为9的正方形,其边长等于()A. 9的平方根B. 9的算术平方根C. 9的立方根D. 9的算术平方根16. (2023扬州)已知a=5,b=2,c=3,则a,b,c的大小关系是()A. b>a>cB. a>c>bC. a>b>cD. b>c>a17. 下列计算正确的是( ) A. 22=2 B. (-2)2=-2 C. 22=±2 D.(-2)2=±218. 下列式子中,属于最简二次根式的是( )A. 4B. 5C. 0.2D. 1319. (2023烟台改编)可以与2合并的是( )A. 4B. 6C. 8D. 12 20. (2023大连)下列计算正确的是( ) A. (2)0= 2 B. 23+33=56 C. 8=4 2 D. 3(23-2)=6-2321. 如图,将一把损坏的刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“3 cm”分别对应数轴上的-3和0,则x 的值可以是( )第21题图A. 2B. 3C. 2D. 5 22. (2023徐州) 2 023的值介于( ) A. 25与30之间 B. 30与35之间 C. 35与40之间 D. 40与45之间23. (2023河北)若a =2,b =7,则14a 2b 2=( ) A. 2 B. 4 C. 7 D. 224. [新考法—结论开放](2023武汉)写出一个小于4的正无理数是________. 25. (2023滨州)计算2-|-3|的结果为________. 26. (2023黄冈)(-1)2+(13)0=________.27. (2023杭州)计算:2-8=________.28. (2023山西)计算:(6+3)(6-3)的结果为________.29. (2023连云港)如图,数轴上的点A ,B 分别对应实数a ,b ,则a +b ________0.(用“>”“<”或“=”填空)第29题图30. (2023营口)若二次根式1+3x 有意义,则x 的取值范围是________. 31. (2023湘潭)已知实数a ,b 满足(a -2)2+|b +1|=0,则a b =________. 32. (2023陕西)计算:5×(-10)-(17)-1+|-23|.33. (2023济宁)计算:12-2cos 30°+|3-2|+2-1.34. 计算:(-1)3+8÷22+|2-1|×22.35. (2023沈阳改编)计算:(π-2 023)0+(-3)2+(13)-2-4sin 30°.拔高题36. (2023河北)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012 km.下列正确的是( ) A. 9.46×1012-10=9.46×1011 B. 9.46×1012-0.46=9×1012 C. 9.46×1012是一个12位数 D. 9.46×1012是一个13位数37. (2023杭州)已知数轴上的点A ,B 分别表示数a ,b ,其中-1<a <0,0<b <1.若a ×b =c ,数c 在数轴上用点C 表示,则点A , B ,C 在数轴上的位置可能是( )A BC D38. (2023重庆A 卷)估计2(8+10)的值应在( ) A. 7和8之间 B. 8和9之间 C. 9和10之间 D. 10和11之间39. (2023黄冈)请写出一个正整数m 的值使得8m 是整数:m =________. 40. (2023包头)若a ,b 为两个连续整数,且a <3<b ,则a +b =________. 41. (2023成都定心卷)比较大小:3-52____38.(填“>”“<”或“=”)第42题图42. (2023兰州)如图,将面积为7的正方形OABC 和面积为9的正方形ODEF 分别绕原点O 顺时针旋转,使OA ,OD 落在数轴上,点A ,D 在数轴上对应的数字分别为a ,b ,则b -a =________.43. (2022随州)已知m 为正整数,若189m 是整数,则根据189m =3×3×3×7m =33×7m 可知m 有最小值3×7=21.设n 为正整数,若300n是大于1的整数,则n 的最小值为________,最大值为________.参考答案与解析1. A2. D3. D4. B5. A【解析】根据立方根的定义,(-2)3=-8,∴-8的立方根是-2.6. A7. D【解析】∵15+(-10)=5(cm),∴第二天水位高于警戒线5 cm.8. D9. B10. B【解析】1.4万=1.4×104 .11. C【解析】0.000 008 4=8.4×10-6,∴n=-6.12. D【解析】由题意可得(-2)⊗(-1)=(-2)2-|-1|=4-1=3.13. D【解析】∵二次根式a-4有意义,∴a-4≥0,解得a≥4,结合选项可知D符合条件.14. C【解析】∵点A,B表示的数互为相反数,故C点左边一个单位处为0点,则点C 对应的数是1.15. B【解析】∵正方形的面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.16. C【解析】∵3<4<5,∴3<4<5,即3<2<5,则a>b>c.17. A【解析】A.22=|2|=2,符合题意;B.(-2)2=|-2|=2,不符合题意;C.22=|2|=2,不符合题意;D.(-2)2=|-2|=2,不符合题意.18. B【解析】4=2,0.2=55,13=33,只有5为最简二次根式.19. C【解析】∵8=22,与2是同类二次根式,只有同类二次根式才可以合并,故选C.20. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.21. D【解析】结合题图可知,x的值在刻度尺的“5 cm”和“6 cm”之间,即x的值在数轴上的2和3之间,∵(5)2=5,∴(5)2在4和9之间,∴5在2和3之间,则x的值可以是5.22. D【解析】∵252=625,302=900,352=1 225,402=1 600,452=2 025,∴1 600<2 023<2 025,∴ 2 023的值介于40与45之间.23. A 【解析】∵a =2 ,b =7 ,∴14a 2b 2 =14×27=4 =2. 24. 2 (答案不唯一)25. -1 【解析】原式=2-3=-(3-2)=-1. 26. 2 27. -228. 3 【解析】原式=(6 )2-(3 )2=6-3=3.29. < 【解析】由题图知,a <0<b ,且|a |>|b |,∴a +b <0. 30. x ≥-13 【解析】根据题意得1+3x ≥0,∴x ≥-13.31. 12 【解析】∵(a -2)2+|b +1|=0,(a -2)2≥0,|b +1|≥0,∴a -2=0,b +1=0,∴a=2,b =-1,∴a b =2-1=12 .32. 解:原式=-52 -7+|-8| =-52 -7+8 =-52 +1.33. 解:原式=23 -2×32 +2-3 +12=23 -3 +2-3 +12=52. 34. 解:原式=-1+8÷4+1-22=-1+2+1-22=2-22. 35. 解:原式=1+3+9-4×12=1+3+9-2 =11.36. D 【解析】9.46×1012复原后的数有12+1=13位整数.37. B 【解析】∵-1<a <0,0<b <1,a ×b =c ,∴-1<-b <a ×b <0,∴-1<-b <c <0.∵|a ×b |<|a |,∴|c |<|a |,∴点A ,B ,C 在数轴上的位置可能的只有B 选项.38. B 【解析】原式=4+20 ,∵16 <20 <25 ,∴4<20 <5,∴8<4+20 <9.39. 2(答案不唯一) 【解析】当m =2时,8m =16 =4,符合题意,∴m 的值可以为2(答案不唯一).40. 3 【解析】∵1<3<4,∴1<3 <2,∴a =1,b =2,则a +b =1+2=3. 41. > 【解析】∵5 ≈2.236,∴3-52 ≈0.382,38 =0.375,∴3-52 >38.42. 3-7 【解析】∵正方形OABC 的面积为7,∴OA =7 ,∴a =7 .∵正方形ODEF 的面积为9,∴OD =9 =3,∴b =3,∴b -a =3-7 . 43. 3;75 【解析】∵300n=100×3n=103n为整数,且n 为正整数,∴n 的最小值为3.∵300n 是大于1的整数,∴当103n=2时,n 取得最大值,∴3n =15,解得n =75.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第06讲 实 数
考点·方法·破译
1.平方根与立方根:
若2
x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =
a 的平方根
为x
a 的算术平方根.
若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x
.
2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数p
q
(p 、q 是两个互质的整数,且q ≠0)的形式. 3非负数:
实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数)
0(a ≥0) . 经典·考题·赏析
【例1】若2m -4与3m -1是同一个数的平方根,求m 的值.
【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .
【变式题组】
01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m
的最大整数,则m 的平方根是____. 03
____.
y 是____.
【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,
则a +b 等于( )
A .-1
B . 0
C .1
D .2
有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0 a ≥3
∵24242a b a -++=
∴24242a b a -++=
,∴20b ++=.
∴()2
2030b a b +=⎧⎪⎨-=⎪⎩
,∴32a b =⎧⎨=-⎩,故选C .
【变式题组】
0l
3b +=0成立,则a b =____
. 02()2
30b -=,则
a
b
的平方根是____. 03.(天津)若x 、
y 为实数,且20x +=,则2009
x y ⎛⎫
⎪
⎝⎭
的值为( )
A .1
B .-1
C .2
D .-2
04.已知x
1
x π
-的值是( )
A .1
1π
-
B .1
1π
+
C .
1
1π
- D .无法确定
【例3】若
a 、b
都为有理效,且满足1a b -=+a +b 的平方根. 【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无
理数的和、差、积、商(除数不为0
)不一定是无理数.∵1a b -+=+
∴
1a b -=⎧⎪
=
1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,
a +
b =12 +13=25.
∴
a +b
的平方根为:5==±. 【变式题组】
01.(西安市竞赛题)已知
m 、n 2)m
+(3-)n +7=0求m 、n .
02.(希望杯试题)设x 、y 都是有理数,且满足方程(
123
π
+)x +(132π+)y −4−π=0,
则x −y =____.
【例4】若a 为17−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值. 【解法指导】一个实数由小数部分与整数部分组成,17−2=整数部分+小数部分.整数部分估算可得2,则小数部分=17−2 −2=17−4.∵a =2,b −1=±3 ,∴b =-2或4
∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】
01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____. 02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____.
演练巩固 反馈提高
0l .下列说法正确的是( )
A .-2是(-2)2的算术平方根
B .3是-9的算术平方根
C . 16的平方根是±4
D .27的立方根是±3 02.设3a =-,b = -2,5
2
c =-
,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )
A .-9与81的平方根
B .4与
3
64- C .4与364 D .3与9
04.在实数1.414,2-,0.1•5•
,5−16,π,3.1•4•
,8
3125
中无理数有( ) A .2个 B .3个 C .4个 D . 5个 05.实数a 、b 在数轴上表示的位置如图所示,则( )
A .b >a
B .a b >
C . -a <b
D .-b >a
06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )
A . 1个
B .2个
C . 3个
D .4个 07.设m 是9的平方根,n =
()2
3.则m ,n 的关系是( )
A. m=±n
B.m=n C
.
m=-n D.m n
≠
08.(烟台)如图,数轴上A、B两点表示的数分别为-1和3,点B关于点A的对称点C,则点C所表示的数为( )
A.-23
-B.-13
-C.-2 +3D.l+3
09.点A在数轴上和原点相距5个单位,点B在数轴上和原点相距3个单位,且点B在点A左边,则A、B之间的距离为____.
10.用计算器探索:已知按一定规律排列的一组数:1,
2
,
3
…,
19
,
20
.如果从中选出若干个数,使它的和大于3,那么至少要选____个数.
11.对于任意不相等的两个数a、b,定义一种运算※如下:a※b=
a b
+
,如3※2=
32
+=5.那么12.※4=____.
12.(长沙中考题)已知a、b为两个连续整数,且a<7<b,则a+b=____.
13.对实数a、b,定义运算“*”,如下a*b=
()
()
2
2
a b a b
ab a b
⎧⎪
⎨
⎪⎩
≥
<
,已知3*m=36,则实数m =____.
14.设a是大于1的实数.若a,
2
3
a+
,
21
3
a+
在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.
15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴
正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.
16.已知整数x、y满足x+2y=50,求x、y.
17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.
18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇
形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.
19.若b 315a -153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,
求(mn −2)(3mn +4)的平方根与立方根.
20.若x 、y 为实数,且(x −y +1)2533x y --2
2
x y +
培优升级奥赛检测
01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )
A.2 B.-1 C.1 D.0
02.( )
A.0 B.1C.1 D.2
03−2的最小值为____.
04.设a、b为有理数,且a、b满足等式a2+3b+21−,则a+b=____.-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.05.若a b
-=,则a− 20092=_______.
06.已知实数a满足2009a a
07.若m满足关系式=
确定m的值.
08.(全国联赛)若a、b满足5b=7,S=3b,求S的取值范围
09.(北京市初二年级竞赛试题)已知
0<a <1,并且
123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦g g g 2930a ⎡⎤++⎢⎥⎣⎦
18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .
10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y 21a =-,231x y b -=--,
求22x y a b +++的值.
11.(全国竞赛试题)巳知x =
b
a
,a 、b 为互质的正整数.且a ≤8−1<x 1, (1)试写出一个满足条件的x ;(2)求所有满足条件的x。